CNRS INFN

Centre National de la Recherche Scientifique Istituto Nazionale di Fisica Nucleare

VIRGD

SIESTA, a Time Domain, General
Purpose Simulation Program for
the VIRGO Experiment

B.Caron
LAMII/CESALP, Annecy, France

L.Derome, R.Flaminio, X.Grave, F.Marion, B.Mours, D.Verkindt
Laboratoire de Physique des Particules (LAPP), Annecy-Le-Vieuz, France

F.Cavalier
Laboratoire de I’Accélérateur Linéaire, Université Paris-Sud, Orsay, France

A Viceré
Dipartimento di Fisica dell’Universita e INFN Sezione di Pisa, Italy

submitted to Astroparticle Physics

VIR-TRE-LAP-5700-101
[ssue: 1
Date : August 25, 1998

VIRGO * A joint CNRS-INFN Project
Project Office: INFN-Sezione di Pisa * Via Livornese, 1291-56010 San Piero a Grado, Pisa Italia.
Secretariat: Telephone (39) 50 880 327 or 880 352 * FAX (39) 50 880 350 * e-mail virgo@pisa.infn.it

SIESTA, a Time Domain, General
Purpose Simulation Program for the
VIRGO Experiment

B.Caron
LAMII/CESALP, Annecy, France

L.Derome, R.Flaminio, X.Grave, F.Marion} B.Mours, D.Verkindt
Laboratoire de Physique des Particules (LAPP), Annecy-Le-Vieuz, France

F.Cavalier

Laboratoire de I’Accélérateur Linéaire, Université Paris-Sud, Orsay, France

A.Viceré
Dipartimento di Fisica dell’Universita e INFN Sezione di Pisa, Ttaly

Abstract

In this paper we present the simulation program that has been devel-
oped for the VIRGO gravitational wave detection experiment. Although
this program — SIESTA — is still evolving, it has reached a stage where
the design requirements have been largely fulfilled. We first remind the
needs and the choices which have steered the program design and led to
the present structure. The contents of the program is then reviewed, the

performances are discussed, and some typical applications are briefly de-
scribed.

submitted to Astroparticle Physics

*Corresponding Author

1 Introduction

The construction of the VIRGO gravitational wave detector has been under
way for a few years, and is led by a collaboration supported by both CNRS
(France) and INFN (Italy). To probe gravitational waves, the detector uses
suspended mirrors forming a 3 km long Michelson interferometer. The layout
of the detector has been described in details elsewhere [1]. The apparatus is
complex in many respects. Its sensitivity is determined by its design as far as
optics, mechanics and electronics are concerned.

The mechanical system used to suspend and isolate from ground each test
mass is a multiple pendulum with seven stages, including a precise positioning
device. The Michelson interferometer used to extract the signal contains Fabry-
Perot cavities in the arms, and uses the technique of light recycling. The optical
configuration is further complicated by the use of a high frequency phase modu-
lation and demodulation technique of the laser light. The optical response of the
interferometer is analyzed on-line to react on the test masses through servo-loops,
in order to maintain the interferometer at a working point.

These few considerations illustrate the need for a global, integrated simulation
program of the equipment to assist the design of the control system as well as the
learning process when the detector is being commissioned. Similar development
efforts have been undertaken in related experiments [2].

Another major goal was to build a tool for producing simulated data, in or-
der to develop, implement and run data analysis techniques. This implies the
capability to describe both the detector behavior and the signals emitted by
gravitational wave sources.

In section 2 we describe the general structure of the program. We then start in
section 3 by reviewing the general use modules, namely those dealing with signal
processing, output graphs, and the interface to the data formatting software.
Sections 4 and 5 are devoted to the main aspects of the detector simulation: its
mechanical behavior and its optical response. The simulation of gravitational
wave signals is the subject of section 6. Finally a few representative examples of
the program applications are shown in section 7.

2 General Structure

2.1 Design Issues

One of the design choices of the SIESTA! software has been to develop the
simulation in the time domain. This is important for data analysis since it allows
to produce the same type of simulated data as real data. It makes it also easier

!Simulation of Interferometric Experiments Sensitive To grAvitational waves

to simulate feedback loops, and to take into account any non-linear effect, for
instance in the interferometer optical response or in the electronics. The choice
of working in the time domain makes it also possible to reuse part of the code in
the online system.

SIESTA is written in the C language, and is based on an object oriented
structure which is most suited to build an integrated simulation involving many
different aspects. Although an object oriented language such as C++ might
seem more appropriate, standard C was preferred when the software develop-
ment started seven years ago, for reasons of performances, standardization and
portability. The latter issues are important ones in a wide collaboration for a
program which has to be run on many different kinds of platform.

The implemented framework is flexible enough so that for a given issue only
the relevant aspects of the detector have to be explicitly simulated, and the
appropriate detail level (whenever several are available) can be selected. For
instance, for most of data analysis purposes, it is sufficient to integrate in the
simulation the generation of gravitational wave events and an effective noise gen-
erator reproducing the VIRGO sensitivity curve. On the other hand, simulating
the control system requires to simulate both the mechanical and optical response

of the system in detail. Figure 1 shows a summary of the different topics covered
by SIESTA.

MECHANICS

GW SIGNALS GRAPHS

OPTICS | SIGNAL PROCESSING|
T l ADC / ’
L DAQ
= > cal |
[y 1 I]] Rl_e?ﬂou, gruel‘lrég'
Y

Figure 1: Pictorial view of the different topics implemented in SIESTA

Since the simulation works in the time domain, the heart of a job is basically
a main loop running over time. And since it is object oriented, the configuration
to simulate is not known a priori, but defined by the user by selecting the desired
objects. At each iteration of the time loop, the engine core calls a sequence of
routines associated with the different objects involved. These objects are defined
in a text file called a “card file”, which is written by the user and is therefore the
program user input interface.

Three different entities can thus be distinguished in the software organization:
the engine core, driving the main loop, the card file, providing the user interface,
and the different modules (or libraries) housing the code associated with the
various objects which may be used in the simulation. Let us now describe in
more details each of these entities, as well as the program outputs.

2.2 Structure of a Simulation Object

The SIESTA modules contain the code associated with the different objects.
The objects are the basic simulation units, each of them reproducing — in a
reduced and simplified way — the functionality of some piece of hardware (or
software). To mention only a few typical examples, objects include suspensions,
mirrors, photo-diodes (the functionality of a photo-diode object being for instance
that of a real photo-diode and its associated electronics, including a demodulator),
analog to digital converters or digital filters.

