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Abstract

PSR J0537-6910 is a young (1-5 kyrs) energetic X -ray pulsar located in the Large
Magellanic Cloud, which is known for its rather significant glitching activity (it
is also known as "The Big Glitcher"). In 2020, the NICER telescope provided a
detailed timing model for this pulsar overlapping the LIGO-Virgo O3 data-taking run.
From these measurements, precise estimations for the pulsar rotational parameters
and times of glitch occurrences are provided, which enabled an electromagnetically-
triggered search. Moreover, measures of the pulsar braking index suggest that its
inter-glitch value asymptotically relaxes towards a value of about 7. This points to
the possibility the r-modes, which are a potentially interesting source of Continuous
Gravitational Waves (CWs), are excited in this pulsar.
It is possible to perform a search for this kind of gravitational signals using an exten-
sion of the already tried-and-tested fully coherent narrow-band 5-vectors pipeline,
typically used to perform CWs searches for signals due to ellipticity. There are three
main differences with respect to standard narrow-band searches, which need to be
taken into account: the explored frequency band is ≈ 100 times larger (O(10Hz)
compared to O(10−1Hz) for ellipticity CWs ), a fully coherent search cannot be
performed due to the presence of glitches, and a different range of frequencies has to
be explored for different spin-down rates. Thus the parameter space for this search
is not a rectangle in the plane f -ḟ (as in standard narrow-band searches), but it is a
parallelogram. In fact, the underlying idea is to perform a coherent search over the
different inter-glitch periods, and later incoherently combine the results. Thus, the
overall search is semi-coherent.
This method has been applied to the search for r-mode gravitational emission from
PSR J0537-6910 using data from the third LIGO-Virgo observing run. Unfortunately,
it was not possible to claim a detection, since none of the candidates was significant
enough. However, the search is indeed significantly more sensitive if compared to
previous ones performed on the same target, and this is the first time that it was
possible to account for glitches occurrences for this pulsar. Thus, it was possible
to set interesting upper limits on the strain amplitude of an eventual signal: the
obtained results not only are diving below the spin-down limit (defined by energy
conservation) for relevant ranges of frequencies, but also allow us to set constraints
on the theoretical models for r-modes, at least in the hypothesis that the pulsar
spin-down is effectively driven by this kind of emission.
Therefore, it is possible to deduce that r-mode activity on this pulsar might be
present, but the amplitude is lower than that needed to explain the observations
of an inter-glitch braking index of n = 7. In particular, only scenarios where the
pulsar mass is M . 0.9M� and the star matter is described by a soft Equation of
State are allowed. As an alternative, it is possible that r-modes are indeed excited
by the glitches, but subsequently damped.
The results of this search are currently being published on "The Astrophysical Jour-
nal" and they are available on arXiv (2104.14417) under the title: "Constraints from
LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar
PSR J0537-6910 ".
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1

Introduction

The existence of Gravitational Waves (GWs) was firstly derived by Albert Einstein
in 1916 [1], just one year after his formulation of General Relativity. GWs are
perturbations of the space-time metric which propagate at the speed of light. The
most relevant contributions to the generation of gravitational waves are usually
computed using a multipole expansion, which shows that the first relevant term is a
time-changing quadrupole momentum in the mass-energy distribution of the studied
physical system. Examples of physical systems characterized by a time-varying mass
quadrupole are compact binary coalescing astrophysical systems (such as coalescing
black holes or neutron stars) and spinning pulsars characterized by an unbalance in
their axial mass distribution. However, the characteristic coupling constant associ-
ated with GWs is G/c4 ≈ 8 · 10−45 s2/kg ·m, which makes them very hard to detect.
For this reason, it was necessary for the LIGO-Virgo Collaboration to put a lot of
effort in order to achieve, after almost 50 years of work (and after exactly 100 years
from Einstein’s theoretical formulation), the first detection of a gravitational signal
generated by a binary black hole coalescence: GW150914 [2].
The relevance of the detection of GWs is clear under many aspects: not only it proves
the existence of this kind of waves (providing at the same time a confirmation of the
theory of general relativity), but it also provides another channel (other than the
electromagnetic one) to study astrophysical phenomena happening in the universe.
For the latter reason, this detection marks the beginning of the "multi-messenger
astronomy" era.
Since the first detection, the LIGO-Virgo Collaboration detected numerous transient
gravitational signals originated by binary coalescences of different types. However,
the theory of General Relativity predicts that there are systems (such as rotating
non-axisymmetric pulsars) which in principle should generate detectable Continuous
Gravitational Waves (CWs). Unfortunately, CWs have never been detected so far.
A detection of this kind of waves would provide crucial information on the star
structure and on the physics of matter in neutron stars, which is an interesting
topic in modern physics. On one hand, the difficulty when dealing with CWs lies
in the fact that their amplitude is much smaller than that of coalescences. On the
other hand, CWs are expected to be detectable for a longer time, making it possible
to perform coherent study over long data-taking time spans. For this reason, it
becomes evident that the search for CWs is a particularly challenging task, as data
analysis pipelines are based on complex algorithms usually requiring a huge amount
of computational resources.
Another interesting possibility for the detection of CWs is represented by gravi-
tational emission due to r-mode excitations. The r-mode is a toroidal mode of
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oscillation of the pulsar fluid which is coupled to current-quadrupole GWs emissions.
From an electromagnetic point of view, a possible candidate for r-mode activity is
PSR J0537-6910 [3]. This pulsar is a young (1-5 kyrs) energetic X -ray pulsar located
in the Large Magellanic Cloud at a distance of 49.6 kpc. From an astrophysical point
of view, this pulsar is intriguing for several reasons: it is the fastest spinning young
X -ray pulsar currently known (ν ≈ 61.91 Hz), it is the pulsar having the highest
spin-down luminosity, and it exhibits large glitches, i.e., sudden decreases in spin
frequency (∆ν/ν ≈ 10−7). In addition, PSR J0537-6910 glitches roughly every 100
days, while, in most pulsars, glitches do not happen regularly. Finally, this pulsar is
unique, as it is the only glitching pulsar that shows a strong correlation between
the size of a glitch and the waiting time to the next glitch, which suggests that a
threshold level of some sort has to be reached to trigger the glitch mechanism.
The NICER telescope provided a detailed timing model for PSR J0537-6910 over-
lapping the LIGO-Virgo O3 run, that allows to perform the first electromagnetically
triggered search for r-mode signals. In fact, previous searches (such as [4]) did
not have the possibility to account for the presence of glitches, thus being partially
incorrect, as the signal frequency evolution is modified by glitches occurrences. In
addition, the NICER telescope measured an inter-glitch braking index n (defined
as n = νν̈

ν̇2 , where ν is the pulsar rotational frequency and the dot indicates a
time derivative) that relaxes towards a value of 7. This characteristic hints to the
possibility that the energy is dissipated by the pulsar through gravitational emission
due to r-modes.
Due to the present of glitches, it is not possible to perform a fully coherent search on
the whole data-taking time span. In fact, when glitches occur, tha phase relation of
the signal is not modeled. Thus, the search is split in two pieces: a fully coherent part,
performed on different inter-glitch periods, and a part where results are incoherently
combined.
This search was developed in the framework of the LIGO-Virgo collaboration using
two independent pipelines: the Narrow-Band 5-Vectors pipeline (developed in the
Rome Virgo group) and the F/G Statistic method (Virgo Polgraw group). The de-
velopment of this search lead to the publication of the related LIGO-Virgo-KAGRA
(LVK) Collaboration Paper [5].
I will begin this dissertation by describing, in Chapther 1 r-mode perturbations and
how they are coupled to GWs emission. In particular, I will give a brief outline on
CWs and on the emission parameters expected for an r-mode signal. I will then
conclude this part with by presenting the timing model of PSR J0537-6910 obtained
by the NICER telescope.
Moving on, in Chapter 2, I will describe how narrow-band CWs searches are usually
performed. To do so, I will present the formalism of the coupling of GWs to interfer-
ometers, which is needed for the description of the workflow of the used pipeline.
I will proceed by describing the most relevant steps of the narrow-band 5-vectors
pipeline and then I will discuss how this pipeline can be extended in order to be
applied to r-mode searches.
Chapter 3 will be devoted to the incoherent combination of the results obtained in
inter-glitch periods: this is a fundamental step for performing this r-mode search
and it represents the main extension to the previously-used pipeline. I will discuss
the main aspects that one should keep in mind when performing an incoherent
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combination, and I will present the results of some tests that highlight the correct
implementation of this part of the algorithm.
Finally, in Chapter 4, I will present the results of the application of these methods
to the third LIGO-Virgo data-taking run searching for r-mode signals from PSR
J0537-6910. I will briefly present the general characteristics of the O3 run, and then
I will discuss the selected parameter space to perform this search, and the choice of
the inter-glitch periods. Then, I will present the candidates of the search, even if it
will not be possible to claim a detection. Finally, I will show how it is possible to
set upper limits on the amplitude of an eventual r-mode CW, and the astronomical
relevance of the obtained results. This last Chapter explores in detail the main
results presented in the aforementioned LVK Collaboration paper [5].
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Chapter 1

R-Mode Gravitational Waves

In this chapter, I will introduce the concept of r-mode oscillations of the fluid
composing a pulsar and to discuss how these oscillations are related to Gravitational
Waves (GWs) emissions. In particular, in Section 1.1, I will briefly sum up the
description of r-modes obtained in [6, 7, 8, 9]. For the sake of clarity, in Sec. 1.2, I
will present a brief discussion on Continuous Gravitational Waves (CWs) in general,
using the main results from [10].Then, in Section 1.3, I will provide an overview
about the coupling between r-mode excitation and GWs emission, as presented
in [11]. Moreover, in Section 1.4, I will discuss the indications suggested by [12]
to perform a search for r-mode gravitational signals. These considerations have
provided useful guidelines for the development of this project. Finally, in Section 1.5,
I will outline the timing model of PSR J0537-6910 obtained by NICER telescope
[13]. These provided us the measures of the pulsar rotational parameters and the
glitches occurrences, which are crucial for performing this search.

1.1 What is an R-Mode?

The r-mode, also known as Rossby wave, is a toroidal mode of fluid oscillation for
which the restoring force is the Coriolis force, as explained in [14]. Therefore, in the
astrophysical framework, it only exists in a rotating star. In the last years, this kind
of oscillations aroused a lot of interest in the field of GWs (see, for example, [4, 15])
since they are generically unstable to gravitational emission. For this reason, it is
possible that the signal grows to large amplitudes, becoming a detectable source
of CWs (as outlined in [16, 17]). In the next paragraphs, I will describe the most
important characteristics of r-mode excitations and the related GWs emission.

1.1.1 Velocity Pattern due to R-Mode

The best way to understand the nature of r-mode oscillations, is to study their
multipole structure and the velocity field that the fluid elements on the surface of
the pulsar experience. In this paragraph, I will present a brief discussion on the
r-mode speed pattern in the framework of Newtonian gravity, and to first order
in the rotational frequency ν of the star (for a detailed discussion also including
relativistic effects see [7, 18]). In this case, the r-mode is purely toroidal and the
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Eulerian velocity perturbation δv depends on ν, on the stellar radius R and on the
dimensionless amplitude of the mode α through the relation[19]:

δv = α

(
r

R

)`
RνYB

`meıωt, (1.1)

where YB
`m ≡ [` (`+ 1)]−

1
2 r∇ × (r∇Y`m) is the magnetic-type vector spherical

harmonic (Y`m being the standard spherical harmonics). A representation of the
perturbation experienced by the fluid surface elements is reported in Figure 1.1.
Moreover, it is interesting to discuss how the r-mode perturbation acts in different

Figure 1.1. Pattern of velocity streamlines experienced by fluid elements due to r-mode
oscillations. The restoring force for these perturbations is the Coriolis force. The
gravitational emission coupled to these modes represent an interesting candidate for the
detection of continuous gravitational waves. Credit: N. Andersson.

reference frames1. In particular, an important concept is the pattern speed, i.e.
the field of the velocity perturbations on fluid elements. The following analysis is
adapted from [7].
Since every mode has an expression of the form ei(ωt+mφ), where ω is the mode
pulsation, φ is the phase and m is given by the order of the spherical harmonic, we
can see that surfaces of constant phase are described by mφ+ ωt = constant. Thus,
one can compute the differential phase velocity σ = dφ

dt = − ω
m in each point, in order

to describe the pattern of the induced perturbation. The expressions one can find
respectively for a rotating and for an inertial observer are:

σr = − 2ν
` (`+ 1) , (1.2)

σi = (`+ 2) (`− 1)
` (`+ 1) ν. (1.3)

1Some interesting animations describing the r-mode speed pattern can be retrieved at http:
//research.physics.illinois.edu/CTA/movies/r-Mode/

http://research.physics.illinois.edu/CTA/movies/r-Mode/
http://research.physics.illinois.edu/CTA/movies/r-Mode/
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Thus, it is clear from the signs that, even if the r-mode appear retrograde in the
rotating system, an inertial observer would view it as prograde. An additional
representation of the r-mode velocity field is also given in Figure 1.2.

Figure 1.2. Velocity field of the r-mode as a function of the angular coordinates spanning
the surface of the star. The narrow frame on the right is a qualitative depiction of the
actual motion of individual fluid elements. Credit: N. Andersson.

