

Prospects for multimessenger astrophysics with gravitational waves

Éric Chassande-Mottin

pour la LIGO Scientific Collaboration et la Virgo Collaboration

CNRS, AstroParticule et Cosmologie, Paris France

1-slide primer on Virgo

- Gravitational waves GW
 - Propagating space-time distorsion predicted by General Relativity
 - Goal: measure GW directly (in situ)
- Kilometric Michelson interferometer
 - Measure relative difference in optical path length to 10⁻²¹, or 10⁻¹⁸ m over km
 - Sensitive about few 100 Hz

• Target distant astrophysical sources

 Typically: binaries of stellar mass compact objects (neutron star or black hole)

 $h\sim 10^{-21}\,{\rm for}~{\rm NS}$ binaries at 15 Mpc

GW detectors in the world

GW detectors: status and timeline

1st generation – initial

3 joint LIGO – Virgo science runs ~2 yrs total, target sensitivity reached 40 papers on transient & continuous sources

horizon = detection range to coalescing binaries of neutron stars

Initial: LIGO ~ 40 Mpc Virgo ~ 20 Mpc

2nd generation – advanced

Improvement x 10 - # of events x 1000

Adv: LIGO ~ 450 Mpc Virgo ~ 320 Mpc

Science with 2nd generation 2015-2022+

event \propto (range)³ x obs. duration $r_{\rm BNS} \approx 100/{\rm Myr}/{\rm MWEG}$

		Estimated	$E_{\rm GW} =$	$10^{-2} M_{\odot} c^2$			Number	% BNS	Localized
		Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
ext	Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 \mathrm{deg}^2$	$20 \mathrm{deg}^2$
run	2015	3 months	40 - 60	-	40 - 80	—	0.0004 - 3	-	-
	2016 - 17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
	2017-18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
	2019 +	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
	2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

ArXiv:1304.0670

GW and multimessenger astrophysics

- GW transient sources are highly energetic astrophysical events and must be relatively close to be detected by LIGO and Virgo
 - GW emission is weakly beamed
- They will likely release **other types of radiations** (electromagnetic and neutrinos) too
 - e.g., Gamma-ray bursts GRB

Credit: NASA/Swift

Long bursts associated to core collapses of massive rapidly spinning stars \rightarrow "burst"-like GW Short bursts are believe to be from coalescing compact binaries (with one NS) \rightarrow "chirp"-like GW

Potential EM counterparts to GW Example of short hard burst

Different strategies for joint observations

- Deep GW searches triggered by astrophysical alerts
 - e.g., process all GCN & SNEWS notices with few days latency
- Electromagnetic follow-up of GW alerts
 - e.g., seek a counterpart (GRB afterglow)
- Off-line joint coincidence with other events (possibly sub-threshold)
 - e.g., high-energy neutrinos

LIGO-Virgo GW alert system

- Identify significant transients worth following up
- Distribute alerts to observing partners within 5-10 mins

Error on sky localization

- Reconstructed sky regions are large!
 - Assuming pretty loud event with SNR = 12, FAR ~ 10^{-2} /yr
 - Credible region at 90 % level is 500 square degrees with 2 LIGO
 - Reduces to 200 square degrees with Virgo
 - Coverage of GW error box is challenging!

Singer et al., ApJ795, 105 (2014) arXiv:1404.5623 http://www.ligo.org/scientists/first2years

Discovery & redshift of a GBM GRB in 71 deg²

=SN2013dx

Singer et al.(2013, 2013, ApJL 776:34) http://dx.doi.org/10.1088/2041-8205/776/2/L34

LIGO-Virgo EM follow-up program

- Plan for public release after first 4 detections
- Two open calls for partnerships for early period
 - Signed agreements with 75 groups worldwide
 - ~500 astronomers, 150 instruments, 10 space observatories
 - From radio to gamma-rays
- French involvement
 - TAROT et al. (Obs Nice), FIGARO, SVOM, nenuFAR
 - European coordination to access ESO instruments (VLT)

Science potential

- Clear synergy with high-energy astrophysics
- Potential impact on GRB physics
 - Demonstrate Short GRB vs BNS/BH-NS association
 - Beaming (ratio of GW events observed vs non-observed in γ -rays)
- Longer term: Cosmography with "standard sirens"?
 - Measure D_L with 1-10 % accuracy from GW no cosmological ladder!
 - Get *z* from host identification or from γ -ray spectrum
 - Deduce H_0 to 10-30 % level with O(10) SHB

Science from 1st generation 2005-11

Reached design sensitivity!

"horizon" = detection range of coalescing binaries of neutron stars (BNS)

LIGO ~ 40 Mpc and Virgo ~ 20 Mpc

3 joint LIGO – Virgo science runs ~2 yrs total

40 papers published and more to come

Transient sources (BNS, BBH and bursts; in connection with astrophysical triggers, e.g., GRB or neutrinos)

Continuous sources (pulsars)

Stochastic background

Gamma-ray bursts

EM counterparts to GW

