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P. Fulda,34 M. Fyffe,8 H. A. Gabbard,55 B. U. Gadre,89 S. M. Gaebel,14 J. R. Gair,89 J. Gais,104 S. Galaudage,6

R. Gamba,13 D. Ganapathy,53 A. Ganguly,21 S. G. Gaonkar,3 B. Garaventa,68, 96 C. Garćıa-Quirós,119 F. Garufi,94, 5
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I. Maksimovic,184 S. Maliakal,1 A. Malik,69 N. Man,76 V. Mandic,47 V. Mangano,83, 38 G. L. Mansell,51, 53

M. Manske,25 M. Mantovani,33 M. Mapelli,60, 61 F. Marchesoni,185, 58 F. Marion,39 S. Márka,36 Z. Márka,36

C. Markakis,12 A. S. Markosyan,57 A. Markowitz,1 E. Maros,1 A. Marquina,121 S. Marsat,30 F. Martelli,74, 75

I. W. Martin,55 R. M. Martin,40 M. Martinez,79 V. Martinez,24 D. V. Martynov,14 H. Masalehdan,131 K. Mason,53

E. Massera,133 A. Masserot,39 T. J. Massinger,53 M. Masso-Reid,55 S. Mastrogiovanni,30 A. Matas,89

M. Mateu-Lucena,119 F. Matichard,1, 53 M. Matiushechkina,10, 11 N. Mavalvala,53 E. Maynard,2 J. J. McCann,78

R. McCarthy,51 D. E. McClelland,9 S. McCormick,8 L. McCuller,53 S. C. McGuire,186 C. McIsaac,141 J. McIver,154

D. J. McManus,9 T. McRae,9 S. T. McWilliams,142 D. Meacher,25 G. D. Meadors,6 M. Mehmet,10, 11 A. K. Mehta,89

A. Melatos,118 D. A. Melchor,31 G. Mendell,51 A. Menendez-Vazquez,79 R. A. Mercer,25 L. Mereni,134 K. Merfeld,44

E. L. Merilh,51 J. D. Merritt,44 M. Merzougui,76 S. Meshkov,1 C. Messenger,55 C. Messick,150 R. Metzdorff,85

P. M. Meyers,118 F. Meylahn,10, 11 A. Mhaske,3 A. Miani,139, 140 H. Miao,14 I. Michaloliakos,34 C. Michel,134

H. Middleton,118 L. Milano,94, 5 A. L. Miller,34, 86 M. Millhouse,118 J. C. Mills,101 E. Milotti,187, 28

M. C. Milovich-Goff,67 O. Minazzoli,76, 188 Y. Minenkov,37 Ll. M. Mir,79 A. Mishkin,34 C. Mishra,189 T. Mistry,133

S. Mitra,3 V. P. Mitrofanov,71 G. Mitselmakher,34 R. Mittleman,53 G. Mo,53 K. Mogushi,70 S. R. P. Mohapatra,53

S. R. Mohite,25 I. Molina,31 M. Molina-Ruiz,161 M. Mondin,67 M. Montani,74, 75 C. J. Moore,14 D. Moraru,51

F. Morawski,65 G. Moreno,51 S. Morisaki,97 B. Mours,190 C. M. Mow-Lowry,14 S. Mozzon,141 F. Muciaccia,83, 38

Arunava Mukherjee,55 D. Mukherjee,123 Soma Mukherjee,125 Subroto Mukherjee,64 N. Mukund,10, 11 A. Mullavey,8
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28INFN, Sezione di Trieste, I-34127 Trieste, Italy
29Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
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ENS-Université PSL, Collège de France, F-75005 Paris, France
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94Università di Napoli “Federico II”, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
95NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
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187Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy

188Centre Scientifique de Monaco, 8 quai Antoine Ier, MC-98000, Monaco
189Indian Institute of Technology Madras, Chennai 600036, India

190Institut Pluridisciplinaire Hubert CURIEN, 23 rue du loess - BP28 67037 Strasbourg cedex 2, France
191Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, I-00184 Roma, Italy

192Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France
193Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741252, India

194Department of Astrophysics/IMAPP, Radboud University Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, Netherlands

195Kenyon College, Gambier, OH 43022, USA
196Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362 USA



8

197Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, Piazzale Aldo Moro 5, I-00185 Roma, Italy
198Hobart and William Smith Colleges, Geneva, NY 14456, USA
199Lancaster University, Lancaster LA1 4YW, United Kingdom
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We report on gravitational wave discoveries from compact binary coalescences detected by Ad-
vanced LIGO and Advanced Virgo between 1 April 2019 15:00 UTC and 1 October 2019 15:00
UTC. By imposing a false-alarm-rate threshold of two per year in each of the four search pipelines
that constitute our search, we present 39 candidate gravitational wave events. At this threshold,
we expect a contamination fraction of less than 10%. Of these, 26 candidate events were reported
previously in near real-time through GCN Notices and Circulars; 13 are reported here for the first
time. The catalog contains events whose sources are black hole binary mergers up to a redshift of
∼ 0.8, as well as events which could plausibly originate from binary neutron stars, neutron star-black
hole binaries, or binary black holes. For the latter group, we are unable to determine the nature
based on estimates of the component masses and spins from gravitational wave data alone. The
range of candidate events which are unambiguously identified as binary black holes (both objects
≥ 3 M�) is increased compared to GWTC-1, with total masses from ∼ 14M� for GW190924 021846
to ∼ 150M� for GW190521. For the first time, this catalog includes binary systems with asymmet-
ric mass ratios, which had not been observed in data taken before April 2019. Given the increased
sensitivity of Advanced LIGO and Advanced Virgo, the detection of 39 candidate events in ∼26
weeks of data (∼1.5 per week) is consistent with GWTC-1.

PACS numbers: 04.80.Nn, 04.25.dg, 95.85.Sz, 97.80.-d 04.30.Db, 04.30.Tv

I. INTRODUCTION

Since the discovery of gravitational waves from a
binary black hole (BBH) coalescence in 2015 [1], the Ad-
vanced LIGO [2] and Advanced Virgo [3] gravitational
wave detectors have opened a new window on our Uni-
verse [4–8]. Binary black hole observations have allowed
us to probe gravity in the strong-field regime [9, 10]
and to establish the rate and population properties of
BBH coalescences [11]. In addition to BBHs, Advanced
LIGO and Advanced Virgo detected the first gravita-
tional wave signal from a binary neutron star (BNS)
coalescence, GW170817 [12], which was also the first
joint detection of gravitational waves and electromag-
netic emission [13, 14]. Gravitational wave discoveries
have had a profound impact on physics, astronomy and
astrophysics [13, 15–19], and the public release of LIGO
and Virgo data [20, 21] has enabled groups other than
the LIGO Scientific Collaboration and Virgo Collabo-
ration (LVC) to perform analyses searching for gravita-
tional wave signals [22–28] and to report additional can-

didate events in some cases.

We present the results of searches for compact bina-
ries in Advanced LIGO and Advanced Virgo data taken
between 1 April 2019 15:00 UTC and 1 October 2019
15:00 UTC. This period, referred to as O3a, is the first
six months of Advanced LIGO and Advanced Virgo’s
eleven month long third observing run. The increased
sensitivity of Advanced LIGO and Advanced Virgo has
enabled us to increase the number of confident gravi-
tational wave detections more than three-fold over the
first Gravitational-Wave Transient Catalog (GWTC-1)
of compact binary coalescences (CBC) observed by Ad-
vanced LIGO and Advanced Virgo during the first (O1)
and second (O2) observing runs [8]. Together, GWTC-1
and the new candidate events presented here comprise
GWTC-2. Fig. 1 shows this consistent increase in both
the effective binary neutron star volume-time (BNS VT)
of the gravitational wave network and the number of de-
tections across these observing runs. Our analysis of the
O3a dataset has resulted in 39 gravitational wave candi-
date events passing our false alarm rate (FAR) thresh-
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old of 2.0 per year. Given our use of multiple search
pipelines to identify candidate events, we expect ∼ 3
false alarms, i.e. candidate events caused by instrumen-
tal noise, to be present in this catalog. It is not pos-
sible to determine with certainty which specific candi-
date events are due to noise; instead we provide sta-
tistical measures of false alarm rate and probability of
astrophysical origin. Among these candidate events, 26
have been reported previously in real-time processing via
GCN Notices and Circulars [29]. Furthermore, four grav-
itational wave candidate events from O3a have already
been published separately due to their interesting prop-
erties: GW190425 [30] is the second gravitational wave
event consistent with a BNS coalescence; GW190412 [30]
is the first BBH observation with definitively asymmet-
ric component masses, which also produced detectable
gravitational radiation beyond the leading quadrupolar
order; GW190814 [31] is an even more asymmetric sys-
tem having a ∼23 M� object merging with a ∼2.6 M�
object, making the latter either the lightest black hole or
heaviest neutron star known to be in a double compact
object system; GW190521 [32, 33] is a BBH with total
mass ∼ 150 M� having a primary mass above 65 M� at
99% credibility.

Here we present 13 candidate events for the first time
along with the 26 previously reported candidates. Among
the 39 candidates, we find gravitational wave emission
consistent with the coalescence of BBHs, BNSs, and
neutron star–black hole binaries (NSBHs).

We report on the status of the Advanced LIGO
and Advanced Virgo gravitational wave observatories
(Sec. II) and the properties and quality of the data taken
during the analyzed period (Sec. III). Then we describe
the analysis methods that led to the identification of the
39 gravitational wave candidates (Sec. IV), as well as
the inference of their parameters (Sec. V). Next, we re-
port the significance of the identified candidates, as well
as a comparison to the public gravitational wave alerts
(Sec. VI). Finally, we discuss the properties of each event
(Sec. VII). Further interpretation of the binary popula-
tion is conducted in companion papers [36, 37]. We will
analyze the second half of Advanced LIGO and Advanced
Virgo’s third observing run (O3b) in future publications.

We provide a public data release associated with the
results contained in this paper at [38]. This includes the
data behind the figures, the simulation data used in esti-
mating search sensitivity, and the posterior samples used
in estimating the source properties.

II. INSTRUMENTS

The Advanced LIGO [2] and Advanced Virgo [3] de-
tectors are kilometer-scale laser interferometers [39]. The
current generation of detectors started operations in
2015, and since then have been alternating periods of ob-
servation with periods of tuning and improvement. Since
O1 [40] and O2 [8], the sensitivity and robustness of the
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FIG. 1. The number of compact binary coalescence de-
tections versus the effective volume-time (VT) to which the
gravitational wave network is sensitive to BNS coalescences.
The effective VT is defined as the Euclidean sensitive volume
[34] of the second-most sensitive detector in the network at a
given time, multiplied by the live time of that network con-
figuration. The Euclidean sensitive volume of each detector
is calculated from the BNS inspiral range [34, 35] shown in
Fig. 3. The effective BNS VT does not account for differences
in sensitivity across the entire population of signals detected
or necessary cosmological corrections, but, as shown in this
figure, is consistent with the currently observed rate of detec-
tions. The colored bands indicate the three runs, O1, O2, and
O3a. The black line is the cumulative number of confident de-
tections of all compact binary coalescences (including black
holes and neutron stars) for GWTC-1 [8] and this catalog.
The blue line, dark blue band, and light blue band are the
median, 50% confidence interval, and 90% confidence interval
of draws from a Poisson fit to the number of detections at the
end of O3a.

detectors improved significantly.

The LIGO detectors underwent several upgrades be-
tween the end of O2 and the start of O3a [41]. The main
laser sources were replaced to allow for higher operating
powers (37 W and 40 W at the input of the Hanford
and Livingston detectors respectively, to be compared to
30 W and 25 W during O2 for Hanford and Livingston
respectively), and also to reduce fluctuations in the input
beam pointing and size that were previously detrimental
for the detector sensitivity [42]. At both LIGO detectors
the two end test masses were replaced with mirrors with
lower scattering losses [43], allowing for higher circulating
power. Additionally annular test masses were installed to
reduce noise induced by residual gas damping [44]. In the
Hanford interferometer, one of the two input test masses
was also replaced, because the one which was previously
installed had a large point absorber [45] that limited the
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amount of power that could be handled in the arm cavi-
ties.

The build up of electric charge on the test masses was
also an issue during previous runs, therefore several ac-
tions were undertaken to mitigate the contribution of this
noise source: electric field meters were installed in end
stations to monitor the local eletric field; baffles were in-
stalled in front of the vacuum system ion pumps to mit-
igate charging, and a test mass discharging system was
put in operation and successfully deployed on all LIGO
Hanford test masses.

Parametric instabilities [46], i.e., radiation-pressure-
induced excitation of the test masses’ mechanical modes,
also limited the maximum power allowed into the inter-
ferometer. This problem was mitigated with the instal-
lation of acoustic mode dampers [47] that reduce the me-
chanical quality factor of the test mass resonant modes
and thus suppress parametric instabilities.

The high frequency (& 1 kHz) sensitivity of both de-
tectors was significantly improved compared to the O2
observing run (a factor 1.68 for the Hanford detector,
and 1.96 for the Livingston detector), partially due to
the increased circulating power made possible by the im-
provements already discussed, and by the installation
of squeezed light sources [48, 49] to reduce the quan-
tum vacuum noise entering the interferometers [50], mak-
ing O3 the first observing run of the LIGO detectors
that routinely implement quantum noise reduction tech-
niques. GEO600 has been using the same approach since
2011 [51, 52] but has not detected gravitational waves so
far due to an overall too-low sensitivity.

Additionally, many beam dumps and baffles were in-
stalled at both LIGO sites, to mitigate the effect of scat-
tered light [53] that can be the source of non-stationary
disturbances. Finally, the feedback control systems for
the seismic isolation and for the angular and longitudi-
nal control of the instruments were improved, increasing
the detectors’ duty cycle and robustness against external
disturbances. With respect to O2, the LIGO Hanford
median BNS inspiral range, as defined in [35], increased
by a factor 1.64 (from 66 Mpc to 108 Mpc) and the LIGO
Livingston median range by 1.53 (from 88 Mpc to 135
Mpc).

Many upgrades have been implemented to boost the
sensitivity also in Virgo between O2 and O3a observing
runs. The most important upgrade was the replacement
of the steel wires suspending the four test masses with
fused-silica fibers [54] to improve the sensitivity below
100 Hz. This was achieved by changing the design of the
last stage of the mirrors’ suspension: new protections to
screen the fused-silica fibers from residual particles in-
jected by the vacuum system that could hit and break
the fibers [55] have been installed. In parallel, the vac-
uum system was modified to avoid the pollution of the
suspensions’ environment with dust.

Another upgrade to improve the low-frequency sensi-
tivity was the suspension of the external injection bench
(used to manipulate and steer the input laser beam into

the interferometer) reducing the seismic motion of the
optics and, consequently, the beam jitter noise contribu-
tion [56, 57].

The major upgrade to boost the Virgo high-frequency
sensitivity was the installation of a more powerful laser
that can inject more than 65 W into the interferometer.
After some commissioning activities at different power
values, the laser input power was set to 19 W, almost
doubling the 10 W injected during O2.1 In this configu-
ration, due to the marginally stable power recycling cav-
ity, the aberration induced by thermal effects prevented
a reliable and robust interferometer longitudinal control,
and worsened the alignment performances. Therefore,
the thermal compensation system actuators were used to
stabilize the power recycling cavity. The end test masses’
radii of curvature were tuned with the ring heaters, max-
imizing the power circulating in the arm cavities [59, 60].

Furthermore, squeezed vacuum states were injected in
the interferometer in order to improve the sensitivity at
high frequencies [61]. This quantum noise reduction tech-
nique was fully operational also in Virgo for the first time
during O3. To reduce the optical losses optimizing the
squeezing performance, the photodiodes installed at the
interferometer dark port to measure the gravitational
wave signals were replaced by high quantum efficiency
ones [62].

Moreover, side activities have been carried out in par-
allel to the main upgrades, reducing the overall contri-
bution of the technical noises to the noise budget. In
particular, the improvement of the control strategy for
the suspended benches allowed the reduction of the noise
contribution below 30 Hz, the installation of baffles and
diaphragms on the optical benches and inside the vac-
uum tanks reduced the impact of the scattered light on
the sensitivity. Finally, sources of environmental noises
have been identified and removed. All these upgrades
increased the Virgo median BNS range by 1.73 (from 26
Mpc to 45 Mpc) with respect to the O2 run.

