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1 Introduction

In the following document it is presented a formulation of a new control strategy for the angular degrees of
freedom of a Fabry-Perot cavity (bottom stage) in the presence of radiation pressure effect for Advanced Virgo+
(AdV+) Phase II. The main difference with Phase I configuration is the introduction of large terminal masses
(Marionetta + Mirror). The different physical dimensions of the two terminal masses and the consequent differ-
ent momenta of inertia introduce a not negligible asymmetry of the opto-mechanical system which is translated
in an impossibility of fully-decoupling all the degrees of freedom. Given this difficulty in diagonalizing the
system, the possibility of designing SISO-like controllers (Single Input - Single Output) is left out. Thus, in
the present study, a new approach of designing MIMO-like controllers (Multi Input - Multi Output) in time-
domain is investigated. Optimal Control Theory will be used in order to design controllers which allow, by the
minimization of a specific cost function, to obtain direct closed-loop stability with the optimal phase margin
available.
The present document will tackle different topics: starting from the analytical description of the Fabry-Perot
cavity, first (i) a State Space formulation of the opto-mechanical system is obtained; then, (ii) the design of a
LQR control (namely Linear Quadratic Regulator) with an additional Integrator (i.e. LQI) will be described;
eventually, to complete the control loop design architecture, (iii) the design of a state estimator, i.e. Kalman
Filter, will be reported, by using realistic data of sensors noise, in order to evaluate robustness and convergence
limitation of the filter.
Additionally, two versions of the LQI controller (one in physical and the second in canonical coordinates respec-
tively) will be described, in order to enhance limitation and advantages of the two versions.
All the simulation will be performed in Simulink environment.

2 State Space modeling of the payload

State Space representation is a mathematical description of a physical system which is defined by a matrix
notation that relates the system’s output response due to an input at any given time. The time evolution of
the system variables is subjected to a first-order differential equation.
Such representation is commonly used in control engineering [1], as its mathematical architecture handles well
the manipulation of Linear Time Invariant (LTI) systems, and fits most of the controller design tasks, both for
SISO and multivariable MIMO systems.
The general description of the State Space representation can be approached considering one of the simplest
physical system, that is the harmonic oscillator. The equation of motion of such mechanical system is a second-
order differential equation:

mz̈(t) + dż(t) + kz(t) = F (t) (2.1)

where m is the mass of the system which, subjected to an input force over time F (t), is moving along the z
coordinate, dampened by the spring-damper effect k (mechanical stiffness) and d (damping coefficient) respec-
tively.
In order to obtain the State Space representation of such system, we need to linearize the system. This means
to rewrite the set of coordinates, which allows to reduce the order of the equation from second to first. This is
done by introducing a state vector x which contains the position and its first derivative (velocity) with respect
to time of the mass m:

x =

{
z
ż

}
(2.2)

Given Eq. 2.2, by rewriting Eq. 2.1 with respect to z̈, we can reformulate the equation of motion in matrix form:{
ż
z̈

}
=

[
0 1

− k
m − d

m

]{
z
ż

}
+

[
0
1
m

]
F (t) (2.3)
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Where:

A =

[
0 1

− k
m − d

m

]
B =

[
0
1
m

]
u =F (t)

(2.4)

In Eq. 2.4, A is called State Matrix and it is a representation of the plant of the system: it is a square matrix
and has dimension twice of the number of the degrees of freedom NDoF , i.e. 2NDoF x 2NDoF . It contains
all the physical (in this case mechanical) parameters of the described system, such as mechanical stiffness and
damping coefficients. It also contains information about the frequency response of the plant, as by computing
the eigenvalues of the matrix, the root locus of the principal resonances of the system are obtained.
B is called Input Matrix, and it is a representation of the physical actuator used in order to apply an input to
the system. It has dimension 2NDoF x NAct, where NAct is the number of actuators available.
u is the input vector that is the physical actuation that is given to the system. In case of a feedback loop, u is
the correction coming out from the control loop.
Given this premises, the whole second-order physical system has been reduced to the first-order, and its dynamics
is regulated by:

ẋ = Ax+Bu (2.5)

Additionally, we can introduce the measurement equation, which describes the sensors dynamics:

y = Cx+Du (2.6)

In Eq. 2.6, C is the measurement matrix and represents the modeling of the sensors available. It has dimension
Ns x 2NDoF , where Ns is the number of available probes to measure one physical quantity. D is called
Feedthrough matrix, which has dimension Ns x NAct. In case there is no feedforward loop implemented, D
matrix is generally equal to zero.

2.1 Analytical description of the mechanical payload of AdV+

Consider the mechanical system described in Fig. 1. The suspended Fabry-Perot cavity is described considering
the bottom stage (Marionetta + Mirror) of the full payload. In the present document, the following notation
is adopted: the elements are labeled with counter-clockwise numbering. Thus, the Input Marionetta and Input
Mirror will be MAR1 and MIR2, while End Mirror and End Marionetta will be accordingly MIR3 and MAR4.
Each element of the system is connected between each other through an equivalent elastic-damping element
(either longitudinal or torsional) represented by a stiffness k∗ and a damping coefficient d∗. The two mirrors
are connected by radiation pressure effect, which can be described by an equivalent optical spring with stiffness
kOS . As an approximation, the upper stage above the marionettas is considered to be a fixed reference, i.e. no
motion in any degrees of freedom of the reference is allowed.
In order to obtain the State-Space formulation of the double pendulum dynamics, we need to start from the
analytical equation of motion of the system.
The general torsional equation of motion is:

Inm
∂2

∂t2
θnm + dnm

∂

∂t
θnm + knmθnm = Tnm(t) (2.7)

Where the subscripts n and m represent the n-th mass of the system and the m-th excited degree of freedom.
Accordingly, Inm is the Inertia Momentum of the mass n-th along the m-th direction respectively. θnm is the
angular displacement of the masses for a given torque Tnm. The optical spring given by radiation pressure effect
couples the laws of motion for the two mirrors [2]. Its equivalent stiffness is given by 2.8:

kos =
2PL

c(1− g3g2)

[
−g3 1
1 −g2

]
(2.8)
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Where P is the power resonating inside the cavity, L is the cavity’s length, c is the speed of light and g∗ are
the cavity parameters defined as:

gn = 1− L

Rn
(2.9)

with Rn being the radius of curvature of the n-th mirror.

Figure 1: Schematic of the suspended Fabry-Perot cavity (bottom stage).