Each object? is represented by a C structure and some associated functions
acting on the C structure, called by the simulation engine core. Besides the stan-
dard constructors and destructors, those functions are the functions called during
the initialization step of the simulation (initialization function), at each iteration
of the simulation loop (simulation function), and at the end of the simulation job
(termination function).

The various objects are gathered in different modules (or libraries) in a the-
matic way. A module contains all the objects related to some topic and can thus
be thought of as a tool-kit for a given problem type, such as mechanics, optics
or digital processing. Technically, a module is split into a header file containing
the structure definitions and the function prototypes, and a source file containing
the associated functions.

For all the objects, the fields of the associated C structure are split in two
categories: the fields corresponding to input parameters, i.e. parameters whose
values are user defined, and fields corresponding to internal or output parameters,
whose values are set by the functions associated to the object.

2Strictly speaking, we should be talking here about structures — or classes — rather than
objects. However the word “object” is usually used in SIESTA both for a structure and an
instance of this structure, and we stick to this habit here.

Besides most objects representing concrete things, some special objects are
used to exchange information between the other objects. Those objects acting as
interfaces are more abstract: typical examples are light beams (used in optics)
and signals, i.e. floating point values (used everywhere else).

To illustrate the latter case, the signal object is itself a very simple object,
which is represented by a C structure having essentially two fields: a name field,
and a data field containing the value of the signal, updated when necessary. The
signal object is generic insofar as it can carry the information relative to very
different things such as the position of a mirror in one degree of freedom, the
output of a random number generator, the input signal of a digital filter or the
output signal of a photo-diode electronics.

2.3 Structure of the Card File

The card file is a plain text file with a very simple syntax (see example in
figure 2). Each entry in this file has the form of a keyword followed by some
parameter values. The keyword has to match the name of a structure associated
to one of the simulation objects. The parameter values following the keyword
have to match the number, the order and the types of the input parameters of
this structure.

The reading and parsing of the card file are done by the simulation engine
core. Each time a keyword is read and recognized, a special function associated
to the corresponding object — the function called constructor in the previous
section — is called. This function is in fact more than a simple constructor, since
its functionality is to allocate the memory necessary to store the object, to read
the parameter values in the card file, to initialize the object fields with those
values (after calling member constructors if necessary), and finally to connect
the object to the main simulation loop (see section 2.4).

As mentioned in section 2.2, some special objects such as signals or light beams
are used to exchange information between objects. A practical consequence of
this is that the output signal of an object (object 1 — for instance a random
number generator) can be the input signal of another object (object 2 — for
instance a digital filter). In the parameter list of object 2, the input signal is
referred to by its name, the name of the output signal of object 1 being known by
convention from the name of object 1. The engine core takes care of the reference
management implied by this mnemonics system, in order to assign correct values
to pointer fields in all concerned objects once all the signals (and similar interface
objects) are known, which occurs only when the card file has been parsed and all
constructors have been called.

The first entry in the card file is related to a special object — the “clock
system” — defining the parameters of the simulation main and secondary loops.
As will be explained in greater detail in section 2.4, a simulation time loop is
associated to each clock, the time step of the loop being the inverse of the clock

frequency.

The order of the entries in the card file matters inasmuch as it determines
the sequence of call-backs occurring in the simulation loop, thus defining the
chronology of the different simulation actions.

struct USgenerator {
UJcl ock masterd ocks 1000 1 1.e3 char *nane;

| ong i d ock;
USgener at or @ 0 1.

doubl e si gmg;
UHpl ot FFT 0 2000 "g FFT" 14 1 O

/ /* --- end_of _SIO paraneters --- */

struct USignal *out;

Figure 2: Example of the structure definition corresponding to a SIESTA object
(left) and of a card file (right). This example illustrates the relationship between
the structure fields and the parameters of the card file. Also illustrated is the use
of mnemonics to exchange information between two objects.

2.4 Engine Core

The main simulation loop is a loop over time. This main loop includes a
nested loop over the different objects involved in the simulation job. In fact, the
latter loop runs over generic objects, called “clocking objects”. Using the C+-+
analogy, this object type can be thought of as an abstract class from which any
simulation object is derived and whose virtual functions are the initialization,
simulation and termination functions defined for each derived object.

Since standard C is used, the code to support such an organization had to be
developed. It is based upon a dictionary like system, where each valid simulation
object is declared as such and where function pointers are used to reference the
associated methods.

As mentioned in section 2.3, for every entry in the card file an instance of
the corresponding object is created and a clocking object is scheduled in the
simulation loop. During the initialization step, the engine core loops over all
clocking objects to call the corresponding initialization functions, and the same
process is used at each iteration of the time loop to call the simulation functions
and at the end of the simulation to call the termination functions.

This scheme is actually somewhat complicated due to the fact that objects
do not necessarily all share the same simulation time step, which technically
translates into the objects not being all connected to the same clock. As a result,
the list of objects for which a simulation routine is called may vary from one
iteration of the main loop to another.

Besides this scheduling task, the engine core also takes care of the reference
management needed to use mnemonics in the card file, as already mentioned in

section 2.3.

Figure 3 summarizes the main features of the program structure and the

relationships between the different entities.

User Interface Engine Core Module
)
Card File Parsing Simulation Object
User Input
F_) Code
Card File |
0op over .
keywords Construction
Keyword + parameters J =@ Function
Initialization
loop over L
objects Initialization
d i Function
Simulation

loop over time

[Graph Display J: Simulation

Function

Termination

Graph Output File] 3 loop over
J objects

Termination

Al

10) [[

Function

Figure 3: Schematic view of the SIESTA technical organization.

2.5 Program Outputs

The program outputs are:

e a listing file, which keeps track of the job conditions and of its progress
from the technical point of view. This includes version numbers for the
different modules, a copy of the card file, information about the parsing of
the card file and about the reference management process, any warning or
error report, and debug information if a high debug level has been selected
for the job.

e one or more files containing output graphs about quantities selected by the
user in the card file. SIESTA is interfaced to the HBOOK package from the
CERN library [3] so that graphs with this format are created and output
in a file which can be analyzed through the PAW software (also from the
CERN library). It is also possible to have these graphs displayed on the
screen during job execution. Since the CERN library is not quite available
throughout the collaboration, it is also possible to dump the information
about the selected quantities with a plain ASCII format in a file which can
be subsequently read by any kind of graph viewer available to the user.

e a file containing formatted data including channels selected by the user.
SIESTA contains objects simulating the data acquisition and is interfaced
to the VIRGO/LIGO data formatting package [4] so that data can be written
with the “frame” format just as real data are.