Fig. 2 shows representative sensitivities of the three de-
tectors during O3a, as measured by the amplitude spec-
tral density of the calibrated strain output. Fig. 3 shows
the evolution of the detectors’ sensitivity over time, as
measured by the binary neutron star range. The up-time
of the detectors was kept as high as possible, but was nev-
ertheless limited by many factors, such as earthquakes,
instrumental failures and planned maintenance periods.
The duty cycle for the three detectors was 76% (139.5
days) for Virgo, 71% (130.3 days) for LIGO Hanford,
and 76% (138.5 days) for LIGO Livingston. With these
duty cycles, the full 3-detector network was in observing
mode for 44.5% of the time (81.4 days). Moreover, for
96.9% of the time (177.3 days) at least one detector was

1 In [58] it was reported that the injected power during O2 was
14 W; however, measurements taken during end-of-run commis-
sioning activities determined that the correct value was approx-
imately 30% lower than expected.
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FIG. 2. Representative amplitude spectral density of the
three detectors’ strain sensitivity (LIGO Livingston 5 Septem-
ber 2019 20:53 UTC, LIGO Hanford 29 April 2019 11:47 UTC,
Virgo 10 April 2019 00:34 UTC). From these spectra we com-
pute BNS inspiral ranges of 109 Mpc, 136 Mpc, and 50 Mpc
for LIGO Hanford, LIGO Livingston, and Virgo, respectively.

observing and for 81.9% (149.9 days) at least two detec-
tors were observing. For comparison, during the O2 run
the duty cycles were 62% for LIGO Hanford and 61% for
LIGO Livingston, so that two detectors were in observ-
ing mode 46.4% of the time and at least one detector was
in observing mode 75.6% of the time.

III. DATA

Before analyzing LIGO and Virgo time-domain data
for gravitational waves, we apply multiple data condi-
tioning steps to accurately calibrate the data into strain
and mitigate periods of poor data quality [63]. Seg-
ments of data where each interferometer was operating
in a nominal state, free from external intervention, are
recorded [64]. Data from outside these time periods is
not used in analyses unless the state of the interferometer
is well understood [6, 31]. The data conditioning process
involves calibration of the data, both in near-real time
and in higher latency; subtraction of noise from known
instrumental sources; and identification of short-duration
noise transients, which we refer to as glitches [65], that
should be excluded from astrophysical analyses.

For time periods containing gravitational wave candi-
date events, additional investigation of the data quality
is completed as a part of event validation to evaluate if
instrumental artifacts could impact detection and anal-
ysis of the candidate events [66]. These investigations
sometimes lead to additional data processing steps such

as modeling and subtraction of glitches.

A. Calibration and noise subtraction

The optical power variations at the gravitational wave
readout ports of the LIGO and Virgo detectors are cal-
ibrated into a time series of dimensionless strain mea-
sured by the detectors before use by astrophysical anal-
yses [67, 68]. The calibration process requires data
conditioning filters whose response is complex-valued,
frequency-dependent, and informed by detailed modeling
of the feedback control system along with the interfero-
metric, opto-mechanical response of the detectors [69].
Some control system model parameters vary slowly with
time throughout operation of the interferometer. These
parameters must be monitored and, when possible, the
filters are corrected in near real-time (low-latency) [70].
Other parameters may change at discrete times and cause
systematic error in the data stream that cannot be ac-
counted for in low latency. Examples of such error can
arise from poorly compensated changes in electronics
configurations, accidental application of incorrect con-
trol parameter values, model errors not-yet-known at the
start of the observing period, and hardware problems
such as failures of analog electronics within the control
system. Most of these sources of error are subtle, and can
only be assessed once they are measured and quantified
a posteriori.

All three detectors use photon calibrator (Pcal) sys-
tems [71–73] for absolute reference. These reference sys-
tems are used to develop each static detector model, mea-
sure parametric time dependence, and establish resid-
ual levels of systematic error in each strain data stream
once constructed. Each is done by using the Pcal sys-
tems to drive forces on the end test masses via radia-
tion pressure, creating displacement above other detec-
tor noise. Validating the strain data stream in low la-
tency for all times, by establishing carefully quantified
estimates of the systematic error with these excitations,
competes with the desire for unhampered astrophysical
sensitivity. As a compromise, systematic error is mea-
sured continuously only at a select few frequencies at the
edges of the sensitive frequency band of the detector with
monochromatic excitations during observation. The data
stream is only validated at high frequency resolution,
and across the entire detection band, at roughly weekly
cadence: the detectors are fully functional, but are de-
clared out of observation mode, and swept-sinusoid and
colored-random-noise Pcal excitations are driven above
the noise. These measurements can only provide approx-
imate, point-estimate bounds on the data stream’s error
in low-latency; they cannot reflect the error distribution
for all time.

Once an observing period where the detector config-
uration is stable has completed, estimates of the proba-
bility distribution of systematic error for all observation
time are created [74]. These estimates leverage the power
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FIG. 3. The BNS range of the LIGO and Virgo detectors. (Left) The evolution in time of the range over the entire duration
of O3a. Each data point corresponds to the median value of the range over one-hour-long time segments. (Right) Distribution
of the range and the median values for the entire duration of O3a.

of hind-sight, the collection of measurements mentioned
above, and other measurements of individual components
gathered while the detector is offline. During this error
characterization process, if any identified systematic er-
ror is egregious and well-quantified, where possible, the
control system model and data conditioning filters are
modified to remove the error. The data stream is then
regenerated offline from the optical power variations and
control signals, and the systematic error estimate is up-
dated accordingly [67].

Results in this paper are derived from either low-
latency (C00) or offline, recalibrated (C01) strain data,
depending on whether offline data was available and
whether the results are sensitive to calibration error. De-
tection algorithms for gravitational wave candidates, de-
scribed in Sec. IV, are insensitive to typical levels of sys-
tematic error in calibration [75], so low-latency data may
be used at-will without concern. However, if available,
offline data is preferred for its improved accuracy and
completeness. The candidate events presented in this
paper detected prior to 5 June 2019 were identified using
LIGO offline data, whereas those from 5 June 2019 until
1 October 2019 were identified using LIGO low-latency
data.

Once candidate events are found by detection algo-
rithms using either LIGO data stream, all estimations
of the candidates’ astrophysical parameters use the C01
LIGO version of strain data using methods described in
Sec. V. As such analyses are more sensitive to calibration
error [76], it is advantageous to use the definitive char-
acterization of error at the time of each event available
with LIGO C01 data. The probability distribution of er-
ror for LIGO C01 strain data in O3a are characterized

in [74]. Analysis of Virgo’s collection of validation mea-
surements during the run did not motivate improvement
to the low-latency strain data stream offline. As such,
only low-latency strain and its bounds on systematic er-
ror from point-estimate measurements are used for all
detection and astrophysical parameter estimation results
presented in this paper. The bounds of systematic error
of Virgo strain in O3a are reported in [77].

Numerous noise sources that limit detector sensitiv-
ity are measured and linearly subtracted from the data
using witness auxiliary sensors that measure the source
of the noise [42, 78]. In O3a, the sinusoidal excitations
used for calibration, and noise from the harmonics of the
power mains were subtracted from LIGO data as a part
of the calibration procedure. This subtraction was com-
pleted for both online and offline versions of the cali-
bration. For time periods around a subset of identified
candidate events, additional noise contributions due to
non-stationary couplings of the power mains were sub-
tracted [79].

The Virgo online strain data production also per-
formed broadband noise subtraction during O3a [77].
The subtracted noises included frequency noise of the in-
put laser, noise introduced controlling the displacement
of the beam splitter, and amplitude noise of the 56 MHz
modulation frequency. An additional offline strain data
set was produced for 14 September 2019 through 1 Oc-
tober 2019 using the same calibration as the online data
but with improved noise subtraction resulting in a BNS
range increase of up to 3 Mpc [80] and is used in source
parameter estimation of candidate events that occurred
during this time period.
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B. Data quality

During O3a, the data quality was closely monitored
using summarized information from the detectors and
their subsystems [81]. Deeper studies were conducted to
identify the causes of data quality issues, which enabled
instrumental mitigation of the sources during the run.
For example, at Livingston, glitches from a mechanical
camera shutter and beats of varying radio-frequency sig-
nals were identified and eliminated. At Hanford and Liv-
ingston, strong frequency peaks that wandered in time
were tracked down to the amplitude stabilizer for the
laser used to provide squeezed light. At Hanford, broad
features in the spectrum at 48 Hz and multiples were
tracked to scattered light from vacuum chamber doors
and mitigated with absorptive black glass. These studies
were a part of ongoing efforts to improve the data quality
and the up-time of the detectors [41].

For analyses of gravitational wave transients, the
most common data quality issue is the presence of
glitches. The rate of glitches with signal-to-noise ra-
tio (SNR) > 6.5 in the LIGO and Virgo detectors in
O3a is shown in Fig. 4. This rate was higher than in pre-
vious observing runs [66] for both LIGO detectors and
was especially problematic at LIGO Livingston, where
the rate of glitches was 0.8 per minute in O3a, compared
to 0.2 per minute in O2. The Virgo glitch rate decreased
significantly between O2 and O3a, thanks to the work
done during the O2–O3a shutdown to improve the accu-
racy of Virgo’s operating point control and to identify,
fix, or mitigate several sources of noise. The increased
rate of glitches in the LIGO detectors limited the overall
sensitivity of searches for gravitational waves in O3a and
created challenges for analysis of candidate events.

The most problematic source of glitches in O3a was
caused by laser light scattered out of the main laser beam,
which is reflected off walls of the vacuum systems and
other equipment back into the main beam [53, 84, 85].
Scattered light noise is correlated with periods of high
seismic activity. For this reason, daily cycles of scattered
light glitches were present throughout O3a, especially at
LIGO Livingston, tied to ground motion driven by hu-
man activity. This noise is often visible as arch-shaped
features in time–frequency [84], as shown in Fig. 5, and
was present at or near the time of many of the candi-
date events in this catalog. A potential major source
of this noise for O3a was light scattered from the gold-
coated electrostatic drives mounted to the fused silica
reaction masses that are suspended directly behind the
LIGO test masses to provide a stable platform for low-
noise actuation. Changes were implemented during O3b
that reduced scattered light noise entering through this
path [86].

Broadband short-duration glitches also occurred often
in all detectors during O3a. A sub-class of those, blip
glitches [87], was one of the most problematic sources
of transient noise in previous observing runs, and is still
present in O3a at a rate of 1.4 per hour. These glitches
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FIG. 4. The rate of single interferometer glitches with
SNR > 6.5 and frequency between 10 and 2048 Hz identi-
fied by Omicron [82, 83] in each detector during O3a. Each
point represents the average rate over a 2048 s interval. Dot-
ted black lines show the median glitch rate for each detector
in O2 and O3a.

are one of the limiting sources of noise for searches for
gravitational waves from high mass compact binaries [88]
and no sources or witnesses for the majority of these
glitches have been identified. In O3a, there was also
an additional population of short duration glitches with
SNR > 100. These loud glitches occurred in both LIGO
detectors, with unknown origin.

Many glitches in LIGO and Virgo data have well-
understood sources and couplings, making it possible to
identify short time periods where excess power from en-
vironmental or technical sources will be present in the
strain data. Flagging these time periods as containing
poor data quality, either by removing the data from the
search or decreasing the significance of any candidate
events identified, has been shown to improve the overall
sensitivity of searches for gravitational waves from com-
pact binaries [89, 90]. While a select number of LIGO
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FIG. 5. Top: time–frequency representation of the data sur-
rounding event GW190701 203306 at LIGO Livingston, show-
ing the presence of scattered light glitches (modulated arches).
Bottom: The same data after glitch identification and sub-
traction. In both plots, the time–frequency track of the
matched filter template used to identify GW190701 203306
is overlaid in orange. Investigations identified 7 candidate
events in coincidence with similar scattering glitches, and re-
quired mitigation before further analysis. Despite the clear
overlap of the signal with the glitch, the excess power from
the glitch is successfully modeled and subtracted.

and Virgo data quality issues are flagged in low latency,
such as hardware injections and digital signal overflows,
the majority of data quality flags are only available for
offline searches.

Before performing searches for gravitational wave sig-
nals, periods of poor data quality are flagged at various
levels, called categories [63, 66]. In O3a, data from an
observatory not operating in a nominal state are flagged
(category 1) and not used in any search. Additional pe-
riods likely to contain excess power in each LIGO detec-
tor were flagged based on detailed follow up of identified
sources of noise (category 2), statistical correlation be-
tween witness sensors (category 3), and machine-learning
based predictions (iDQ) [90, 91]. No additional data
quality products for Virgo were used beyond category 1.
The specific set of data quality products used in O3a is
search-specific, as described in Sec. IV. Category 2 flags
are tuned separately for searches for both gravitational
waves from CBC and minimally-modeled (Burst) sources.
Category 3 flags are only tuned for Burst searches. The
amount of time removed by each category of veto in O3a
is shown in Table I.

C. Event Validation

Event validation procedures similar to those used for
previous gravitational wave candidate events [8, 66] were
used for all candidate events in this catalog to evaluate if
instrumental artifacts could impact analysis. Within tens
of minutes of low-latency candidate event identification,
time–frequency visualizations and monitors of the grav-
itational wave strain data [92–97] were used to identify
any data quality issues present, and data from hundreds
of auxiliary sensors monitoring the detectors and their
environments were used to identify potential auxiliary
witnesses to instrumental artifacts [91, 98]. Tools that
relied upon deeper information about glitches and data
non-stationarity gathered offline, such as long-term mon-
itors of the instruments and their subsystems [81, 99, 100]
and identification of likely sources of glitches by correla-
tion with auxiliary sensors [83, 101, 102], were also used
to vet candidate events in this catalog. These procedures
did not identify evidence of instrumental origin for any
of the candidate events in this catalog, but did identify
a number of data quality issues that could potentially
impact analyses of these candidate events.

Candidate events with data quality issues identified by
these event validation procedures required further miti-
gation before analysis. In cases when glitches occurred
in time coincidence with a candidate event (but could
not account for the candidate event itself), additional
data processing steps were completed to mitigate the
effect of those glitches on estimation of the candidate
event parameters. If possible, the identified glitches were
subtracted using the methods described in Sec. III D. In
cases when sufficient subtraction was not possible, cus-
tomized configurations of parameter estimation analyses
were used to exclude the time period or frequency band-
width impacted by glitches. An example of a glitch co-
incident with a signal that required glitch subtraction
is shown in Fig. 5. While the presence of excess power
from transient noise did not prevent confident identifica-
tion of this event, glitch subtraction was required before
the source properties of the event could be evaluated.
Although only data recorded from detectors in observ-
ing mode were used to identify candidate events in this
catalog, some candidate events occurred at times when
one detector in the network was operating, but not in
observing mode. For those cases, the data quality and
calibration for the non-observing detector was evaluated
to determine whether the data could be used in the esti-
mation of candidate event source properties. Such data
were used for one candidate event, GW190814 [31]. The
full list of candidate events requiring specific mitigation
steps, due to either the presence of glitches or the state
of a detector, is found in Sec. VII.
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Detector Category 1 CBC category 2 Burst category 2 Burst category 3

LIGO Hanford 0.27% 0.37% 0.83% 0.19%

LIGO Livingston 0.08% 0.10% 0.64% 0.15%

Virgo 0.15% – – –

TABLE I. Percent of single-detector time removed by each category of veto for each detector. Category 1 vetoes were applied
in all analyses described in Sec. IV. CBC category 2 vetoes were applied only by the PyCBC search. Burst categories 2 and 3
were applied only by the cWB search.

D. Glitch subtraction

Data containing gravitational wave candidate events
and glitches in the same time–frequency volume are
pre-processed through a glitch-subtraction procedure
prior to being analyzed by the parameter estimation
pipelines. The glitch-subtraction procedure evolved from
the BayesWave (BW) algorithm [103, 104] used for glitch
subtraction in the Livingston detector at the time of the
GW170817 binary neutron star merger [12, 105], where
the non-Gaussian, incoherent, noise was modeled as a lin-
ear combination of wavelets which was subtracted from
the data. The number of wavelets used in the fit was
sparingly determined using a trans-dimensional Markov
chain Monte Carlo (MCMC) algorithm [103].

To prevent the glitch-subtraction procedure from cor-
rupting the signal candidate event, the time segment
and bandwidth of the wavelet-based analysis are chosen,
when possible, to exclude from subtraction the strongest
part of the signal. For cases where the signal and glitch
overlapped in time–frequency space, a more robust ap-
plication of the glitch-subtraction algorithm was used
which simultaneously fits for the signal and the glitch.
In the signal-plus-glitch application, signal wavelets are
included in the model if they are coherent over the de-
tector network (marginalizing over sky location, etc.),
while the glitch wavelets are independent in each detec-
tor [104]. Only the glitch model wavelets are then used
in the subtraction. The signal-plus-glitch procedure was
tested by injecting simulated coherent BBH signals onto
known single detector glitches from O2 and verifying that
the signals were unaffected in the process.

The glitch-subtraction procedure is only used as a pre-
processing step for the parameter estimation analysis (de-
scribed in Sec. V), and is not part of the analyses that
determine the presence, or significance, of gravitational
wave candidate events. As shown in Fig. 5, the glitch
subtraction methods described here are able to success-
fully remove excess power caused by glitches present near
the time of candidate events.