1.2 Continuous Gravitational Waves
In general, GWs can be considered as small perturbations in a given space-time
background. Thus, in the case of a flat background, it is possible to express
the metric tensor gµν (which describes space-time curvature; µ, ν = 0, 1, 2, 3) as
gµν = ηµν + hµν + O

(
|h|2

)
, where ηµν is the flat space-time Minkowski tensor,

h ≡ ηµνhµν , and |h| � 1. In addition, it is well known that the gravitational strain
tensor, choosing to operate in the Transverse Traceless (TT) gauge, has only two
degrees of freedom: h+ and h×. In particular, the tensor can be written as:

hTT
µν =


0 0 0 0
0 0 0 0
0 0 h+ h×
0 0 h× −h+

 . (1.4)

The explicit expressions of the two relevant components are given by:

h+ = hjk
(
pjpk − qjqk

)
/2, (1.5)

h× = hjk
(
pjqk + qjpk

)
/2, (1.6)
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where hij (i, j = 1, 2, 3) are the spatial components of hµν and pi and qi are
orthonormal vectors perpendicular to the wave propagation direction.
One of the most interesting cases of continuous gravitational waves emission is that
of GWs from rotating compact stars, usually referrred to as CWs due to ellipticity,
as treated in [10]. It is important to notice that r-mode emission are not due to
ellipticity, but the study of this case is particularly simple and it offers a benchmark
for comparisons and analogies. It is possible to show that a rotating star indeed
emits gravitational waves only if it does not have an axial symmetry. The wave
generated by this process is an almost-monochromatic signal, continuously emitted
for years. Therefore, it is usually referred as Continuous Gravitational Wave. As I
will show, the frequency of this wave is approximately constant and equal to twice
the pulsar rotational frequency ν. The main contibution to this emission is due to
an unbalance in the components of the inertia tensor Iij , which is defined as:

Iij ≡
∫
V
ρ
(
r2δij − xixj

)
d3x, (1.7)

where ρ is the star density (assumed to be uniform for this derivation), the coordinates
{xi} (i, j = 1, 2, 3) are Cartesian (the center of the star is at the origin), and
r2 = x2

1 + x2
2 + x2

3. Gravitational Waves emissions are linked to the mass quadrupole
tensor qij , which is defined as:

qij(t) ≡
1
c2

∫
V
T 00(t,x)xixj d3x, (1.8)

where T 00 is the 00 component of the mass-energy tensor of the system. It is possible
to link Equations (1.7) and (1.8) with an easy relation:

qij = −Iij + δijq
k
k . (1.9)

Furthermore, a useful quantity for characterizing GWs is the reduced mass quadrupole
Qij ,:

Qij ≡ qij −
1
3δijq

k
k , (1.10)

which is traceless. In the (TT) gauge, one gets:

QTT
ij ≡ PijklQkl = Pijklqkl, (1.11)

where Pijkl is the projector to the (TT) gauge (the explicit expression is not relevant
for our purposes). Using this expression, it is possible to compute the expression of
the spatial (TT) gravitational strain tensor hTT

ij to the first order, starting from the
projection of the reduced mass quadrupole tensor in the (TT) gauge. Namely:

hTT
ij (t, r) = 2G

c4r

d2

dt2
QTT
ij

(
t− r

c

)
, (1.12)

being r the distance from the source. This formula represents the mass quadrupole
approximation, and it is the leading term of the multipole expansion that describes
the complete GWs emission (the complete expression can be found in [20]). In fact,
the next to leading order of the expansion (1.12) is composed by the mass octupole
and the current quadrupole terms. The interesting point is that r-mode emissions
come out by the quadrupole current term of this expansion [21].
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1.2.1 Continuous Signals

The key aspect of Eq.(1.12) is that it gives a method to compute the polarization
amplitudes h+/×(t) in terms of the physical quantities involved in the emission
process. In particular one can describe how the asymmetry in the components
of Iij generates gravitational waves. As a simplistic model, we can characterize a
homogeneous ellipsoid having semiaxes a,b,c in its corotating frame by its inertia
tensor:

Iij = M

5

b2 + c2 0 0
0 c2 + a2 0
0 0 a2 + b2

 ≡
I1 0 0

0 I2 0
0 0 I3

 , (1.13)

where Ii is the principal moment of inertia along the axis i. From this relation, it is
possible to derive the reduced quadrupole tensor in the inertial frame:

Qij(t) = I2 − I1
2

cos 2φ(t) sin 2φ(t) 0
sin 2φ(t) − cos 2φ(t) 0

0 0 0

+ const, (1.14)

where φ(t) is the rotation phase, and it is defined as

dφ(t)
dt

= 2πν(t), (1.15)

being ν(t) the time evolution of the star spinning frequency. In the simple case of
constant rotation velocity ν(t) = ν, we have φ(t) = 2πνt. It automatically follows
that, if the ellipsoid is axisymmetric (a = b), there is not GWs emission. On the
other hand, if we have a triaxial ellipsoid (a 6= b 6= c), we can characterize it through
the oblateness ε:

ε ≡ a− b
(a+ b)/2 . (1.16)

It is easy to demonstrate that:

I2 − I1
I3

= ε+O(ε3). (1.17)

Thus, neglecting O(ε3), we can write:

Qij(t) = εI3
2

cos 2φ(t) sin 2φ(t) 0
sin 2φ(t) − cos 2φ(t) 0

0 0 0

+ const. (1.18)

At this point, by using the mass quadrupole approximation (1.12) in the (TT) gauge,
we can obtain the signal expression in terms of the strain amplitude h0:

hTT
ij (t, r) = h0PijklAkl

(
t− r

c

)
, (1.19)

being

h0 = 4Gν2

rc4 I3ε = 16π2G

rc4P 2 I3ε, (1.20)
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where P = 2π/ν is the rotation period of the star, and

Akl (t) =

− cos 2φ(t) − sin 2φ(t) 0
− sin 2φ(t) cos 2φ(t) 0

0 0 0

 . (1.21)

The measured strain at the detector depends on the direction of the observer relative
to the star rotation axis through the term PijklAkl. This dependence can be made
explicit with the introduction of the parameter ι, which is exactly the angle between
the line of sight to the source and the star spinning axis, and it helps us to identify
the two components h+ and h×:

h+ = h0
1 + cos2 ι

2 cos 2φ(t), (1.22)

h× = h0 cos ι sin 2φ(t). (1.23)

It it possible to show that the relation h0 =
√
h2

+ + h2
× holds. Thus, we have found

that an interesting characteristic of triaxial spinning stars is that they emit GWs at
a frequency f equal to exactly twice the pulsar rotational frequency ν:

f = 2ν = 2
P
. (1.24)

Rapidly rotating neutron stars have periods of the order of a few milliseconds.
Typical values of the other parameters are T ≈ 1045 g cm2, ε ≈ 10−6, and the
distance from the Earth is of the order of a few kpc for galactic sources. Thus, it is
useful to express the strain amplitude as:

h0 = 4.2 · 10−24
[1 ms
P

]2 [1 kpc
r

] [
I

1045 g cm2

] [
ε

10−6

]
. (1.25)

It is important to notice that this expression gives a simple estimate of the amplitude,
based on an extremely simplified model. Usually, neutron stars are not homogeneous,
and their density radial profile ρ(r) is not known.
Many interesting searches for CWs due to ellipticity were recently performed (see, for
example, [22, 23, 22, 24]), but it was not possible to claim a detection yet. However,
signals due to ellipticity and r-mode emission both represent promising candidates
for future detections of CWs.

1.2.2 Spin-down Limit

Concerning the quantities appearing in the strain amplitude estimate (1.25), usually,
the spinning period P and the distance r of many galactic sources can be measured by
electromagnetic observations. In addition, the moment of inertia I can be estimated
once an Equation of State is chosen among those proposed by different models.
On the other hand, the oblateness ε is usually unknown. It is useful to exploit
astrophysical observations to set an upper limit on this parameter: many pulsars
are spun down (i.e. their spinning frequency ν decreases) over time due to braking
mechanisms such as electromagnetic or GW emission. Thus, it is possible to provide
an upper limit on ε by measuring the spin-down rate of these pulsars and assuming
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that energy is dissipated is lost only through the GWs channel. To this purpose, one
defines the gravitational wave luminosity LGW as the gravitational energy emitted
by a source per unit time:

LGW ≡
dEGW
dt

. (1.26)

The energy carried by gravitational waves can be obtained with the procedure
described in [10]. Using the quadrupole approximation (1.12), it is possible to
obtain:

LGW (t) = G

5c5

〈...
Qij

(
t− r

c

) ...
Qij

(
t− r

c

)〉
, (1.27)

where the Brill-Hartle average 〈·〉 indicates that this quantity is averaged over several
wavelengths. It is possible to show that, in the case of a triaxial spinning ellipsoid,
and in the adiabatic regime, Eq. (1.27) reduces to:

LGW = 32G
5c5 ε

2I2
3ω

6, (1.28)

where ω = 2πν is the angular velocity of the star. On the other hand, in the
Newtonian limit, the rotational energy of the pulsar and its derivative are:

Erot = 1
2I3ω

2, Ėrot = I3ωω̇. (1.29)

Thus, we can obtain the spin-down limit for the oblateness εsd by imposing that the
energy lost through GWs emission LGW is equal to the variation in the rotational
energy −Ėrot:

32G
5c5 I

2
3 (2πν)6ε2sd ≡ I3(2π)2ν|ν̇|. (1.30)

Consequently:

εsd ≡
(

5c5|ν̇|
512π4Gν5I3

) 1
2

. (1.31)

Finally, it is useful to substitute this expression in Eq. (1.20), in order to obtain the
spin-down limit on the strain amplitude:

hsd = 1
r

(5GI3|ν̇|
2c3ν

) 1
2

= 8.06·10−19
[1 kpc

r

] [
I

1045 g cm2

] 1
2
[

ν̇

Hz/s

] 1
2
[Hz
ν

] 1
2
. (1.32)

This estimate is helpful when performing CWs searches, as it gives insights on the
expected amplitude for an eventual signal. Thus, in principle, it can be compared to
the gravitational detectors sensitivity, in order to understand if a particular signal is
expected to be detectable or not.

1.3 Coupling between R-Modes and GWs
The aim of this Section is to provide an overview of the mechanism that couples
r-mode excitations and GWs emission. It is important to keep in mind that this
discussion helps us to qualitatively understand how these GWs are generated, but it
is carried out considering classical and simplified models for the pulsar. However, for
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derivations concerning PSR J0537-6910, relativistic corrections cannot be neglected,
as we will see in Section 1.4.
R-Modes are indeed an interesting source of gravitational waves, since relativistic
hydrodynamics predicts their instability due to the Chandrasekhar-Friedman-Schutz
criterion [25]. In fact, the amplitude time evolution is driven unstable due to the fact
that r-modes are prograde in the inertial frame and retrograde in the co-rotating
frame, as previously mentioned. Actually, this criterion is derived in a classical
framework: the generalization of this characteristic to the relativistic case is provided
in [17]. The instability is due to the possibility for the star to find lower energy and
angular momentum configurations, in which the mode amplitude can grow [9].
In the slow-rotation approximation, the frequency f for an inertial observer of the
continuous gravitational wave coupled to the r-mode excitation can be obtained, for
an inertial observer, from Eq.(1.3). Even if these modes are generically unstable for
each choice of ` and m , we are interested in investigating mainly the ` = m = 2
current quadrupole mode, which is most strongly coupled to gravitational waves
emission [7]. For the fundamental ` = m = 2 mode, one gets (directly from Eq.
(1.3)):

f = 4
3ν. (1.33)

Thus, even using simplified models, we can appreciate a fundamental difference
between this case and the case of ellipticity emission, where we had f = 2ν (see
Eq.(1.24)).
However, it is important to mention that this relation is not accurate when dealing
with PSR J0537-6910: since it is the fastest spinning (ν ≈ 62Hz) known young
pulsar, the approximations used to obtain this result are not valid. In fact, including
also relativistic corrections, it is possible to determine a range of possible frequencies
to explore, as I will discuss in Section 1.4. In particular, the value f = 4

3ν will result
to be even outside the selected range, due to the relativistic modifications.

1.3.1 Strain Amplitude

For a comparison with the case of ellipticity CWs, it is useful to derive expression for
the strain amplitude of r-modes GWs analogous to those in Sec. 1.2. As discussed
in [26], using the multipole moment formulas from [20], it is possible to obtain the
strain amplitude associated with r-modes dominant contribution (` = m = 2):

h0 = 1
r

√
8π
5 J̃MR3αω3, (1.34)

where r is the source distance, M and R are the pulsar mass and radius respectively,
ω is the spinning velocity, α is the adimensional amplitude from Eq. (1.1), and J̃ is
the dimensionless canonical angular momentum of the r-mode. This equation allows
us to convert h0 in terms of α for a fiducial value of the quantity J̃MR3.
With an analogous procedure to that used for ellipticity CWs, it is also possible to
obtain the spin-down limit for the strain amplitude [11]:

hsd = 1
r

√
10G
c3 I3

ν|ν̇|
f2 . (1.35)
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Thus, once an upper limit on the strain amplitude is obtained, it is possible to
convert it in terms of the r-mode amplitude α using Eq. (1.34). I will discuss the
behavior of the spin-down limit strain amplitude hsd more in detail in Sec. 4.7.

1.3.2 Polarization Exchange

An important characteristic of r-mode signals is the polarization exchange in the
components h+ and h×. In fact, CWs due to r-mode activity will have different
polarization than CWs from ellipticity. The polarizations exchange come from the
fact that the gravitational strain tensor of a signal generated by quadrupole-current
dominated emissions (such as r-modes) can be obtained from that of the usual
mass-quadrupole emissions (such as ellipticity signals) simply by exchanging the
relevant components in the following way [11]:

(h+, h×) −→ (h×,−h+) . (1.36)

As explained in detail in Section 2.4, this exchange does not affect the results
obtained using a pipeline built for searches for CWs due to ellipticity. In fact, this
peculiarity of quadrupole current emissions is not relevant when dealing with upper
limits estimation, and the same methodologies used for standard searches can be
extended without any problem. However, this exchange should be considered in
the case of a detection, since it affects the estimation of the signal parameters, as
discussed in Sec.2.3.3.

1.4 R-Mode Gravitational Emission Parameters
The aforementioned models describing gravitational signals generated by r-modes
are not adequate to perform a search for a signal from PSR J0537-6910. In fact, they
have been carried out in a classical framework, while it is fundamental to include
relativistic corrections when dealing with a neutron star having a significant spinning
velocity, as in this case.
The actual theoretical models describing r-mode GWs emission present significant
uncertainties (at least with respect to CWs due to ellipticity) when it comes to
define the parameters of the expected gravitational signal. All the considerations
reported in this section are obtained from [12], which provided useful guidelines on
the parameter space regions to explore for this search.
The ratio between the r-mode signal frequency f and the pulsar rotational frequency
ν will be labeled as A, while second order contributions are accounted for through
the parameter B. Thus, one obtains the following set of relations:

f = Aν −B
(
ν

νK

)2
ν +O

(
ν

νK

)4
, (1.37)

ḟ = Aν̇ − 3B
(
ν

νK

)2
ν̇ +O

(
ν

νK

)4
, (1.38)

f̈ = Aν̈ −
(

3 + 6
n

)
B

(
ν

νK

)2
ν̈ +O

(
ν

νK

)4
, (1.39)
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where νK is the Keplerian frequency of the pulsar, physically defined as the frequency
at which the pulsar is teared apart by the centrifugal force (the exact value depends
on the Equation of State), n ≡ νν̈/ν̇2 is the pulsar braking index and dots indicate
time derivatives. These relations enclose fully relativistic gravity corrections via the
A parameter. They are likely to be accurate as long as no other physical mechanism
plays a significant role in the r-mode oscillation, e.g., a resonance between the core
and crust oscillation frequencies (see [27]). The signs have been chosen in order to
have both A and B positive; in particular, the sign of the second term is due to
the effects of gravitational redshift and dragging of inertial frames on the Coriolis
force, as explained in [28]. Notice that Equations (1.38) and (1.39) are simply the
time-derivatives of Eq.(1.37).
As explained in [29], it is possible to show that the O

(
ν
νK

)4
remainder in the

previous relations is negligible except when the star is spinning almost at its Kepler
frequency νK . In the case of PSR J0537-6910, we can easily check that the value of ν
(obtained from from [13]) is one order of magnitude smaller than the value assumed
for νK, which will be discussed in the next section. It is thus safe to neglect these
corrections for the rest of the search.
It is interesting to notice that, inverting the aforementioned relations, an observation
of (ν, ν̇, ν̈) and an estimation of νK, A and B provide the ranges for (f, ḟ , f̈) to be
searched in principle. This will be the main subject of Sections 1.4.1 and 4.3.