3 General Utility Modules

The general utility modules contain objects which do not simulate the func-
tionality of any VIRGO sub-system (except for some objects simulating control
or data acquisition software) but provide the tools needed to perform the neces-
sary numerical computations or to produce output in a useful form. Hereafter
we focus on the tools for signal processing, graph production and formatted data
production. In addition to the latter, the general utility modules also include
tools to perform basic linear algebra operations on matrices, as well as some
simple mathematical operations such as x? minimization.

3.1 Signal Processing Module

The signal processing module contains both very basic tools to generate signals
of various types or to perform simple handling operations on signals, and actual
signal processing tools such as digital filters. It turns out that a limited number
of objects provide most of the tools generally needed.

e Besides simple objects designed to generate signals with usual shape such as
sines or slopes, the generation tool-kit contains an object producing pseudo-
random series with white and Gaussian distribution. These objects are
commonly used to produce signals in order to excite other items. Especially
the random number generator, used either alone or in combination with
digital filters, can be used to produce white or colored noise.

e The handling tool-kit contains objects designed to perform basic operations
on one or more signals, such as linear combination, delay or conditional
assignment.

e The processing tool-kit contains a few general objects. Besides an object
designed to simulate the action of an analog to digital converter by adding
quantization noise to the input signal, the tool-kit contains essentially im-
plementations of digital filters. The parameters assigned by the user are
that of the analog filter the user wants to transform into a digital filter.
In practice there are two different implementations of the analog to digital
transformation [5], one based on impulse invariance and the other one based
on the bilinear transformation. The choice of the implementation is up to
the user, and is to be made on the basis of the analog filter characteristics.

3.2 Graph Producing Module

SIESTA is interfaced to the HBOOK package from the CERN library in order
to produce graphs which can be displayed during job execution or analyzed af-
terwards using the PAW software. The graphs show information about relevant
quantities of the simulation job that the user selects in the card file. Any signal
object can be used to produce a graph, which means that the user can look at
many internal data of the simulation. Technically, each graph to be produced is
a separate entry in the card file, and therefore a separate object scheduled in the
simulation. The information provided about the user selected quantities can be
either in the time domain or in the frequency domain.

e time domain

Since the simulation is performed in the time domain, this type of informa-
tion is straightforward to extract from the data flowing through the different
simulation objects. Objects producing graphs in the time domain take as
input one or more signal objects providing the time sequences of the quan-
tities of interest, and perform basic operations on those signal objects to
extract the desired information: time evolution or distribution. There are
also tools allowing to correlate two signals or more.

e frequency domain

The information in the frequency domain about the quantities involved in
the simulation is not directly available and needs dedicated tools to be ex-
tracted. These tools are very standard and make a heavy use of fast Fourier
transform (FFT) algorithms. The information most commonly extracted in
the frequency domain is the power density spectrum of a quantity, estimated
from a sequence of values provided by a signal object. The estimation is
based on periodograms computed by performing FFTs on time sequences,
and uses standard techniques such as averaging, windowing, and whitening
when necessary. There are also tools to extract the transfer function and
the cross correlation between two signals.

3.3 Interface with Data Formatting Package

In order to be able to write simulated data with the same format as the real
VIRGO data, SIESTA is interfaced to the VIRGO/LIGO data formatting package
(the Frame Library) [4]. This interface consists essentially in objects simulating
the functionality of part of the data acquisition software (local readout and frame
builder). The interesting signal objects produced in the simulation job are “read-
out” and packed into frames by these interface objects, using functions from the
Frame Library.

Conversely, tools are implemented in SIESTA to read frame formatted data.
This can be used to run data analysis algorithms implemented inside the SIESTA
framework, either on simulated or real data. This possibility also allows to read
real data in order to get realistic noise realizations, and add generated GW signals
into them.

4 Mechanical Simulation Module

The purpose of the mechanical simulation module is to provide the tools to
describe the random movement of the test masses, i.e. the suspended mirrors.
This includes simulating external noise such as seismic noise, internal noise such
as thermal noise, and of course the mechanical response of a mirror and its
suspension.

Suspended Mirror
Seismic Noise Response
.- | E | —
Mirror Position
Feedback Forces
Thermal Noise

Figure 4: Schematic view of the organization of the mechanical simulation

Since SIESTA works in the time domain, simulating noise from any source
means producing random time series with the proper frequency spectrum. Gen-
erally speaking, this is done by producing random series with a white spectrum,

10

and filtering them in order to get colored noise with the expected spectrum. This
is explained in more details in section 4.1.

Simulating the mechanical response of a suspended mirror means computing
the position of the mirror as a function of time, taking into account various
inputs - external noise, feedback forces applied at various levels of the suspension -
and the behavior of the complex multi-pendulum structure. Several models are
available to perform this task, with different detail levels. Early developments
have concentrated on describing the mirror movement in one dimension and one
degree of freedom, namely the mirror position along the light beam. On the other
hand a recent and important development has led to a model able to describe
the behavior of a mirror and its suspension in three dimensions and six degrees
of freedom. The different models are reviewed in section 4.2.

Those general remarks are schematically summarized in figure 4.

4.1 Noise Simulation
4.1.1 Seismic Noise

The seismic noise generator simulates the displacement transmitted to the sus-
pension through ground coupling. The generator produces random displacement
in one dimension — along the light beam. In order to reproduce the frequency be-
havior observed experimentally, namely a white spectrum at low frequency and a
spectrum in f 2 at higher frequency, the generator is based on filtering white and
Gaussian noise with a second order low pass filter. The values for the amplitude
of the input noise and the cut-off frequency of the low-pass filter are defined by
the user to reproduce experimental measurements. Besides this simple built-in
generator, white noise generation and signal filtering can be used by the user in
order to produce a more detailed spectrum if needed.