IV. CANDIDATE IDENTIFICATION

Candidate identification happens on two timescales.
First, five low-latency gravitational wave pipelines [106–
110] process the data immediately after acquisition with
the goal of generating public detection alerts to the

broader astronomical community within minutes [111].
Second, an offline reanalysis of gravitational wave data
is conducted to produce the curated candidate event list
here. The offline analysis may benefit from updated data
calibration, data quality vetoes, the ability to estimate
event significance from the full data, and further algo-
rithmic development that takes place over the course of
an observing run. Although the candidate events pre-
sented here are derived from offline analysis, we provide
a comparison with the public alerts in Sec. VI. Candi-
dates are identified using two methods. The first method
searches for minimally-modeled sources. The second
method searches for signals from a bank of template
waveforms [112] modeled after the expected gravitational
wave emission from coalescing compact binaries in gen-
eral relativity. In Sec. VI, we present results from one
search for minimally-modeled transient sources, Coher-
ent WaveBurst (cWB) [107, 113–116], and two searches
for modeled sources, GstLAL [106, 117, 118] and Py-
CBC [35, 119–122]. cWB, GstLAL, and PyCBC were
also three of the five low-latency pipelines in O3. The
two remaining low latency pipelines, MBTAOnline [109]
and SPIIR [110] were not used for the offline reanalysis
and are therefore not included in GWTC-2. Below, we
summarize the methods used by each of cWB, GstLAL,
and PyCBC to identify candidate events.

A. Coherent WaveBurst search for
minimally-modeled transient sources

cWB is a search pipeline for detection and reconstruc-
tion of transient GW signals that operates without a
specific waveform model [123]. cWB was used in pre-
vious searches by the LVC [1, 8, 124]. cWB identifies
coincident signal power in multiple detectors, searching
for transient signals with durations up to a few seconds
in the detector bandwidth. The analysis is performed
on the time–frequency data obtained with the Wilson–
Daubechies–Meyer wavelet transform [113, 125] and nor-
malized by the amplitude spectral density of the detec-
tor noise. cWB selects the time–frequency data samples
above fluctuations of the detector noise and groups them
into clusters. For clusters correlated in multiple detec-
tors, cWB reconstructs the source sky location and sig-
nal waveforms with the constrained maximum likelihood
method [107]. The signal SNR is estimated from the sig-
nal waveforms reconstructed by cWB, and the network
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SNR is calculated combining the SNRs of individual de-
tectors.

The cWB detection statistic is based on the coherent
energy Ec obtained by cross-correlating the normalized
signal waveforms reconstructed in different detectors. It
is normalized by a chi-squared statistic χ2 = En/Ndf ,
where En is the residual noise energy estimated after the
reconstructed waveforms are subtracted from the data,
and Ndf is the number of independent wavelet ampli-
tudes describing the event. The cWB detection statis-
tic is ηc = [Ec/max(χ2, 1)]1/2, where the χ2 correction
is applied to reduce the contribution of non-Gaussian
noise. To improve the robustness of the algorithm against
glitches, cWB uses signal-independent vetoes, which re-
duce the FAR of the pipeline; this includes category 2
Burst data quality flags in the processing step and hier-
archical vetoes in the post-production phase [101, 126].
Other vetos applied to candidate events are on the net-
work correlation coefficient cc = Ec/(Ec + En) and the
χ2. To further reduce the background, the cWB analysis
employs additional signal-dependent vetos based on the
properties of the time–frequency evolution of compact
binary signals: a) the frequency of the signal is increas-
ing in time [127] and b) the central frequency of the
signal fc is inversely proportional to the total mass of
the system [128]. cWB searches are performed with two
pipeline configurations targeting detection of high-mass
(fc < 80 Hz) and low-mass (fc > 80 Hz) BBH systems.
They use different signal-dependent vetos defined a priori
to alleviate the large variability of non-stationary noise
in the detectors’ bandwidth.

We estimate the significance of candidate events by
systematically time-shifting the data of one detector with
respect to the other in each detector pair, with a time lag
so large that actual astrophysical events are excluded,
and repeating this for a large number of different time
lags over a total time Tbkg. We count the number of
events N due to instrumental noise that have a ranking
statistic value such as the SNR that is at least as large
as that of the candidate event and we compute the FAR
as the number of background events divided by the to-
tal background time [129]. The detection significance of
a candidate event identified by either configuration in a
single frequency range is determined by its FAR mea-
sured by the corresponding cWB configuration. When-
ever the low-mass and high-mass configurations overlap,
the trials factor of two is included to determine the fi-
nal FAR [32]. In the end, each configuration reports the
selected candidate events and their FAR.

The cWB search pipeline has comparable sensitiv-
ity to matched-filter methods for coalescing stellar mass
BBHs with high chirp masses [130], and it aims to ex-
tend detectable sources to higher-mass ranges or shorter-
duration signals like those produced by eccentric BBH
systems [131]. cWB is less competitive for low chirp
mass events, where the signal power is spread over large
time–frequency areas. Tests with cWB showed that the
detection efficiency in O3a does not improve with the

inclusion of Virgo. Therefore, also to reduce computing
time, all cWB detection candidates and waveform consis-
tency tests reported in this catalog use the HL network
only.

B. GstLAL and PyCBC searches for modeled
sources

Both the GstLAL pipeline [106, 117, 118] and the
PyCBC [132] pipeline [35, 119–122] implement indepen-
dently designed matched-filter analyses. Both were used
in previous LVC searches for gravitational waves [1, 4–
8, 40].

The matched filter method relies on a model of the sig-
nal, dependent on the source physical parameters. Most
important for the phase evolution of the source (and
therefore the matched filter) are the intrinsic parame-
ters: two individual component masses m1, m2, and two
dimensionless spin vectors ~χ{1,2}, where the dimension-
less spin is related to each component’s spin angular mo-

mentum ~S by ~χi = c~Si/(Gm
2
i ).

We also make use of combinations of these intrinsic
parameters that are typically well-constrained by gravi-
tational wave measurements; the binary chirp mass [133],

M =
(m1m2)3/5

(m1 +m2)1/5
, (1)

determines to lowest order the phase evolution during
the inspiral, and is typically better constrained than the
component masses. At higher orders, the mass ratio q =
m2/m1 (where m2 ≤ m1) and effective inspiral spin χeff

affect the binary phase evolution. The effective inspiral
spin is defined as [134]:

χeff =
(m1~χ1 +m2~χ2) · L̂N

M
, (2)

where M = m1 + m2 is the total mass and L̂N is the
unit vector along the Newtonian orbital angular momen-
tum. The spin tilt angle for each component object

θLSi
= cos−1

(
~χi · L̂N/|~χi|

)
quantifies the angle between

the orbital angular momentum vector and its spin vec-
tor. Since the spin and angular momentum vectors vary
if the system precesses, by convention we use the spin pa-
rameters at a reference frequency of 20 Hz, with the ex-
ception of GW190521 where we use 11 Hz for consistency
with previous publications [32, 33]. Additional intrinsic
parameters are needed to describe eccentricity, which we
assume to be zero in our modeled analyses. The timescale
for circularization of isolated binaries with non-zero ec-
centricity at birth is sufficiently short that sources are ex-
pected to have negligible eccentricity when they enter the
sensitive bands of the LIGO and Virgo detectors [135].
However, dynamically formed binaries may have residual
eccentricity as the signal enters the sensitive band of the
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mm m1 m2 M q χ1,z χ2,z fmin(Hz)

0.99 1, 3 1, 3 < 6 0.33, 1 low low 15

0.97 3, 150 1, 3 < 153 0.02, 1 high low 15

0.99 3, 91 3, 50 < 100 0.1, 1 high high 15

0.97 30, 392 3, 36 < 400 0.02, 0.1 high high 15

0.99 50, 400 9, 400 > 100 0.1, 1 high high 10

TABLE II. GstLAL template bank parameters. Low spin
denotes the range −0.05 to 0.05 and high spin denotes the
range −0.999 to 0.999.

detector. These systems have been the target of unmod-
elled searches of previous observing runs, but with no
candidate events reported [131].

Seven extrinsic parameters provide the orientation and
position of the source in relation to the Earth: the lumi-
nosity distance DL, two-dimensional sky position (right
ascension α and declination δ), inclination between total
angular momentum and line-of-sight θJN , time of merger
tc, a reference phase φ, and polarization angle ψ.

In general, as the signal travels from the source to the
detector its frequency is redshifted by a factor (1 + z).
For a system involving only black holes, the observed
signal is identical to that from a source in the rest frame
of the detector with total mass Mdet = (1 + z)M [136,
137]. For convenience, the templates used by the modeled
searches are defined in the rest frame of the detectors
which subsumes the factor (1 + z) into the definition of
masses.

For this work, the GstLAL analysis used a template
bank with component masses between 1 M� and 400 M�
with total masses, Mdet, between 2 M� and 758 M� and
spins that are aligned or anti-aligned with the binary’s
orbital angular momentum, such that only the spin com-
ponents χi,z = ~χi · L̂N are non-zero. The bank was
constructed in five regions via a stochastic placement
algorithm [138, 139] satisfying different minimal match
(mm) [112] criteria with waveforms starting at fmin as
described in Table II. Template placement was aug-
mented to improve the collection of background statis-
tics in the last region by a grid of templates distributed
uniformly in the logarithm of component mass to im-
prove detection efficiency for systems with primary mass
mdet

1 above 50 M� [8, 140]. The TaylorF2 waveform ap-
proximant [133, 141–144] was used for templates with
Mdet < 1.73 M� and the SEOBNRv4 ROM waveform
approximant [145] for templates with M≥ 1.73 M�.

The PyCBC analysis used a template bank covering
the same parameter space as for GWTC-1 [8] shown
in Figs. 3 and 7 of [146]. Unlike the previous work,
the template bank here was created using a hybrid
geometric-random method described in [147, 148]. This
new method provides a more efficient template bank—
in terms of covering the full parameter space with fewer
template waveforms—than the stochastic method [138,
139]. This bank is broadly similar to the parameter space

covered in the GstLAL search described above with a key
difference being that only templates longer than 0.15 s
were kept [146].

Both GstLAL and PyCBC scan data from each gravi-
tational wave detector against the above-described banks
of template waveforms to produce SNR time-series [35].
The SNR time series are maximized over short time win-
dows to produce a set of triggers for each template and
each detector. Triggers that pass an SNR threshold of 4
in one detector form the basis of candidate events accord-
ing to the procedures for each pipeline described below.
PyCBC removes the time period during category 2 veto
flags from the final results, while GstLAL uses only iDQ
for single-detector triggers and no data quality products
for coincident triggers.

GstLAL defines a candidate event as consisting of
triggers from one or more gravitational wave detectors
ranked by the SNRs of the triggers, signal-consistency
tests, time delays between each detector, phase dif-
ferences between detectors, the (possibly zero) time-
averaged volumetric sensitivity of each detector, and
the signal population model. These parameters are
used as variables in the likelihood-ratio ranking statis-
tic L [106, 117, 118, 149] which is a monotonic function
of the inverse false alarm probability [150].

There are two differences between the ranking statis-
tic used here and in O2 [8]. First, we implemented a
template likelihood p(T|signal,SNR) [151], which is the
probability that a trigger is recovered by a template T,
given the trigger SNR and that the signal belongs to some
population. Previous versions of GstLAL approximated
p(T|signal,SNR) by a constant in L [106, 117, 149], im-
plying all templates were equally likely to recover a sig-
nal. Now, the template likelihood is informed by the
template bank (to account for the fact that templates
are not uniformly distributed in parameter space [152])
and a signal-population model, which for this search
considers θ = {mdet

1 ,mdet
2 , χ1,z, χ2,z} and is given by

p(θ|signal) dθ ∝ 1/(4mdet
1 mdet

2 ) dθ. The distribution
p(θ|signal) is deliberately broad to minimize the num-
ber of missed signals. Second, single-detector candidate
events are ranked using both an empirically determined
penalty and information from iDQ [91] as described pre-
viously. The penalty from iDQ is added to the denom-
inator of L. Candidates from the GstLAL search had
their likelihood ratios and significance estimated using
the entire ∼ 6 month data set.

PyCBC identifies candidate events by requiring trig-
gers in both LIGO Hanford and LIGO Livingston with a
time delay smaller than the light travel time between ob-
servatories. These candidate events are then ranked us-
ing a set of signal-based vetoes, data quality information,
and by comparing the properties of the event against
those expected from astrophysical signals [122]. A FAR
is then computed for each of these candidate events by
estimating the background noise distribution using time-
shifted analyses similarly to cWB [35, 121, 153], trig-
gers from LIGO Livingston being timeshifted relative to
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LIGO Hanford by multiples of 0.1 s. Virgo data were not
searched with the PyCBC pipeline due to three-detector
searches not being completely integrated in the version
of code used.

A focused search for BBH coalescences [27] is also used
here, denoted later as PyCBC BBH. This was motivated
by the fact that all signals observed in O1 and O2, with
the single exception of the binary neutron star merger
GW170817, were consistent with BBH coalescences with
mass ratio close to 1 and effective inspiral spins close to
0. The full parameter space search used for GWTC-1 [8],
in contrast, was tuned to observe signals anywhere in the
possible space of signal parameters, which might include
signals that do not match well with search templates.
The PyCBC BBH search uses a recently developed de-
tection statistic [27, 154] which includes a number of tun-
ing choices to reject triggers that do not well match the
filter waveforms, and also includes a template weighting
implementing a prior that signals detectable in any given
range of SNR are uniformly distributed in chirp mass.
This search enabled PyCBC to identify more BBHs in the
O1 and O2 datasets than reported in the GWTC-1 pa-
per [8, 27]. This included some of the BBHs first reported
in [23, 25] by independently-developed searches [24, 155].
We use the focused BBH search in this work to better
extract BBH coalescences from the data: this search con-
siders only a reduced set of filter templates defined prior
to the analysis of O3 data, namely systems with mass
ratio q > 1/3, and with both component masses (in de-
tector frame) larger than 5 M�.

C. Estimation of modeled searches sensitivity

In order to estimate the sensitivity of the GstLAL and
PyCBC searches, we conducted a simulation campaign
with ∼160,000 simulated signals injected into the O3a
gravitational wave data and analyzed by both matched
filter pipelines. The simulated population, intended to
conservatively (over)-cover possible populations of BBHs
[11, 37], contains component masses m1, m2 between
2 M� and 100 M� and extends out to a maximum red-
shift of 2.3. In order to reduce statistical uncertainties,
the mass, spin and redshift distributions should be suffi-
ciently similar to the population models for which we in-
tend to estimate merger rates: we chose p(m1) ∝ m−2.35

1 ,
p(m2 |m1) ∝ m2

2 (for m2 < m1), and χi,z values dis-
tributed uniformly between −0.998 and 0.998. The
cosmological distribution of sources simulates a merger
rate in the comoving frame that evolves as R(z) =
R(0)(1 + z)2, thus the source redshift distribution fol-
lows p(z) ∝ (1 + z)dVc/dz, where Vc is the comoving
volume (see, e.g., [156] for further discussion of cosmolog-
ical effects). The SEOBNRv4 opt aligned-spin waveform
model [145] was used for the simulated signals.

The expected number of signals from such a population
detected by a given analysis may be written as

N̂ = VR(0), (3)

where R(0) is the rate of signals per unit volume and
unit observing time at present, and V is the effective sur-
veyed hypervolume, a measure of analysis sensitivity for
the injected population.2 Since each analysis recovered
over 104 injections, statistical counting uncertainties in
the hypervolumes V are at the sub-percent level. Our
estimates of sensitivity are, though, affected by possi-
ble systematic uncertainties in calibration of the strain
data. Strain calibration affects the detectability of simu-
lated signals via the magnitude of the response function,
which is affected by uncertainties of at most a few percent
over the frequency range where the SNR of binary merger
signals is accumulated; see [74] for details. The hyper-
volume V surveyed by each analysis, at a detection FAR
threshold of 2.0 per year, is 0.456 Gpc3 yr for GstLAL,
0.296 Gpc3 yr for PyCBC, and 0.386 Gpc3 yr for PyCBC
BBH. For a combination of all matched filter analyses
presented in this catalog, with any injection found in one
or more analysis below the FAR threshold considered as
detected, we find a surveyed hypervolume 0.567 Gpc3 yr.
Full results from the injection campaign are available via
a data release at [157].

D. Estimation of signal probability

For each candidate event, the probability of origin from
an astrophysical source pastro and corresponding proba-
bility of terrestrial noise origin pterr = 1− pastro may be
estimated using the outputs of search pipelines. We ob-
tain these probabilities for the candidate events in this
catalog consistent with a BBH, via the Poisson mixture
model formalism [158] used in O1 [40, 156, 159]. Only
BBH candidate events are considered because, other than
GW190425 [160] whose component masses are consistent
with those of NSs, all significant detections can be classi-
fied as BBHs.3 A low significance candidate NSBH event,
GW190426, was reported in low-latency [161]; however,
its astrophysical probability is strongly dependent on
prior assumptions of the rate of such signals. We there-
fore do not estimate its pastro here.