According to the principle of variation of the Potential Energy, the total stiffness matrix is given by:

Km =


(k1 + k2) −k2

−k2 k2
k3 −k3
−k3 (k3 + k4)

 (2.10)

The augmented Optical Stifness matrix, according to 2.8 is given by:

KOS =

 krpi kp
kp krpe

 (2.11)

The total Stiffnes matrix of the opto-mechanical system will be the sum of 2.10 and 2.11, i.e. Ktot = Km+KOS .
Given this notation, let’s consider the TY degree of freedom (Yaw), that is the rotation along the vertical axis.
The complete equation of motion is given by:

I1θ̈1 + k1θ1 + d1θ̇1 − k2(θ2 − θ1)− d2(θ̇2 − θ̇1) = 0

I2θ̈2 + k2(θ2 − θ1) + d2(θ̇2 − θ̇1) + krpiθ2 + kpθ3 = 0

I3θ̈3 + k3(θ3 − θ4) + d3(θ̇3 − θ̇4) + kpθ2 + krpeθ3 = 0

I4θ̈4 + k4θ4 + d4θ̇4 − k3(θ3 − θ4)− d3(θ̇3 − θ̇4) = 0

(2.12)

For the sake of simplicity, in Eq. 2.12, the second index m (DoF excited) has been omitted.
At this point, it is possible to extract the State-Space notation for the full system, by following the same ap-
proach described in the previous section. We indeed want to obtain a matrix notation, as done in Eq. 2.3.
Thus, by defining the state vector xT = [θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 θ4 θ̇4] we can rewrite the complete law of motion with
respect to the second derivative of the angular displacement:
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

θ̇1
θ̈1
θ̇2
θ̈1
θ̇3
θ̈1
θ̇4
θ̈1


=



0 1 0 0 0 0 0 0
(− k1

I1
− k2

I1
) (− d1

I1
− d2

I1
)

k2
I1

d2
I1

0 0 0 0

0 0 0 1 0 0 0 0
k2
I2

d2
I2

(− k2
I2

−
krpi
I2

) − d2
I2

− kp
I2

0 0 0

0 0 0 0 0 1 0 0

0 0 − kp
I3

(− k3
I3

− krpe
I3

) − d3
I3

k3
I3

d3
I3

0 0 0 0 0 0 0 1
0 0 0 0

k3
I4

d3
I4

(− k3
I4

− k4
I4

) (− d3
I4

− d4
I4

)





θ1
θ̇1
θ2
θ̇2
θ3
θ̇3
θ4
θ̇4


+


0 0

I−
1 1 0
0 0
0 0
0 0
0 0
0 0
0 I−

4 1


{
Tinput

Tend

}

(2.13)
In Eq. 2.13, the State matrix A, the Input matrix B and the control vector u are explicitly written.
At this point, it is possible to compute the OPEN-LOOP transfer functions of the full coupled system.
The Output VS Input relationship between an arbitrary torque and the correspondent rotation of the masses
is given by:

θ

T
= C(sII −A)−1B +D (2.14)

Where II is the identity matrix of dimensions 2NDoF x 2NDoF .
The Opto-Mechanical parameters of Phase II cofiguration, used for the present study, are reported in Table 1:

Physical quantity Value Unit

Circulating Power P 420800 W

Inertia momentum I1yy 3.65 Kg·m2

rad

” I2yy 0.46 Kg·m2

rad

” I3yy 2.34 Kg·m2

rad

” I4yy 6.13 Kg·m2

rad

Damping coefficient d 0.0097

Mechanical Stiffness k1 18.94 N ·rad
m

” k2 18.94 N ·rad
m

” k3 111.78 N ·rad
m

” k4 0.3777 N ·rad
m

RoC Input R2 1067 m
RoC End R3 1969 m

Optical Stiffness krpi 84.032 N ·rad
m

” krpe 290.83 N ·rad
m

” kp 160.59 N ·rad
m

Table 1: Opto-Mechanical parameters of Phase II configuration.

Note that in real working condition the value of the damping coefficient can’t be calculated but only estimated (or
evaluated through experimental measurements). In the present document, it has been used a damping coefficient
considering a damping ratio equal to 1% of the critical one, that is ξopt =

1
100ξc, such that d = 0.0097.

According to Eq. 2.14, the opto-mechanical Open-loop transfer functions are reported in Fig.2:
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Figure 2: Open-loop transfer functions of the opto-mechanical system, considering a rotation around the TY
DoF. In the subplots all the input-output pairings are reported: in blue the masses response due to an arbitrary
torque applied on the Input marionetta; in orange, same response due to the actuation on the End marionetta.

In Fig.2 the four subplots represent all the input-output pairings due to the actuations on the two marionettas.
In details, blue plots represent the masses response for an applied torque to the Input marionetta, while the
orange plots are the ones for the actuation on the End marionetta.
At this point, to decouple the single modes of vibration, the system needs to be diagonalized, in order to switch
from the mirror coordinates to the modal coordinates.
The process will shown difficulties to obtain a full diagonal system, mostly due to its asymmetry.
This topic will be object of the next subsection 2.2.

2.2 Diagonalization of the opto-mechanical system

In order to decouple the equations of motion describing the opto-mechanical system, we can use the modal
analysis methodology. In our case, we have a system with NDoF degrees of freedom whose equations of motion,
in case of forced vibrations, can be generally written in matrix notation:

IΘ̈ +DΘ̇ +KtotΘ = T (t) (2.15)

where I is the Inertia matrix, D is the damping matrix and Ktot is the global stiffness matrix (mechanical +
optical).
In first approximation, we can consider the mechanical resonances modeled with high Quality factor1 q that
means zero damping, i.e. D = 02.
To decouple equations of motion in 2.15, we can apply the eigenvalues problems [3][4] which is defined by solving
the equation: det|Ktot-λI|=0. The aim is to find the Eigenvalues matrix Λ and the Eigenvectors matrix U of

1The quality factor of a mechanical resonance goes with the inverse of the damping ratio ξ, as q = 1
2ξ

. We also remember that

the damping coefficient d used in the equation of motion can be written as d = 2ξωI, where ω = 2πf is the general mechanical
angular frequency.