A model generating seismic noise in more than one degree of freedom and
taking into account realistic correlations between nearby ground points is yet to
be developed, although not of crucial importance for sensitivity or global control
studies.

4.1.2 Thermal Noise

The thermal noise generator is based on an effective model which does not
provide a detailed description of the various physical processes leading to thermal
noise but rather a description of the resulting displacement noise on the test
mass. The contribution of each thermal noise source to the mirror position noise
is modeled as [6]:

olma? = m?)? + mia Q]

(1)

P (w) =

11

where m;, w;, (); are the effective mass, the angular resonant frequency and the
quality factor of the mode.

This approach assumes that the parameters of this effective model can be ex-
tracted from other sources, as the results either from experimental measurements
or from a modeling of the physical process involved [7].

The contributions of the different modes are then summed in order to compute
the noise induced on the position of the test mass:

P(w) = z ()

For each mode, noise with the spectrum as in equation 1 is produced by
filtering white noise with a series of two filters, a filter exhibiting a transfer
function in f'/2, and a double-pole low-pass filter. The f~'/2 filter itself is
simulated by cascading first order filters with properly spaced zeros and poles®
so that the transfer function approximates a /2 behavior over the frequency
range of interest.

4.2 Suspended Mirror Simulation

Three models of the mirror suspension [1] are available, with very different
detail levels. This reflects both the development chronology, with models of
increasing complexity, and the variety of the practical needs.

Although generally speaking it is highly desirable to have a description of
the suspension as complete and detailed as possible, it is often useful to have
simpler and faster models. A detailed description in six degrees of freedom is
needed if the purpose is to optimize the design of the suspension, develop the
suspension control system, or study special aspects of the interferometer global
control such as interaction between the angular and longitudinal controls of the
mirrors. On the other hand, if only a simulation of the interferometer control in
the longitudinal degree of freedom is required, a simpler, one dimension model of
the suspension may be very useful to reduce the computational effort.

Let us describe briefly the three different models available:

e The simplest model of the suspended mirror is based on describing the
multi-pendulum structure by a series of double-pole low-pass filters whose
parameters — resonant frequencies and quality factors — are defined by the
user. Despite the facts that this model is obviously extremely simplified,
that it is a one dimension model and that it accepts a very limited number
of inputs (seismic displacement of top point and feedback force applied
directly on the mirror), it has some advantages that make it useful in some

3If p; are the poles and z; the zeros, we have p; ~ 3 - 2z; and z;41 ~ 10 2;

12

cases: it is fast and flexible — the number of stages being user defined —
and experimental input can be easily injected in the model since measured
values for resonant frequencies or quality factors can be used as parameters
of the filters.

e A less simplified model of the suspended mirror but still accounting for the
mirror movement in only one degree of freedom (the longitudinal position
of the mirror along the beam) is based on solving the differential equation
describing the movement of the multi-pendulum structure in one dimension:

M- X+ - X+U-X=F (2)

with M the mass matrix, U the potential matrix and I' the dissipation
matrix.

The differential equation is re-written as a matrix state equation and solved
numerically. This model takes more inputs and can account for forces ap-
plied on the marionetta or on the second stage [1], and has still some —
limited — flexibility as the total number of stages can be modified to some
extent. On the other hand, this model does not include the first filtering
stage done by the inverted pendulum in the current design.

e The most detailed model presently available of the suspension system pro-
vides a simulation in six degrees of freedom [8]. It describes the suspension
in its current design — which includes an inverted pendulum system — in
terms of mass elements (filter bodies, payload components), elastic ele-
ments (flexible joints, suspension wires, blades, anti-springs) and active or
sensing elements (coil-magnet pairs, accelerometers). There is some flexi-
bility in the way elements are introduced and connected together, and are
assigned numerical parameters: the module has been designed in order to
be upgraded following the needs of VIRGO. The high detail level is obtained
at the price of a higher computational effort, as the state space vector is
enlarged roughly by a factor of ten. The model also lacks the possibility of
adjusting the parameters to experimental measurements, for instance it is
not possible in the current release to adjust the Q values of the resonances —
although this limitation should be overcome in the future.

4.3 Performances

Let us give here some typical results about the performances of the mechanical
simulation. The computation times indicated have been measured on a digitall]
ALPHA 500/400 workstation®.

4SPECint95 = 12.3 SPECfp95 = 14.1

13

Table 1 gives the computation times needed to simulate the mechanical re-
sponse of a VIRGO-like mirror suspension with the three models described above,
over one second with a simulation time step of 100 us.

The large differences in the computation times reflect directly the differences
in the detail level of the different models.

Computation Time

Model for 1s @ 10 kHz
1 d.o.f. filter series 30 ms
1 d.o.f. differential

)) 90 ms
equation resolution
6 d.o.f. differential 9 s

equation resolution

Table 1: Computation time needed to simulate with three different models the
mechanical response of a VIRGO-like mirror suspension over one second, with a
simulation time step of 100 us.

5 Optical Simulation Module

The optical simulation module is rich of a number of models differing either
in the configuration simulated or in the method used. The variety in the avail-
able models reflects the diversity of the needs as far as the optical simulation is
concerned.

In addition to the standard, most often simulated configurations — Fabry-Perot
cavity, recycled Michelson or recycled Michelson with Fabry-Perot cavities — it is
useful to have the possibility to define other types of configuration from individual
mirrors.

The detail level one wishes to consider varies also a lot from one application
to another. In some cases for instance it is enough to simulate the response of
the interferometer to longitudinal displacements of the mirrors, whereas in other
cases the angular degrees of freedom must be taken into account. We can even
be interested in the details of the transversal structure of the beam leaving the
interferometer, which implies that the mismatches between the beams and the
mirrors — either due to surface curvature or rugosity — have to be properly taken
into account.

Similarly, there are some cases — for control purposes for instance — where one
needs to follow dynamically the evolution in time of the interferometer response
as a function of the mirror movements which can be fast enough — given the

14

time constants involved in the different cavities — so that the response is not the
stationary one but we are sensitive to transients. On the other hand it is often
enough to follow the interferometer response under the quasi-static assumption.
The needs happen to match the resources here, since the cases where a detailed
description is required are also those where the quasi-static approximation is ac-
ceptable. This is fortunate since those detailed models are generally slow and
would be difficult to implement in a dynamic mode.

Before reviewing the various models, let us say a few words about the technical
aspects of the optical simulation.