We start by collecting the ranking statistics ~x =
{x1, x2, . . . , xN} of all candidate events more significant
than a predefined threshold: for the GstLAL pipeline
events are thresholded on FAR, while for PyCBC, a rank-
ing statistic threshold is applied. The threshold for Gst-
LAL is chosen to ensure that the total number of back-
ground events considered exceeds the number of signals
by a large (∼ 100) factor, which enables an accurate
estimate of the total rate of background events above

2 The measure V is not equivalent to a geometric volume-time
(VT), because both the injected population density and the co-
moving volume element vary over redshift.

3 There is some ambiguity regarding the BBH nature of
GW190814 [31]. Nevertheless, its chirp mass and total mass
are not inconsistent with those of BBHs.
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threshold. On the other hand, PyCBC estimates the
background rate from time-shifted analyses, as outlined
above in Section IV B, thus the requirement to include a
large number of background events is relaxed. The statis-
tic threshold is then set low enough to include (at least)
all events with pastro & 0.1.

Additionally, for both GstLAL and PyCBC searches,
a threshold of 4.35M� is applied on the chirp mass of
the templates, corresponding to a 5M� + 5M� binary,
ensuring that the selected candidate events have template
masses consistent with those of putative BBHs. Using the
distribution of ranking statistics x under the foreground
model, f(x) = p(x|signal), and the distribution under the
background model, b(x) = p(x|noise), estimated by each
matched filter pipeline, we assign a Bayes factor k(x) =
f(x)/b(x) to each event. Assuming that foreground and
background triggers are drawn from independent Poisson
processes, one can then calculate the posterior over the
Poisson expected counts for each process, Λ1 and Λ0.

For the PyCBC searches presented here we proceed as
for O1 and O2 [8] and estimate foreground and back-
ground event densities empirically for all putative BBH
candidate events with ranking statistic above a given
threshold. The PyCBC full parameter space and BBH
focused searches differ in how their ranking statistics are
calculated: for the full search [122], a threshold of 7.9
is applied to the ranking statistic; while for the BBH
search [27, 154], a threshold value of 9 is applied. We
empirically measure the rate of noise events satisfying
these cuts via time-shifted analyses, and infer the poste-
rior over the rate of signals; finally we marginalize over
the signal rate to obtain probabilities of astrophysical
and terrestrial origin for each event [162]. Since the Py-
CBC BBH search is more sensitive to realistic BBH sig-
nal populations, implying a more accurate estimate of the
relative densities of signal and noise events within its tar-
geted mass region, we consider the pastro values from the
BBH analysis to be more accurate for events recovered
by both searches.

For the GstLAL analysis, we estimate the astrophysical
and terrestrial probabilities, pastro(x|~x), from the joint
posterior on the Poisson expected counts, p(Λ0,Λ1|~x),
where the set of triggers ~x have a chirp mass M >
4.35 M�, and a FAR < 8766 yr−1. The prior used to
construct the joint counts posterior is taken to be the
corresponding posterior from O1 and O2 [163].

V. ESTIMATION OF SOURCE PARAMETERS

Once triggers of interest have been identified, the phys-
ical parameters of the candidate event gravitational wave
signals are inferred by computing their posterior proba-
bility density functions. The uncertainty in the source
parameters is quantified by the posterior probability dis-

tribution p(~ϑ|~d), which is calculated using Bayes’ theo-

rem as

p(~ϑ|~d) ∝ p(~d|~ϑ)π(~ϑ) , (4)

where p(~d|~ϑ) is the likelihood of the data given the model

parameters ϑ, and π(~ϑ) is the prior probability distribu-
tion for the parameters. The likelihood is calculated from
a coherent analysis of data from each of the detectors. As
in our previous analyses, e.g., [164], we assume that the
noise can be treated as Gaussian, stationary, and uncor-
related between detectors [63, 165] in the stretch of data
used to calculate the likelihood and to measure the noise
power spectral density (PSD). This yields a Gaussian
likelihood [137, 166] for the data from a single detector,

p(di|~ϑ) ∝ exp

[
−1

2

〈
di − hiM (~ϑ)

∣∣∣di − hiM (~ϑ)
〉]

, (5)

where di is the data of the i-th instrument, hiM (~ϑ) is

the waveform model calculated at ~ϑ projected on the i-
th detector and adjusted to account for the uncertainty
in offline calibration described in Sec. III A. The noise-
weighted inner product 〈a|b〉 [137, 167] requires speci-
fying the frequency range in which the analysis is per-
formed as well as the noise PSD.

Upon detection of a binary merger, exploratory analy-
ses are first conducted to identify which models and set-
tings are most suitable for use in our production analyses.
In general, we use a low frequency cutoff of flow = 20 Hz,
unless data quality requirements at the time of specific
candidate events are different, in which case a specific
range is noted in Sec. VII. The high frequency cutoff
is always equal to the Nyquist frequency of the analy-
sis for each event, which is determined by the sampling
rate. The sampling rate is tailored for specific candi-
date events, since the signals (especially the higher-mass
BBH signals) do not require the full bandwidth available
at the native sampling rate of 16 kHz. The PSD charac-
terizing the noise at the time of each event is measured
by BayesWave using the same data that is used for like-
lihood computation [168, 169]. We then obtain the final
joint likelihood over all detectors by multiplying together
the likelihood from each detector in Eq. (5).

The gravitational wave signal emitted by a circularized
compact binary composed of two black holes depends on
fifteen unknown parameters, defined in Sec. IV B. The
initial masses and spins of the inspiraling black holes
determine the peak gravitational wave (GW) luminos-
ity and mass and spin of the post-merger remnant black
hole, which we calculate from fits to numerical relativ-
ity (NR) [5, 170–174]. When one or both objects are
neutron stars, matter effects modify the binary inspiral
and are included via the dimensionless quadrupole tidal
deformability Λi, adding one extra parameter for each
neutron star in the binary. Other matter effects, such
as octupolar and higher tidal deformabilities, non-black
hole spin-induced multipole moments, and f -mode reso-
nances, are parameterized by the Λi using quasiuniversal
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relations [175]. The dominant tidal contribution to the
waveform is given by the dimensionless tidal deformabil-
ity parameter [176, 177]

Λ̃ =
16

13

[
(m1 + 12m2)m4

1Λ1 + (m2 + 12m1)m4
2Λ2

]
(m1 +m2)5

. (6)

Non-spinning black holes have Λi = 0 [178, 179], and the
waveform models we use adopt the convention that this
is true for all black holes [180, 181]. We do not calculate
final masses and spins when matter effects are included
in the analyses.

A. Waveform models

We characterize the detected binaries using multiple
waveform models, each of which uses a different set of
modeling techniques and includes different physical ef-
fects. For every event with inferred component masses
above 3 M� in preliminary analyses, we perform pro-
duction parameter estimation runs using a subset of
BBH waveforms. IMRPhenomPv2 [182, 183, 190] is
a phenomenological model for gravitational waves from
precessing BBH systems, calibrated to numerical rela-
tivity (NR) and using an effective single-spin descrip-
tion to model effects from spin-precession[208]. SEOB-
NRv4P [145, 187] is based on the effective-one-body
(EOB) formalism [209, 210] and calibrated to NR, with
a generic two-spin treatment of the precession dynam-
ics. These models rely on twisting up procedures, where
aligned-spin, NR-calibrated waveform models defined in
the co-precessing frame are mapped (through a suitable
frame rotation) to approximate the multipoles of a pre-
cessing system in the inertial frame [211–215]. These
models do not include contributions to the strain from
spherical harmonic modes beyond ` = 2, so we also ana-
lyze each event with at least one of the following models
that incorporate higher-order multipole (HM) moments
and precession effects: IMRPhenomPv3HM [191, 192],
SEOBNRv4PHM [187, 188] and NRSur7dq4 [193]. IM-
RPhenomPv3HM (based on IMRPhenomHM [184]) and
SEOBNRv4PHM (based on SEOBNRv4HM [185]) both
rely on the twisting-up approach described above. NR-
Sur7dq4 is a surrogate waveform model for BBH sys-
tems that directly interpolates a large set of precessing
NR simulations. Unlike the other two HM models, NR-
Sur7dq4 waveforms are restricted by the length of the
NR simulations in the training set, covering only ∼ 20
orbits before merger.

Any sources with evidence for at least one binary
component below 3 M� are characterized using several
waveforms capable of modeling matter effects. For the
BNS system GW190425 [30] we use the following: IMR-
PhenomD NRTidal and IMRPhenomPv2 NRTidal [194,
195], which are based on the BBH models IMRPhenomD
and IMRPhenomPv2 respectively, and incorporate NR
and tidal EOB-tuned contributions from tidal interaction

as well as equation-of-state dependent self-spin effects;
TaylorF2 [141, 200–205], which describes waveforms from
the inspiral of non-precessing compact binaries, with
matter effects derived in the post-Newtonian formalism,
including quadrupole-monopole coupling parameterized
in terms of the tidal deformabilities [175, 216, 217]; TEO-
BResumS [196], an aligned-spin EOB model that incor-
porates post-Newtonian and self-force contributions to
the tidal potential; and finally a frequency-domain surro-
gate model of aligned-spin SEOBNRv4T waveforms [145,
197–199], which were derived in the EOB approach and
include dynamical tides.

For potential NSBH sources with m1 > 3 M� > m2,
we use both BBH waveforms and the NSBH-
specific aligned-spin waveform models SEOB-
NRv4 ROM NRTidalv2 NSBH [206] and IMRPhe-
nomNSBH [207] which feature the dominant quadrupole
modes. SEOBNRv4 ROM NRTidalv2 NSBH uses
SEOBNRv4 ROM as the BBH baseline, while IMR-
PhenomNSBH employs phase evolution from IMR-
PhenomD [182, 183] and amplitude from IMRPhe-
nomC [218]. Both models contain a phenomenological
description of the tidal effects tuned to NR simula-
tions [219] and include corrections to the amplitude
through inspiral, merger, and ringdown to account for a
possibility of tidal disruption.

To account for the systematic uncertainties in the
waveform models, we combine equal numbers of posterior
samples (described in Sec. V B) from all parameter esti-
mation runs for an event that use waveforms with compa-
rable physics. This treats the constituent waveform mod-
els in the combined results as having equal weight rather
than weighting them by marginal likelihood as suggested
in [220]. Table III shows the waveforms employed in this
work, the keys under which we group results using these
waveforms, and descriptions of the physical effects incor-
porated in the models.

B. Sampling methods

We use several methods to draw samples from the
posterior distributions on source parameters using the
models described above. The LALInference [166] pack-
age was used for most analyses presented in this pa-
per. This package provides two independent stochastic
sampling algorithms: a MCMC algorithm and a nested
sampling [221] algorithm. We employ LALInference’s
nested sampling algorithm for most of the BBH anal-
yses performed with the IMRPhenomD and IMRPhe-
nomPv2 waveforms, and the MCMC algorithm for those
performed with SEOBNRv4P. However, the serial na-
ture of these methods makes them unsuitable for use
with some of the more computationally costly waveform
models, such as waveforms with HMs and precession ef-
fects, especially for long-duration signals. For these, we
also use RIFT, which performs a hybrid exploration of
the parameter space split into intrinsic and extrinsic pa-
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Combined key Waveform name Precession Multipoles (`, |m|) Ref.

ZeroSpinIMR∗ IMRPhenomD × (2, 2) [182, 183]

AlignedSpinIMR SEOBNRv4 ROM × (2, 2) [145]

IMRPhenomHM × (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3) [184]
AlignedSpinIMRHM

SEOBNRv4HM ROM × (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) [185, 186]

PrecessingSpinIMR
SEOBNRv4P X (2, 2), (2, 1) [187–189]

IMRPhenomPv2 X (2, 2) [190, 191]

IMRPhenomPv3HM X (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3) [192]

NRSur7dq4 X ` ≤ 4 [193]PrecessingSpinIMRHM

SEOBNRv4PHM X (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) [187–189]

AlignedSpinTidal†

IMRPhenomD NRTidal × (2, 2) [194, 195]

TEOBResumS × (2, 2) [196]

SEOBNRv4T surrogate × (2, 2) [145, 197–
199]

PrecessingSpinIMRTidal† IMRPhenomP NRTidal X (2, 2) [194, 195]

AlignedSpinInspiralTidal† TaylorF2 × (2, 2) [141, 200–
205]

SEOBNRv4 ROM NRTidalv2 NSBH × (2, 2) [206]
AlignedSpinIMRTidal NSBH

IMRPhenomNSBH × (2, 2) [207]

TABLE III. Waveform models used in this paper. We indicate which multipoles are included for each model. For precessing
models, the multipoles correspond to those in the co-precessing frame. The Combined key column specifies which results
generated with these waveforms are combined in our data release under a common key. The models below the horizontal line
include matter effects.
∗ For these datasets we enforce |~χi| = 0.
† The data release contains versions of these keys with “HS” and “LS” in the name, which correspond to the high spin
(|~χi| ≤ 0.89) and low spin (|~χi| ≤ 0.05) priors respectively.

rameters [222–224], and Parallel Bilby, based on a dis-
tributed implementation of nested sampling [225–228],
which was also used in previously published analyses of
GW190412 [229], GW190425 [30], and GW190814 [31].
The raw posterior samples from the analyses described
above are then collated to a common format using the
PESummary package [230].

C. Priors

Each event is analysed independently using a prior dis-
tribution on the source parameters that is chosen to en-
sure adequate sampling of the parameter space and sim-
plicity in using the posterior samples for further analy-
ses. We choose a prior that is uniform in spin magnitudes
and redshifted component masses, and isotropic in spin
orientations, sky location and binary orientation. The
prior on luminosity distance corresponds to a uniform
merger rate in the co-moving frame of the source, us-
ing a flat ΛCDM cosmology with Hubble constant H0 =
67.9 km s−1 Mpc−1 and matter density Ωm = 0.306 [231];

this physically motivated prior differs from that used in
previous published results which used a prior ∝ D2

L. For
details on the conversion see Appendix C. Intrinsic source
masses are computed by dividing the redshifted masses
measured in the detector frame by (1 + z), where z is
calculated using the same cosmological model.

For the LALInference and Parallel Bilby analyses, we
marginalize over uncertainty in the strain calibration.
The calibration errors in amplitude and phase are de-
scribed by frequency-dependent splines, whose coeffi-
cients are allowed to vary alongside signal parameters in
the inference. The prior distribution on the calibration
error at each spline node is set by the measured uncer-
tainty at each node [164].

VI. CANDIDATE EVENT LIST

Table IV presents the results from each of cWB, Gst-
LAL, and PyCBC passing a FAR threshold of 2.0 yr−1;
the full gravitational wave name encodes the UTC date
with the time of the event given after the underscore.



22

GW190521 [32, 33], GW190425 [30], GW190412 [229],
and GW190814 [31] were published previously and these
names are used here verbatim. The 2.0 yr−1 thresh-
old was chosen to be higher (more permissive) than the
threshold used for public alerts, 1.2 yr−1,4 but sufficiently
low to provide an expected contamination fraction below
10%. A deeper candidate event list, which may contain
marginally significant triggers, will be provided later once
final data calibration and quality checks are available.
Unlike GWTC-1 [8], a separate pastro threshold was not
applied, however, pastro is greater than 50% for all candi-
date events for which pastro was calculated in this work,
satisfying the same criteria as GWTC-15. Among the 39
reported candidate events passing the FAR threshold of
2.0 yr−1, 15 were detected by cWB, 36 candidate events
were detected by GstLAL, and 27 candidate events were
detected by PyCBC; 25 candidate events were recovered
by at least two pipelines. Given the FAR threshold and
number of candidate events detected, we expect < 4 can-
didate events in this list to be the result of noise. Based
on the FAR or the probability of being a signal described
in Sec. IV D, GW190426 152155, GW190719 215514, and
GW190909 114149 are the most likely to be noise among
the candidate event list.

cWB recovered fewer candidate events than either Gst-
LAL or PyCBC. This is expected because cWB has
highest sensitivity for short duration, high mass signals,
and its sensitivity decreases for lower mass systems with
longer duration. cWB also required candidate events to
be found in coincidence between at least two detectors.

The difference in candidate event recovery between
GstLAL and PyCBC is primarily due to PyCBC ana-
lyzing only times when both LIGO Hanford and LIGO
Livingston were operating and requiring signals to be
observed in both. PyCBC did not analyze Virgo data
due to the fact that the code version used for this cat-
alog had not fully integrated 3-detector analysis includ-
ing Virgo. GstLAL analyzed LIGO and Virgo data and
allowed for the detection of candidate events from one,
two, or three gravitational wave detectors. These algo-
rithmic choices account for the GstLAL-only detection
of GW190424 180648, GW190425, GW190620 030421,
GW190708 232457 and GW190910 112807, which were
detected above the required SNR threshold only in the
LIGO Livingston detector, and for GW190630 185205,
GW190701 203306, and GW190814, where the inclusion
of Virgo was essential for determining event significance.
The difference in candidate event recovery between Py-
CBC and GstLAL is also consistent with the results of
the simulation presented in Sec. IV C. After accounting

4 https://emfollow.docs.ligo.org/userguide/analysis/

index.html#alert-threshold
5 Had we only applied a 2.0 yr−1 FAR threshold in GWTC-1
and not a p-astro threshold, one additional marginal candidate
event from GWTC-1 would have passed the criteria we use here:
170616

for differences in analyzed data, the GstLAL and Py-
CBC methods detect a comparable number of candidate
events.