1.4.1 Theoretical Constraints

The parameters A and B are both dimensionless numbers of order unity that depend
on the pulsar Equation of State, on its mass M and on its radius R, which are
all unknown. A detailed study is reported in Section 3.B of [12], while here I will
report only the most relevant conclusions, which are valid for different pulsars and
Equations of State:

• It is possible to estimate a significantly plausible range for the parameter A
using the general relativistic slow rotation approximation for different equations
of state. In particular, from the considerations in [30], one gets 1.39 ≤ A ≤ 1.57,
depending almost entirely on the ratio M/R.

• The range of B is affected by bigger uncertainties, but its contribution is
relevant only at second order. From the considerations reported in [12], it is
safe to consider 0 ≤ B ≤ 0.195.

• The fastest observed spinning frequency for a neutron star is about 716Hz,
registered for PSR J1748-2446ad [31]. Since νK is expected to scale as M

1
2 ,

to obtain more elastic limits (high Bmax), one can assume that PSR J1748-
2446ad is on the high end of the mass range and that the studied pulsar is
on the low end. Usually, neutron stars having the same Equation of State
have masses ranging over almost a factor of 2 [32]. Thus, it is safe to assume
νK ' 716Hz/

√
2 ' 506Hz [12].

It is important to notice that an eventual GW detection might provide insights on
the pulsar structure: once f and ḟ are known, A and B are automatically known.
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These in turn can provide information on M and R and on the Equation of State
[30, 29]. In this search, it was not possible to claim a detection, but the upper limits
on the gravitational strain (reported in Section 4.6) also imposed some interesting
astrophysical constraints, as discussed in Section 4.7.

1.5 PSR J0537-6910 NICER Timing Model
One of the peculiarities of PSR J0537-6910 is the relatively frequent occurrence of
glitches i.e. sudden changes in the pulsar rotational frequency. An example of the
rotational frequency ν time evolution when a glitch occurs is reported in Figure 1.3.
Previous narrow-band searches for r-modes emission, such as [4], did not have the

26 May '19

Glitch Start

12 June

Glitch End

Time (Days)

 (
H

z
)

61.912366625

61.91236663

61.912366635

61.91236664

61.912366645

61.914462405

61.91446241

61.914462415

61.91446242

61.914462425

Figure 1.3. Time evolution of PSR J0537-6910 frequency around the first glitch occurred
during the LIGO-Virgo O3 run. It is possible to see that the frequency decreases almost
linearly (the effect of ν̈ is negligible) in the inter-glitch periods (blue segments). In this
regions, the phase evolution of the signal can be accurately modeled. Then, when the
glitch occurs,there is a sudden change of frequency and spin-down (dashed red segment).
In this period, there are complex mechanisms involving the pulsar fluid that do not
allow for the phase evolution of the signal to be modeled.

possibility to account for the presence of glitches, since their occurrence was not
timed. However, since the the gravitational signal frequency linearly depends on
ν, it is evident that accounting for glitches brings important modifications to the
expected signal model. For this reason, a search not accounting for the presence of
glitches cannot be considered valid: it does not consider the changes in ν, which in
turn yield modifications on the GW signal frequency. Thus, it becomes clear that
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the timing model provided using the NICER telescope plays a key role in this search.
The provided timing model identified three glitches during the LIGO-Virgo O3 run,
which define four inter-glitch periods, as reported in Figure 1.4. For the actual
search, the second period, which is the longest, will be split into two pieces, as better
explained in Section 4.4.

LIGO-VIRGO O3

1 Apr. 
2019

27 Mar.
2020

1st Glitch
3 June 2019

Epoch 1 Epoch 2 Epoch 3 Epoch 4

3rd Glitch
20 Jan. 2019

2nd Glitch
20 Nov. 2019

Figure 1.4. Occurence of glitches for PSR J0537-6910 during the LIGO-Virgo O3 run.
Three glitches were detected during the searched time span.

1.5.1 Rotational Parameters

Combining different measurements, the NICER telescope team was able to perform a
fit aiming at estimating the pulsar rotational parameters [13] . In particular, in Table
1.1, the rotational parameters of the pulsar are reported for the four inter-glitch
periods overlapping the LIGO-Virgo O3 run. It was also possible to estimate the

Table 1.1. Rotational parameters of PSR J0537-6910 for the four time domain periods
analyzed by the NICER telescope overlapping the LIGO-Virgo O3 run.

MJD Start MJD End MJD Epoch ν (Hz) ν̇ (10−10 Hz/s)
1 58571.3 58629.3 58600 61.9145 −1.9974
2 58645.5 58804.5 58723 61.9124 −1.9973
3 58810.0 58862.9 58836 61.9104 −1.9974
4 58872.5 58964.4 58918 61.9090 −1.9977

parameters of the glitches, reported in Table 1.2. Notice that glitches last for many
days (or at least their uncertainty covers a several-days time span): this aspect
implies that some segments of data will have to be excluded from the analysis. It

Table 1.2. Parameters of the three glitches experienced by PSR J0537-6910 during the
LIGO-Virgo O3 run measured by the NICER telecope.

glitch Epoch (MJD) ∆ν (µHz) ∆ν̇ (10−13 Hz/s)
1 58637± 8 26.99± 0.01 −0.86± 0.04
2 58807± 3 7.57± 0.03 −2.2± 0.3
3 58868± 5 24.04± 0.08 −2.4± 0.5

is thought [33, 34] that glitches are activated due to the unpinning of superfluid
vortices in the star’s crust and possibly its core. Thus, it is not possible to model
the phase evolution of the signal, in order to perform a coherent search when the
glitch is happening. In fact, the strategy to carry out this search is to perform a



1.5 PSR J0537-6910 NICER Timing Model 17

coherent search on inter-glitch periods, and then incoherently combine the results,
as explained in 3.2.

1.5.2 The Importance of the Braking Index
The braking index is an important adimensional number that characterizes the spin-
down behavior of a pulsar. It is defined in terms of the pulsar rotational frequency
ν and its time derivatives as:

n = νν̈

ν̇2 . (1.40)

The definition is directly linked to the typical power law followed by the spin-down
rate ν̇ ∝ −νn. The absolute value of the measured spin-down rate of PSR J0537-6910
increases over time. Performing a fit of all the measurements of ν̇ obtained joining
data from the NICER and from the RXTE telescopes, it was possible to estimate
the value of ν̈ to be ν̈ = (−8.00± 0.08) · 10−22 Hz/s2. This measure directly provides
a long-term braking index of n = −1.25± 0.01 [13].
However, it is interesting to notice a peculiar characteristic of the behavior of the
braking index: we can identify the inter-glitch braking index nig, which provides a
measure of this quantity only on inter-glitch periods, thus neglecting the contributions
brought by the presence of glitches. It can be observed that the long-term spin-down
evolution of PSR J0537-6910 is strongly different from the behavior over short
inter-glitch intervals. Between individual glitches, in fact, the inter-glitch braking
index nig seems to asymptotically reach values of nig ≈ 7 or possibly lower [13].
This observation confirms some previous results reported in [3, 35] . To explain this
difference, it is thought that glitches could contribute to lowering the value of the
braking index, as lower values of n are usually found for glitching pulsars [36, 37].

Emission Models

The main reason why it is important to study the behavior of the braking index of
a pulsar is the fact that it provides insights on the mechanism that dissipate its
rotational energy. In particular, it is interesting to consider the following cases:

• n = 3 is the canonical value for a pulsar whose rotational energy loss rate is
purely due to electromagnetic dipole radiation [38] .

• n = 5 is obtained for GWs emission due to ellipticity. This would be the case
of an emission as the one described in Sec. 1.2.

• n = 7 characterizes a spin-evolution dominated by r-mode activity [39]. This
is the main reason why PSR J0537-6910 is an interesting candidate for this
kind of GWs emission.

There are also other models that can produce a braking index below 3, such as a
changing moment of inertia due to superfluidity [40] or time evolution of magnetic
field orientation or strength [41, 42, 43, 44]. These models might be helpful to
explain the behavior of the long-term braking index, but, since we are interested in
GWs emission, we will focus on the value n ≈ 7 for the short-term braking index.
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From the previous considerations, it becomes evident that measuring an asymptotic
value of nig ≈ 7 suggests that constant amplitude r-modes could be activated in this
pulsar, and the dissipated energy is emitted through this particular channel. Thus,
the goal of this search is to identify possible signals due to this kind of emission.
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Chapter 2

The Narrow-Band 5-Vectors
Pipeline

The main topic of this chapter will be the description of the narrow-band 5-vectors
pipeline. This algorithm has been developed over many years in the framework
of the Rome Virgo CW group and it is particularly suitable to perform searches
for CWs from well-localized pulsars with small uncertainties on their rotational
parameters (of the order of 1Hz for the frequency and 10−10Hz/s for the spin-down).
Unfortunately, the narrow-band 5-vectors pipeline cannot be applied to the case
of PSR J0537-6910, given the fact that it is a fully coherent pipeline (it cannot
account for glitches) and that the ranges of f and ḟ needed for an r-mode search
are above the pipeline capabilities (see Sec. 1.4). For this reason, I have extended
the narrow-band pipeline to the case of glitching pulsars.
I will begin this Chapter by describing the main types of CW searches in Section 2.1.
Moving on, in Section 2.2, I will provide some useful descriptions of the coupling
between CWs and GWs detectors. In particular, I will introduce the narrow-band
formalism, which is at the basis of this kind of searches.
Then, in Section 2.3 I will outline the main steps composing the narrow-band pipeline,
used to perform coherent searches for r-mode signals only in the inter-glitch periods.
The incoherent combination of the periods will be presented in Chapter 3.
Finally, in Sections 2.4 and 2.5, I will discuss the modifications needed to this
pipeline in order to apply it to r-modes searches. Most of the material concerning
the standard narrow-band 5-vectors pipeline is taken from [45, 46, 47, 48].

2.1 Methods for Searching CWs

Algorithms used to perform CW searches aim at detecting the presence of a continuous
signal embedded in noise. Usually, these algorithms carry out searches by comparing
the data with a set of templates. which model the signal one expects to find in data.
However, the key point is that one might know the waveform of the searched signal,
but usually there is an uncertainty on the parameters shaping the waveform. The
most relevant contributions are given by the rotational frequency ν of the pulsar,
by its time derivatives ν̇, ν̈ etc. , and by the target position in the sky, labeled
by the two parameters α (right ascension) and δ (declination). The most common
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procedure, is to discretize the parameter space introducing a grid in the parameters
such that the signal-to-noise ratio loss due to the discretization is lower than a given
threshold. As one expects, the wider is the parameter space that a search wants to
explore, the larger will be the computation cost of the analysis. CWs searches are
divided in three categories according to the degree of knowledge of the source:

1. Targeted and narrow-band searches: In this case, the parameters of
the source are well measured and it is possible to perform a study based on
matched filtering techniques in order to maximize the signal-to-noise ratio.
The sensitivity hmin (i.e. the minimum detectable GW strain) of this type of
searches scales with the observation time Tobs and detector noise spectrum Sf
as:

hmin ≈ Θ
√

Sf
Tobs

,

where the numeric coefficient Θ ≈ 10 for at a confidence level of 90% and to a
false alarm probability of 1% (its exact value depends on the specific matched
filter implementation). Therefore, it is important to have long data-taking
time spans.

2. Directed searches: In this case, the position of the source is measured,
but the rotational parameters are highly uncertain or unknown. This kind
of searches is usually carried out by dividing the data in many different
coherent data chunks, typically of the length Tcoh ≈ days, studying each
chunk separately using matched filtering techniques, and then incoherently
recombining the result of the different chunks. For these searches, the sensitivity
is:

hmin ≈
2
3

√
Sf (TcohTobs)−

1
4 ,

where Tobs is the detector observing time and Sf is the detector noise spectrum.

3. All-sky searches: This kind of searches does not assume a particular target
and usually explores a large portion of the source parameter space. Usually
semi-coherent procedures are used in order to identify the most significant
candidates and study them with accurate follow-up procedures. In other words,
data is divided into chunks, that are studied independently, in order to lately
combine the results. The sensitivity for these kind of searches scales with the
coherence time Tcoh of each chunk, the number of data chunks N , and detector
noise spectrum Sf as:

hmin ≈
Λ
N

1
4

√
Sf
Tcoh

,

where Λ is a factor of order O(20) for O(109) selected candidates.

The computational resources needed for these searches usually scale with the magni-
tude of the studied time spans and of the parameter space.
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R-Modes Searches

The goal of this kind of searches is to study the data in order to detect eventual
signals, embedded in the interferometers noise, generated by r-mode activity. This
thesis focus on the r-mode search using data produced by the LIGO-Virgo O3 run and
the target is PSR J0537-6910. Targeted searches for continuous gravitational waves
(CWs) are usually performed using coherent matched filtering techniques, which are
particularly sensitive, but require the knowledge of the exact signal embedded in
data. Unfortunately, in the case for r-modes CWs, it is not possible to model the
signal when glitches occur, due to the complex mechanisms stepping in in this phase.
Thus, it is not possible to define the phase relation of the signal along the whole
time span. For this reason, the idea is to split the search into two pieces:

1. Coherent Procedure: It is possible to perform independent coherent searches
for CWs in different inter-glitch periods. This search has been carried out
using the tried-and-tested Narrow-Band 5-Vectors pipeline, already applied to
multiple searches for CWs due to ellipticity.

2. Incoherent Procedure: Results obtained on different periods have been
incoherently combined. The underlying idea used to perform the combination
is that the change in the rotational frequency ν of the pulsar will result in a
change in the gravitational frequency f in different inter-glitch periods. This
procedure is the main topic of Chap. 3

2.2 CWs in the Detector Reference Frame

In order to describe the methods used for the detection of gravitational signals, it is
useful to describe how CWs are projected on gravitational interferometers (IFOs)
using the following formalism. In particular, the detector responds to an incoming
CW with the same principle of Michelson’s interferometer, i.e., the wave induces a
relative length change of the two IFO arms, which results in a measurable difference
in the optical path of light traveling along the two arms. The detector response can
be expressed as:

h(t) = 1
2
(
n̂1h̃(t)n̂1 − n̂2h̃(t)n̂2

)
, (2.1)

where n̂1 and n̂2 are the unit vectors parallel to the two IFO arms and h̃(t) is a
3-dimensional matrix describing the spatial components of the gravitational signal
in the detector reference frame. h̃(t) can be obtained by the spatial components
of the gravitational strain in the TT gauge hTT

ij (defined by Eq.(1.4), i, j = 1, 2, 3)
applying a time-dependent rotation matrix R(t):

h̃(t) = R(t)hTT
ij (t)RT (t). (2.2)

The rotation matrix R(t) is given by the composition of three consecutive rotations.
I will not give the explicit form of the three rotation matrices, but it is interesting
to understand the steps from a physical point of view:
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1. Rotation from the wave frame to the celestial sphere frame. This rotation
depends on the GW polarization angle ψ (angle between the major semiaxis
of the polarization ellipse and the celestial parallel of the source measured
counter-clockwise) and on the source astronomical coordinates, i.e. the source
declination (DEC.) δ and right ascension (R.A.) α.