2If during the diagonalization process we would want to take into account also of the Damping matrix, we need to consider its
value while computing the eigenvectors, that means that D must be diagonalized through UTDU ; for reference, see Frazer, Duncan
and Collar method.
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the system. The Eigenvalues matrix is a diagonal matrix which contains the resonance frequencies λ = ω2 of
the mechanical system, while the Eigenvectors matrix is a full-square matrix in which each column represents
one single mode of vibration.
These two matrices are here defined:

Λ=


λ1

λ2

λ3

λ4


U iXn =

[
yi,n εi,n φi,n ζi,n

]
(2.16)

where i indicates the i-th eigenvalues, while n is the n-th degree of freedom.
The eigenvalues problem is approached by imposing the ortonormality conditions on the Inertia and on the
Stiffness respectively:

UT IU = II; UTKtotU = Λ (2.17)

Ortonormality condition in 2.17 allows to perform a change of coordinates, which means to switch from the
physical (mirror bases Θ), to the modal coordinates (mode bases q). This is done by rewriting the equations of
motion:

Θ = Uq

IΘ̈ +KtotΘ = T (t) ⇒ IUq̈ +KtotUq = T (t)

UT IUq̈ + UTKtotUq = UTT (t)

q̈ + Λq = UTT (t)

(2.18)

To compute the Eigenvalues and Eigenvectors matrices, we need to solve the eigenvalues problem. For each
eigenvalue λi we can write the following relationship:

det

∣∣∣∣∣∣∣∣

(k1 + k2) −k2

−k2 (k2 + krpi) kp
kp (k3 + krpe) −k3

−k3 (k3 + k4)

− λi


I1

I2
I3

I4


∣∣∣∣∣∣∣∣ = 0 (2.19)

det

∣∣∣∣∣∣∣∣

(k1 + k2)− λiI1 −k2

−k2 (k2 + krpi)− λiI2 kp
kp (k3 + krpe)− λiI3 −k3

−k3 (k3 + k4)− λiI4


∣∣∣∣∣∣∣∣ = 0 (2.20)

At this point, from Eq. 2.20, to compute the matrix U , we have to solve the following system of equations for
each eigenvalues: 

((k1 + k2)− λiI1)y
i,n − k2ε

i,n = 0

−k2y
i,n + ((k2 + krpi)− λiI2)ε

i,n + kpφ
i,n = 0

kpε
i,n + ((k3 + krpe)− λiI3)φ

i,n − k3ζ
i,n = 0

−k3φ
i,n + ((k3 + k4)− λiI4)ζ

i,n = 0

(2.21)

From the solution of the system of equations in Eq. 2.21, we finally find the Eigenvectors matrix U .
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2.3 Results of the diagonalization process

Given the parameters reported in Table 1, the resolution of the system in Eq. 2.21 gave the following eigenvector
matrix:

U =


−0.4455 0.3597 0.0859 0.0166
−0.3842 −0.1836 −0.8404 −1.12
0.193 0.156 0.4143 −0.423
0.1402 0.2725 −0.2006 0.0228

 (2.22)

Note that to solve the eigenvalues problems, as mentioned in the previous section, the damping coefficient has
been put equal to zero.
According to Eq. 2.18, UTT (t) gives the mixed actuation that we have to implement to the system in order to
excite the different modes of vibration independently. Considering that we have actuation only on the two mari-
onettas, namely n = 1, 4, we will have to select only the first and last row in U , by creating the reduced matrix Ũ :

ŨTT (t) =


−0.4455 0.1402
0.3597 0.2725
0.0859 −0.2006
0.0166 0.0228

T (t) (2.23)

In Eq. 2.23, the different pairing of torques to be applied in order to excite the different modes are given.

Figure 3: Mirrors response for mixed actuation with torques coming from diagonalization process.

In Fig. 3, response of the mirrors MIR2 and MIR3 for a mixed actuation on the marionettas is shown. The
couple of torques applied are coming from the diagonalization process previously described. As shown, the
system can not be fully diagonalized: even if the two mirrors are excited such as they are responding with the
same decay at the higher frequency (same roll-off), using both combination of (+) and (-) drivings, all the three
modes are excited at the same time. Moreover, some different zero-pole structure is arising between the two
TFs.
Results would have been different in case we would have had the possibility to act also on the mirrors instead of
only on the marionettas. In such case, we could have exploited the entire Eigenvectors matrix U (and not only
the first and last rows), and the possibility to excite the single modes independently would have been achieved.

Given this situation, the possibility to design a SISO-like controller for the different modes of vibrations (in



Phase II state space modeling and controllability analysis

VIR-0219A-23
issue :
date : March 10, 2023
page : 9 of 31

details, designing one single controller to be splitted to the marionettas) is left out.
In the next sections, it will be explored a new control strategy, based on the design of an optimal MIMO
controller by which we will be able to control all the different modes of the system.

3 Control regulators design and controllability requirements

In the previous section the difficulties arising during the diagonalization process of the opto-mechanical system
have been analyzed. Given the structural asymmetry, it is not possible to find a couple of eigenvectors, i.e.
a couple of torques applied as input to the two marionettas, which allows to excite one resonance mode with
respect to another. This implies that the whole system can’t be reduced to a ”single eigenvalues problem” in
which we can control separately the different modes of vibration with a SISO-like control strategy. Instead, it
is possible to work with the fully coupled system, by designing two controllers applied separately to the two
marionettas.
A general MIMO control scheme is reported as follows:

Figure 4: Block scheme of a general MIMO system

Given the plant of the system reported in Figure 4, as a consequence of an input perturbation, according to
Eq. 2.14, a rotation of the masses of the double pendula is produced. This rotation is translated into an
output vector y = (y1, ..., yn), which is used as feedback branch. By comparison with an arbitrary setpoint
i = (i1, ..., in), the error signal of the loop e = (e1, ..., en) is produced. Such error signal goes inside the feedback
control block which, according to the control strategy implemented, will produce the control vector u which
contains the different actuation to be conveniently applied to the available actuators.
In the following section it will be described the Linear Quadratic Integral controller, i.e. LQI. The general
mathematical formulation of the LQI controller for linear time invariant (LTI) systems will be reported.

3.1 Finite Horizon LQ control

Consider a second order LTI mechanical system described by ẍ = f(x, u), with initial conditions x0 at time zero
t0 = 0. We can describe the system with the following equations:

ẋ = Ax+Bu, x(0) = x0 (3.1)

J(x0, u(t)) =

∫ T

0

x′(τ)Qx(τ) + u′(τ)Ru(τ) dτ (3.2)

where J(x0, u(t)) is defined the performance index, dependent by the state and the control action over the time
span [0, T ]. The performance index J represents the cost function to be minimized in order to reach a specific
target for the state of the system x, for a given control action u. The cost function J assumes a quadratic form
in terms of the state and the control. Given the hypothesis that the system (the state vector) is observable,
the Q and R matrices (the penalty matrices for the state and the control, respectively), are squared positive
defined, namely Q ≥ 0, R ≥ 0.