The remaining differences between the candi-
date event lists from GstLAL (GW190426 152155,
GW190527 092055, GW190909 114149, and
GW190929 012149) and PyCBC (GW190413 052954,
GW190514 065416, and GW190719 215514) arise from
the low SNR of each event (. 10 SNR). Small fluctu-
ations in SNR caused by different PSD estimation and
data segmentation between pipelines leads to differences
in significance estimation. This list of low SNR candi-
date events, which were only identified by one pipeline,
also contains the three candidate events with the highest
minimum FAR among the pipelines (GW190426 152155,
GW190719 215514, and GW190909 114149) which have
the highest likelihood among the full candidate event
list of being caused by noise.

Since 2 April 2019 20:00 UTC, the LVC produced auto-
mated, public preliminary GCN Notices for gravitational
wave candidate events appearing in two or more interfer-
ometers with FARs less than 6 per year before a multiple
analysis trials factor was applied resulting in an effective
threshold of 1.2 yr−1 [239]. On 11 June 2019, this was
extended to include gravitational wave candidate events
appearing in only one interferometer and satisfying the
same FAR threshold. During O3a, 33 candidate events
were disseminated as plausible astrophysical signals6; 7
were not recovered above the threshold considered in this
work.

S190510g, S190718y, S190901ap, S190910d, S190910h,
S190923y, and S190930t [232–238] are the 7 candi-
date events disseminated via GCNs which are not re-
covered here. S190718y, S190901ap, S190910h, and
S190930t were initially identified as single-detector candi-
date events (with an SNR above threshold in only one de-
tector) with FARs of 1.14 yr−1, 0.22 yr−1, 1.14 yr−1, and
0.47 yr−1, respectively. Relaxing the demand for coinci-
dent observation across interferometers allows LVC anal-
yses to report on additional astrophysically interesting
candidate events [160, 240], but also removes a powerful
check on the search background and leads to larger uncer-
tainties in the FAR. All public alerts were subsequently
followed-up in low-latency to assess whether the analysis
pipelines and detectors were operating as expected. The
low-latency followup of S190718y, S190901ap, S190910h,
and S190930t did not uncover any reason to retract these
candidate events based on data quality. However, after
offline re-analysis with additional background statistics,
these four single detector candidate events are no longer
significant enough to merit inclusion in Table IV.

The remaining three public alert candidate events not
recovered here – S190510g, S190910d, and S190923y –
were found in coincidence in low-latency, albeit at mod-
est significance. S190510g was found in low-latency by

6 https://gracedb.ligo.org/superevents/public/O3/

https://emfollow.docs.ligo.org/userguide/analysis/index.html#alert-threshold
https://emfollow.docs.ligo.org/userguide/analysis/index.html#alert-threshold
https://gracedb.ligo.org/superevents/public/O3/
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Name Inst. cWB GstLAL PyCBC PyCBC BBH

FAR (yr−1) SNR∗ FAR (yr−1) SNR pastro FAR (yr−1) SNR∗ pastro FAR (yr−1) SNR∗ pastro

GW190408 181802 HLV < 9.5× 10−4 14.8 < 1.0× 10−5 14.7 1.00 < 2.5× 10−5 13.5 1.00 < 7.9× 10−5 13.6 1.00

GW190412 HLV < 9.5× 10−4 19.7 < 1.0× 10−5 18.9 1.00 < 3.1× 10−5 17.9 1.00 < 7.9× 10−5 17.8 1.00

GW190413 052954 HLV – – – – – – – – 7.2× 10−2 8.6 0.98

GW190413 134308 HLV – – 3.8× 10−1 10.0 0.95 – – – 4.4× 10−2 9.0 0.98

GW190421 213856 HL 3.0× 10−1 9.3 7.7× 10−4 10.6 1.00 1.9× 100 10.2 0.89 6.6× 10−3 10.2 1.00

GW190424 180648 L 7.8× 10−1† 10.0 0.91

GW190425 LV 7.5× 10−4† 13.0 –

GW190426 152155 HLV – – 1.4× 100 10.1 – – – – – – –

GW190503 185404 HLV 1.8× 10−3 11.5 < 1.0× 10−5 12.1 1.00 3.7× 10−2 12.2 1.00 < 7.9× 10−5 12.2 1.00

GW190512 180714 HLV 8.8× 10−1 10.7 < 1.0× 10−5 12.3 1.00 3.8× 10−5 12.2 1.00 < 5.7× 10−5 12.2 1.00

GW190513 205428 HLV – – < 1.0× 10−5 12.3 1.00 3.7× 10−4 11.8 1.00 < 5.7× 10−5 11.9 1.00

GW190514 065416 HL – – – – – – – – 5.3× 10−1 8.3 0.96

GW190517 055101 HLV 6.5× 10−3 10.7 9.6× 10−4 10.6 1.00 1.8× 10−2 10.4 1.00 < 5.7× 10−5 10.2 1.00

GW190519 153544 HLV 3.1× 10−4 14.0 < 1.0× 10−5 12.0 1.00 < 1.8× 10−5 13.0 1.00 < 5.7× 10−5 13.0 1.00

GW190521 HLV 2.0× 10−4 14.4 1.2× 10−3 14.7 1.00 1.1× 100 12.6 0.93 – – –

GW190521 074359 HL < 1.0× 10−4 24.7 < 1.0× 10−5 24.4 1.00 < 1.8× 10−5 24.0 1.00 < 5.7× 10−5 24.0 1.00

GW190527 092055 HL – – 6.2× 10−2 8.9 0.99 – – – – – –

GW190602 175927 HLV 1.5× 10−2 11.1 1.1× 10−5 12.1 1.00 – – – 1.5× 10−2 11.4 1.00

GW190620 030421 LV 2.9× 10−3† 10.9 1.00

GW190630 185205 LV < 1.0× 10−5 15.6 1.00

GW190701 203306 HLV 5.5× 10−1 10.2 1.1× 10−2 11.6 1.00 – – – – – –

GW190706 222641 HLV < 1.0× 10−3 12.7 < 1.0× 10−5 12.3 1.00 6.7× 10−5 11.7 1.00 < 4.6× 10−5 12.3 1.00

GW190707 093326 HL – – < 1.0× 10−5 13.0 1.00 < 1.0× 10−5 12.8 1.00 < 4.6× 10−5 12.8 1.00

GW190708 232457 LV 2.8× 10−5† 13.1 1.00

GW190719 215514 HL – – – – – – – – 1.6× 100 8.0 0.82

GW190720 000836 HLV – – < 1.0× 10−5 11.7 1.00 < 2.0× 10−5 10.6 1.00 < 3.7× 10−5 10.5 1.00

GW190727 060333 HLV 8.8× 10−2 11.4 < 1.0× 10−5 12.3 1.00 3.5× 10−3 11.5 1.00 < 3.7× 10−5 11.8 1.00

GW190728 064510 HLV – – < 1.0× 10−5 13.6 1.00 < 1.6× 10−5 13.4 1.00 < 3.7× 10−5 13.4 1.00

GW190731 140936 HL – – 2.1× 10−1 8.5 0.97 – – – 2.8× 10−1 8.2 0.96

GW190803 022701 HLV – – 3.2× 10−2 9.0 0.99 – – – 2.7× 10−2 8.6 0.99

GW190814 LV < 1.0× 10−5 22.2 1.00

GW190828 063405 HLV < 9.6× 10−4 16.6 < 1.0× 10−5 16.0 1.00 < 1.5× 10−5 15.3 1.00 < 3.3× 10−5 15.3 1.00

GW190828 065509 HLV – – < 1.0× 10−5 11.1 1.00 5.8× 10−5 10.8 1.00 < 3.3× 10−5 10.8 1.00

GW190909 114149 HL – – 1.1× 100 8.5 0.89 – – – – – –

GW190910 112807 LV 1.9× 10−5† 13.4 1.00

GW190915 235702 HLV < 1.0× 10−3 12.3 < 1.0× 10−5 13.1 1.00 8.6× 10−4 13.0 1.00 < 3.3× 10−5 12.7 1.00

GW190924 021846 HLV – – < 1.0× 10−5 13.2 1.00 < 6.3× 10−5 12.5 1.00 < 3.3× 10−5 12.4 1.00

GW190929 012149 HLV – – 2.0× 10−2 9.9 1.00 – – – – – –

GW190930 133541 HL – – 5.8× 10−1 10.0 0.92 3.4× 10−2 9.7 1.00 3.3× 10−2 9.8 0.99

TABLE IV. Gravitational wave candidate event list. We find 39 candidate events passing the FAR threshold of 2.0 yr−1 in at
least one of the four searches. Except for previously published events, the gravitational wave name encodes the UTC date with
the time of the event given after the underscore. Bold-faced names indicate that the event was not previously reported. The
second column denotes the observing instruments. For each of the four pipelines, cWB, GstLAL, PyCBC, and PyCBC BBH,
we provide the FAR and network SNR. Of the 39 candidate events, the 5 that were found above the required SNR threshold
in only one of the gravitational wave detectors are denoted by a dagger (†). For candidate events found above threshold in
only one detector (single-detector candidate events), the FAR estimate involves extrapolation. All single-detector candidate
events in this list by definition are rarer than the background data collected in this analysis. Therefore, a conservative bound
on the FAR for triggers denoted by † is ∼ 2 yr−1. GW190521, GW190602 175927, GW190701 203306, and GW190706 222641
were identified by the cWB high-mass search as described in Sec. IV A. GstLAL FARs have been capped at 1× 10−5 yr−1 to
be consistent with the limiting FARs from other pipelines. Dashes indicate that a pipeline did not find the event below the
specified 2.0 yr−1 threshold. Blank entries indicate that the data was not searched by a pipeline. The probability that an
event is astrophysical in origin as described in Sec. IV D is indicated in the column pastro. ∗ PyCBC and cWB SNRs do not
include Virgo. S190510g, S190718y, S190901ap, S190910d, S190910h, S190923y, and S190930t [232–238] were candidate events
disseminated via GCNs which are not recovered here. The SNR for GW190814 (22.2) differs from the previously published
value [31] because the non-observing-mode LIGO Hanford data was not analyzed in this work. The FAR of GW190425 differs
from [30] due to different background data and pipeline configuration.
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GstLAL and assigned a FAR of 0.28 yr−1. There were
initially data quality concerns with S190510g [241] and
offline follow-up using an additional 24 hours of back-
ground collection revealed the candidate event to be
less significant than originally estimated [242]. Com-
parison to the full O3a background corroborates that
the candidate event no longer passes the FAR thresh-
old of 2.0 yr−1. S190910d was identified in low-latency
by the SPIIR compact binary search pipeline [110] with
a FAR of 0.12 yr−1. The compact binary search pipeline
MBTAOnline also recorded a low significance candidate
event at this time. However, the candidate event was not
observed in low-latency or offline by GstLAL, PyCBC or
cWB as significant. Presently, MBTAOnline and SPIIR
are configured to run in low-latency only. S190923y was
reported in low-latency by PyCBC and assigned a FAR of
1.51 yr−1. GstLAL and MBTAOnline also recorded low
significance candidate events at this time. No pipeline
retains this candidate event in the offline analysis below
the threshold of 2.0 yr−1 and it is therefore excluded from
Table IV. These and other sub-threshold events will be
explored further in a future publication.

The remaining 26 public alerts are recovered in our
offline analysis and included in the candidate event list
presented in Table IV. The table also includes 13 gravi-
tational wave detections not previously reported. Four of
these detections, GW190424 180648, GW190620 030421,
GW190708 232457 and GW190910 112807, had
detection-level SNR (≥ 4) in only one of the two
LIGO detectors, making them single-detector ob-
servations from the perspective of candidate event
significance. The incorporation of iDQ data quality into
event ranking, combined with tuning of the signal consis-
tency tests to further reject the O3a glitch background,
improved the sensitivity of the offline GstLAL analysis
to single-detector candidate events compared to the
low-latency configuration, which accounts for these new
discoveries. Nine new detections were observed in two
or more interferometers and appear for the first time in
Table IV: GW190413 052954, GW190413 134308,
GW190514 065416, GW190527 092055,
GW190719 215514, GW190731 140936,
GW190803 022701, GW190909 114149, and
GW190929 012149. Several of these detections were
observed in low-latency, but did not meet the criteria
for public release. They all exhibit moderate network
SNRs (. 10). The offline analyses here differ from their
low-latency counterparts through having improved tem-
plate banks, improved use of data quality information,
improved data calibration, data cleaning, and improved
tuning to reject the non-stationary noise background
observed in O3a. These differences account for the new
moderate SNR candidate events.

During O3a, the LVC issued 8 retractions for public
alerts that were promptly determined to be unlikely to
have originated from astrophysical systems. The LIGO
Livingston detector was more problematic for low-latency
analyses than in previous observing runs with the rate of

noise glitches being significantly higher than in O2 (see
Sec. III B). Low-latency detection, especially for candi-
date events originating in only one interferometer, was
especially challenging during O3a.

S190405ar was the first retraction [243]. This Notice
was distributed in error and was never considered to be
of astrophysical origin because the event’s FAR was sig-
nificantly above threshold at 6800 yr−1. The remaining
retractions were caused by severely non-stationary noise.
A glitch in LIGO Hanford data led to the identification
and subsequent retraction of S190518bb [244]. S190524q,
S190808ae, S190816i, S190822c, S190829u, and S190928c
all exhibited extreme non-stationary noise in the LIGO
Livingston detector [245–250]. In some cases where the
impact of glitches was unknown, follow-up analyses were
performed to remove instrumental artifacts and reassess
the candidate event significance. After follow-up, no can-
didate events remained significant. None of these 8 re-
tracted candidate events is identified as significant in the
offline analysis.

VII. SOURCE PROPERTIES

We analyze the 39 candidate events shown in Table IV
with the parameter estimation techniques described in
Sec. V. For a subset of candidate events, event valida-
tion procedures outlined in Sec. III C identified transient
noise that may have impacted the results of parameter
inference. In order to minimize the effect of this tran-
sient noise, candidate-specific procedures were explored
for all impacted candidate events. In most cases, tran-
sient noise was mitigated through the glitch subtraction
methods outlined in Sec. III D. After application of these
methods, the identified transient noise was considered
mitigated if the data surrounding the event was consis-
tent with Gaussian noise, as measured by the variance
of the measured power spectral density during the time
period containing the identified transient [94]. If data
were not Gaussian after glitch subtraction, we evaluated
the SNR lost by restricting the frequency range of data
considered in parameter inference to fully excise the iden-
tified transient noise. In cases where the single detector
SNR loss was below 10%, this reduced frequency range
was used in analyses. Otherwise, the nominal frequency
range was used. The full list of candidate events using
candidate-specific mitigation, along with the mitigation
configuration, is found in Table V.

Based on the investigations described in Appendix A,
we find that most gravitational wave candidate events
in this catalog exhibit small changes in source param-
eter estimates when spherical harmonic modes above
` = 2 are included. However, these differences in
aggregate could still affect population-level studies,
so we present as fiducial results the combined pos-
terior samples of HM runs for all BBHs candidate
events except GW190707 093326, GW190720 000836,
GW190728 064510, GW190915 235702,
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Name Mitigation

GW190413 134308 L1 glitch subtraction, glitch-only model

GW190424 180648 L1 glitch subtraction, glitch-only model

GW190425 L1 glitch subtraction, glitch-only model

GW190503 185404 L1 glitch subtraction, glitch-only model

GW190513 205428 L1 glitch subtraction, glitch-only model

GW190514 065416 L1 glitch subtraction, glitch-only model

GW190701 203306 L1 glitch subtraction, glitch+signal
model

GW190727 060333 L1 fmin: 50 Hz

GW190814 L1 fmin: 30 Hz; H1 non-observing data
used

GW190924 021846 L1 glitch subtraction, glitch-only model

TABLE V. List of candidate-specific data usage and mit-
igation methods for parameter estimates. Only candidate
events for which mitigation of instrumental artifacts was per-
formed are listed. The glitch subtraction methods used for
these candidate events are detailed in Sec. III D. The mini-
mum frequency is the lower limit of data used in analyses of
gravitational wave source properties for the listed interferom-
eter.