5.1 Technical Aspects

The configuration to be simulated is defined by the user using a number of
basic objects. These objects are connected to build a logical sequence. Typical
objects are lasers, phase modulators, mirrors, cavities, interferometers or photo-
diodes. They are connected through “beam” objects, much in the same way
other SIESTA objects are connected through signal objects. The beam objects
are used to exchange information between one optical object and another, and
contain the representation of the optical field in some place of the configuration.
The representation itself may vary from a model to another, as will be explained
in section 5.3.1, but the object structure is generic. Usually, both the input and
the output of an optical object are beams, and the beams are updated by the
simulation functions associated to the various objects.

The interface with other simulation modules such as the mechanical simulation
one is done through special objects — namely mirror surfaces — whose parame-
ters define both geometrical and optical properties (such as position, direction,
reflectivity, losses and so on) and which are linked to signal objects carrying
information about position variation of the mirrors (typically updated by me-
chanical simulation objects). Those surface objects are used as input parameters
of objects such as cavities or interferometers.

5.2 The Laser Object

The laser object comes first in the definition of an optical configuration. Its
function is to produce the initial beam to be propagated. The transverse mode
composition of the laser beam can be defined by the user, and frequency side-
bands can be generated in order to propagate a phase modulated beam.

The laser power and frequency noises can be taken into account through input
signals to the laser object, which allows to inject noise with any desired spectrum,
by using white noise generators together with signal filtering tools.

15

5.3 Light Propagation

The different models which have been developed can be classified as a function
of the representation they use to describe the optical field, which is closely related
to the algorithm they use to compute the field solution, and also to the kind of
effects they are sensitive to.

Another important feature of the models is the approximation they use for
the time evolution of the fields. Some of the models allow to compute only the
stationary solution for the fields — and therefore can be used to describe their
evolution in time only under the quasi-static assumption — whereas other models
can also describe transients.

5.3.1 Field Representation

Hereafter we describe briefly the different field representations, their conse-
quences on the algorithms used to solve for the field and the kind of effects they
are able to sense.

e plane wave:

This is the simplest field representation, since all the information about
the field is held in a single complex number. Under this assumption, fields
are propagated along distances between mirrors simply by scalar phase
factors. This representation is well suited if one needs only to compute the
configuration response as a function of the mirror positions along the beam
axis.

e grid/FFT:

In this representation the transversal structure of the field is discretized, and
the field value is computed in a number of points equally spaced on a square
(the “grid”). The field propagation between mirrors uses an algorithm
based on FFT [9]. The reflection on a mirror is accounted for by computing
the extra phase in each point of the grid, taking into account any small
misalignment of the mirror, its curvature, and its rugosity if any. These are
therefore the kind of things this representation is able to take into account.

e modal expansion:

This type of representation is the most used one in SIESTA, and is so useful
that it has triggered several developments and is now implemented in three
different ways.

In this representation the field propagating through the configuration is
expanded on a basis of orthogonal modes. If the basis is chosen such that
the basic modes are close to the eigenmodes of the configuration, then it
is generally possible to truncate drastically the basis and consider only a

16

small number of modes. In practice the Hermite-Gauss TEM,,, modes are
used, and the modes actually taken into account are such that (m + n) is
less than some order which is usually not much larger than unity.

In this representation the information about the field at some place of the
configuration is held in a vector whose elements are the field components
on the basic modes. The elementary operations such as propagation or re-
flection are represented by operators acting on the field state vector. Free
propagation and reflection by ideal mirror surfaces are represented by diag-
onal matrices, whereas reflection by misaligned or mismatched surfaces is
represented by matrices with off-diagonal terms leading to coupling between
the different modes.

Let us now review the three different implementations of this method:

— standard:

In the standard implementation the reflection matrices for not ideally
aligned mirror surfaces are computed using analytical formulas given at
order 2 in the relevant perturbation parameter [10]. The perturbation
can be the reflection by a tilted plane or spherical mirror, reflection by
a transversally displaced spherical mirror or reflection by a spherical
mirror whose curvature does not match the beam curvature. The order
of the truncated TEM,,, basis is upper limited to 2 (m + n < 2) but
can be chosen by the user between the values 0 (in which case the
model is merely equivalent to a plane wave calculation), 1 and 2.

— special:
The special implementation is very similar to the standard one, except
that a dedicated package has been developed to optimize the numerous

algebra operations by taking into account the characteristic structure
of the reflection matrices [11].

— extended:

This last implementation uses a numerical method — instead of ana-
lytical formulas — to compute the reflection operators [12]. The con-
sequences are that the order of the TEM,,, basis is not limited (al-
though in practice limitation arises from the finite computer memory
resources), that the matrix elements are computed with better accu-
racy, and that mirror surface rugosity may be taken into account.

The method used to compute a mirror reflection matrix is the follow-
ing. For each mode of the basis considered as an incoming field at the
level of the mirror tangent plane, a discrete spatial representation of
the field transversal distribution is computed on a n X n points grid
(with typically n = 128). The phase introduced by the reflection on
the mirror is computed in each point of the grid taking into account

17

the curvature of the mirror, any small misalignment, and the surface
rugosity if any. The numerical projection of the reflected field on each
mode of the basis leads to the elements of one column of the reflection
matrix. Repeating this process for every mode of the basis provides
the whole matrix.

5.3.2 Field Equation Resolution

The equation for the field in some place of the configuration is typically an
implicit equation, which can be solved either by iterations or by direct inversion.
The two methods are used in SIESTA, and the choice of the method generally
determines whether the model is dynamic or quasi-static. Direct inversion of the
equation implies that the field is solved for its stationary solution and therefore
that the model is able to describe its evolution only in quasi-static mode. On the
other hand, solving the equation by iterations means that field values at a given
time step are computed from field values at the previous time step and therefore
that the model is able to describe the field evolution dynamically.

The latter statement has to be moderated due to the fact that it is true only
if the time step can be chosen in accordance with the physical delay introduced
by the propagation of light. Depending on the field representation used, this can
be so time consuming that in practice the model can only be used in quasi-static
mode. This is especially the case of the grid/FFT model which is implemented
with the sequential method but is much too slow to be used dynamically.