Phase II state space modeling and controllability analysis

VIR-0219A-23
issue :
date : March 10, 2023
page : 10 of 31

The general formulation of the LQR control strategy is the following: the objective is to minimize the quadratic
cost function:

min(J) =
1

2

∫ T

0

xTQx+ uTRudt (3.3)

which is subjected to:

ẋ−Ax−Bu = 0, x(0) = x0 (3.4)

The feedback control equation that minimizes the functional J , assumes the form:

u = −KLQR(x− xT ) (3.5)

where x is the time-dependent state vector, while xT is an arbitrary set-point.
KLQR is the feedback transfer matrix which contains specific weights which regulates the input to be applied
to the available actuators. The value of KLQR is found by solving the first-order differential Riccati equation:

ATP + PA− PBR−1BTP +Q = −Ṗ (3.6)

KLQR = R−1BTP (3.7)

3.2 Tuning of Q and R matrices

In order to achieve an optimal solution and a performant controller (e.g. in terms of rise time, settling time,
phase margin ecc..), the weights coefficients within the penalty matrices Q and R, namely the costs on the state
and the control, must be carefully chosen.
Given a general state vector containing the several states of the system in the form xT = [x1, x2, ..., xn] and a
general control vector uT = [u1, u2, ..., un], we define the penalty matrices as follows:

Q=


q1

q2
. . .

qn



R=


r1

r2
. . .

rn


(3.8)

Each element on the diagonal of the two matrices represents the cost to be put to each component of the state
vector and to each actuator respectively. For what concerns the State penalty matrix Q, the general idea is
that the bigger is the chosen weight, the higher will be the cost if the loop doesn’t bring the correspondent state
to the target set-point. This implies that the several weights will be reasonably big, if we want to guarantee
convergence at the steady state, that is if we want x to stabilize quickly and to keep the performance index
J small. This means that larger values of the State cost weights will result in larger poles of the Closed loop
system so that the dynamics will converge faster to the zero.

Same attention needs to be put regarding the chosen weights for the control penalty matrix R. Big or low
costs on the actuation can be chosen depending if we want to design a cheap or expensive controller. One or the
other choice will have consequences on the performances (e.g. too high settling time or higher step response,
re-injection of noise, loss of sensitivity, ecc..).
Generally speaking, larger R coefficients mean that less control effort is used, so that the poles are generally
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lower, resulting in larger values of the state x(t), with poor steady-state convergence.
In order to synthesize the regulator KLQR to stabilize the plant, it is required that the Observability and Con-
trollability conditions are reached.
In details, given the State matrix A, the Input vector B and the measurement vector C, the pair (A,C) must
be detectable/observable and the pair (A,B) must be reachable/controllable:

Ob=


C
CA
CA2

...
CAn−1

 ; Ctrb=
[
B AB A2B . . . An−1B

]
(3.9)

To fullfill such requirements both of the Ob and Ctrb matrices must be full-rank (non-zero determinant) [1][5].

3.3 LQI design for AdV+ Phase II configuration

So far, the general feedback control equation of the LQR controller has been derived. However, the relation
R−1BTP doesn’t always guarantees steady state convergence. In order to reach the zero of the error signal, an
integral action is needed. To include the integrator in the feedback loop, we need to reformulate the system
equation of motion by augmenting the State matrix and so the State vector [5].
Given the error signal en(t) defined, according to the scheme in Figure 4, as:

v̇n(t) = in(t)− yn(t) = en(t) (3.10)

and the measurements:
y = Cx+Nd (3.11)

where d is an unmodeled disturbance term, i.e. measurement noise, and C is the measurement (or observation)
matrix, the state vectors becomes:

x̃ =

{
x
v

}
(3.12)

Accordingly, the complete State Space equation of motion with the augmented version Ã of the State matrix A
becomes: {

ẋ
v̇

}
=

[
A 0
−C 0

]{
x
v

}
+

[
B
0

]
u (3.13)

˙̃x = Ãx̃+ B̃u (3.14)

Now from Equation 3.14 it is possible to solve the Riccati equation (3.6) in order to obtain the feedback control
equation (3.7), with the integral action included, namely:

KLQI = R−1B̃T P̃ (3.15)

The controller has been tuned by choosing the Q̃ penalty weights in order to have high cost on the positions
and velocities of the input and end mirrors respectively, namely θ2, θ̇2, θ3 and θ̇3. High cost has been also put
on the integrated error signal, that is the augmenting part of the state vector, v. The actuation cost on R has
been put equal to 1.
The present system is composed by four masses which represent the mechanical system’s degrees of freedom,
which in the present section we indicate with NDoF . With Ns we indicate the number of sensors we have
available. Thus, the dimensions of the State Space matrices are reported in Table 2:
Given that we are actuating on the two marionettas separately, the KLQI feedback matrix will contains as

many rows as actuation are applied to the system (NAct). In the present case, we have one controller for the
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State Space matrix Dimension

A 2NDoF x 2NDoF

B 2NDoF x NAct

C Ns x 2NDoF

x 2NDoF x 1
v Ns x 1

Ã (2NDoF +Ns) x (2NDoF +Ns)

B̃ (2NDoF +Ns) x NAct

C̃ Ns x (2NDoF +Ns)
x̃ (2NDoF +Ns) x 1

Q̃ (2NDoF +Ns) x (2NDoF +Ns)

P̃ (2NDoF +Ns) x (2NDoF +Ns)

Table 2: Dimensions of the State Space matrices.

Input Marionetta, and one controller for the End Marionetta. These two controllers will fill the first and the
second row respectively.
Dimensions of such matrix will be then: KLQI = NAct x (2NDoF +Ns).
At this point, once Riccati equation has been solved, and the feedback control equation has been computed, to
close the loop we define a new State matrix ACL, which takes into account of the feedback matrix:

ACL = Ã− B̃KLQI (3.16)

Given the ACL matrix, it is possible to compute the closed loop gain transfer functions, which gives us infor-
mation about the stability of the system (e.g. whether it is asymptotically stable or not).
Stability of the system is analyzed by computing the locus of the eigenvalues, to make sure that all the real part
of the closed-loop poles are negative (LHP).
This corresponds to apply the Nyquist criterion or to study directly the eigenvalues of the closed-loop state
matrix ACL.
Preliminary results of this control strategy implementation will be reported in the subsection 3.4.