GW190924 021846, and GW190930 133541. For these
six exceptions, we present combined IMRPhenomPv2–
SEOBNRv4P samples, because the effect of higher
modes is either negligible or subdominant to the sys-
tematics between IMRPhenomPv2 and SEOBNRv4P
results, as detailed in Appendix A. GW190412 [229],
GW190521 [32, 33], and GW190814 [31] were analyzed
extensively in separate publications with the HM wave-
form families SEOBNRv4PHM, IMRPhenomPv3HM, or
NRSur7dq4, so we present HM runs for these candidate
events as fiducial results here and defer readers to those
publications for details on those candidate events.7

GW190425, GW190426 152155, and GW190814
showed indications of including at least one neutron
star, and so were also analyzed using tidal waveforms
in addition to IMRPhenomPv2 and SEOBNRv4P, and
discussed in Sec. VII B. Further details on waveform
systematics and the waveforms employed in this work
can be found in Appendix A, and the full suite of
posterior samples is publicly available at [251].

In the following subsections, we summarize the results
of our parameter estimation analyses and highlight can-
didate events of particular interest. To identify candi-
date events with the most extreme parameter values, we
repeatedly select one posterior sample at random from
each event and record which candidate events have the

7 Where posterior samples from existing publications are used, we
still impose the uniform-in-comoving volume prior described in
Sec. VC for consistency with the new results in this publication.

lowest and highest values of each parameter. From these
repeated trials, we determine each event’s probability of
having the lowest or highest value for a given parame-
ter. Table VI shows 90% credible intervals on the source
parameters of all 39 candidate events using the priors
described in Sec. V C and waveforms specified above.

To provide an overview of the posterior distributions of
the source parameters for all GWTC-2 candidate events,
we show 90% credible regions for all candidate events in
the M–q andM–χeff planes in Figs. 6 and 7, respectively,
and the corresponding one-dimensional marginal poste-
rior distributions on m1, q, and χeff in Fig. 8. The unique
color representing each event is consistent throughout the
figures.

A. Masses of sources with m2 > 3 M�

Our candidate event list includes compact binary
mergers that have higher total masses than those in
GWTC-1 [8] as well as mergers with component masses
in the purported lower mass gap of ∼ 2.5–5 M� [252–
255]. Here we describe the masses for candidate events
with m2 > 3 M�, which we can confidently expect to
be BBHs. The remaining candidate events are described
separately in Sec. VII B.

A majority of the masses of black holes reported
herein are larger than those reported via electromag-
netic observations [256–258]. By repeatedly selecting
one posterior sample at random from each event and
recording the most massive among the ensemble, we
find that the most massive binary system is proba-
bly the one associated with GW190521 [32, 33]. This
system has a 99% probability of being the most mas-
sive, with a total mass of 157.9+37.4

−20.9 M� and remnant

mass 150.3+35.8
−20.0 M�, where we have averaged over SEOB-

NRv4PHM, NRSur7dq4 and IMRPhenomPv3HM wave-
form families. This averaging is done for consistency with
other sources contained in this catalog, in contrast to the
individual results reported in [33], where the NRSur7dq4
results are highlighted. The more massive component
in the source of GW190521 has an 83% probability of
being the most massive BH detected in gravitational
waves to date (m1 = 91.4+29.3

−17.5 M�). GW190519 153544,
GW190602 175927, and GW190706 222641 also have no-
tably high total masses with over 50% posterior support
for total mass M > 100 M�.

The least massive O3a system with m2 > 3 M� is prob-
ably (95%) the one associated with GW190924 021846
(M = 13.9+5.1

−0.9 M�), and likely also has the least mas-
sive object over 3 M� (84% probability and m2 =
5.0+1.3
−1.9 M�).

For most sources detected in O3a, the mass ratio poste-
riors have support at unity and therefore are consistent
with equal mass mergers. A notable exception is the
source of GW190412 which was the first event detected
that had a confidently unequal mass ratio (q = 0.28+0.12

−0.06)
and exhibited strong signs of HM contributions to the
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Event M
(M�)

M
(M�)

m1

(M�)
m2

(M�)
χeff DL

(Gpc)
z Mf

(M�)
χf ∆Ω

(deg2)
SNR

GW190408 181802 42.9+4.1
−2.9 18.3+1.8

−1.2 24.5+5.1
−3.4 18.3+3.2

−3.5 −0.03+0.13
−0.19 1.58+0.40

−0.59 0.30+0.06
−0.10 41.0+3.8

−2.7 0.67+0.06
−0.07 140 15.3+0.2

−0.3

GW190412 38.4+3.8
−3.7 13.3+0.4

−0.3 30.0+4.7
−5.1 8.3+1.6

−0.9 0.25+0.08
−0.11 0.74+0.14

−0.17 0.15+0.03
−0.03 37.3+3.9

−3.9 0.67+0.05
−0.06 21 18.9+0.2

−0.3

GW190413 052954 56.9+13.1
−8.9 24.0+5.4

−3.7 33.4+12.4
−7.4 23.4+6.7

−6.3 0.01+0.29
−0.33 4.10+2.41

−1.89 0.66+0.30
−0.27 54.3+12.4

−8.4 0.69+0.12
−0.13 1400 8.9+0.4

−0.8

GW190413 134308 76.1+15.9
−10.6 31.9+7.3

−4.6 45.4+13.6
−9.6 30.9+10.2

−9.6 −0.01+0.24
−0.28 5.15+2.44

−2.34 0.80+0.30
−0.31 72.8+15.2

−10.3 0.69+0.10
−0.12 520 10.0+0.4

−0.5

GW190421 213856 71.8+12.5
−8.6 30.7+5.5

−3.9 40.6+10.4
−6.6 31.4+7.5

−8.2 −0.05+0.23
−0.26 3.15+1.37

−1.42 0.53+0.18
−0.21 68.6+11.7

−8.1 0.68+0.10
−0.11 1000 10.7+0.2

−0.4

GW190424 180648 70.7+13.4
−9.8 30.3+5.7

−4.2 39.5+10.9
−6.9 31.0+7.4

−7.3 0.15+0.22
−0.22 2.55+1.56

−1.33 0.45+0.22
−0.21 67.1+12.5

−9.2 0.75+0.08
−0.09 26000 10.4+0.2

−0.4

GW190425 3.4+0.3
−0.1 1.44+0.02

−0.02 2.0+0.6
−0.3 1.4+0.3

−0.3 0.06+0.11
−0.05 0.16+0.07

−0.07 0.03+0.01
−0.02 – – 9900 12.4+0.3

−0.4

GW190426 152155 7.2+3.5
−1.5 2.41+0.08

−0.08 5.7+4.0
−2.3 1.5+0.8

−0.5 −0.03+0.33
−0.30 0.38+0.19

−0.16 0.08+0.04
−0.03 – – 1400 8.7+0.5

−0.6

GW190503 185404 71.3+9.3
−8.0 30.1+4.2

−4.0 42.9+9.2
−7.8 28.5+7.5

−7.9 −0.02+0.20
−0.26 1.52+0.71

−0.66 0.29+0.11
−0.11 68.2+8.7

−7.5 0.67+0.09
−0.12 94 12.4+0.2

−0.3

GW190512 180714 35.6+3.9
−3.4 14.5+1.3

−1.0 23.0+5.4
−5.7 12.5+3.5

−2.5 0.03+0.13
−0.13 1.49+0.53

−0.59 0.28+0.09
−0.10 34.2+3.9

−3.4 0.65+0.07
−0.07 230 12.2+0.2

−0.4

GW190513 205428 53.6+8.6
−5.9 21.5+3.6

−1.9 35.3+9.6
−9.0 18.1+7.3

−4.2 0.12+0.29
−0.18 2.16+0.94

−0.80 0.39+0.14
−0.13 51.3+8.1

−5.8 0.69+0.14
−0.12 490 12.9+0.3

−0.4

GW190514 065416 64.2+16.6
−9.6 27.4+6.9

−4.3 36.9+13.4
−7.3 27.5+8.2

−7.7 −0.16+0.28
−0.32 4.93+2.76

−2.41 0.77+0.34
−0.33 61.6+16.0

−9.2 0.64+0.11
−0.14 2400 8.2+0.3

−0.6

GW190517 055101 61.9+10.0
−9.6 26.0+4.2

−4.0 36.4+11.8
−7.8 24.8+6.9

−7.1 0.53+0.20
−0.19 2.11+1.79

−1.00 0.38+0.26
−0.16 57.8+9.4

−9.1 0.87+0.05
−0.07 460 10.7+0.4

−0.6

GW190519 153544 104.2+14.5
−14.9 43.5+6.8

−6.8 64.5+11.3
−13.2 39.9+11.0

−10.6 0.33+0.19
−0.22 2.85+2.02

−1.14 0.49+0.27
−0.17 98.7+13.5

−14.2 0.80+0.07
−0.12 770 15.6+0.2

−0.3

GW190521 157.9+37.4
−20.9 66.9+15.5

−9.2 91.4+29.3
−17.5 66.8+20.7

−20.7 0.06+0.31
−0.37 4.53+2.30

−2.13 0.72+0.29
−0.29 150.3+35.8

−20.00.73+0.11
−0.14 940 14.2+0.3

−0.3

GW190521 074359 74.4+6.8
−4.6 31.9+3.1

−2.4 42.1+5.9
−4.9 32.7+5.4

−6.2 0.09+0.10
−0.13 1.28+0.38

−0.57 0.25+0.06
−0.10 70.7+6.4

−4.2 0.72+0.05
−0.07 500 25.8+0.1

−0.2

GW190527 092055 58.5+27.9
−10.6 24.2+11.9

−4.4 36.2+19.1
−9.5 22.8+12.7

−8.1 0.13+0.29
−0.28 3.10+4.85

−1.64 0.53+0.61
−0.25 55.9+26.4

−10.1 0.73+0.12
−0.16 3800 8.1+0.4

−1.0

GW190602 175927 114.1+18.5
−15.7 48.3+8.6

−8.0 67.2+16.0
−12.6 47.4+13.4

−16.6 0.10+0.25
−0.25 2.99+2.02

−1.26 0.51+0.27
−0.19 108.8+17.2

−14.80.71+0.10
−0.13 720 12.8+0.2

−0.3

GW190620 030421 90.1+17.3
−12.1 37.5+7.8

−5.7 55.4+15.8
−12.0 35.0+11.6

−11.4 0.34+0.21
−0.25 3.16+1.67

−1.43 0.54+0.22
−0.21 85.4+15.9

−11.4 0.80+0.08
−0.14 6700 12.1+0.3

−0.4

GW190630 185205 58.8+4.7
−4.8 24.8+2.1

−2.0 35.0+6.9
−5.7 23.6+5.2

−5.1 0.10+0.12
−0.13 0.93+0.56

−0.40 0.19+0.10
−0.07 56.1+4.5

−4.6 0.70+0.06
−0.07 1300 15.6+0.2

−0.3

GW190701 203306 94.1+11.6
−9.3 40.2+5.2

−4.7 53.6+11.7
−7.8 40.8+8.3

−11.5 −0.06+0.23
−0.28 2.14+0.79

−0.73 0.38+0.12
−0.12 90.0+10.8

−8.6 0.67+0.09
−0.12 45 11.3+0.2

−0.4

GW190706 222641 101.6+17.9
−13.5 42.0+8.4

−6.2 64.0+15.2
−15.2 38.5+12.5

−12.4 0.32+0.25
−0.30 5.07+2.57

−2.11 0.79+0.31
−0.28 96.3+16.7

−13.2 0.80+0.08
−0.17 610 12.6+0.2

−0.4

GW190707 093326 20.0+1.9
−1.3 8.5+0.6

−0.4 11.5+3.3
−1.7 8.4+1.4

−1.6 −0.05+0.10
−0.08 0.80+0.37

−0.38 0.16+0.07
−0.07 19.2+1.9

−1.3 0.66+0.03
−0.04 1300 13.3+0.2

−0.4

GW190708 232457 30.8+2.5
−1.8 13.1+0.9

−0.6 17.5+4.7
−2.3 13.1+2.0

−2.7 0.02+0.10
−0.08 0.90+0.33

−0.40 0.18+0.06
−0.07 29.4+2.5

−1.7 0.69+0.04
−0.04 14000 13.1+0.2

−0.3

GW190719 215514 55.8+16.3
−10.0 22.7+5.9

−3.7 35.2+16.9
−9.9 20.2+8.1

−6.5 0.35+0.28
−0.32 4.61+2.84

−2.17 0.73+0.35
−0.30 52.9+15.6

−9.5 0.80+0.10
−0.16 2300 8.3+0.3

−1.0

GW190720 000836 21.3+4.3
−2.3 8.9+0.5

−0.8 13.3+6.6
−3.0 7.8+2.2

−2.2 0.18+0.14
−0.12 0.81+0.71

−0.33 0.16+0.12
−0.06 20.3+4.5

−2.3 0.72+0.06
−0.05 510 11.0+0.3

−0.8

GW190727 060333 65.8+10.9
−7.4 28.1+4.9

−3.4 37.2+9.4
−5.9 28.8+6.6

−7.9 0.12+0.26
−0.25 3.60+1.56

−1.51 0.60+0.20
−0.22 62.6+10.2

−7.0 0.73+0.10
−0.10 860 11.9+0.3

−0.5

GW190728 064510 20.5+4.5
−1.3 8.6+0.5

−0.3 12.2+7.1
−2.2 8.1+1.7

−2.6 0.12+0.19
−0.07 0.89+0.25

−0.37 0.18+0.05
−0.07 19.5+4.6

−1.3 0.71+0.04
−0.04 410 13.0+0.2

−0.4

GW190731 140936 67.1+15.3
−10.2 28.4+6.8

−4.5 39.3+11.8
−8.2 28.0+8.9

−8.4 0.08+0.24
−0.24 3.97+2.56

−2.07 0.65+0.32
−0.30 63.9+14.4

−9.8 0.71+0.10
−0.12 3000 8.6+0.2

−0.5

GW190803 022701 62.7+11.8
−8.4 26.7+5.2

−3.8 36.1+10.2
−6.7 26.7+7.1

−7.6 −0.01+0.25
−0.26 3.69+2.04

−1.69 0.61+0.26
−0.24 59.9+11.2

−7.9 0.69+0.10
−0.11 1500 8.6+0.3

−0.5

GW190814 25.8+1.0
−0.9 6.09+0.06

−0.06 23.2+1.1
−1.0 2.59+0.08

−0.09 0.00+0.06
−0.06 0.24+0.04

−0.05 0.05+0.009
−0.010 25.6+1.0

−0.9 0.28+0.02
−0.02 19 24.9+0.1

−0.2

GW190828 063405 57.5+7.5
−4.4 24.8+3.3

−2.0 31.8+5.8
−3.9 25.9+4.4

−4.6 0.19+0.15
−0.16 2.22+0.63

−0.95 0.40+0.09
−0.15 54.5+6.9

−4.0 0.76+0.06
−0.07 520 16.2+0.2

−0.3

GW190828 065509 34.1+5.5
−4.5 13.3+1.2

−0.9 23.8+7.2
−7.0 10.2+3.5

−2.1 0.08+0.16
−0.16 1.66+0.63

−0.61 0.31+0.10
−0.10 32.9+5.7

−4.5 0.65+0.09
−0.08 640 10.0+0.3

−0.5

GW190909 114149 71.2+54.3
−15.0 29.5+17.5

−6.3 43.2+50.7
−12.2 27.6+13.0

−10.9 −0.03+0.44
−0.36 4.77+3.70

−2.66 0.75+0.45
−0.37 68.3+52.5

−14.5 0.68+0.16
−0.18 4200 8.1+0.4

−0.7

GW190910 112807 78.7+9.5
−9.0 33.9+4.3

−3.9 43.5+7.6
−6.2 35.1+6.3

−7.0 0.02+0.19
−0.18 1.57+1.07

−0.64 0.29+0.17
−0.11 75.0+8.7

−8.5 0.70+0.08
−0.07 10000 14.1+0.2

−0.3

GW190915 235702 59.5+7.5
−6.2 25.1+3.1

−2.6 34.9+9.5
−6.2 24.4+5.5

−6.0 0.03+0.19
−0.24 1.70+0.71

−0.64 0.32+0.11
−0.11 56.8+7.1

−5.8 0.71+0.09
−0.11 380 13.6+0.2

−0.3

GW190924 021846 13.9+5.1
−0.9 5.8+0.2

−0.2 8.8+7.0
−2.0 5.0+1.3

−1.9 0.03+0.30
−0.09 0.57+0.22

−0.22 0.12+0.04
−0.04 13.3+5.2

−1.0 0.67+0.05
−0.05 380 11.5+0.3

−0.4

GW190929 012149 90.6+21.2
−14.1 34.3+8.6

−6.5 64.7+22.4
−18.9 25.7+14.4

−9.7 0.03+0.27
−0.27 3.68+2.98

−1.68 0.61+0.38
−0.24 87.5+20.7

−14.1 0.64+0.17
−0.23 1800 9.8+0.8

−0.6

GW190930 133541 20.3+9.0
−1.5 8.5+0.5

−0.5 12.3+12.5
−2.3 7.8+1.7

−3.3 0.14+0.31
−0.15 0.78+0.37

−0.33 0.16+0.07
−0.06 19.3+9.3

−1.5 0.72+0.07
−0.06 1800 9.5+0.3

−0.5

TABLE VI. Median and 90% symmetric credible intervals on selected source parameters. The columns show source total mass
M , chirp massM and component masses mi, dimensionless effective inspiral spin χeff , luminosity distance DL, redshift z, final
mass Mf , final spin χf , and sky localization ∆Ω. The sky localization is the area of the 90% credible region. For GW190425
we show the results using the high-spin prior (|~χi| ≤ 0.89). We also report the network matched filter SNR for all events.
These SNRs are from LALInference IMRPhenomPv2 runs since RIFT does not produce the SNRs automatically, except for
GW190425 and GW190426 152155 which use the SNRs from fiducial runs, and GW190412, GW190521, and GW190814, which
use IMRPhenomPv3HM SNRs. For GW190521 we report results averaged over three waveform families, in contrast to the
results highlighting one waveform family in [32].
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FIG. 6. Credible region contours for all candidate events in the plane of total mass M and mass ratio q. Each contour
represents the 90% credible region for a different event. We highlight the previously published notable candidate events:
GW190412, GW190425, GW190521 and GW190814, the potential NSBH GW190426 152155, and finally GW190924 021846,
which is most probably the least massive system with both masses > 3 M�. The dashed lines delineate regions where the
primary/secondary can have a mass below 3 M�. For the region above the m2 = 3 M� line, both objects in the binary have
masses above 3 M�.
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FIG. 7. Credible region contours for all candidate events in the plane of chirp mass M and effective inspiral spin χeff . Each
contour represents the 90% credible region for a different event. We highlighted the previously published candidate events (cf.
Fig. 6), as well as GW190517 055101 and GW190514 065416, which have the highest probabilities of having the largest and
smallest χeff respectively.