2. Rotation from the celestial sphere frame to the Earth cardinal coordinates
frame. The matrix describing this rotation will be time-dependent (due to the
Earth motion) and it will be a function of the Earth sidereal frequency Fsid,
on the detector latitude, and on a deterministic phase.

3. Rotation from the Earth cardinal coordinates frame to the detector reference
frame. This rotation will depend on the interferometers location, on its
orientation (a parameter γ labels the angle between the bisector of the arms
and the East direction measured counter-clockwise), on the angle ζ between
the two arms., and on the polarization angle ψ.

Combining these rotations, one can express, in a compact form, the detector response
(i.e. the gravitational strain in the detector reference frame) as [45] :

h(t) = h+(t)F+(t, ψ;α, δ) + h×(t)F×(t, ψ;α, δ). (2.3)

The functions F+/×(t, ψ;α, δ) encode the detector response to each polarization,
while the polarization amplitudes h+/×(t) are the same encountered in Section 1.2,
thus, they can be theoretically computed from the emission mechanism. Notice
that these quantities are usually expressed in terms of the strain amplitude h0 usign
Eq.(1.22) and (1.23). The explicit expression of the functions F+/×(t, ψ;α, δ) is:

F+(t, ψ;α, δ) = sin ζ [a(t;α, δ) cos 2ψ + b(t;α, δ) sin 2ψ] , (2.4)

F×(t, ψ;α, δ) = sin ζ [b(t;α, δ) cos 2ψ − a(t;α, δ) sin 2ψ] . (2.5)

By computing the coefficients a(t;α, δ) and b(t;α, δ) explicitly (see, for example, [6]),
the interest of these expressions becomes evident. In fact, the contribution enclosed
in these two functions is called sidereal modulation, since it depends only on harmonic
contributions of five multiples of the Earth sidereal frequency: fi = kiFsid, with
ki ∈ [−2,−1, 0, 1, 2]. For this reason, we expect h(t) to be a function of 5 frequency
components: [f − 2Fsid, f − Fsid, f, f + Fsid, f + 2Fsid], where f is the frequency of
the gravitational signal. Thus, the power of the signal, which is generated by the
pulsar as monochromatic, is split into 5 different components. This is the underlying
idea which lead to the development of the 5-vectors method for the detection of
CWs.
The contributions from h+/×(t) are called fast harmonics, since their phase evolution
is faster than the one imprinted by Earth rotation and revolution. They depend on
the GW polarization that arrive at the detector location without performing the
projection on the IFO arms. The harmonic contribution of these terms depends
entirely on f .
Moreover, there are relevant modulations due to some time-delay that occur during
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the signal propagation in space that are not considered for in this derivation. The
most important ones are the Rømer, the Einstein and the Shapiro delays. I will not
discuss these modulations, but they are corrected when the analysis is performed, as
explained in Section 2.3.

2.2.1 The Narrow-Band Formalism

To discuss narrow-band searches, the formalism firstly introduced in [46] is generally
used. This formalism is completely equivalent to that of the previous section.
However, while the latter one is helpful to understand how the physics is encoded in
the detector response, the narrow-band formalism is handier to implement the actual
search. The gravitational strain in the detector reference frame can be expressed as
[49]:

h(t) = Re
[
H0
(
H+A

+(t) +H×A
×(t)

)
eiΦ(t)

]
. (2.6)

Φ(t) is the phase of the gravitational signal, and it is defined as:

Φ(t) = Φ0 + 2π
∫ t

t0
f(t′) dt′, (2.7)

where f(t) is the frequency of the signal as it is measured by the detector, and
Φ0 is the signal phase at the reference time t0. We would expect the signal to be
monochromatic, but the pulsar rotational frequency changes over time due to energy
dissipation. The interest of this formula lies in the fact that all The functions A+/×(t)
encode the detector sidereal response, and they are defined as A+(t) = F+(t, ψ = 0)
and A×(t) = F×(t, ψ = 0). H+/× are complex polarization amplitudes, defined as:

H+ = cos 2ψ − ıη sin 2ψ√
1 + η2 H× = sin 2ψ + ıη cos 2ψ√

1 + η2 (2.8)

In these expressions, η is the ratio of the polarization ellipse semi-minor to semi-
major axis, while ψ is the same polarization angle defined in 2.2. These amplitudes
satisfy the normalization condition: |H+|2 + |H×|2 = 1. The equivalence between
the two formulations (2.3) and (2.6) is easy to prove once the following relations are
provided:

η = − 2 cos ι
1 + cos2 ι

, (2.9)

H0 = h0
2
√

1 + 6 cos2 ι+ cos4 ι, (2.10)

ι being the angle between the line of sight and the star rotation axis, as in 1.2.
This formalism is particularly useful to understand narrow-band searches since the
5-vectors methods is based on the estimation of the complex amplitudes H+/× from
data, as I will show in Section 2.3.
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2.3 The Narrow-Band 5-Vectors Pipeline

In this section, I will describe the workflow of the narrow-band 5-vectors algorithm,
which is particularly suitable to study observed pulsars for which the position is
well known, but the rotational parameters are not measured accurately enough to
perform a matched filtering search based on a single point in the parameter space.
In the case of PSR J0537-6910, the spinning frequency and its first time derivative
are actually well measured by the NICER telescope, but the possibility to search
wide ranges of frequencies an spin-downs is needed, since the r-mode emission model
gives a wide range of possible frequencies and spin-downs, as seen in 1.4. Thus,
this pipeline offers a powerful method to perform an r-mode search, even if some
extensions will be needed, as I will discuss in 2.5.
The procedure for narrow-band searches has been firstly implemented in 2014 [47]
and later extended [48]. Here, only a brief description of the most important steps
is reported. A flow chart of the whole pipeline is reported in Figure 2.1. The
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Spin-down 
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Detection Statistic Multi-IFOs 
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Spin-down Loop

Single Interferometer
Single Inter-glitch Period

Figure 2.1. Flowchart of the narrow-band 5-vectors pipeline.

calibrated data from the IFOs undergo a time-domain cleaning procedure in order to
remove noise artifacts described in [50, 51] using algorithms involving Fast Fourier
Transforms (FFT). The application of these procedures generates the Short FFT
Database (SFDB), which is a collection of FFTs of several interlaced data chunks
directly built from calibrated IFOs data [52]. Then, a frequency range containing the
region one is interested in is extracted from the SFDB. At this point, the Doppler
corrections due to Earth motion (see Section 2.2) are applied using the stroboscopic
resampling technique, that I will describe in Section 2.3.1.
Moving on, one has to consider that the signal frequency decreases over time due
because of the energy dissipation (due to EM and/or GW radiation) from the pulsar.
This is the core part of the algorithm, and it consists in the application of the spin-
down correction in a loop (one correction for each value of spin-down in a selected
range) using the heterodyne technique, that I will treat in Section 2.3.2. For each
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correction, the data FFT is computed, in order to compute the complex estimators
Ĥ+/×, as described in Section 2.3.3. This is the final result of a single-IFO coherent
search. In fact, the corresponding estimators from different IFOs are combined as
shown in Section 2.3.4, in order to produce the joint estimator. Finally, the detection
statistic S is computed, as discussed in Section 2.3.5.
The obtained detection statistic will then be properly summed over the different
inter-glitch periods. This will be the main topic discussed in Chapter 3 and it is
the main extension needed in order to extend this pipeline to the study of r-mode
signals.

2.3.1 Barycentric Corrections (Stroboscopic Resampling)

As discussed in Section 2.2, data has to be "translated" from the detector reference
frame to the Solar System Barycenter (SSB) frame, which is (to a very good
approximation) an inertial frame. Thus, the description of the wave in its frame,
which is inertial (see Sec. 2.2) will be analogous to that in the SSB. This process
is vastly simplified by the fact that the source position is well known for this kind
of sources. The main contribution one has to consider is the Earth motion, which
produces a Doppler shift (Rømer delay), but also Einstein and Shapiro delays have
to be considered.

Rømer Delay: This contribution encloses the Doppler effect associated with the
Earth rotation and revolution around the Sun. The frequency at the detector f(t)
can be expressed (in a non-relativistic framework) as a function of the emitted
frequency f0(t):

f(t) = f0(t)
(

1 +
~v(t) · n̂
c

)
, (2.11)

where ~v(t) is the detector velocity with respect to the SSB n̂ is a versor identifying
the source position, and c is the speed of light. ~v is made of two contributions: the
Earth revolution and rotation velocities. The inconvenient property of this correction
is that it depends on the frequency itself. Thus, it affects every searched template
in a different way. For this reason, for a monochromatic signal (f0(t) = f0), it is
interesting to encode this correction in time domain, performing a resampling in the
following way. Let us write the received signal phase Φ(t) as:

Φ(t) = 2π
∫ t

t0
f0

(
1 +

~v(t′) · n̂
c

)
dt′ = Φ0 + 2πf0

(
1 +

~r(t) · n̂
c

)
, (2.12)

where ~r(t) identifies the detector position with respect to the SSB, and Φ0 is the
initial phase of the signal. From Eq.(2.12), it is possible to see that now the signal
phase has the same form of that of a monochromatic signal in terms of a new time
variable τ :
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Φ(τ) = Φ0 + 2πf0τ, (2.13)

τ = t+
(

1 +
~r(t) · n̂
c

)
≡ t+ ∆R(t). (2.14)

The key advantage offered by this resampling is that now the correction does not
depend on the frequency, thus, it is the same for all the templates of the search. The
magnitude of this effect is O(103s) per year.

Einstein Delay: This term has a relativistic nature: it accounts for the signal
time delay due to Earth motion and the gravitational redshift at the Earth geocenter
due to all the solar system bodies (except the Earth itself). It can be expressed as:

∆E(t) ' 1
c2

∫ t

t0

(
U⊕ +

v2
⊕
2

)
dt′, (2.15)

where U⊕ is the gravitational potential at the geocenter due to all solar system
bodies (except the Earth itself) and v⊕ is the velocity of the geocenter with respect
to the SSB. This contribution cannot be computed analytically, thus only the first
terms of the approximated expansion in [53] are effectively used.

Shapiro Delay: This terms accounts for the relativistic deflection of the signal
traveling near massive bodies. For these purposes, the dominant contribution is
given by the Sun. It can be expressed as:

∆S(t) = −2GM�
c3 log(1 + cos θ(t)), (2.16)

where M� is the mass of the Sun and θ(t) is the angle between the Sun-source
direction and the Sun-detector direction. This effect is usually negligible for CWs
sources, unless the source line of sight passes very close to the Sun.

From these considerations, it is clear that it is possible to account for these ef-
fects by performing a non-uniform resampling of the time variable. Therefore, a new
time variable is introduced:

t′ = t+ ∆R(t) + ∆E(t)−∆S(t), (2.17)

where ∆R, ∆E , and ∆S are the three delays defined above. The new time variable
t′ represents time in the Solar System Baricentre. An important aspect of this
resampling is that it does not depend on the frequency, thus, it can be applied
once and it holds for the whole search. At this point, data can be down-sampled
to a sampling frequency not smaller than twice the width of the extracted band.
Typically, a sampling frequency of 1Hz is used. The resulting time series is no
longer affected by the barycentric modulation. This technique is called stroboscopic
resampling and it is particularly suitable for this kind of searches since it does not
depend on the signal frequency. Thus, it can be applied just once and holds for the
whole search.
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2.3.2 Spin-Down Corrections (Heterodyne)
As previously mentioned, one expects that the gravitational signal frequency f(t)
decreases over time, consistently with the decrease of the pulsar rotational frequency.
This decline is due to the energy dissipation of the pulsar, which loses its rotational
energy due to EM and/or GW emission. However, the diminishing of f(t) is typically
very slow: this justifies a Taylor expansion of the frequency around a fixed reference
time t0, which greatly simplifies the application of these corrections:

f(t) = f(t0) +
∑
k≥1

1
k!

dkf

dtk

∣∣∣∣∣
t=t0

(t− t0)k . (2.18)

Usually, just the contributions for k = 1, 2 are relevant (this is true for the case of
PSR J0537-6910), and these are also the ones reported in the pulsars ephemerides.
Generally, uncertainties on the parameters are not relevant for CWs searches. At this
point, one can integrate this expansion, in order to get the approximated spin-down
phase evolution of the signal Φsd(t):

Φsd(t) = 2π
∫ t

t0

∑
k≥1

1
k!

dkf

dt′k

∣∣∣∣∣
t′=t0

(
t′ − t0

)k
dt′ = 2π

∑
k≥1

1
(k + 1)!

dkf

dt′k

∣∣∣∣∣
t′=t0

(
t′ − t0

)k+1
.

(2.19)
Now, it is possible to compensate the decreasing of the signal frequency simply by
multiplying data by the spin-down phase factor e−iΦsd(t). In this way, there is an
order-by-order cancellation of the terms. This result becomes evident substituting
the expansion (2.18) in the phase definition given in Eq.(2.7). In fact, it is possible
to write:

Φ(t) = Φ0 + 2πf(t0) (t− t0) + Φsd(t). (2.20)

Therefore, using the expression from Eq.(2.6), one can directly obtain the corrected
strain:

h′(t) = h(t)e−iΦsd(t) = H0
(
H+A

+(t) +H×A
×(t)

)
e2πift+iφ0 . (2.21)

In this expression the frequency f is intended to be referred at the reference time t0
(which should be always provided) and there is a redefinition of the overall phase
φ0 = Φ0 +2πft0. This particular technique that allows the frequency-changing signal
to become monochromatic is called heterodyne.The interesting point of Eq.(2.21) is
that now it can be seen as a fast monochromatic periodic term depending only on
the frequency f modulated by a linear combination of harmonic terms of frequencies
±Fsid and ±2Fsid. Thus, coherently with 2.2, the signal can be completely described
in terms of the 5 Fourier components of frequencies [f, f ± Fsid, f ± 2Fsid].