3.4 Preliminary results

Preliminary results of the implementation of the LQI controller for the angular degrees of freedom are here
presented. In the present study, the case of the TY DoFs is analyzed.
The Closed-loop transfer functions have been evaluated according to 3.16. Results are reported in Figure 5:
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Figure 5: Closed-loop response of the LQI controller for a MIMO system fully coupled

In Figure 5 are reported the different Closed-loop transfer functions (MAR2MIR) of the mechanical system with
a LQI feedback control action. In details, the blue plot represents one of the open-loop plant (as reference) of
the MAR2MIR response due to the application of a positive torque ratio between the Input marionetta and the
End marionetta and the consequent response of the input mirror. In such open loop, the three different modes
of vibrations are enhanced.
The other four plots represent the frequency response of the two mirrors for a given torque (under integral con-
trol action) to the two marionettas: in details the orange plot represents the MIR2 (input mirror) response for
a given actuation to MAR1 (input marionetta); the green plot represents the MIR3 (end mir) for an actuation
to MAR4 (end marionetta). The red and purple plots represent the cross-response of the end and input mirrors
for an actuation on the input and end marionettas respectively.
Stability of the loop is evaluated computing the eigenvalues of Equation 3.16. Results are reported in Figure 6:
as shown, all the real-part of the poles of the Closed-loop system rely on the left half of the complex plane,
meaning that the system reaches stability.
One aspect to be noticed, is that with the present control strategy, all the plant unstable poles (mechanical res-
onances) are damped. However, regarding the high-frequency mode, the one at 3 Hz, there’s still some residual
oscillation (peaks in the closed-loop).
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Figure 6: Root locus of the Closed-loop eigenvalues

To perform the time-domain simulations and analysis, MATLAB-Simulink software has been used. In Figure
7 is reported the block scheme representing the feedback control loop: the block in red contains the mechanics
of the double pendulum (plant); the green block contains the LQI controller. The control logic implemented is
a negative feedback in which the error signal is created as the difference between state x at the time t and an
arbitrary setpoint xT , which has been put to zero. The initial condition is an arbitrary condition as well, set
on the angular position of the four masses.

Figure 7: Simulink Block scheme of the optomechanical system

In Figure 8 Simulink simulation results are reported, in details the time-domain response of the angular displace-
ment of the four masses of the system are shown. Performance of the controller can be preliminarily analyzed:
the system presents steady-state stability, as the signals reach the zero over a certain amount of time. However,
as already reported in the closed-loop transfer function analysis, the system present a residual oscillation of
3 Hz, with an overall settling time of more or less 15 seconds. The settling time could be reduced acting on
several aspects: one solution could be to adjust the cost weights on the control penalty matrix R̃. However,
this solution will have not negligible consequences on the rise-time of the step response, which will evantually
increase, leading to a loss of performace.
One other solution would be to act directly on the controller trying to reduce the 3 Hz oscillation in terms of
amplitude. To pursue this task, one difficulty arises since the control design has been performed considering
the physical variables of the opto-mechanical system, i.e. angular position and velocities of the masses.
To overcome this issue and to improve the performance of the control strategy, we need to adopt a control
design strategy based directly on the modes of vibrations of the system, instead of the physical variables. This
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is done by switching to the Canonical State Space representation of the system. Details of this formalism will
be reported in Section 4.

Figure 8: Results of the implementation of the LQI controller. In the plot are reported the time-domain response
of the four masses in terms of angular displacement.

4 Canonical State Space representation

The canonical state space representation is obtained performing a state transformation in which through the
use of an invertible matrix T we perform a change of coordinates of the mechanical system such that we switch
from the physical coordinates to the modal coordinates. The matrix T is a square matrix that allows to rotate
the state vector x to xC :

xc = Tx (4.1)

Accordingly, the state matrices of the system become:

Ac = TAT−1

Bc = TB

Cc = CT−1

Dc = D

(4.2)

With such transformation in 4.2, given a system with complex eigenvalues in the form:

λ = [σ1 ± jω1, σ2 ± jω2, ..., σn ± jωn] (4.3)

the canonical state matrix assumes the diagonalized form in which all the eigenvalues are separated:

Ac =


σ1 ω1
−ω1 σ1

σ2 ω1
−ω2 σ2

. . .
σn ωn
−ωn σn

 (4.4)

In the Ac (Eq. 4.4) matrix each block of terms corresponds to a single mode of vibration: thus, during the
control design stage, it is possible to put the cost weights of the penalty matrices directly on the relevant modes.
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4.1 Canonical LQI controller

The tuning of the LQI controller using the canonical representation has been performed through the same
approach described in 3.3.
In order to evaluate the transformation matrix T , MATLAB function canon has been used. Thus:

T =


−0.1697 −0.0001 1.4472 0.0001 2.7807 0.0000 −0.3930 −0.0000
0.0001 −0.0090 −0.0004 0.0767 −0.0004 0.1473 −0.0001 −0.0208
0.0003 −0.1652 0.0021 0.2036 0.0049 −0.5106 −0.0006 0.6476
1.2358 0.0006 −1.5233 −0.0002 3.8200 0.0006 −4.8447 −0.0001
−0.0007 −1.1911 0.0044 0.0766 0.0022 −0.3312 0.0052 −1.5153
3.3386 0.0014 −0.2147 0.0000 0.9282 0.0002 4.2473 0.0018
−1.2533 −1.4607 −0.1810 −0.2108 0.4961 0.5795 1.2471 1.4547
1.2500 −1.4613 0.1803 −0.2109 −0.4970 0.5796 −1.2457 1.4550

 (4.5)

According to Eq. 4.2, the State matrix becomes:

Ac =


−0.0068 18.8767 0 0 0 0 0 0
−18.8767 −0.0068 0 0 0 0 0 0

0 0 −0.0058 7.4808 0 0 0 0
0 0 −7.4808 −0.0058 0 0 0 0
0 0 0 0 −0.0023 2.8030 0 0
0 0 0 0 −2.8030 −0.0023 0 0
0 0 0 0 0 0 0.8559 0
0 0 0 0 0 0 0 −0.8576

 (4.6)

In Eq.4.6, the first two terms in row 1 and 2 respectively, represents the 3 Hz eigenmode to be damped. In
order to achieve such requierements, in the canonical penalty matrix Q̃c related to the state, higher cost has
been put to the correspondent elements of the state vector xc. The same approach has been used for the other
vibrational modes. Considering the augmented State matrices, also a consistent high cost has been put to the
integrators terms.
Regarding the control penalty matrix Rc, different values have been tried, in order to improve the settling-time
VS the rise-time response. However, one choice with respect to the other have to be carefully chosen trying not
to have too much high closed loop poles (in absolute values). Indeed, by decreasing the control penalty matrix
weights, we will obtain more attenuation, which means that we will move the closed-loop poles further to the
left side of the complex plane. Consequences of this action will be to have more attenuation, that is to reduce
a lot the settling-time of the state vector at the expenses of the step-response amplitude, which will inevitably
increase, with the undesired possibility to saturate the range dynamics of the actuators. One good compromise
have been found for Rc to assume unitary values:

Rc =

[
1 0
0 1

]
(4.7)

The final control matrix equation KLQIcanon, assumes the following values:

KLQIcanon =
(−208.2857 −414.2250 −7.3965 27.6099 −11.5461 8.8472 −26.0160 3.0059 −16.2106 −6.1005
−369.8960 −492.3552 43.4128 −56.7643 −19.2783 5.3229 22.1781 −3.3882 6.1005 −16.2106

)
(4.8)

As for the physical coordinates example, the Closed-loop response has been evaluated, by computing the Closed-
loop State matrix:

ÃCLcanon = Ãc − B̃cKLQIcanon (4.9)

4.2 Effect of different tuning of Qc

As explained in the previous sections, during the controller design stage, several parameters can be tuned in
order to achieve more closed-loop attenuation. Those parameters are the cost weights of the Qc and the Rc

matrices. Regarding the state penalty matrix, a global increase of the cost weights allows a more attenuation
on the Closed-loop response. In Figure 9 comparison of the four Closed-loop transfer functions (MAR2MIR
responses) with different values of the cost weights of Qc is reported.
In details, on the top-left, subplot of the Input mirror due to the actuation on the Input marionetta is reported.
Accordingly, on the top-right is reported the response of the End mirror due to the actuation on the End Mar-
ionetta; in the two bottom plot, instead, the cross-response of the End and Input mirrors due to the actuation
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on Input and End marionetta respectively is given.
The whole penalty matrix has been multiplied by a global factor of respectively 1 (orange plot), 3 (blue plot)
and 5 (green plot) of the originally chosen parameters.
A more strict fine tuning could be done by increasing specifically the weights related to the single mode that
we want to attenuate.

Figure 9: CLTF comparison VS variation of State penalty matrix Qc

Each tuning choice has consequences to the closed-loop eigenvalues which will eventually increase accordingly
to the increase of the costs weights.
In figure 10 is reported the plot of the root locus of the Closed-loop poles in the complex plane, with respect to
the chosen tuning parameters.
In order to have sufficient attenuation of the 3 Hz HF mode, a good trade-off has been found by using the global
weight of the Qc equal to 3.
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Figure 10: Root locus of the Closed-loop eigenvalues VS different values of State penalty matrix Qc

4.3 Effect of different tuning of Rc

The same approach can be used also for the tuning of the diagonal elements of the control penalty matrix Rc.
This matrix is strictly correlated to the effort that we want to spend to obtain a specific performance of the
control actuation.
Given that each diagonal element of the 2X2 Rc matrix corresponds to the actuation on the Input marionetta
(MAR1) and End marionetta (MAR4) respectively, by adjusting the weights we can push more or less in the
two actuators separately.
In figure 11 is reported the comparison of the MAR2MIR Closed-loop response with respect to different values
of the Rc penalty matrix.
Different values of the control penalty matrix used for this study are the following:

Rc1 =

[
1 0
0 1

]
; Rc2 =

[
0.1 0
0 0.1

]
; Rc3 =

[
1 0
0 0.5

]
(4.10)

As shown, the effect of the tuning is clear: using a reduction of a factor 10, with respect to the unitary values
(Rc1) of the cost weights causes a global improvement of attenuation of a factor 3, visible in all the four responses
(orange plots of Fig. 11).
If we instead change the cost weights only on one actuator, as done in for example in Rc3, in which we increase
the cost effort on the End marionetta of a factor 2, we obtain a global attenuation of the response of both
mirrors of about a factor 1.2, visible on the transfer functions of the mirrors (MIR2 and MIR3) due to the
actuation on the End marionetta (MAR4), see green traces on the top right and bottom right subplots.
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Figure 11: CLTF comparison VS variation of Control penalty matrix Rc

Figure 12: Root locus of the Closed-loop eigenvalues VS different values of Control penalty matrix Rc
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Figure 13: Mirrors time response VS different values of the Control penalty matrix Rc

Results of the implementation of the controller of Eq. 4.8 will be reported in next subsection.

4.4 Results

Results of the implemented strategy are here reported. In Fig. 14 are plotted the Closed-loop gain transfer
functions obtained through the Canonical formulation. Such formulation allows to tune the controller by acting
directly on the modes that we want to control. As shown, with respect to the previous control example, in the
present case it was possible to improve the global attenuation, especially at the 3 Hz mode.

Figure 14: Closed-loop response of the LQI controller for the canonical MIMO system.

Time response of the four masses are reported in Fig. 15.
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Figure 15: Time response of the angular displacement of the 4 four masses

Performance of the controller can be also evaluated by analyzing the Open-Loop transfer functions of the system.
In Fig. 16, Bode plot of the mirrors transfer functions due to the control actions implemented are shown (Input
mirror in orange, End mirror in green, Plant MAR2MIR input for reference in blue). Due to the structures of
the plant, like zeros, multiple 0 dB crossing are present, however the bandwidth of the loop is defined by the
last one. The UGF of the loop, thus, is set beyond the last resonance mode, at around 3.4 Hz.
To be noticed that the design of an optimal control as the LQI, allows to obtain a control loop with theoretically
infinite Gain-margin, and at least 60 deg of Phase-margin.
This is verified also in the present case: indeed, at the UGF (3.4 Hz) corresponds a phase of 65.3 deg. As
shown in the plot, no decay of the phase at the higher frequencies is present, meaning that the system will be
unconditionally stable for every high-gain applied to the loop.

Figure 16: Open-Loop transfer functions of the system with control action.

However, in reality, this will not be plausible since we have to deal with hardware limitations like delay, actuators
saturation, or sensor noise reintroduction.
This could be preliminary solved by defining a cut-off frequency by which we set the bandwidth limits. By
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implementing for example an additional roll-off filter, we can achieve the requirement of reducing the noise
reintroduction. The cut-off frequency will have to be chosen in order not to loose too much of the already
available phase. A low-pass filter at 25 Hz fills such requirement.
The adjusted Open-Loop transfer functions with the additional roll-off compensator are shown in the Bode plot
of Fig. 17.

Figure 17: Open-Loop transfer functions of the system with additional Roll-off compensation.