28

waveform [229]. Although its mass ratio is confidently
bounded away from unity, GW190412 only has a 43%
chance of having the smallest mass ratio among O3a
sources with m2 > 3 M�. As seen in Figs. 6 and 8,
the mass ratios are not well constrained for many sys-
tems, so one or more could have a smaller mass ratio
than GW190412.

B. Sources with m2 < 3 M�

1. GW190425

The least massive O3a system is associated with
GW190425 and is likely a binary neutron star system
given the inferred masses (m1 = 2.0+0.6

−0.3 M� and m2 =

1.4+0.3
−0.3 M�), but constraints on the tidal parameters do

not rule out a NSBH or BBH origin. These estimates
were obtained with the PhenomPv2NRT model with a
high-spin prior that restricts dimensionless spin magni-
tudes of the compact objects to be less than 0.89, and
previously reported in [30].

Although the inferred component masses of
GW190425’s source are consistent with masses of known
neutron stars [259–262], the total mass 3.4+0.3

−0.1 M� is
greater than that of observed Galactic BNSs [263, 264].
This raises the question of whether GW190425’s source
was formed in a different environment from the double
neutron star systems observed to date [30, 265–268].

Waveform m1/M� m2/M� q Λ̃

IMRPhenomD NRTidal 1.6–1.9 1.5–1.7 0.77–1.0 6 560

IMRPhenomPv2 NRTidal 1.6–1.9 1.5–1.7 0.78–1.0 6 580

SEOBNRv4T surrogate 1.6–1.9 1.5–1.7 0.78–1.0 6 630

TEOBResumS 1.6–1.9 1.5–1.7 0.77–1.0 6 600

IMRPhenomD NRTidal 1.6–2.5 1.1–1.7 0.46–1.0 6 1090

IMRPhenomPv2 NRTidal 1.6–2.5 1.1–1.7 0.45–1.0 6 1080

SEOBNRv4T surrogate 1.6–2.3 1.2–1.7 0.54–1.0 6 1040

TEOBResumS 1.6–2.3 1.2–1.7 0.54–1.0 6 870

TABLE VII. Source properties of GW190425 with different
waveform families. For the primary mass we give the 0%–
90% interval, while for the secondary mass and mass ratio
we give the 10%–100% confidence intervals. The quoted 90%
upper limits for Λ̃ are obtained by reweighing its posterior
distribution as detailed in Appendix F of [30]. The top half
of the table describes values from low spin prior (LS), while
bottom half for high spin prior (HS). For LS, all the results
are consistent with each other, while for HS there are slight
differences among different waveforms.

Extending the discussion of waveform systematics re-
ported with the discovery of GW190425 [30], we perform
four supplementary analyses using the non-precessing

EOB models SEOBNRv4T surrogate and TEOBResumS
for low spin and high spin priors. The results are
summarised in the Table VII. All the analyses produce
quantitatively similar results to the corresponding non-
precessing analysis reported in the discovery paper, and
the two EOB models produce consistent results between
them.

For the low-spin prior, the results agree with the
non-precessing IMRPhenomDNRTidal analysis reported
in the discovery paper, with SEOBNRv4T surrogate
and TEOBResumS recovering chirp mass as M =
1.44+0.02

−0.02 M� and effective inspiral spin of χeff =

0.01+0.01
−0.01. When allowing larger compact object spins,

the results with IMRPhenomDNRTidal and EOB mod-
els exhibit some differences, but overall give consistent
posteriors.

Our inferences about tidal parameters are likewise con-
sistent with the previous non-precessing analyses. We
follow the procedure of Ref. [30] and re-weight the pos-

teriors to a flat in Λ̃ prior. For the low-spin prior, the
two EOB models give very similar bounds, with Λ̃ con-
strained below 630. For the high spin prior, the TEO-
BResumS waveform model constrains the dimensionless
tidal deformability parameter better (Λ̃ ≤ 870) as com-
pared to the other waveform models, as seen in the top
panel of Fig. 9.

The two EOB models also constrain the mass ratio
better than other waveforms (0.54–1.0) as can be seen in
the bottom panel of the Fig. 9. The previously-reported
analyses that allow for significant precessing spins have
much greater flexibility and thus, for the high-spin prior,
produce a more asymmetric mass ratio posterior distribu-
tion than the two non-precessing updates reported here.

Finally, both the EOB models find the luminosity dis-
tance of DL = 0.16+0.07

−0.07 Gpc independent of the spin
prior used.

2. GW190814

Amongst the O3a events, GW190814’s source [31] has
the least massive secondary component after the sources
of GW190425 and GW190426 152155. GW190814’s less
massive component has mass m2 = 2.59+0.08

−0.09 M�, mak-
ing its interpretation as as a black hole or a neutron star
unclear [31]. GW190814 also has the most extreme mass
ratio of all the candidate events, q = 0.112+0.008

−0.009 [31].

3. GW190426

GW190426 152155 is the candidate event with the
highest FAR: 1.4 yr−1. Assuming it is a real signal of
astrophysical origin, we estimate its component masses
to be m1 = 5.7+4.0

−2.3 M� and m2 = 1.5+0.8
−0.5 M�, raising

the possibility that it could have originated from either
a BBH or an neutron star–black hole binary (NSBH)
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larger spins. The plot and quoted 90% upper limits for Λ̃ are
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Appendix F of [30].

source. The mass of the secondary component is con-
sistent with masses of (previously) reported neutron
stars [10, 260, 261, 263], but the data are uninformative
about potential tidal effects, showing essentially no differ-
ence between the prior and posterior on Λ2 obtained from
NSBH waveforms SEOBNRv4 ROM NRTidalv2 NSBH
or IMRPhenomNSBH which we use for our fiducial re-
sults. A more definitive assessment of this event likely
requires further observations to establish the rate of as-
trophysical signals with comparable properties.

C. Spins

Most of the compact objects detected in O3a
have spin magnitudes consistent with zero, within
uncertainties, but in some cases the spins can be
constrained away from zero. As described in Sec. IV B,
the effective inspiral spin χeff is the mass-weighted

combination of aligned spins and is approximately
conserved under precession. Effective inspiral spin
posterior distributions for all candidate events are
shown in Figs. 7 and 8. We find 10 systems that show
signs of non-zero χeff . At 95% credibility, GW190412,
GW190425, GW190517 055101, GW190519 153544,
GW190620 030421, GW190706 222641,
GW190719 215514, GW190720 000836,
GW190728 064510, and GW190828 063405 have sources
with χeff > 0. No individual systems were confidently
found to have χeff < 0, but the event with the lowest χeff

is probably GW190514 065416 with χeff = −0.16+0.28
−0.32.

The BBH which most likely has the largest measured
χeff is GW190517 055101 (χeff = 0.53+0.20

−0.19). It has a
57% posterior probability of having the highest χeff ,
followed by GW190719 215514 (χeff = 0.35+0.28

−0.32) with
14%.

In some cases, the joint χeff and mass-ratio measure-
ment for an event enables a tighter measurement of the
spin magnitude of the primary mass than for candidate
events with mass ratios closer to unity. For example, we
find primary spin magnitudes of χ1 = 0.40+0.40

−0.35 for the

source of GW190720 000836, and χ1 = 0.32+0.37
−0.28 for the

source of GW190728 064510. Posterior distributions on
spin magnitudes and tilt angles are shown in Fig. 10 for
these two candidate events and other select systems that
exhibit non-zero spins.

The magnitude of spin-precession in the waveform can
be partially captured by the effective precession spin pa-
rameter χp, which includes the projection of component
spin vectors onto the orbital plane [190, 208]. To iden-
tify events for which the data constrain χp, we compare
the χp priors— conditioned on the posteriors of χeff—
to the χp posteriors, as done in [8]. Conditioning the
χp prior on the χeff posterior accounts for the correlated
prior between χeff and χp in the default spin prior choices
presented in Sec. V. Fig. 11 shows the one-dimensional
posterior and (χeff -conditioned) prior distributions on χp

for events with Jensen–Shannon (JS) divergence [269]
D
χp

JS > 0.05 bit, where D
χp

JS is calculated between the
χp posterior and conditioned prior. For most of the
candidate events, the posterior on χp is similar to the
prior, indicating that the data are largely uninformative
about precession, but there are a few notable exceptions.
The χp inference on GW190814 is most striking with
D
χp

JS = 0.72 bit: the spin magnitude of the primary mass
of the system is constrained to be near zero, resulting
in a correspondingly small χp value. After GW190814,
D
χp

JS is largest for GW190412 [229, 270] and GW190521
[32, 33], with D

χp

JS = 0.18 bit and D
χp

JS = 0.14 bit, respec-
tively. Unlike GW190814, the χp posterior distributions
for these events are constrained away from zero, showing
preference for precession in these systems. The tilt an-
gle of GW190412’s more massive component’s spin with
respect to the Newtonian orbital angular momentum is
particularly well constrained to θLS1

= 0.80+0.52
−0.36, as seen

in Fig. 10. To further investigate possible precession in
these signals, we compute the precession signal-to-noise
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FIG. 10. Estimates of the dimensionless spin parameters ~χi = c~Si/(Gm
2
i ) for merger components of selected sources. Each

pixel’s radial distance from the circle’s center on the left (right) side of each disk corresponds to the spin magnitude |~χ| of the
more (less) massive component, and the pixel’s angle from the vertical axis indicates the tilt angle θLS between each spin and
the Newtonian orbital angular momentum. Pixels have equal prior probability, and shading denotes the posterior probability
of each pixel, after marginalizing over azimuthal angles.

ratio ρp [271, 272], which characterizes the observabil-
ity of precession in gravitational wave data. GW190412
has the largest precession SNR in O3a with a median
ρp = 3.0. Despite parameter estimation preferring high
χp for GW190521, we calculate ρp = 1.6 showing that
the measurable precession in the signal is small. Using
empirical relations between ρp and Bayes’ factors for pre-
cession [273, 274], we see that the corresponding Bayes’
factors for precession also only mildly favor precession.
A population-level analysis of the GWTC-2 spins is pre-
sented in [37] and finds evidence for the presence of spin
precession in the population.

D. Three-Dimensional Localization

The most distant event, after accounting for mea-
surement uncertainties in distance, is most proba-
bly GW190909 114149, with an estimated luminosity
distance and redshift of DL = 4.77+3.70

−2.66 Gpc and

z = 0.75+0.45
−0.37, respectively, approximately twice the

luminosity distance of the most distant source from
GWTC-1, GW170729 [8]. However, GW190413 134308,
GW190514 065416, GW190521, GW190706 222641, and

GW190719 215514 have similarly large distances to
GW190909 114149. With candidate events at these
cosmological distances, we can more readily measure
the Hubble constant, and the evolution of the BBH
merger rate over cosmic time. Such analyses are per-
formed in [37]. The closest source detected in O3a
is GW190425, with an inferred luminosity distance of
DL = 0.16+0.07

−0.07 Gpc, about four times the distance for
GW170817.

Overall, GW190814 is the best localized event detected
in O3a. The contour encompassing 90% of this event’s
two-dimensional sky position posterior is ∆Ω = 19 deg2,
and 90% of this event’s 3D sky position posterior is con-
tained in ∆V90 = 3.2×10−5 Gpc3. Although GW190814
was initially detected in only LIGO Livingston and Virgo,
it was reanalyzed with LIGO Hanford data, enabling the
strong constraint on 3D source position. GW190412 and
GW190701 203306 were also relatively well localized with
∆Ω = 21 deg2, ∆V90 = 0.037 Gpc3 and ∆Ω = 45 deg2,
∆V90 = 0.037 Gpc3, respectively, and were both de-
tected in all three detectors. GW190424 180648 was de-
tected and analyzed only in Livingston data, and there-
fore had the largest localization area and volume with
∆Ω = 26000 deg2 and ∆V90 = 31 Gpc3. Credible inter-
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vals on each source’s distance and sky area are shown in
Table VI. Probability density sky-maps for all events are
available as part of the data release [251].

VIII. WAVEFORM RECONSTRUCTIONS

Template-based [166, 275] and minimally-modeled
methods [103, 107, 276] are complementary techniques
for producing waveform reconstructions. Waveform tem-
plates provide a mapping between the shape of the wave-
forms and the parameters of the source, such as the
masses and spins of a binary system, but are limited
to those sources for which we have models. Minimally-
modeled reconstructions make it possible to discover un-
expected phenomena, but they do not provide a direct
mapping to the physical properties of the source. Cur-
rently available waveform templates for binary mergers
are based on various approximations and numerical so-
lutions to Einstein’s equations that cover a subset of the
full parameter space. These waveform templates may
thus fail to capture some features of the signal. A more
exotic possibility is that gravity behaves differently than
predicted by general relativity. One way to test these sce-
narios is to compare the template-based and minimally-
modeled waveform reconstructions.

A standard measure of the agreement between two

waveforms h1, h2 is the match, or overlap

O〈h1, h2〉 =
〈h1|h2〉√

〈h1|h1〉〈h2|h2〉
, (7)

where 〈a|b〉 denotes the noise-weighted inner prod-
uct [137, 167]. The match is constrained to be ≤ 1.

For each event, the matches were computed between
the maximum likelihood template-based waveforms and
two minimally-modeled waveform reconstruction meth-
ods, cWB [107] and BW [103], using data that contain
the event (on-source data). To ascertain whether these
match values are in line with expectations, waveforms
from the template based analysis were added to data
near, but not including, each event (off-source data).
The minimally-modeled waveform reconstructions were
repeated multiple times on these off-source data to esti-
mate the distribution of match values we would expect for
each event. For each event, these distributions were used
to compute a p-value, given by the fraction of off-source
match values that are below the on-source match. For
some of the lower SNR candidate events the minimally-
modeled methods were unable to reconstruct the signals,
and these candidate events were excluded from the anal-
ysis. Details of the analysis procedure, and additional
results, can be found in Appendix B.

Fig. 12 shows the p-values for the analyzed candidate
events sorted in increasing order [276, 277]. Events with
p-values above the diagonal have on-source matches that
are higher than expected, while those below the line have
matches that are lower than expected. The cWB analysis
shows some events outside the theoretical 90% band for
the single-order statistic, which can be due to statistical
fluctuations. Because of correlations between p-values in
the ordered plot, for 20 p-values the probability of finding
exactly four p-values outside the 90% band as in figure
12 is 5.2%, although it may also point to a systematic
effect in the analysis. Since the p-values are higher than
expected, there is no evidence of a discrepancy with the
template-based analysis. Our tests also indicates that if
there is indeed a systematic effect, it may originate from
an overestimate of the off-source matches no larger than
2%. Further details are given in Appendix B. Overall, the
p-value distributions support the null hypothesis that the
minimally-modeled waveform reconstructions are consis-
tent with the GR derived waveform templates.

IX. CONCLUSION

We have presented the results from a search for com-
pact binary coalescence signals in the first part of the
third observing run of Advanced LIGO and Advanced
Virgo. During the period of observations, spanning 1
April to 1 October 2019, the three detectors had sensi-
tivity that significantly exceeded previous observing runs,
with median BNS inspiral ranges of 108 Mpc (Hanford),
135 Mpc (Livingston) and 45 Mpc (Virgo). This im-
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proved sensitivity allowed us to greatly expand the num-
ber of known compact binary mergers, adding 39 new
gravitational wave events to the 11 we have previously
reported in GWTC-1 [8].