Actually there are also some cases where both methods are used in conjunc-
tion. This is the case for one of the most powerful implementations of the sim-
ulation of a recycled Michelson interferometer with Fabry-Perot cavities. In this
model, the fields reflected by the Fabry-Perot cavities are computed sequentially
whereas the field inside the recycling cavity is computed by direct inversion. This
is equivalent to neglecting the time delays introduced by the light traveling inside
the recycling cavity. Since the length ratio between the Fabry-Perot cavities and
the recycling cavity is so high for an interferometer like VIRGO, this does not pre-
clude the model from reproducing with good accuracy the time constants involved
in such a configuration and therefore from describing properly the dynamics of
the system.

It seems worth pointing out that in most cases (at least for those models
implemented in the dynamic mode) the time step of the simulation is set by the
frequency of the clock associated to the corresponding object. This means that
the user is in a position to choose the time step suitable for his needs.

5.4 Optical Configurations

A variety of objects are available to simulate the optical response of different
configurations.

18

e [t is often useful to be able to define the desired configuration modularly
from individual mirrors. An object called “optical node” provides the means
to do so, the configuration being defined by connecting such node objects —
representing mirror surfaces — with beam objects.

e Some configurations are so often considered that the models to simulate
their responses have been encapsulated in dedicated objects, for which the
geometry is fixed, most other parameters being user defined. This is the
case for:

— a Fabry-Perot (FP) cavity

— the configuration of the VIRGO central interferometer, namely a recy-
cled Michelson interferometer

— the configuration of the full VIRGO interferometer, namely a recycled
Michelson interferometer with Fabry-Perot cavities

Table 2 summarizes the methods used by the models available to simulate
the various configurations — without taking into account the fact that a model
dedicated to a complex configuration can be used to simulate a simpler one by
adjusting some parameters.

FP cavity R_ecycled Rec_ycled Micl}e_lson Modular.
Michelson with FP cavities Configuration
plane wave QS
g || standard | QS & D QS D D
Zg é special QS
= & | extended QS QS
grid/FFT &S

Table 2: Summary of the methods implemented for different configurations (a
model dedicated to a complex configuration can of course be used to simulate a
simpler one by adjusting some parameters). The table also indicates whether the
method is implemented in quasi-static (QS) or dynamic (D) mode.

5.5 Performances

In this section we briefly present some results about the typical performances
of the optical simulation, as measured on the same workstation as in section 4.3.
We give two different bunches of results, one for the quasi-static models, and one
for the dynamic ones.

19

5.5.1 Quasi-static Models

Table 3 refers to the quasi-static models. It shows the computation time
needed to calculate once the stationary response (i.e. the stationary solution for
the field in a number of places of the configuration) of three different configu-
rations using different methods. The number of frequency bands considered is
three — a carrier and two sidebands. The order indicated for the methods based
on modal expansion refers to the maximum value of (m + n) of the TEM,;,, modes
considered. If the order is p the total number of modes is (p + 1)(p +2)/2. The
computation times given in table 3 do not include overhead, which amounts to
0.4s.

The test with the grid/FFT method was done with a complete interferom-
eter configuration built modularly. The grid size was 128 x 128 points. With
this method the fields are computed sequentially, and the number of iterations
performed was that needed to reach the stationary state of an interferometer
with a cavity finesse of 50 and a recycling factor around 50, starting from fields
initialized to zero. Convergence could of course be reached much faster starting
with suitably initialized fields or by using fast iteration techniques [13]. Let us
also emphasize that the grid/FFT method was an early development in SIESTA
and that by now the modal expansion method in its extended implementation
can provide the same kind of information at a much reduced computational cost,
although for dedicated configurations only.

rp it Recycled || Recycled Michelson
CavILY || Michelson with FP cavities
plane wave 4 ms
:% order 0 0.15 ms 0.01 ms
- :% order 1 0.3 ms 0.3 ms
-% % | order 2 0.9 ms 1.4 ms
]
2=
% g | order 2 24 ms
— || &
c@ 9]
T =
= %; order 5 1.5 s
*qj: order 10 25 g
[«D]
grid/FFT 20 hours

Table 3: Computation time needed to calculate the stationary optical response

of various configurations with different quasi-static models.

20

5.5.2 Dynamic Models

Table 4 refers to the dynamic models. It shows the computation time needed
to simulate the response of two different configurations over one second, using
different methods (again for three frequency bands and neglecting overhead).

The frequency given in the table (10 kHz, 100 kHz, 25 MHz) is the frequency
with which the simulation function of the model is called, thus defining the sim-
ulation time step.

The length of the Fabry-Perot cavities considered in the tests is 3 km. To
simulate dynamically the response of such a cavity, the basic time step of the
sequential field computation must be at most 10 pus. Whether the call-back
frequency is 100 kHz or 10 kHz, the time step is exactly 10 us in both cases,
the fields in the recycling cavity being computed through direct inversion. This
means that in the 10 kHz case, several iterations are performed within the same
function call. This allows to reduce overhead, at the price of simulating the cavity
response up to 10 kHz only, which is often enough given the typical velocities of
the suspended mirrors.

On the other hand, we give also the computation time needed in an extreme
case (the 25 MHz one). In this case all the fields in the interferometer, including
those in the Fabry-Perot cavities, are computed sequentially with a time step of
40 ns, corresponding to the propagation time of light in a VIRGO like 12 m long
recycling cavity.

Fp ¢ Recycled Michelson
cavity with FP cavities
= | = order 0 0.7 s 0.4 s
s || =
B = || =4 | order 1 24 s 18 s
<
S = = | order 2 8.2s 89 s
[«D]
Cg E_) o | order 0 2.7s 1.4
4 g i order 1 12 s 47 s
3 %‘ = | order 2 50 s 195 s
O = ~
SRR -
S || = | order 0 40 min
A7 10
~— [N

Table 4: Computation time needed to perform a “one second” simulation of the
optical response of two configurations, using a dynamic model based on modal
expansions of different order and different simulation time steps.

21

6 Basic Tools for Data Analysis

The basic tools to produce simulated data are implemented in SIESTA. They
include generators of gravitational wave signals, a noise generator, as well as the
interface to the frame formatting package. The latter has already been described
in section 3.3 and we focus here on the first two points.

It is to be noted that the SIESTA framework allows also to implement and
run any data analysis algorithm as a SIESTA object, the data being processed in
the standard SIESTA loop.