This final compensation allows to obtain a Gain-margin of an additional factor 10, within which the system
will be stable. From this value, the system will become unstable, that means it will go under high frequency
oscillations.
This eventuality is shown in Fig. 18, in which an increase of gain of a factor 10 has been applied, together with
the implementation of the roll-off filter at 25 Hz. As shown, and as expected by the Open-loop plot, the system
doesn’t converge anymore to the steady state, but diverges by oscillating exactly at 25 Hz, which is the chosen
bandwidth upper limit.

Figure 18: High frequency loop oscillations. Loop gain has been increased by a factor 10.
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A final optimization of the control loop, consists in choosing the loop gain in order to have the UGF at the
maximum of the Phase: increasing the gain of a factor 2 will move the Unity Gain Frequency up to 5 Hz, with
a correspondent Phase-margin between 68 and 72 deg.

Figure 19: Nichols Chart of the final optimized control: an additional factor 2 has been applied to the loop in
order to increase the UGF to 5 Hz. Robustness is well obtained, as the loop still has a factor 5 of Gain-Margin,
with a Phase-margin between 68 and 72 deg.

4.5 Discussion

So far, the design of an optimal control filter for stabilizing a coupled opto-mechanical system has been presented.
By using the LQI approach, a final controller with bandwidth up to 25 Hz and Phase-margin of at least 60 deg
has been obtained.
However, in real working conditions, when designing control filters, we are interested not only in stabilizing the
plant, but also in optimizing the low-frequency and the high-frequency regions of the loop. The necessity of
improving such regions are due to the requirements of reducing the overall rms of the system and to reduce the
re-introduction of sensor noise.
These two goals are achieved by using dedicated structures in the control filters such as Lag Filters (aka Boost
Filters), that allow two gain more in the low-frequency region, and consequently to reduce the residual motion
of the system.
For what concerns the high-frequency region, the usual structures implemented fall into the category of the
Roll-off filters, which are basically Low-Pass filters that allows to reduce the noise re-introduction, cutting the
OLTF (slope of the transfer function more steep) above a certain frequency. However, every introduced Roll-off
structure, even if it allows to cut-off the noise, on the other hand it will involve a loss of Phase-margin, which
will lead eventually to a reduction of the loop bandwidth.
Since we want to reduce the noise re-introduction generally above 10 Hz, this will inevitably cause a huge
constraint on the controllability of the higher resonance mode at 3 Hz. We need indeed to find a trade-off
between the possibility to have the loop bandwidth ahead of such mode, and to roll-off efficiently the higher
frequencies.
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Figure 20: OLTF with Boost and Roll-off actions.

As shown in Fig. 20, cutting the noise ahead 10 Hz with the use of an elliptic filter, will determine a consistent
reduction of the Phase-margin of the loop from 68 to around 25 deg. Consequently, the Gain-margin will be
very limited.
One solution to increase the overall range of stability margins, with the same rate of roll-off, would be to put the
bandwidth of the loop before the last resonance mode. This choice will imply however to left out the possibility
to control the 3 Hz mode.

5 State Estimator design - Kalman Filter

So far, we have shown the design principles of a MIMO optimal controller for the angular DoFs of an asymmet-
ric coupled opto-mechanical system. The minimization of the cost function J allowed to achieve the maximum
phase margin and bandwidth of the loop, which allows to control all the unstable poles of the system.
However, the implementation of such controller is based on the hypothesis that we are observing the full system,
i.e. we are using a full state-feedback loop instead of an output-feedback loop. This means that in order to
derive the control law, we are using all the state variables coming out from the state vector, instead of the only
available measurement.
In real working conditions, however, we don’t have access to the whole variables of the state vector x (e.g. ve-
locities): we have few sensors available which observe only specific portions of the system and produce a signal
y. Such signals, provide only a limited knowledge about the system. Additionally, the acquired measurement
are generally corrupted by sensors noise and also the process dynamic is affected by some modeling uncertainty.
The presence of all these external disturbances contributes to the system to move inevitably away from the
setpoint. Under these circumstances, we need a tool which allows to estimate the values of the non-measured
variables and to filter out the undesired disturbances.
The Kalman filter allows an estimation x̂ of the system state x by performing an optimal blending of the infor-
mation coming from the given theoretical model and the available measurements.
Such estimate is obtained through a linear combination of the two equation describing the process dynamics
and the sensor dynamics, both affected by noises.
The whole technique based on the use of an optimal compensator (LQI) and an optimal estimator (Kalman
filter) is called LQIG: Linear Quadratic Integral Gaussian controller.
The Kalman filter problem can be formulated as follows [6]. Let’s consider the system of equations:
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{
ẋ = Ax+ nd

y = Cx+ ns

(5.1)

where nd and ns represent the model error (presence of an extra signal coming from some non-modeled part of
the process, as for example seismic noise) and the sensor noise respectively.
The optimal representation of the estimated state x̂ we can provide for x is obtained through:

˙̂x−Ax̂−KE(y − Cx̂) (5.2)

where KE is a gain matrix that mixes the two equations producing the aforementioned blending. The values
of such matrix is an indication of the ratio between the process error and the measurement noise and defines
whether the Kalman filter should follow closer the process dynamics evolution or the measurements acquired:
smaller values of KE implies that the modeling of the system dominates in the estimation process; on the
contrary, high values of the matrix means that the measurement is leading the estimation.
Considering that ẋ−Ax− nm = 0 we can subtract it to Eq. 5.2 such that:

˙̂x−Ax̂−KE(y − Cx̂)− (ẋ−Ax− nd = 0) (5.3)

By solving Eq. 5.3 and considering the measurment vector y = Cx+ ns we obtain:

˙̂x− ẋ−A(x̂− x) +KEC(x̂− x)−KEns + nd (5.4)

If we introduce the quantities representing the error dynamics:{
˙̂x− ẋ = ė

x̂− x = e
(5.5)

we finally obtain the complete estimation error dynamics:

ė = (A−KEC)e+KEns − nd (5.6)

In order to have an optimal estimation of the state vector x̂ we want to minimize the error e, which means to
minimize its square modulus, i.e. L(t) = E{eT e}. Equivalently we want to minimize the trace of the covariance
matrix L, thus:

min

∫ T

0

E{eT e} dt = min

∫ T

0

Tr(L) dt (5.7)

Without getting into the analytical details of this problem, to solve Eq. 5.7, we have to solve a 1st order
differential equation, i.e. Joseph’s equation, which describes the evolution of the covariance matrix:

L̇ = LAT − LCTKT
E +AL−KECL+KERsK

T
E +Rd (5.8)

By solving Eq. 5.8, we finally compute the optimal Kalman gain matrix:

KE = LCTR−1
s (5.9)

In the presence of an additional control action, as e.g. LQR/LQI, the previous formulation will take into account
also the feedback controller, by using the estimated state x̂ as feedback branch:

˙̂x−Ax̂−Bu−KE(y − Cx̂) (5.10)

with:
ẋ−Ax−Bu− nd = 0 (5.11)

so that the final control equation3 becomes:

u = −KLQI(x̂− xT ) =⇒ u = −R−1BTP (x̂− xT ) (5.12)

3We remember that P is the matrix coming from the resolution of the Riccati equation for the LQ problem.
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The whole control loop together with the estimation block assumes the scheme reported in Fig.21:

Figure 21: Kalman Filter block scheme.