Case of PSR J0537-6910. In the case of this particular search, it was possible
to assume that the second derivative of the frequency is known (see Section 4.4)
and that the higher order derivatives are null. Thus, one gets the following simple
expressions:
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f(t) = f(t0) + ḟ(t0)(t− t0) + 1
2 f̈(t0)(t− t0)2, (2.22)

Φsd(t) = 2π
[1

2 ḟ(t0) (t− t0)2 + 1
6 f̈(t0) (t− t0)3

]
, (2.23)

where the dot labels time derivatives. Thus, by substituting Eq.(2.22) inside Eq.(2.7)
it is easy to show that Eq.(2.20) holds. It is also clear that the last step (Eq.(2.21))
works properly. This case is interesting because it helps us to understand how the
spin-down corrections affect the computational load of the analysis. In this search,
inter-glitch periods were selected in order that the second derivative of the frequency
f̈(t0) can be considered fixed (see 4.4 for more details). Thus, the correction phase
Φsd(t) only depends on one parameter: ḟ(t0). Thus, one initially selects an array
of values of ḟ(t0), and the computational resources needed will scale linearly with
the number of elements in this array. In fact, the spin-down cycle will iterate
independently over each one of these values. On the other hand, if one should also
select an array of values for f̈(t0), the needed resources would scale with the product
of the numbers of elements of the two arrays. This aspect will lead to the choice
(discussed in Section 4.4) of splitting an inter-glitch period into two pieces, in order
for the assumption to keep f̈(t0) fixed.
Once the spin-down correction has been applied, the matched filtering procedure is
used with templates spanning selected range of frequencies. From this procedure,
it becomes evident why usually one refers to "grids" in the parameter space when
performing this kind of searches: we have exactly built a bank of templates that can
be labeled using a grid in the parameter space (f , ḟ).

2.3.3 Complex Estimators Ĥ+/× Evaluation

After the application of stroboscopic resampling and heterodyne, the signal embedded
in data is monochromatic (apart from the sidereal modulation described in Sec.
2.3.1), and it has the form in Eq.(2.21), but the signal frequency is not known yet.
For this reason, one has to compute the complex estimators Ĥ+/×. These will be
combined to get the detection statistic S, which stores the information about the
similarity between data and the template having the selected parameters.
To this purpose, the first important step is to compute a bank of data 5-vectors
~X(f) (the arrow will label 5-vectors), one for each spin-down correction. These are
vectors composed by the five expected frequency components of the signal from 2.2,
and they are built by computing the Discrete Fourier Transform (DFT) over the
studied frequency region using the FFT algorithm. More details on this procedure
can be found in [45, 48].
At this point, matched filtering is applied in the frequency domain. The matched
filtering is computed using the 5-vectors technique. Let us assume to have data x(t)
made of a monochromatic signal h(t) of the form (2.21) embedded in noise n(t):
x(t) = h(t) + n(t). Given a generic time series g(t), the corresponding 5-vectors is
defined as:

~G(f) =
∫
T
g(t)e−2πi(f−kFsid)t dt, (2.24)
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where T is the total observation time and k = [0,±1,±2]. To compute the matched
filtering, it is necessary to build the 5-vectors for data x(t) and for the sidereal
responses A+/×(t). For data, one gets:

~X(f) = H0eiφ0
(
H+ ~A

+(f) +H× ~A
×(f)

)
+ ~N(f). (2.25)

Now, the matched filters are built by the complex scalar product between data and
the normalized sidereal response 5-vectors:

Ĥ+/×(f) = ~X(f) ·
~A+/×(f)
| ~A+/×|2

. (2.26)

Thus, using this procedure, a couple of estimators will be computed for each frequency
in the selected range. Considering that this set of operations is performed for each
possible spin-down correction, it is evident that we will get a couple of estimators
for each combination of parameters (f , ḟ , f̈ , . . . ). These estimators will be used to
build the detection statistic S, as described in Section 2.3.5, in order to asses how
much a signal with a given combination of parameters is compatible with data.

Parameter Space

When beginning a narrow-band search, one selects a range of frequencies ∆f and its
time derivatives ∆ḟ , ∆f̈ , . . . to explore. The search is then performed by discretizing
these ranges according to a fixed step and study each point in the parameter space
given by this discretization. The width of the frequency bin is δf = 1

T , where T is
the observation time of the search. The bin width for the i-th time derivative of the
frequency δf (i) can be computed by imposing that an uncorrected amount of one
bin produces a frequency variation over the total observation time T at most equal
to half a frequency bin:

δf (i) · T i

i! = δf

2 . (2.27)

Thus, for the first two orders, one gets:

δḟ = 1
2T 2 , δf̈ = 1

T 3 . (2.28)

In this way, it is possible to obtain the number of studied points for each of these
quantities:

nf = [∆f · T ] , nḟ =
[
∆ḟ · 2T 2

]
, nf̈ =

[
∆f̈ · T 3

]
, (2.29)

where [·] indicates the nearest integer. The total number of points in the parameter
space will be given by the product of all these terms. In the case of the r-mode
search from PSR J0537-6910, inter-glitch periods have been chosen in order to have
nf̈ = 1, as discussed in 4.4.
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Parameters Estimation

By substituting Eq.(2.25) in Eq.(2.26), it can be seen that the quantities Ĥ+/× are
estimators respectively of the complex amplitudes H0eiφ0H+ and H0eiφ0H×. For
this reason if a detection is claimed, it is possible to provide estimators of the signal
parameters using the following straightforward procedure. The signal amplitude will
be obtained as:

Ĥ0 =
√
|Ĥ+|2 + |Ĥ×|2. (2.30)

On the other hand, it is possible to compute the quantities A, B, and C as:

Ĥ+ · Ĥ× = A+ iB, |Ĥ+|2 − |Ĥ×|2 = C, (2.31)

where the dot labels the complex scalar product. Then, it is possible to estimate the
parameter η as:

η̂ = −1 +
√

1− 4B2

2B . (2.32)

Analogously, the polarization angle ψ estimation is given by:

cos(4ψ̂) = C√
4A2 +B2

, sin(4ψ̂) = 2A√
4A2 +B2

. (2.33)

2.3.4 Multi-IFOs Combination

The possibility to have data from a global network of detectors proves to be par-
ticularly helpful from different perspectives. For example, it might be useful in
eventually triangulating the sky position of a GWs source, but it is also particularly
interesting because it provides a better sensitivity. In fact, we do not expect noise
artifacts to be correlated in different IFOs, while we expect in principle to measure
a GWs signal on all of them.
Thus, the narrow-band 5-vectors algorithm provides a method to coherently combine
data from different detectors. This operation is specifically relevant for CWs searches,
since eventual signals are particularly weak, but they are expected to be present
in data for a long time span. The combination is coherent since it is performed
right after matched filtering and it is performed consistently with the expected
phase evolution of the signal. For this reason, it is important to consider the fact
that data-taking periods usually do not begin exactly at the same time. Thus, it is
important to use some precautions when performing the combination, for example,
it is important to fix a common reference time. A more detailed discussion of these
issues is provided in [45].
For the purposes of this thesis, it is useful to focus on the theoretical procedure used
to combine data. As we have seen in Section 2.3.3, after performing the spin-down
loop, the outcome will be a set of estimators Ĥ i

+/× for each detector (i is an index
running over IFOs). It is possible to define the joint estimators ĤJ

+/× as the weighted
average of the single estimators, where the weights are the square modulus of the
sidereal responses:
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ĤJ
+/× =

∑
i Ĥ

i
+/×| ~A

+/×
i |2

| ~A+/×
J |2

, (2.34)

where the joint modulus of the sidereal response ~A
+/×
J is defined as the sum of the

single responses:

| ~A+/×
J |2 =

∑
i

| ~A+/×
i |2. (2.35)

It is important to notice that the estimators are combined exactly with the same
parameters (f , ḟ etc.), i.e. , the grid built in the parameter space must be exactly
the same in different IFOs, otherwise there might be a loss in the Signal to Noise
Ratio (SNR). From the joint estimators and responses, it is possible to build the
detection statistic.
In principle, another possible way to combine data is to build the single detection
statistics of the interferometers and then to perform coincidences, i.e., to check if
a possible candidate is measured in all the interferometers. However, it has been
considered that the procedure of building the joint statistic is more useful to get
an idea of what is measured overall by the detectors network. It is always possible
to study what happens in single detectors as a follow-up procedure in the case a
candidate is found.

2.3.5 Assessment of the Detection Statistic

After computing the estimators Ĥ+/× for all the possible combinations of (f , ḟ , f̈ ,
. . . ), the aim is to quantify the agreement between data and the template having
the give set of parameters. Thus, in standard narrow-band searches, the detection
statistic S is defined as [47]:

S = |Ĥ×|2 · |A+|4 + |Ĥ+|2 · |A×|4. (2.36)

When performing a multi-IFO search, S is computed using the joint estimators
ĤJ

+/×. However, the following considerations are independent on the number of
interferometers used.
In the frequentist paradigm, it is possible to asses whether an obtained value S∗
of the detection statistic is compatible with the hypothesis that a signal h(t) is
embedded in data x(t). In particular, it is possible to estimate the corresponding
p-value p∗, that is defined as the probability that S presents a value S ≥ S∗ in the
case of the null hypothesis, i.e., studying noise-only data:

p∗ = P (S ≥ S∗|h = 0). (2.37)

One usually selects a threshold p-value pthr (a typical choice in CW searches is
pthr = 0.01) and then performs a follow-up procedure on the candidates with a
p-value smaller than the threshold. Interesting considerations on the nature of the
candidates and how to carry out follow-up procedures is given in [45].
In order to compute the p-value, it is needed to estimate the noise probability
distribution. It is possible to derive the analytic distribution under the assumption
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that the noise is distributed as a Gaussian with mean zero and variance σ2. In this
case, it is possible to obtain the detection statistic probability density [47]:

f(S) = e
− S
σ2
X
|A×|2 − e

− S
σ2
X
|A+|2

σ2
X (|A×|2 − |A+|2)

, (2.38)

where σ2
X = σ2 · Tobs is the variance of each component of the noise 5-vectors, which

is Gaussian as well, and Tobs is the observation time. Thus, the p-value for noise-only
data is given by:

P (S ≥ S∗) = |A
×|2e

− S
σ2
X
|A×|2 − |A+|2e

− S
σ2
X
|A+|2

|A×|2 − |A+|2
. (2.39)

In practice, real noise cannot be model as Gaussian. For this reason, it is necessary
to estimate the noise distribution using a different procedure, i.e., considering as
noise a band of off-source frequencies close to the studied range. How this procedure
has been applied to the case of PSR J0537-6910 will be described in Section 4.5.2.
In addition, it is important to add that the detection statistic is usually normalized
by a factor T 2, where T is the observation time. This normalization is needed when
comparing S from periods having different duration, thus, it is fundamental in this
search.

The "Look-Elsewhere Effect"

In this kind of searches, one usually explores a very large number of points in the
parameter space looking for a signal (Ntot ≈ 109 in the case of this r-mode search
from PSR J0537-6910). For this reason, the probability that noise alone produces
a high value of the detection statistic is increased. In fact, the aforementioned
considerations are valid for estimating the single-trial noise probability density.
Thus, we will need to impose a new significance threshold p0 on the candidates,
in order to take into account the look-elsewhere effect. The probability pabove that
at least one of the computed values of S overcomes Sp0 is equal to 1 minus the
probability that none of them is significant. Assuming that the searches are all
independent, this probability is given by the product of the probabilities that each
one of them is not significant. Thus, one finds:

pabove = 1− (1− p0)N . (2.40)
It is possible then to impose pabove = pthr and to invert this relation in order to get
the needed significance to have an interesting candidate p0:

p0 = 1− (1− pthr)
1
N . (2.41)

This expression can be expanded for pthr � 1 and large N :

p0 '
pthr
N

. (2.42)

Thus, potentially interesting candidates are those providing a p-value smaller than
p0. In the following chapters, I will also refer to the introduced factor 1

N in Eq.(2.42)
as the multiplication by the "trial factor".
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Interbinning

In order to reduce the effect of spectral leakage due to frequency discretization, which
can produce a sensitivity loss of up to ∼ 36%, we use an interbinning procedure [48].
This consists of estimating the data FFT values at the halfway bin k+ 1

2 in terms of
the values at the k-th and (k + 1)-th bins as

x̃FFT,k+ 1
2
≈ π

4 (x̃k − x̃k+1) . (2.43)

The detection statistic is computed separately on the natural grid and on the grid
of shifted bins, as I will discuss in Sec. 4.5.

2.4 Effects of the R-Modes Polarization Exchange
As derived in [11], and already mentioned in Section 1.3.2, the r-mode signal can be
interpreted as a signal due to ellipticity where the polarization exchange in Eq.(1.36)
is taken. For this reason, the strain components h+(t) and h×(t) will be coupled to
the detector responses as:

h(t) = h×(t)F+(t, ψ)− h+(t)F×(t, ψ). (2.44)

Therefore, from Equations (2.4) and (2.5), it is possible to recover the standard
narrow-band formalism simply by shifting the polarization angle ψ:

ψ −→ ψ + π

4 . (2.45)

Thus, using the expressions (2.8), it is evident that one can use the standard narrow-
band formalism (which describes CWs due to ellipticity), as long as the following
complex polarizations amplitudes exchange is intended:

(H+, H×) −→ (H×,−H+) . (2.46)

Therefore, the coupling between an r-mode signal and the detector can be expressed
as:

h(t) = H0
(
H×A

+(t)−H+A
×(t)

)
eiΦ(t). (2.47)

At this point, all the procedures described in 2.3 holds, and one can smoothly arrive
to building the detection statistic S as it is defined in standard narrow-band searches.
Thus, in principle it is possible to use a pipeline built for the detection of ellipticity
CWs (such as the narrow-band 5-vectors pipeline) also to estimate the detection
statistic of r-mode signals, once the emission parameters are correctly specified.
The only case that requires caution is the parameters estimation of an eventual
detection. It is true indeed that the detection statistic is well defined, but the
complex estimators Ĥ+/× have a different meaning with respect to the case of CWs
due to ellipticity. In fact, they are now estimators respectively of the complex
amplitudes H0eiφ0H× and −H0eiφ0H+, which are different from the previous case.
In this search, it was not needed to account for this discrepancy, since the detection
statistic is not affected and it is the only relevant quantity when dealing with
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upper limits estimation (see Section 4.6). However, in the case of a detection, one
should estimate the source parameters ψ, and η using the procedure outlined in
2.3.3. These methods are not valid anymore, since one has to account for the
aforementioned exchanges in the physical quantities, such as the amplitudes H+/×
and the polarization angle ψ.
Let’s take an example to clarify this discussion: we can compute the estimator Ĥ+
from data as in Eq.(2.26). Since this is the result of the matched filtering performed
using the sidereal response 5-vectors ~A+(f), it is correct that it is coupled to ~A+(f)
when building the detection statistic. For this reason, the standard definition of
the detection statistic holds. On the other hand, it is important to consider that
this estimator is not linked to the physical complex amplitude H+, but it is an
estimator of H0eiφ0H×. Thus, this peculiarity has to be considered when recovering
the physical parameters of the pulsar. For example, if one estimates the polarization
angle using the procedure from 2.3.3, it should be considered that the computed ψ̂
is related to the "fictious" ellipticity source. The estimator of the physical ψr of the
r-mode source can be obtained as ψ̂r = ψ̂ − π

4 .