6.1 GW Signal Generators

The implementation of GW signal generators has two aspects. One aspect
is the computation of the GW signal amplitude in the source frame, based on
parameters depending on the model used. The other aspect is the interface to
the detector frame in order to compute the signal the interferometer is sensitive
to. Implemented in SIESTA so far are the source-detector interface and two basic
generators at source level — one for continuous waves from pulsars [14], and one
for coalescing binaries [16] (up to the first post-Newtonian order).

The source-detector interface is implemented as a SIESTA object transforming
any signal in its source frame into a signal in the detector frame [14]. Namely,
knowing the source position, the wave polarization angle and the detector position
and orientation as a function of time, this object computes the values of h, and
h, at detector level as a function of time from the generated values of hy and h
at source level. The key input to this transformation is the Earth position as a
function of time, which is computed with a routine provided by the Bureau des
Longitudes in Paris [15].

This step introduces the amplitude and phase modulation of the GW signal
due to the variations in the detector position and orientation. Technically, only
the amplitude modulation is introduced through this general mechanism. On the
other hand the issue of phase modulation is addressed at the level of the source,
for reasons of convenience. It is indeed much simpler to account for this effect
through an additional varying phase in the generated signal than through delayed
arrival times at the detector level.

6.2 Noise Generator

For the purpose of developing and testing data analysis algorithms, it is often
enough to work with time realizations of detector noise in terms of A (i.e. recon-
structed data) with a frequency content reproducing the detector sensitivity.

It is possible — although slow and heavy — to combine GW signal generation
with a full simulation of the detector (including mechanics, optics, controls).
This produces raw data (dark fringe signal) and implies that a reconstruction

22

procedure is applied to unfold the response of the servo-ed interferometer and
get data in terms of h.

On the other hand, a lighter solution consists in producing directly time series
in terms of h. The noise generator implemented in STESTA is based on this idea
and is designed as a fast tool to produce colored noise with the desired spectrum.
The contribution of shot noise to the spectral sensitivity is simulated from a few
parameters (power on beam-splitter, cavity length and finesse). The contribution
from thermal noise is taken into account through an interface to the thermal noise
generator described in section 4.1.2, which avoids to duplicate code.

Some important noise contributions are missing in the generator. Those miss-
ing sources are less well known and difficult to predict; they include noise from
electronics, controls, and generally speaking all sources of so-called excess noise.
It is likely that an ad-hoc simulation of those noise contributions can be imple-
mented only when the detector has been built and characterized.

Figure 5 shows the spectral density of a simulated time series of data in terms
of the reconstructed main signal h.

h spectral density (1/VHz)

-237 i i i
10 L Ll Ll Lo

10 10 10 10*
frequency (H2)

Figure 5: Spectral density of simulated noise in terms of reconstructed main
signal h, including shot noise and the main contributions from thermal noise:
pendular modes, violin modes, and the first internal modes. The time series was
generated with the fast noise generator.

7 Application Examples

In this section we present a few examples to illustrate some of the typical
applications of the SIESTA software.

23

7.1 Longitudinal Lock Acquisition of Fabry-Perot Cavity

This example (see figure 6) shows how SIESTA can be used to simulate the
process of longitudinal lock acquisition. The configuration considered here is that
of a simple suspended Fabry-Perot cavity. A dynamic optical simulation of the
cavity is used in connection with a one degree of freedom mechanical simulation
of the seismically excited suspended mirrors. Some signal processing tools are
used to implement the lock acquisition algorithm and the feedback loop. Some
graphs showing the time evolution of the process are produced in the SIESTA job
by spying the relevant variables. Around 30 SIESTA objects are involved in this
example which takes a little more than 6 minutes to simulate the evolution of the
configuration for roughly 2 minutes.

Phase
LASER Modulation

Seismic Noise

H

Dynamic Optical
Simulation of
FP Cavity

1d.o.f. Mechanica
Simulation of !
Suspended Mirrors I
1

f—-—--- ! DC

sdoooooooog Lock Acquisition Algorithm
Signal Processing

S

AC

cavity length offset (um)

]

I

I

1

1

1

]

1

]

1E 1
£ I
-= 0 N/\start lock acquisition algorithm :
-1 F \L 1
]

]

1

I

1

[}

1

vl b b b NV bvnnn b b a by
115 116 117 118 119 120 121 122 123 124

} time ()
003 transmitted power (W)

B L

115 116 117 118 119 120 121 122 123 124

demodulated signal (a.u.) time (s)

04 F

PN VATV L SPPLI IS, AN SO AN A
115 116 117 118 119 120 121 122 123

124
time ()

force (mN)

S I S B I I I S IV
115 116 117 118 119 120 121 122 123 124
time ()

2

L |
1
2

Figure 6: Schematic description of the ingredients and outputs of a SIESTA job
devoted to the study of the longitudinal lock acquisition of a suspended Fabry-
Perot cavity.

24

7.2 Transfer Function Extraction

This example (see figure 7) shows how SIESTA can be used to extract infor-
mation in the frequency domain. We consider here the case of the extraction of
the transfer function between the length variations of the VIRGO interferometer
recycling cavity and the resulting variations in the demodulated signal measured
on the photo-diode collecting the light reflected from the interferometer. A dy-
namic optical simulation of the interferometer is used with white noise applied on
the longitudinal position of the recycling mirror. The power seen by the photo-
diode at the modulation frequency is then evaluated and the transfer function
with respect to the excitation noise is computed.

s B

White Noise Dynamic Optical
Simulation of
Interferometer
Phase 0 I
LASER Modulation ’| I I H
108
T
w9 =
‘ Demodulation \r ‘% 5
Z10”7
o
‘B
8
Transfer .
~— | FRunction [10°
0t 1 10 10° 10° 10*
Frequency (Hz)

L J

Figure 7: Schematic description of the ingredients and outputs of a SIESTA job
devoted to the extraction of the transfer function between the length of the
interferometer recycling cavity and the demodulated signal of the photo-diode
collecting the light reflected from the interferometer.