As shown, the Kalman block is fed with the control action u and the measurements coming from the sensors
block C. The output of the Estimator block, i.e. the full estimated state vector x̂, is sent to the feedback branch
and it is used to compute the control action, which closes the loop.

In the next subsection, results of the implementation of the Kalman filter in Simulink environment will be
reported.

5.1 Simulations and results

Results of the implementation of the Kalman filter for the control problem of Eq. 4.9 are here presented. In Fig.
22 is reported the block scheme of the whole control-estimation scheme, built in Simulink environment. The
cyan block represents the Kalman filter estimator. Within such block Eq.s from 5.8 to 5.11 are implemented.
As reported in the block scheme in Fig. 21, the Estimator takes as input only the measurements available (in
the present case the mirrors motion) and the correction coming from the LQI block. As output, the filter gives
the estimated state vector x̂, which is sent to the feedback path to close the control loop.
Both process and measurements are affected by noise. Such disturbance has been modeled through the block
Random Number, which generates normally distributed random signals, with a specific variance defined by the
user.

Figure 22: Simulink block scheme of the LQIG control and Kalman filter implementation.

In Fig. 23 are plotted the acquired raw measurements of the mirrors displacements. Both signals are affected
by noise. These two signals compose the sensing vector y to be filtered.
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In Fig. 24, instead, is reported noisy state vector, as representation of the disturbance affecting the process.

Figure 23: Raw measurements polluted by noise: sensing vector containing mirrors motion

Figure 24: State vector affected by process noise.

The Kalman fitler implemented is able to extract the estimation of the motion of the mirrors, together with the
other state variables in order to create the vector x̂ to close the control loop.
Such estimations are reported in Fig.s 25, 26 and 27, respectively.
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Figure 25: Estimation of the Input mirror motion: in blue is reported the raw measurement affected by noise,
while in red the superposed estimation performed by the Kalman filter.

Figure 26: Estimation of the End mirror motion: in red is reported the raw measurement affected by noise,
while in green the superposed estimation performed by the Kalman filter.
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Figure 27: Estimation of the state vector x̂. In the plot are reported only the estimated motion of the four
masses.

In the last plot (Fig. 27, the state vector estimation) only the estimated motion of the four masses are displayed.
Together with the estimated velocities, the feedback loop is closed.
As shown the behaviour of the displacement is similar to the one predicted by the ideal simulations with no
Kalman filter implemented, see Fig. 15.
The only difference is related to a residual oscillation present in all the displacement signals, especially the one
of the End mirror MIR3. Such behaviour is probably due to the use of a modeled sensors noise too high in
terms of amplitude. With such conditions, the filter is anyway able to converge to a steady-state solution, but
the presence of the high noise is affecting the results as the system seems to oscillate around the setpoint.

6 Concluding remarks

In the present document, a new strategy for the angular control of an asymmetric opto-mechanical system, i.e.
AdV+ Phase II configuration, has been proposed.
The whole control architecture starts from the analytical description of the full-payload (bottom stage) which
allows to obtain a State Space modeling of the system.
However, given the asymmetric mechanical configuration of the investigated system (large terminal masses),
some problems arise during the diagonalization process: indeed, considering the full-system, it is not possible
to fully decouple the different degrees of freedom (modes of vibration). This difficulty is translated in an im-
possibility to use SISO-like control strategies.
For this reason, the possibility to study the full-coupled system, so to design MIMO-like controllers, is investi-
gated instead.

The State Space formalism plays an important role in this study, as its mathematical architecture handles
well the manipulation of MIMO system, and allows as well the possibility to exploit Optimal Control techniques
to design advanced controller for the specific system.

The design of an optimal LQR (Linear Quadratic Regulator) controller with an additional integral term (i.e.
LQI) has been performed.
Such control is based on the minimization of a specific cost function (built taking into account the state con-
vergence and the control effort requirements) which allows to obtain direct closed-loop stability. By choosing
the Canonical representation of the system, we are able to control all the unstable resonances of the plant, by
setting the bandwidth of the loop beyond the last unstable pole with a UGF at 5 Hz and a Phase-margin higher
than 68 deg.
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However, one limitation arises since in real working conditions we want ideally to reduce the noise re-introduction
as much as possible above 10 Hz. To fulfill such requirements, dedicated structures such as Roll-off filters (e.g.
Low-pass, Elliptic filters...) need to be used. The use of such structures will cause a consistent loss of the
Phase-margin available that, in case we want to make sure to control the high resonance mode (i.e. 3 Hz), will
lead to a very restricted range of stability margin. One solution will be to put the UGF of the loop before the
3 Hz mode, that is to reduce the bandwidth of the loop and so to left out the possibility to be able to control
such mode.

This whole control technique is however based on the hypothesis that we can observe all the variables composing
the state vector, while in real working conditions this is not the case. Indeed, we don’t usually have information
regarding the velocities and other physical quantities; additionally, all the acquired measurements are affected
by external disturbances such as sensor noise and process noise.
This issue is solved by the implementation of a state estimator, which is the Kalman Filter.

Through an optimal blending between the model describing the system and the available raw measurements,
such filter is able to perform an estimation of the whole variables composing the state vector deprived by noise.
The estimation is an optimal process performed through the minimization of the error between the theoretical
model and the estimated process. The output of the filter is used as feedback branch of the global control loop
architecture, the LQIG estimator (Linear Quadratic Integral Gaussian estimator).

Results of the implemented strategy, although preliminary, showed the potential of the proposed control tech-
nique.

Further analysis will foresee the use of the same strategy to design controller for the Pitch degree of free-
dom, that is TX (already on-going).
Once proper controllers for all the interesting DoFs are ultimately designed, dedicated simulations with the
full-ITF model will be performed (Finesse).
In parallel, an update on the Simulink model is on-going, that is to improve the possibility to perform real work-
ing conditions studies, by increasing the number of coupling between the different DoFs, like the longitudinal-
to-angular.
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