2.5 Extentions Needed to Perform an R-Modes Search

As occasionally mentioned in the previous Sections, it is possible to perform the
search for r-mode signals as a search for CWs due to ellipticity, but using some
precautions. Three new main features are needed in order to perform an r-mode
search:

1. Glitches: The main addition needed to perform an r-mode search is the
introduction of a procedure to account for the presence of glitches. In fact, the
time evolution of the gravitational signal has to account for the leaps occurring
in the pulsar rotational frequency. Thus, it is possible to use the narrow-band
5-vectors pipeline (which is fully coherent) only on separate inter-glitch periods.
Then, the results can be incoherently combined. The description of how this
combination is performed is the main topic of Chapter 3.

2. Structured Parameter Space: The standard narrow-band 5-vectors pipeline
is built to search over a rectangular region in the parameter space (f , ḟ), i.e.,
for each value of the spin-down corrections, the values spanned for the frequen-
cies are the same. This aspect is not compatible with an r-modes search: as
described in Section 4.3, the parameter space has the shape of a parallelogram.
Thus, it is important to implement the extended pipeline in such a way that
a different range of frequencies is selected for each value of the spin-down
corrections.

3. Different Source: The original pipeline is built for CWs due to ellipticity,
thus, it is already centered around the region of f = 2ν. Of course this is not
true in the case of r-modes: the gravitational frequency f mainly depends on
the parameter A, which ranges between 1.39 and 1.57 (see Section 1.4). Thus,
some modifications in this direction have to be implemented.
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For these reasons, it was necessary to develop an extension of the standard narrow-
band pipeline. This was my main contribution to this projects in terms of software
development: I have implemented the modifications needed to account for these
differences and the procedure to combine different inter-glitch periods, as I will
describe in 3. Other relevant modifications are implemented in order to deal with
a parameter space larger by a factor ∼ 104 with respect to standard narrow-band
searches. This is due to an enlargement factor of ∼ 200 for the frequency and ∼ 50
for spin-down rate. Thus, optimization schemes to manage the computational load
have been developed. Then, I have applied the extended pipeline to the study of
r-mode signals from PSR J0537-6910 during the LIGO-Virgo O3 run. I will present
the obtained results in Chapter 4.





37

Chapter 3

Combination of Inter-glitch
Periods

In this Chapter, I will describe how the combination of the results from different
inter-glitch periods is performed. The underlying idea is that the change in gravi-
tational frequency f of the signal between two different periods is only due to the
corresponding leap in the rotational frequency ν of the pulsar.
I will begin with a general description of how an incoherent combination is performed
and why it is needed in this case in Section 3.1. Then, in Section 3.2, I will describe
the method used to perform the combination, which is based on using the physical
parameters for providing an unique description of a given signal. In particular, in
Section 3.3, I will treat the problem of finding the closest point on the grid given a
set of parameters. In fact, for the feasibility of the search, it is fundamental that
this operation is performed in an efficient way. Moving on, in Section 3.4, I will
present an issue linked with the combination algorithm, which should be treated
carefully. Finally, in Section 3.5, I will report the results of some tests highlighting
the correct functioning of this algorithm.

3.1 Incoherent Combination

After the coherent part of the search, described in Chap. 2, a detection statistic S
for each couple of frequency f and spin-down ḟ has been computed. The second
time derivative of the frequency f̈ has been fixed for the whole search, as described
in Sec. 4.3. We know that different values of ḟ correspond to the application of
different spin-down corrections, while different frequencies have been studied by the
matched filtering using 5-vectors (see Eq.(2.26)). Thus, selected values for these two
quantities comes from very different procedures, but they can be considered on the
same level for the considerations outlined in this Section.
In fact, if is possible to think of the parameter space as a region in the plane (f , ḟ).
This region is discretized according to the bins from Eq.(2.29), and there is a value
of S corresponding to each one of these points. Moreover, it is important to keep
in mind that, in the case of an r-mode search, the coherent procedure is applied
independently on each inter-glitch period. The region searched in each period will be
slightly different, since the change in ν affects also the ranges of f and ḟ to analyze,
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accordingly with Equations (1.37) and (1.38). As I will describe in Sec. 4.3, the
region defined by the ranges on the physical parameters is shaped as a parallelogram.
Finally, since the duration of the periods are not the same (see Sec. 4.4), the steps
will be different too.
Since glitches are not accurately modeled, it is not possible to perform a coherent
search during the whole O3 run (see 1.5). Thus, a clever procedure to overcome
this difficulty is to incoherently combine the results from the independent coherent
inter-glitch searches. This combination will be incoherent because it is not possible
to account for the phase evolution of the signal: it will be performed directly at the
level of the detection statistic.

3.2 The Combination Algorithm
The goal of the Combination Algorithm is to link the couples of parameters (f , ḟ)
in different inter-glitch periods corresponding to the same physical signal. The basis
for this combination procedure is offered by Equations (1.37) and (1.38). In fact, we
expect that, when the glitch happens, the emitted signal will have a change in f
and ḟ associated with the changes in ν and ν̇:

δf =
[
A− 3B

(
ν

νK

)2
]
δν, (3.1)

δḟ =
[
Aν̇ − 3B

(
ν

νK

)2
]
δν̇ − 6Bνν̇

ν2
K

δν. (3.2)

f̈ is expected to be the same along the whole search (see 4.3).In practice, The
fundamental assumption we are making is that the coefficients A and B are constant
in the two inter-glitch periods: since their value is related to the neutron star
Equation of State, and thus should not be affected by glitches, this assumption is
reasonable.
Given a couple (f , ḟ), it is possible to describe the signal using A and B by inverting
Equations (1.37) and (1.38):

A = 1
2

(
3f
ν
− ḟ

ν̇

)
, (3.3)

B = ν2
K

2ν2

(
f

ν
− ḟ

ν̇

)
. (3.4)

It is important to notice that this conversion depends on ν and ν̇, but we expect
A and B to be always the same for the emitted signal. This is the key to the
combination algorithm: f and ḟ should change between different periods exactly in
the way that keeps the values of A and B fixed.

3.2.1 Combination Implementation

After the coherent part of the search, one has a grid (f , ḟ) for each one of the
inter-glitch periods. Each point of the grid is associated with a value of the detection



3.2 The Combination Algorithm 39

statistic S. Thus, now it is necessary to link the points corresponding to the same
physical signal in different grids. This coupling is performed in the following way:

1. Computation of A and B: Given a point i in the grid for the n-th inter-
glitch period labeled by the gravitational parameters (f (n)

i , ḟ (n)
i ), one can

recover the value of Ai and Bi for the selected signal using Equations (3.3) and
(3.4) with ν = νn and ν̇ = ν̇n, where νn and ν̇n are the rotational parameters
at the reference time for the period n (see Table 4.1). The important point is
that Ai and Bi do not depend on n, since they are assumed to be constant,
but only on the grid point label i.

2. Parameters Evolution: It is now possible to recover the evolved parameters
(f (m)
iev

, ḟ (m)
iev

), where the evolution is performed using Equations (1.37) and
(1.38) setting A = Ai, B = Bi, ν = νm, and ν̇ = ν̇m, where Ai and Bi are the
parameters retrieved in the first step.

3. Closest Point: In general, the point (f (m)
iev

, ḟ (m)
iev

) does not belong to the grid
of the m-th period. Thus, one selects the point j on the grid m having the
parameters (f (m)

j , ḟ (m)
j ) closest to (f (m)

iev
, ḟ (m)

iev
). The implementation of this

step is discussed more in detail in Sec 3.3.

4. Detection Statistic: The normalized detection statistic of the points (f (n)
i ,

ḟ
(n)
i ) and (f (m)

j , ḟ (m)
j ) is combined performing a weighted average. The weights

are given by the inverse of the median of the power spectrum in the considered
inter-glitch period.

A sketch outlining the incoherent combination procedure for two inter-glitch periods
is reported in Figure 3.1. It is easy to see that this procedure can be easily generalized

Figure 3.1. Sketch representing the combination of the detection statistic between different
inter-glitch periods. The combination of the gravitational parameters in the different
periods is performed assuming that the physical parameters A and B are constant. The
change in f and ḟ is due to the variation in ν and ν̇ after the glitch.

to all periods. In this way, it is possible to reconstruct the signal along the whole run.
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It is important to notice that, in order to avoid the loss of studied grid points, the
outlined combination procedure should be performed starting from the grid having
the smallest steps (longest inter-glitch period, see Eq.(2.29)). In this way, multiple
points from this grid will be associated to the same point in other grids.

3.3 Identification of the Closest Grid Point

The most computationally expensive part of the combination algorithm is represented
by step 3 of the previously discussed implementation, namely the identification of
the closest point on the grid. to the evolved parameters. In other words, suppose
that we have taken a point in the first period and we have computed the evolved
parameters in the second period. The evolved parameters will not belong to the grid
in general, thus, the goal is to find the closest point that actually belongs to the
grid. All the other operations can be easily vectorized, in order to be executed in an
efficient way, while this one has to be computed singularly for each point.The aim
will be to minimize the Euclidean distance between the evolved point and the grid
points. It is possible to define indeed the following notion of distance between two
points (f1, ḟ1) and (f2, ḟ2), measured in units of grid steps:

d1,2 =

√√√√(f1 − f2
δf

)2
+
(
ḟ1 − ḟ2

δḟ

)2

, (3.5)

where δf and δḟ are the grid steps. This definition is necessary as the two quantities
are dimensionally incompatible. Thus, reusing the notation from Sec. 3.2, the
cleanest procedure would be to minimize dj,iev as a function of j, where j is an index
spanning all the points of the grid and iev is the point labeled by the parameters
(f (m)
iev

, ḟ (m)
iev

), which does not necessarily belong to the grid. In this way, one could
find the point with the most similar parameters to those of the evolved point.
However, this procedure is computationally too expensive to be performed directly.
Thus, it is necessary to find an alternative that allows a vectorization of the problem.
The underlying idea one can exploit to perform the combination efficiently is that,
before this steps, one already knows where the studied points are placed. In fact,
the studied region will be a parallelogram (see Sec. 4.3) covering the grid in (f ,
ḟ). The situation will be similar to that represented in the sketch in Fig. 3.2. The
important characteristic is the following: different lines correspond to the application
of different spin-down corrections, but the studied frequencies are the same (if
belonging to the parallelogram) for all the spin-down. This characteristic of the
standard narrow-band pipeline comes from using an FFT algorithm, and it turns
out to be particularly useful in this framework. In fact, due to this structure of
the grid, it is possible to minimize the parameters one by one. In particular, in the
practical implementation, the algorithm firstly finds which of the studied spin-downs
ḟ

(m)
j ,is the closest to the evolved one ḟ (m)

iev
. At this point, it is possible to retrieve

the closest frequency to the evolved one f (m)
iev

among the studied ones. However, one
should notice that this procedure may fail at the edges of the selected region: this is
the main topic of Sec. 3.4.
The difference between minimizing the function from Eq.(3.5) and minimizing the
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Figure 3.2. Sketch representing how the parameter space is structured. The selected region
is a parallelogram overlapping the grid. The points represent grid points, and a value
of the detection statistic is associated to each one of them. The important aspect is
that the same values of frequency are studied for each value of the spin-down. This
characteristic allows for an important speed-up in the combination procedure.

distance between the two variables separately is subtle, but it allows for a huge
speed-up in the algorithm. In fact, one goes from minimizing a function of two
variables to minimizing two functions of one variable. It is important to notice
that this operation can be performed only due to the structure of the grid in the
parameter space. In fact, if different values of frequencies were studied for each
spin-down, it would not be possible to have this simplification.

3.4 Combination Problems

In this Section, I will deal with an issue related to the combination algorithm and
having a parallelogram-shaped parameter space. In fact, as it will be explained in
Sec. 4.3, Equations (3.3) and (3.4), given the thoretical ranges on the parameters
A and B from Sec. 1.4, define a region in the parameter space (f ,ḟ) shaped as a
parallelogram. This aspect affects the combination algorithm, as it is possible to
deduce by taking a look at Figure 3.3. As seen before, the combination mainly
consists in the identification of the closest grid point to the parameters of the evolved
point from the previous period. This identification is performed by firstly finding
the closest spin-down, and then the closest frequency. It is possible to see that this
technique does not work in the red-shaded regions in Fig. 3.3. In these cases, the
closest spin-down leads to identifying a frequency outside the parameter space. At
this point, there are two possibilities:

1. The closest point is the extremal value for the frequency range corresponding
to the closest spin-down.
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2. The closest point belongs to the next spin-down correction.

However, it is not possible to solve this problem a priori: when a frequency outside
the range is obtained, it is necessary to compute the two distances (as in Eq.(3.5))
and to compare them. However, in this case, the distance of one of the two evolved
parameters will differ by the evolved one by more than half grid step. For this
reason, the search ranges have been enlarged, see 4.3, in order to ensure that these
problems do not occur in the physical region,. This aspect has been also verified in
the tests in 3.5

Problematic Regions

Studied Points

Spin-down 𝑛

Spin-down 𝑛 + 1

Evolved Point

Figure 3.3. Sketch representing the issue concerning the combination of grids when the
parameter space has the shape of a parallelogram. For the points in the red-shaded area,
the combination algorithm does not work, since the obtained frequency would be out of
the range. In this case, it is necessary to compute the distances in green and blue and
then to see which of those is smaller. This procedure will identify the closest point to
the evolved one.

3.5 Tests of combination

Multiple tests have been performed in order to verify the correct functioning of the
algorithm. In this Section, I will present some tests concerning the distance between
the evolved parameters (f (m)

iev
, ḟ (m)

iev
) and the closest point identified on the grid. I

will present some results obtained on the complete parameters space and then the
results on the physical regions, which are supposed not to be at the edges of the
parallelogram.

3.5.1 Complete Space

Considering all the studied points, it is possible to study the mismatch between the
evolved parameters (f (m)

iev
, ḟ (m)

iev
) from the previous Sections and the closest point on

the grid. The results are reported in Figures 3.4 and 3.5. It is possible to see that,
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in some cases, the mismatch is bigger than half bin: these cases are examples of the
occurrences of the problem highlighted in Sec. 3.4. The reported tests have been
performed on 1 dHz of the frequency range, corresponding to ≈ 1.9 · 107 points.

Figure 3.4. Frequency mismatch in
units of δf . The effect of the prob-
lems at the edges can be seen for the
values greater than half bin.

Figure 3.5. Spin-down mismatch in
units of δḟ . The effects of the prob-
lems at the edges can be seen for the
values greater than half bin.

3.5.2 Physical Region

Results analogous to those previously presented, but limited only to the region
where the parameters A and B belong to the physical ranges, are reported in Figures
3.6 and 3.7. In fact, the search is performed using enlarged parameters, and later
excluding the regions at the edge. This procedure, is sufficient to solve the problem:
in the physical region, the parameters are always closer than half bin.

Figure 3.6. Frequency mismatch in
units of δf . In the physical region
there are no issues, since these regions
are not at the edges.