7.3 Extraction of Alignment Error Signals

This example (see figure 8) shows how SIESTA can be used to simulate the
alignment error signals produced by the seismic angular noise of the suspended

25

mirrors. The configuration considered here is that of a recycled Michelson in-
terferometer (VIRGO central interferometer). A quasi-static optical simulation of
the interferometer is used in connection with a six degree of freedom mechani-
cal simulation of the suspended mirrors. Assuming perfect longitudinal locking,
the signals measured at the modulation frequency with a quadrant photo-diode
collecting the light transmitted at the end of one of the interferometer arms are
computed. Graphs show the time evolution of the up-down asymmetry of these
signals, and its correlation to the vertical tilt of the recycling mirror.

6 Recycling Mirror (urad)

T 18ti me (s%0
— - Quasi-static Optical
SeismicNoise | | g .61, Mechanical Simulation of

Simulation of = Central Interferometer
Suspended Mirrors

Quadrant

LASER Phase | _| = @ Photodiode
Modulation)
Demodulation

x10 ° Up-Down Asymmetry of Demodulated Signal \L

04 F

02 E

o Up-Down
o2 Asymmetry
B | TR 1 | Pl I
8 10 12 14 16 18 me)
. J

Figure 8: Schematic description of the ingredients and outputs of a SIESTA job
devoted to the simulation of the alignment error signals produced by the seismi-
cally induced mirror angular noise and measured with a quadrant photo-diode
collecting the light transmitted at the end of one of the central interferometer
arms.

8 Conclusion

In this paper we have presented the SIESTA simulation software package de-
veloped for the VIRGO experiment. Stress has been laid on the modularity of
the program. This feature makes it possible for instance to easily include new
modules or re-use part of the code in other VIRGO software packages used online.
Another important point is the possibility for the user to choose in many cases
between several detail levels to simulate a given process.

26

It is worth reminding that many other modeling developments have been
undertaken for the VIRGO experiment, which have not been mentioned in this
paper devoted to the global simulation of the detector. In some cases these other
modeling activities address very specific issues which need not be integrated in
the general simulation. In other cases they are relevant to important physical
processes characterizing the detector but only their results are implemented in
SIESTA as an effective model. An important illustration is the simulation of ther-
mal noise.

The development of SIESTA has been going on for several years [17] and has
been driven by the needs of the VIRGO collaboration. The program has reached
a stage where the design requirements have been fulfilled to a large extent, and
is now at an operational level. One of the early needs has been to develop tools
to help in the design of the detector. An important design issue still existing
today is that of the control of the interferometer, which has driven most of the
developments relative to optical and mechanical simulation.

The optical simulation toolkit is fairly complete by now. It allows to sim-
ulate the response of various optical configurations to longitudinal and angular
movements of the mirrors, either in the quasi-static or in the dynamic regime.
Future activities in this domain might be to develop efficient tools to simulate
new interferometer configurations, like for instance dual recycling.

The mechanical simulation toolkit covers also the essential needs, allowing
to simulate a suspended mirror in six degrees of freedom. Future developments
will be needed to introduce more flexibility in the simulation. Another challenge
would be to increase the speed of the mechanical simulation by optimizing the
models.

The other main development line of SIESTA is directed towards data analy-
sis. It concerns generators of gravitational wave signals as well as generators of
noise reproducing the sensitivity of the detector. At present the basic tools have
been developed, but further developments will be needed to extend the variety of
signal generators and bring the noise generators closer to the noise observed in
reality. In particular excess noise, including non-Gaussian noise, will have to be
modeled or parameterized when it has been observed and characterized on the
real detector.

Generally speaking, the program will have to be compared with reality like
the coming up VIRGO central interferometer, and its parameters should be tuned.
Future developments might also be desirable in order to introduce more interac-
tivity in the program and to connect it at best with the data analysis software
environment.

27

Acknowledgments

We would like to thank our VIRGO colleagues for many profitable discussions,

and especially all the SIESTA users for useful comments and suggestions.

References

1]
2]

3]
[4]

8]

9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

VIRGO Coll., Final Design Report (1997)

B.Bhawal, M.Evans, E.Maros, M.Rahman, H.Yamamoto, LIGO note LIGO-
T970193 (1997)

See http://wwwinfo.cern.ch/asd/index.html

B.Mours, Gravitational Wave Detection, Proceedings of the TAMA Interna-
tional Workshop on Gravitational Wave Detection, Saitama, Japan, Novem-
ber 12-14 1996, edited by K.Tsubono, M.K.Fujimoto and K.Kuroda (1997)
27

Joint LIGO/VIRGO note LIGO-T970130-B and VIRGO-SPE-LAP-5400-
102

A.V.Oppenheim, R.W.Schaffer, Digital Signal Processing, Prentice-Hall In-
ternational Editions (1975)

P.R.Saulson, Phys. Rev. D 42 (1990) 2437

G.Cagnoli, L.Gammaitoni, J.Kovalik, F.Marchesoni, M.Punturo, VIRGO
note VIR-NOT-PER-1390-84 (1997), and references therein

M.Beccaria, G.Cella, G.Curci, A.Viceré, VIRGO note in preparation

J.Y Vinet, P.Hello, C.N.Man, A.Brillet, J. Phys. I France 2 (1992) 1287
J.Y .Vinet, VIRGO note PJT-94-012 (1994)

J.Y Vinet, F.Cavalier, P.Hello VIRGO note NTS-95-032 (1995)
V.Loriette, VIRGO note NTS-95-029 (1995)

B.Bochner, Ph.D thesis, Massachusetts Institute of Technology (1998)
X.Grave, These de 1'Université de Paris-Sud (1997)

G.Francou, L.Bergeal, J.Chapront, B.Morando, Astron. Astrophys. 128
(1983) 124

D.Verkindt, These de I'Université de Savoie (1993)

28

[17] B. Mours, I. Wingerter-Seez, Proc. of the sixth Marcel Grossmann Meet-
ing on General Relativity, Kyoto, June 1991, edited by S.Humitaka and
T.Nakamura (1992) 1576
B.Caron et al, Proceedings of the 6th Pisa Meeting on Advanced Detectors,
La Biodola, Isola d’Elba, Italy, 22 - 28 May 1994, edited by E Bertolucci, F
Cervelli and A Scribano, Nucl. Instrum. Methods Phys. Res., A : 360 (1-2)
(1995), 375
VIRGO Coll., Gravitational Wave Detection, Proceedings of the TAMA In-
ternational Workshop on Gravitational Wave Detection, Saitama, Japan,
November 12-14 1996, edited by K.Tsubono, M.K.Fujimoto and K.Kuroda
(1997) 21

29