Figure 3.7. Spin-down mismatch in
units of δḟ . Also in this case, the
problems at the edges are not present.
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Chapter 4

The O3 Search

This Chapter follows the structure of the LIGO-Virgo-KAGRA Collaboration Paper
[5], which reports the results obtained from this r-mode search from PSR J0537-6910.
The main topic of the Chapter is indeed the application of the previously described
methods to the LIGO-Virgo O3 run.
I will begin by describing the GW data from the interferometers (Sec. 4.1), and
the ephemeris of PSR J0537-6910 (Sec. 4.2), which is fundamental to perform the
search. Moving on, I will present an important discussion on the choice of the
parameter space (Sec. 4.3) and the inter-glitch periods (Sec. 4.4). These topics have
already been mentioned multiple times during the dissertation: here, an exhaustive
treatment of these topics will be provided.
Then, in Section 4.5, I will present the results of the application of the extended
pipeline to data and I will discuss how the significance of the candidates is evaluated.
As none of the candidates is significant enough, the upper limits on the GW strain
amplitude have been computed, and they are presented in Section 4.6. Finally, I will
conclude this Chapter with the astronomical implications of the obtained results in
Section 4.7.

4.1 The LIGO-Virgo O3 Run

Data used for this search have been taken from the third observing run (O3) of the
two Advanced LIGO detectors [54]. Unfortunately, it was not convenient to use
Virgo data to perform this search since the sensitivity1 in the studied frequency
region is significantly worse [55] . The O3 data-taking run lasted from 2019 April
1 to 2020 March 27, with a one-month pause in data collection in October 2019.
The Hanford (H1) and the Livingston (L1) detectors had duty factors of ∼ 76% and
∼ 77%, respectively during O3.
For this search, the studied data belong to the calibration having estimated amplitude
and phase uncertainties of ∼ 7% and ∼ 4 deg respectively [56]. These values are used
as conservative estimates of the true calibration uncertainty near the frequencies
region analyzed in this search.

1A useful characterization of the LIGO-Virgo detectors for the =3 run can be found at https:
//dcc.ligo.org/LIGO-T2000012/public

https://dcc.ligo.org/LIGO-T2000012/public
https://dcc.ligo.org/LIGO-T2000012/public
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4.2 PSR J0537-6910 Ephemeris

In order to perform the search using the adapted narrow-band pipeline, it is funda-
mental to know exactly the position in the sky of PSR J0537-6910, in addition to the
timing model provided by NICER and already presented in 1.5. This information is
encoded via the two numbers α (right ascension) and δ (declination). The values
are [57]:

α = 05h37m47.s416, δ = −69◦10′19.′′88. (4.1)

In addition to providing information on timing, electromagnetic observations also
provide insight into the likely orientation of the spin axis of the pulsar. PSR J0537-
6910 is indeed associated with the supernova remnant N157B in the Large Magellanic
Cloud. Observations of the pulsar wind nebulae (PWN) torus of the remnant have
enabled an accurate measurement of the orientation of the axis of symmetry of the
torus [58]. In fact, it is likely that the symmetry axis of the torus coincides with the
spin axis of the pulsar. This observation enables us to estimate the values of the
two parameters ψ (polarization angle) and ι (inclination angle) of the GWs signal.
We have:

ψ = (2.2864± 0.0384)rad. (4.2)

For what concerns ι, we cannot obtain the absolute direction of the rotation of the
pulsar from EM observations: we have two possible values of the inclination angle ι
or π − ι [59]. Thus the measurements yield:

ι = (1.522± 0.016)rad, ι = (1.620± 0.016)rad. (4.3)

This information can be used to carry out a version of the search where this prior
information on these two angles is incorporated into the search, as will be described
in 4.6. Unfortunately, an inclination angle ι close to π/2 means that the GW signal
is almost linearly polarized and consequently it has nearly the smallest maximum
signal-to-noise ratio achievable. In fact, it affects the strain amplitude, thus, the
obtained upper limits for the signal amplitude.

4.3 Parameter Space

The goal of this Section is to properly define the parameter space used for this search,
i.e., the points one has to investigate in the plane f -ḟ . The second derivative of the
frequency can be considered fixed, as I will discuss in the following paragraph. Thus,
only one point in f̈ is explored.
The region to investigate in the parameter space of f and ḟ is defined by substituting
the relations for A and B (Equations (3.3) and (3.4)) in terms of f and ḟ into the
constraints 1.39 ≤ A ≤ 1.57 and 0 ≤ B ≤ 0.195, namely:
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1.39 ≤ 1
2

(
3f
ν
− ḟ

ν̇

)
≤ 1.57, (4.4)

0 ≤ ν2
K

2ν2

(
f

ν
− ḟ

ν̇

)
≤ 0.195. (4.5)

These equations produce a parallelogram shape in parameter space, as shown in
Figure 4.1, and reduce the volume to be searched over by a factor of 31 with
respect to the choice of a rectangular grid in (f, ḟ). For this reason, the pipeline
was extended in order to account for a parallelogram-shaped parameter space. In
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Figure 4.1. Representation of the explored region in the parameter space of f and ḟ . It is
necessary to explore a wide range of frequencies due to the uncertainty on the parameter
A, which represents the first-order ratio between the gravitational frequency f and the
rotational frequency of the pulsar ν.

addition, to ensure computational accuracy, due to the issues at the edges outlined
in Sec. 3.4, the search was initially performed slightly enlarging the physical ranges
of the parameters (i.e., 1.38 ≤ A ≤ 1.58 and −0.01 ≤ B ≤ 0.205).The central step of
the 5-vectors pipeline is the application of spin-down rate corrections, described in
Sec. 2.3.2. Then, to cover this region in the parameter space a different frequency
band is selected for each value of the spin-down rate. The correct frequency range
for each spin-down rate is obtained by solving Eq.(1.38) for A and substituting it
into Eq.(1.37) in order to get

f = ḟ

ν̇
ν + 2B

(
ν2

ν2
K

)
ν. (4.6)
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From this relation, it is possible to obtain the values of the frequencies to study as
a function of the spin-down rates by assuming 0 ≤ B ≤ 0.195. The frequency step
is δf = 1/T , while the spin-down is discretized in bins of width2 δḟ = 1/T 2. The
selected region depends also on the value of ν, thus, we will have slightly different
parallelograms for different inter-glitch periods.

Frequency Second Derivative. The second derivative f̈ can be considered as
constant (within one frequency bin) for periods of length T < Tmax, with Tmax =
(2/f̈max)1/3, where f̈max is the maximum value allowed for the second derivative of
the signal frequency:

f̈max = ν̈

[
Amax −Bmin

(
ν2

ν2
K

)]
. (4.7)

We decided to fix ν̈ = 1 · 10−20Hz/s2 for all segments, which is consistent with
NICER measurements reported in [13]. Then, assuming a braking index ≈ 7, we can
write ν̈ = 7ν̇2/ν which gives Tmax ≈ 75 days. These considerations lead to the choice
of the data segments to be studied coherently and independently, as reported in
Sec. 4.4. Therefore, the second derivative is fixed for all segments for the 5-vectors
pipeline to the value f̈ = Āν̈ = 1.48 · 10−20Hz/s2, where Ā is the average value
for the first-order parameter A (second-order corrections are neglected to fix this
value). The second-order spin-down bin is δf̈ ' 2/T 3 = 1.30 · 10−20Hz/s2 and is
large enough to include the uncertainty in f̈ due to the unknown exact values of
parameters A and B and to the measurement of ν̈.

4.4 Inter-glitch Periods

From the considerations in Sections 4.1 and 4.3, it results that, when defining
inter-glitch periods, one has to take into account two aspects:

1. The occurrence of the commissioning break, which lasted for the month of
October 2019.

2. The duration of the second inter-glitch period, which is higher than Tmax
defined in Sec. 4.3.

Therefore, it is not possible to use the inter-glitch periods as they are given by
the NICER timing model. In particular, in order for the second derivative of the
frequency to be fixed, it is necessary to split the second NICER period into two
segments. For this reason, the segments 2 and 3 of the search actually correspond
to the same inter-glitch period (same rotational parameters). The parameters for
the five resulting periods for the search are reported in Table 4.1. Between the end
of the commissioning break and the second glitch of PSR J0537-6910, there were
only 16 days of available data, which were not considered for this search. The five
periods can be represented on a timeline, as in Fig. 4.2

2Notice that this definition differs by a factor 2 from the definition given in Sec. 2.3.3. In fact,
this is an arbitrary definition.
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Figure 4.2. Inter-glitch periods considered for the r-mode search from PSR J0537-6910
during the LIGO-Virgo O3 run. Three glitches were detected during the searched time
span. The second period was split into two segments in order for the assumption of f̈
being constant to be valid.

Table 4.1. Parameters of the five time domain periods analyzed. T is the duration of the
period and N is the number of points in the parameter space. The chosen time periods
are the same over which NICER provides the pulsar ephemeris.

Period 1 2 3 4 5
Start (MJD) 58574 58646 58701 58810 58873
Start Event Start O3 1st glitch Cut 2nd glitch 3rd glitch
End (MJD) 58629 58701 58757 58863 58935
End Event 1st glitch Cut Comm. Break 3rd glitch End O3

Epoch (MJD) 58600 58723 58723 58836 58918
T (MJD) 55 55 56 53 62
ν (Hz) 61.9145 61.9124 61.9124 61.9104 61.9090

ν̇ (10−10 Hz/s) −1.9974 −1.9973 −1.9973 −1.9974 −1.9977
δf (10−7Hz) 2.1898 2.1492 2.1492 2.3212 1.9026
δḟ (10−14Hz) 4.7952 4.6191 4.6191 5.3880 3.6199

N 1.54× 109 1.63× 109 1.63× 109 1.29× 109 2.35× 109

4.5 Search Candidates
Search candidates are obtained by selecting the loudest point (i.e. the point associated
with the highest detection statistic) in each mHz of the studied frequency range.
In fact, as mentioned in Section 2.3.5, two sets of candidates are selected: those
with frequency in the natural grid and those with frequency belonging to the grid of
shifted bins. The two sets of candidates are shown in the top and bottom panels of
Figure 4.3, respectively.

It is clear from the figures that high values of the detection statistic correspond
to several integer frequencies. They are due to disturbances of instrumental origin
which mainly affect the Hanford detector3. Notice that, at this level, the parameters
ranges are still enlarged of ∼ 10%(1.38 ≤ A ≤ 1.58 and −0.01 ≤ B ≤ 0.205). For
these reason, some vetoes are applied to the candidates.

3A list of known instrumental spectral disturbances can be found at https://www.gw-
openscience.org/.
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Figure 4.3. Normalized detection statistic for the full set of candidates on the natural
and on the shifted search grid. Excess value of the detection statistic, due to detector
disturbances, are evident at several integer frequencies.

4.5.1 Application of vetoes

To obtain more significant results, it is useful to exclude three sets of points from
the candidates:

1. Candidates closer than 0.01Hz to integer frequencies. These points are removed
in order to lower the impact of these disturbances on the estimation of the
noise distribution, which is used to determine the significance of a given
candidate, as explained in Sec. 2.3.5. In fact, if one considers these points, the
noise is estimated as much higher than what it actually is in between integer
frequencies, since it is affected by these artifacts. An eventual candidate having
a frequency closer than 0.01Hz to an integer value would be excluded, but it
could not be detected anyway due to the presence of these disturbances. Thus,
the overall search is enhanced by this exclusion, as it becomes more sensitive
in the considered regions.

2. Candidates outside the physical ranges 1.39 ≤ A ≤ 1.57 and 0 ≤ B ≤ 0.195.
These points can be safely excluded since, as already discussed in Sec. 1.4,
these constraints are already considering a wide range of possibilities. Eventual
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candidates in these regions cannot thus have a physical origin connected with
r-mode excitation from PSR J0537-6910.

3. Candidates whose detection statistic in one segment is greater than the sum
of the statistics on all the other four segments. We expect indeed that, even if
the r-mode is re-activated after each occurring glitch, it is very unlikely that
the excitation mechanism changes to the point that the gravitational energy
dissipated in a single period is higher than the total energy emitted in all the
other periods. On the other hand, it is more plausible to have temporary noise
disturbances that might occur for a limited period of time, thus affecting only
one of the studied periods. For these reasons, this veto is helpful in limiting
the effect of temporary noise disturbances.

The candidates surviving after imposing these selection criteria are shown in Figure
4.6 (and discussed in Sec. 4.5.3) for the natural frequency grid and for the shifted
one.
It is interesting to mention that the application of the vetoes results in a change
in the trial factor N . In fact, the parameter space had been chosen to satisfy
the first two conditions long before the computation of the detection statistic: the
requirement on the physical ranges of A and B had been imposed at the beginning
of the search (see Sec. 1.4), while the exclusion of the regions around the integer
frequencies had been decided by studying the power spectrum of the uncorrected
data from the Hanford interferometer in the relevant frequency range, which is
reported in Fig. 4.4. The peaks at integer frequencies are already present before the
application of Doppler and spin-down corrections, and this strengthens the belief
that they do not have an astrophysical origin.

Figure 4.4. Power spectrum of the uncorrected data from the Hanford interferometer
in the relevant frequency range. It is possible to see the disturbances at the integer
frequencies, which completely alter the estimation of the noise distribution
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4.5.2 Significance Assessment

For candidates surviving the imposition of vetoes, the significance is computed
through the p-value, obtained by comparing the candidate detection statistic value
to the distribution of the noise statistic. More specifically, the noise distribution
is computed from the data itself, using the following procedure (adapted from [46,
48]):

1. As previously described, the loudest candidate is chosen for a given 1mHz
band.

2. All the points in the 1Hz band which includes the candidate are selected
(excluding the 1mHz band to which the candidate belongs). In addition, also
all the points in the preceding and the following 1Hz bands are considered.

3. An histogram of the values of the detection statistic for all the points selected
at the previous step is computed. This histogram represents an estimation of
the noise distribution around the initially selected mHz.

4. The right tail (where loudest points are supposed to be) of the noise distribution
is supposed to present an exponential behavior (as seen in Sec. 2.3.5). Thus, a
linear fit of the tail in logarithmic scale is performed, in order to estimate the
exponential decreasing rate of the distribution tail, as represented in Fig. 4.5.

5. The knowledge of the behavior of the tail of the noise distribution allows to
simply estimate the p-value of the candidate. The explicit p-value estimation
is discussed below.

Eventual candidates with p-value smaller than 1% (after properly taking into account
the trial factor) undergo a follow-up procedure, aiming at increasing their significance
or, conversely, at demonstrating that they are incompatible with an astrophysical
GW signal.

P-Value Estimation. After the histograms estimating the noise distribution is
built, its right tail is linearly fitted in logarithmic scale, as it is expected to have an
exponential decrease [47]. From the parameters of the fit, it is possible to evaluate
the p-value for a given measured value S∗ of the detection statistic. We expect the
tail of the noise distribution f(S) to behave as:

log f(S) ∼ aS + b. (4.8)

The parameters a and b are exactly those estimated with a linear fit in logarithmic
scale of f(S) in the region of the tail, as shown in Figure 4.5. Notice that the
parameter a will be negative. The p-value associated to a given value S∗ is defined
as the integral of the distribution from S∗ to +∞:

p(S∗) =
∫ +∞

S∗
f(S) dS ∼ −1

a
eaS∗+b. (4.9)

In this way, it is also possible to compute the values of S corresponding to a given
significance: this is what has actually been done in the search. An overall p-value
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Figure 4.5. Example of the noise distribution histogram in the region 86 − 89 Hz and
of the linear fit of the tail, represented by the continuous yellow line. This fit enables
us to estimate the decreasing rate of the tail, which allows to compute the p-value
corresponding to a given value of the detection statistic.

threshold, pthr, is computed such that pthr ·Np = 0.01, where Np is the trial factor
including the vetoes correction mentioned in Sec. 4.5.1. On this distribution the
threshold on the detection statistic Sthr corresponding to pthr has been computed
and used to establish if that candidate is highly significant. Sthr plays an important
role also in the computation of the strain amplitude upper limits, as shown in Sec.
4.6.1.

4.5.3 Final Search Candidates

As before, two sets of candidates surviving the vetoes procedures are plotted ion
Fig 4.6: those selected in the natural frequency grid (top panel) and those selected
in the shifted grid (bottom panel). The detection statistic threshold is shown in
Figure 4.6 as a continuous red line and is not surpassed by any of the candidates.
The detection statistic values distribution across the explored frequency range is
not uniform due to the presence of noise artifacts (see e.g., the triple peak in the
range 89− 90Hz) and to the globally non-flat detector noise curve, which decreases
as the frequency increases. Unfortunately, none of the candidates is loud enough to
overcome the threshold, thus, upper limits on the strain of the signal are computed,
as shown in the next section.
Moreover, it is interesting to take a look at the candidate distribution in the parameter
space of (f, ḟ) and (A,B), as shown respectively in Figures 4.7 and 4.8. These
representations are helpful to visualize the regions defined from Equations (4.4) and
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Figure 4.6. Normalized detection statistic for candidates selected in the natural frequency
grid after the application of the vetoing criteria discussed in the text. The top panel
refers to the natural frequency grid, while the bottom panel refers to the shifted frequency
grid. The red continuous line represents the 1% p-value threshold on the detection
statistic used to identify significant candidates.

(4.5), which are a rectangle for the physical parameters (A,B) and a parallelogram
for (f, ḟ). In addition the effect of the application of the first veto is highlighted in
the panels in Fig. 4.7.

4.6 Upper Limits

In this Section, I will firstly describe how the upper limits on the signal strain
amplitude can be computed in Sec. 4.6.1. Then, in Sec. 4.6.2, I will present the
results obtained for this search.

4.6.1 Estimation Method

Upper limits at 90% confidence level are computed every 0.25Hz by means of software
injections based on the procedure already used in standard narrow-band searches
(see, e.g., [45, 60, 22]). Specifically, for each 0.25Hz band, sets of 240 signals, with a
fixed amplitude and randomly chosen parameters in their allowed range of variation,
are injected in O3 data. The signal frequency and spin-down rate are shifted at each
glitch epoch in such a way as to simulate glitches that occurred in the real signal we
are searching for. This operation is performed by randomly selecting a couple of
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Figure 4.7. Candidates in the frequency/spin-down space after vetoing criteria have been
applied. In the two insets, we highlight the 0.02 Hz gaps around the integer frequencies
(due to the presence of detector disturbances) and the shape of the regions at the edges.
This shape is constrained from Equations 4.4 and 4.5.

parameters A and B corresponding to the interested range and then by computing
the values of f and ḟ in the different periods.
These data are analyzed exactly in the same way as in the real search and the
number of detected signals (i.e., those producing a value of the detection statistic
above the detection threshold Sthr) is registered. By repeating the procedure for
different amplitudes, the value corresponding to a detection efficiency of 90% is
obtained through a linear interpolation among the two amplitudes corresponding to
a detection probability just below and above 90%, respectively. An example of this
procedure for the band [93, 93.25]Hz is shown in Figure 4.9. It is also possible to find
the situations represented in Figures 4.10 and 4.11, which are the cases respectively
of the bands [92, 92.25]Hz and [91.5, 91.75]Hz. In these cases, we have one or more
points corresponding exactly to the value of the detection statistic. In the first case,
the upper limit is simply set to the found point, while, in the second case, an average
on the corresponding values of S is performed.
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Figure 4.8. Candidates in the space of physical parameters (A,B) after vetoing criteria
have been applied.

Figure 4.11. Fraction of recovered injected signals as a function of the strain amplitude
h0. In this case there are multiple values of h0 corresponding to the 90% threshold: the
upper limit is computed as the average of these values. This example refers to the band
[91.5, 91.75]Hz.

4.6.2 Strain Amplitude Upper Limits

The upper limits on the GW strain amplitude h0 obtained using the previously
described method are shown in Figure 4.12. The lower blue curve is obtained
assuming a uniform prior on the polarization angle ψ and on the cosine of the star’s
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Figure 4.9. Fraction of recovered injected signals as a function of the strain amplitude
h0. The 90% threshold represents the level where the upper limit is identified. On the
bottom-right corner, we show an enlargement of the upper limit region. This example
refers to the band [93, 93.25]Hz.

spin axis inclination angle ι (which correspond to an unknown orientation for the
pulsar).
On the other hand, the upper red curve assumes a “restricted” prior on ψ and ι,
based on X -ray observations of the pulsar wind nebula, as discussed in Section 4.2.
Specifically, we use for ψ a Gaussian distribution centered at 2.2864 rad with width
of 0.0384 rad and a double Gaussian distribution for ι centered at 1.522 rad and at
1.620 rad, both with standard deviation 0.016 rad.
Signals injected in data are modeled using the narrow-band expression in (2.6), thus
the changing amplitude is the parameter H0, which should be converted in terms of
the strain amplitude h0 of the standard formalism (2.3). The conversion expression
has been provided in Eq. (2.10): this is the point where the assumed distribution
for ι affects the result. On the other hand, the distribution for ψ directly affects
the signal model through the complex amplitudes H+/×. The uncertainty on the
upper limit is given by the combination in quadrature of the statistical error due
to the finite number of injections (∼ 6%), the interpolation error in computing the
amplitude corresponding to a detection efficiency of 90% (less than ∼ 1%), and the
data calibration uncertainty (∼ 7%) (see Section 4.1). It is possible to see that the
upper limits obtained using the “restricted” prior are higher (worse) than those
obtained with uniform prior. This result is counter-intuitive, but is explained by
the fact that, since the inclination angle ι is close to π/2, the GW signal is almost
linearly polarized. Thus, it has nearly the smallest maximum signal-to-noise ratio
achievable.
From the numerical values of the upper limits, it is clear that the sensitivity of the
search is increased of a factor ∼ 3 with respect to the results obtained in [4] for
the O1 and O2 runs. The reader should also remind that, in those cases it was not
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Figure 4.10. Fraction of recovered injected signals as a function of the strain amplitude
h0. In this case there is a single value of h0 corresponding to the 90% threshold. This
value is exactly the upper limit This example refers to the band [92, 92.25]Hz.

possible to known when glitches occurred.

4.7 Astrophysical Constraints

In this Section, I will discuss the astrophysical consequences of the obtained results.
The main goal is to understand if we are probing a realistic portion of parameter
space and if we are able to constrain theoretical models for r-mode driven spin-down
of PSR J0537-6910. For this reason, I will compare the obtained upper limits on
the amplitude to the spin-down upper limit, i.e., the GW amplitude that would be
needed to explain the entire measured spin-down of the star, as explained in Sec.
1.3. Accordingly with Eq. (1.35), the spin-down upper limit hsd can be expressed as
[11] :

hsd = 1
r

√
10G
c3 I3

ν|ν̇|
f2 ≈ 4.0× 10−26

(90 Hz
f

)
, (4.10)

where r is distance to the source. The second step has been obtained by assuming
I3 = 1045 g · cm2 and values appropriate for PSR J0537-6910. The spin axis of
the star is taken to be in the z direction, and Izz is the moment of inertia. It is
important to notice that, in our case, the spin-down limit is not only an upper limit,
but it is exactly the predicted amplitude of the signal in the theoretical picture
proposed by [3] to explain the observed inter-glitch braking index of n = 7. There
is, however, an uncertainty associated with equation (4.10), as the relation between
f , ν, and Izz depends on the unknown Equation of State (EoS) of dense matter.
Using the considerations outlined in [30, 5], it is possible to estimate a plausible range
for the curve hsd as a function of the frequency, depending only on one parameter,
which we can take to be the mass of the star M or Izz, depending on which is more
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Figure 4.12. GW strain 90% confidence level upper limits as a function of frequency.
Bottom blue curve corresponds to uniform prior on the polarization angle ψ and the
cosine of the star’s rotation axis inclination angle ι, while the upper red curve corresponds
to “restricted” priors based on X -ray observations of the pulsar wind nebula [58] .

convenient. The upper limit for this range is set by the stiffest possible EoS from
[61], which is causally limited in the core and attached to a realistic crustal model,
and the lower limit is set by the softest EoS we consider, called WFF1, that is still
compatible with the observations of a ≈ 2M� neutron star, as described in [30].
Thus, it is possible to calculate the range of hsd from equation (4.10) and compare
it to the sensitivity upper limits of our searches. This is reported in Figure 4.13,
where for simplicity only a range between the upper limit set by the stiffest EoS (the
causally limited EoS with crust) and the lower limits set by our softest EoS (WFF1)
is plotted. It is clear that our searches are probing a physically significant portion
of parameter space for all frequencies. Moreover, for frequencies above f & 90 Hz,
our searches are starting to probe below the limits of the r-mode driven spin-down
scenario, even in the case of restricted priors.

Another physical quantity of interest is the r-mode amplitude α, already men-
tioned in Sec. 1.3. By combining Eq.uations (4.10) and (1.34), it is possible to
express α in terms of the GW signal amplitude:

α =
√

5
8π

c5

G

h0
(2πf)3

d

MR3J̃
≈ 0.017

(90 Hz
f

)3 ( h0
10−26

)
, (4.11)

where for the second step typical values of M = 1.4M� and R = 12 km are used. J̃
is the dimensionless canonical angular momentum of the r-mode, which depends
only weakly on the EoS. Accordingly to [39], it is possible to fix to J̃ = 0.0164
for an n = 1 polytrope. Eq. (4.11) can then be used in order to translate the
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Figure 4.13. Upper limits on GW amplitude h0(f) obtained from the searches compared
to the r ange obtained for the spin-down limit. The dashed lines are set by the stiffest
and softest EoSs considered here. Credit: B. Haskell.

upper limits in terms of α. The comparison between the spin-down upper limits
on the amplitude α for the two limiting EoSs and the results obtained from the
search is reported in Fig.4.14. The search upper limits are reported in terms of
an observational range., which accounts for the uncertainty on the upper limits.
The sensitivity of the searches is close to or below the spin-down limit, especially
for the stiffest EoS, and it is starting to constrain the range of values predicted by
theoretical models such as those of [3, 62].

4.7.1 Constraints on the Pulsar Mass

As described in [5], it is also possible to express the constraints on the r-mode driven
spin-down scenario in terms of a constraint on the mass of the neutron star. This
result can be obtained by using the EoS-independent relations between moment of
inertia and compactness in [63], together with the fits of [30], so that the only free
parameter that encodes the EoS dependence in Eq.(4.10) is the mass of the star. The
results are plotted in Figure 4.15. It is possible to see that the observational results
do not exclude the case of an r-mode driven spin-down scenario for soft EoSs and
lower-mass neutron stars. However, most of the parameter space is actually excluded,
and only the softest EoSs and neutron star masses M . 0.9M� are consistent with
a GW driven spin-down.
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Figure 4.14. Upper limits on the r-mode amplitude α calculated for two different EoSs.
The dotted lines show the amplitude α that would correspond to the spin-down limit.
In this case, the search upper limits are reported as a range, differently from before.
Credit: B. Haskell.
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Figure 4.15. Limits on the mass M of PSR J0537-6910 which is consistent with the
assumption that gravitational-wave emission due to r-modes is the dominant mechanism
causing the observed spin-down behavior of the pulsar. Dashed lines represent the limits
provided by the stiffest and the softest EoSs used for these considerations (see text for
details). Credit: B. Haskell.
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Conclusions

I have begun this dissertation by presenting the characteristics of r-modes oscillations
and the coupled GW emission. Then, I have presented the narrow-band 5-vectors
pipeline, which I have extended in order to perform searches for r-mode GWs. Finally,
I have discussed the search for r-modes gravitational emission from the X -ray pulsar
PSR J0537-6910, which is motivated by theoretical models and observational evidence
that the spin-down of the pulsar may be driven by GW emission due to such an
unstable oscillation. The search is enabled by a timing ephemeris obtained from
NICER telescope data [40], which includes the times of three glitches, and allows
us to search in the LIGO-Virgo O3 run data-taking time spans between glitches,
making use of the narrow-band pipeline based on the 5-vectors method.
Unfortunately, no signal has been detected, but it was possible to set upper limits
on the GW strain amplitude, which improve by a factor of up to 3 on previous upper
limits obtained in [4], which uses data from the O1 and O2 runs of the Advanced
LIGO network. The improvement is mostly due to the increased sensitivity of the
O3 data analyzed in our searches and to the contemporaneous timing ephemeris
obtained from NICER data, but an important add-on of this search is the possibility
to precisely account for glitch occurrences.
The upper limits set by this search probe a significant portion of parameter space
for all frequencies and are beginning to be in tension with the lower limits predicted
for the strain if GW emission due to r-modes is indeed driving the entire spin-down
of PSR J0537-6910, as an inter-glitch braking index n ≈ 7 (obtained by NICER)
would suggest. In fact, only a neutron star with mass M . 0.9M� is still consistent
with the star being spun down only by GW emission due to r-modes.
In other words, for a range of frequencies f & 90 Hz, our searches are probing below
the spin-down limit, and would be sensitive to emission due to r-modes of lower
amplitude than that needed to explain the observations of an inter-glitch braking
index of n = 7 or to the presence of an r-mode that is excited by the glitch but
subsequently damped. In the case in which the r-mode is damped, the sensitivity of
the search will be degraded, as discussed in detail in [4], which reports a degradation
by a factor of ≈ 4 with respect to the case where the mode is always on.
The important results obtained allow us to conclude that it is fundamental to
continue along the direction of this search: an eventual detection would be of great
theoretical importance, as it would be the first direct detection of GW emission due
to r-modes, providing us insights on the physics of pulsars matter. The developed
pipeline can be easily used for future searches of this kind and it can be easily
generalized in order to be applied in similar situations.
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