We performed parameter estimation on these 39 new
GWTC-2 signals using a range of waveform models, al-
lowing us to incorporate the effect of HMs in the inference
of source parameters for BBH systems, and to compare
to the systematic differences between waveform families.
We find that the sources of these signals include BBHs
that are more massive, farther away, and more asymmet-
ric in mass ratio than any sources in GWTC-1, as well
as three binaries with at least one component of mass
< 3 M�. These latter systems may include the first de-
tected NSBH mergers; however, there is insufficient SNR
to perform an informative measurement of the tidal de-
formability that would definitively indicate whether they
had an NSBH or BBH origin. We expanded our analysis
of the potential BNS signal to encompass further wave-
forms which include tidal effects, finding agreement with
previously-reported results [30]. We examined the evi-
dence for misalignment of orbital and component angular
momenta, which would be an indication of a dynamical
formation channel, and produce precession of the orbital
plane. We find only mild evidence in favor of precession
in the most significant case of GW190412 [229, 270]. We
also performed consistency checks between the waveform
models and the observed data, finding no statistically
significant differences.

A pair of companion papers make use of the events in
GWTC-2 to study source populations and fundamental
physics. The inferred population distribution of compact
object mergers is described in [37], which reports an up-
dated BBH merger rate density of 23.9+14.9

−8.6 Gpc−3 yr−1,

and rate density for BNS of 320+490
−240 Gpc−3 yr−1. This

paper also investigates mass and spin distributions, and
finds evidence for a population of BBH systems with
spins misaligned from the orbital plane. Eight tests of
general relativity are reported in [36], showing no evi-
dence for violations of Einstein’s theory of gravity, lead-
ing to some of the best constraints on alternative theories
to date.

Data products associated with this catalog are avail-
able through the Gravitational Wave Open Science Cen-
ter (GWOSC) at https://gw-openscience.org [251].
Data associated with all events described in this paper
are available through the GWOSC Event Portal, includ-
ing calibrated strain time-series, parameter estimation
posterior samples, tables of 90% confidence intervals for
physical parameters, and search pipeline results. These
data products may be accessed through a web browser
or open source client package [278].

The online Gravitational Wave Transient Catalog rep-
resents a cumulative set of events found in LIGO–Virgo
data, including detections presented in GWTC-1, and
now also events from the first six months of the O3 ob-
serving run. O3 continued from November 2019 until
March 2020. Analysis of the second portion (O3b) is cur-

rently in progress, and events found during this period
will be added in the next update.

The Advanced LIGO and Advanced Virgo detectors
are currently undergoing commissioning to further im-
prove their sensitivity, and will be joined in their fourth
observing run by the KAGRA detector [279]. This should
lead to improvements in the detection rate and source
localization, improving the prospects for multimessenger
observation of future sources [280, 281].
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The detection of the signals and subsequent signifi-
cance evaluations in this catalog were performed with the
GstLAL-based inspiral software pipeline [106, 117, 118]
built on the LALSuite software library [282], and with
the PyCBC [35, 119–122] and cWB [107, 113–116]
packages. Parameter estimation was performed with
the LALInference [166] and LALSimulation libraries
within LALSuite [282], the Bilby and pBilby Li-
braries [225–227] using the dynesty nested sampling
package [228], and the RIFT library [222–224]. PESum-
mary was used to post-process and collate parameter
estimation results [230]. Estimates of the noise spectra
and glitch models were obtained using BayesWave [103,
104, 169]. The cWB and BayesWave packages were
also used to generate waveform reconstructions. Plots
were prepared with Matplotlib [283], Seaborn [284]
and gwpy [285]. numpy [286] and scipy [287] were used
in the preparation of the manuscript.

Appendix A: Waveform systematics

The choice of waveform influences our inferences of
source properties [8, 288, 289]. As such, we employ mul-
tiple waveform families in the inference of each event’s
source parameters. The full list of models represented in
our publicly available results for each event is shown in
Table VIII.

A convenient tool to quantify the impact of systematic
differences between waveforms is the JS divergence [269].

The JS divergence quantifies the difference between two
probability distributions p and q, and is defined as

DJS(p, q) ≡ 1

2
[DKL(p|s) +DKL(q|s)] (A1)

where s = (p+ q)/2 and

DKL(p|q) =

∫
p(ϑ) log2

(
p(ϑ)

q(ϑ)

)
dϑ (A2)

is the Kullback–Leibler (KL) divergence [290] measured
in bits. The JS divergence is symmetric and satisfies
0 ≤ DJS ≤ 1 bit.

There are two sources of systematics that can impact
the results of inference: the differences in the models
with equivalent physics due to modeling choices, and
differences due to the inclusion of different physical ef-
fects. To assess the importance of the former, we com-
pare the results using our two fiducial precessing wave-
form models (IMRPhenomPv2 and SEOBNRv4P). For
the latter, we consider inclusion of HMs beyond the dom-
inant quadrupole by comparing SEOBNRv4P to models
that include HMs: SEOBNRv4PHM and NRSur7dq4.
We compute the JS divergence between one-dimensional
marginal distributions on two key parameters: mass ra-
tio and effective spin. We use a threshold of 0.007 bit
to deem the differences significant, which for a Gaussian
corresponds to a 20% shift in the mean, measured in units
of one standard deviation. This threshold is larger than
0.002 bit, which is the variation that has been shown to
arise due to stochastic sampling [227].

1. Choice of waveform models for each event

We use the above considerations to select which wave-
form model(s) are used as the fiducial results presented in
Sec. VII.8 In particular, we present results from models
with HMs if the following conditions are satisfied for any
of the three key parameters and any of the HM models:

DJS(SEOBNRv4P, HM) > DJS(SEOBNRv4P, IMRPhenomPv2), (A3a)

DJS(SEOBNRv4P, HM) > 0.007 bit. (A3b)

When the conditions do not hold, we combine equal num-
ber of samples from the results of IMRPhenomPv2 and
SEOBNRv4P and use the joint samples. The only excep-

8 Our data release includes results from models with and without
HMs.

tions are GW190425 and GW190426 152155, for which
we use the tidal waveforms described in Sec. V, and
GW190412, GW190521 and GW190814, for which we
know HMs are significant [31, 32, 229]. Fig. 13 shows
the JS divergences for every event (except GW190425,
GW190426 152155, GW190521, and GW190814) to com-
pare the effects of model systematics versus the effects
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Event Available Runs

GW190408 181802 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190412 IMRPhenomD, IMRPhenomHM, IMRPhenomPv2, IMRPhenomPv3HM, SEOBNRv4HM ROM,
SEOBNRv4P, SEOBNRv4PHM, SEOBNRv4 ROM

GW190413 052954 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190413 134308 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P

GW190421 213856 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190424 180648 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190425 IMRPhenomD NRTidal-HS, IMRPhenomD NRTidal-LS, IMRPhenomPv2 NRTidal-HS,
IMRPhenomPv2 NRTidal-LS, SEOBNRv4T surrogate HS, SEOBNRv4T surrogate LS,
TEOBResumS-HS, TEOBResumS-LS, TaylorF2-HS, TaylorF2-LS

GW190426 152155 IMRPhenomNSBH, IMRPhenomPv2, SEOBNRv4PHM, SEOBNRv4 ROM NRTidalv2 NSBH,
TaylorF2

GW190503 185404 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P

GW190512 180714 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190513 205428 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190514 065416 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P

GW190517 055101 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190519 153544 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190521 IMRPhenomPv3HM, NRSur7dq4, SEOBNRv4PHM

GW190521 074359 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190527 092055 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P

GW190602 175927 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190620 030421 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190630 185205 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190701 203306 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190706 222641 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190707 093326 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190708 232457 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190719 215514 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190720 000836 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190727 060333 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P

GW190728 064510 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190731 140936 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P

GW190803 022701 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P

GW190814 IMRPhenomD, IMRPhenomHM, IMRPhenomNSBH, IMRPhenomPv3HM, SEOBNRv4HM ROM,
SEOBNRv4PHM, SEOBNRv4 ROM, SEOBNRv4 ROM NRTidalv2 NSBH

GW190828 063405 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190828 065509 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190909 114149 IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190910 112807 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190915 235702 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190924 021846 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190929 012149 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190930 133541 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

TABLE VIII. Summary of the waveform models used for the analyses, available in the data release. Fiducial results used for the
main presentation in Sec. VII are shown in bold. Where multiple bold waveforms are listed, equal numbers of posterior samples
from runs with those waveforms are combined. For GW190425, ‘HS’ and ‘LS’ suffixes correspond to high spin (| ~χi| ≤ 0.89) and
low spin (| ~χi| ≤ 0.05) priors respectively.
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of HMs. The gray regions correspond to the criteria in
Eq. (A3a): any events with DJS values in those regions
are presented using HM results in Sec. VII.

2. Waveform comparison - Model systematics

The in-depth studies of GW190412, GW190521, and
GW190814 have quantitatively demonstrated how much
the choice of gravitational waveform impacts our inter-
pretation of real gravitational wave events. We have iden-
tified several additional instances where analyses with
our two fiducial precessing waveform models (IMRPhe-
nomPv2 and SEOBNRv4P) have notable differences, as
measured by the JS divergence.

To illustrate the impact of systematics, we show in
Fig. 14 the posterior distributions for the events with
extremal JS divergence in the key parameters q and
χeff : GW190924 021846 and GW190521 074359. For
GW190924 021846, SEOBNRv4P prefers more moderate
mass ratios around 1/2, and shows only minor differences
in the other parameters. Meanwhile, GW190521 074359
shows the largest differences in the effective spin, with
SEOBNRv4P more clearly preferring non-zero values.

While the cases above demonstrate the moderate shifts
that result from model systematics, for all the events
presented in this paper, there is always substantial over-
lap between the posteriors for all the key quantities we
consider. Therefore, systematic uncertainty remains sub-
dominant to statistical uncertainty.

3. Waveform comparison - Effect of higher-order
multipole moments modes

Previous investigations of GW190412, GW190521, and
GW190814 showed that gravitational wave radiation be-
yond the quadrupole can significantly impact our in-
ferences on individual events [31, 32, 229]. Incorpo-
rating non-quadrupole modes enables tighter inferences
on the source’s distance, component masses, and spins
[184, 288, 291–303]. HMs impact inferences about even
short-duration and low-amplitude sources, because of
the weaker constraints our observations provide. For
example, including non-quadrupole modes can tighten
constraints on the source mass ratio for low-amplitude
sources [291, 292], because high-mass ratio sources more
efficiently produce non-quadrupole modes.

We systematically applied one or two models with HM
to all sources in our catalog. We find that a majority of
the sources investigated have modest shifts in mass ratio
or χeff due to the impact of HMs.

To illustrate the impact of non-quadrupole modes,
Fig. 15 shows posterior inferences on GW190519 153544,
GW190602 175927, GW190706 222641, and
GW190929 012149 using one or two independent
models which include non-quadrupole modes (SEOB-
NRv4PHM and NRSur7dq4). Using more complete

waveform models, the source of GW190519 153544 is
inferred to be edge on, at a smaller distance, a more
asymmetric mass ratio, and thus a higher source-frame
mass m1. Due to this source’s favorable orientation,
non-quadrupole modes have a significant impact, with a
Bayes factor for HMs of ∼ 15. Similarly, non-quadrupole
modes allow us to more strongly exclude both extreme
and comparable mass ratios for the source responsible for
GW190929 012149, and to disfavor comparable masses
for GW190706 222641. Conversely, using the same two
waveform models, the high-mass source responsible for
GW190602 175927 is more confidently inferred to have
mass ratio q closer to unity and therefore m2 skewing
noticeably larger. Non-quadrupole modes also have a
noticeable impact on parameters of GW190630 185205
and GW190828 065509, in particular the mass ratio and
luminosity distance.

Appendix B: Waveform Consistency Tests

There are several different quantitative measures that
can be used to measure waveform consistency. These
include the residual SNR, which is found by subtract-
ing the best-fit waveform template hT from the data d,
then applying minimally-modeled methods to search for
any coherent excess in the noise residual r = d − hT .
Additional measures of waveform consistency include
the distance between waveforms, ∆2〈h1, h2〉 = 〈h1 −
h2|h1 − h2〉 and the match, or overlap, O〈h1, h2〉 =

〈h1|h2〉/
√
〈h1|h1〉〈h2|h2〉.

The residuals test has been applied as test of general
relativity [9, 10], at least within the precision with which
the waveform models approximate general relativity. Dis-
tance and match provide more sensitive measures of the
waveform consistency than the residuals test since the
extrinsic parameters of the source, such as the arrival
time, sky location and polarization, are constrained by
the full signal, while for the residuals test the extrin-
sic parameters have to be constrained from the (usually
small) difference between the signal and the template. To
compare the signal reconstructions for the current cata-
log of sources we adopt the waveform match as our mea-
sure of waveform consistency since it does not depend
on the overall amplitude of the signals, making it a con-
venient choice when comparing events with a range of
amplitudes.

To make a quantitative assessment of the waveform
match values we need to know how the match depends
on quantities such as the SNR and time–frequency vol-
ume of the signals. Instrument noise will lead to non-zero
mis-matches, MM = 1−O, even when using perfect tem-
plates. For example, the maximum likelihood solution for
a perfect template will have a mis-match with mean and
variance given by [304]

E[MM] ' D − 1

2 SNR2 , Var[MM] ' D − 1

2 SNR4 , (B1)
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where D is the number of parameters that define the sig-
nal model, and where the reduction from D to D − 1 is
because the match is independent from the overall am-
plitude of the signal. For the minimally-modeled wave-
form reconstructions the distributions of match values are
more difficult to predict. Using simulations it has been
found that the mis-match decreases with SNR, but more
slowly than for templates since the effective dimension
of the model increases with SNR [104]. The mis-match
also scales with the time–frequency volume. For binary
systems of a given SNR, the mis-match will generally
be smaller for high mass systems [104, 305, 306]. Given
these complexities, we chose to empirically estimate the
match distribution from simulations for each event. As a
proxy for the signal we use fair draws from the on-source
template-based analysis and inject these into data sur-
rounding the event; the right ascensions for the simulated
signals are adjusted such that simulated source is at the
same sky location in the frame of the detectors. For the
majority of events the waveform model used for the injec-
tions is IMRPhenomPv2. The exceptions are GW190412,
GW190521, GW190814 where IMRPhenomPv3HM was
used.

The cWB and BW algorithms are used to produce
point estimates for the waveform reconstructions for each
of the simulated events. For cWB the point estimate is
a constrained maximum likelihood reconstruction, while
for BW the point estimate is the median of the waveform
posterior distribution. Fig. 16 illustrates the results ob-
tained for GW190519 153544. The upper panels compare
the template-based LALInference waveform reconstruc-
tion in the LIGO Livingston detector to the minimally-
modeled BW and cWB reconstructions. The solid lines
are point estimates for the waveforms: for LALInference
the maximum likelihood; for BW the median of poste-
rior draws; and for cWB the constrained maximum like-
lihood. The panels also show the 90% credible bands
for the Bayesian LALInference and BW algorithms and
the 90% confidence band for cWB derived by injecting
samples from the template based analysis into data sur-
rounding the event and repeating the analysis multiple
times (these bands are computed on an individual time
sample basis). The lower panels of Fig. 16 show the dis-
tribution of overlaps found when running BW and cWB
on simulated data with similar properties to the event.
Waveforms drawn from the on-source LALInference anal-
ysis were injected into data surrounding the event. The
overlap between the injected waveform and the point esti-
mates from the BW and cWB analyses of these injections
were then used to produce the histograms seen in Fig. 16.
The distribution of the match values defines a null distri-
bution for each detected event, which takes into account
the variability of the LALInference posterior distribution,
the fluctuations of the detector noise, and the waveform
reconstruction errors. The fraction of off-source analyses
with overlaps below the on-source match values, which
are shown as vertical lines in the lower panels of Fig. 16,
define the p-value for this event.

The same analysis procedure was repeated for a subset
of additional events. cWB uses only events that are above
the cWB search thresholds (resulting in a morphology-
dependent SNR threshold which is about 7–10 for the
events reported in this catalog), while for BW the anal-
ysis was restricted to events where the on-source BW
analysis yielded SNR > 7. Fig. 17 shows the on-source
match values vs. the off-source median match values with
90% intervals. The upper panel shows the results of the
BW analysis, while the lower panel shows the results of
the cWB analysis. In both cases the p-values point to
a good agreement between the minimally-modeled and
template-based reconstructions.

The discrepancies between the two plots may be as-
cribed to different choices made in the two reconstruction
algorithms. cWB is both a detection and a reconstruction
pipeline. For this reason, reconstructions are performed
with the same production settings used in searches. The
production settings are optimized for noise rejection and
to enforce strong network coherency constraints. To con-
struct the match distributions, cWB uses about 2000–
3000 waveform injections per event; however, those in-
jections that are below the cWB thresholds are not re-
constructed: in the majority of cases reported here (13)
the reconstruction efficiency is greater than 80%, while
in a few other cases (7) the efficiency ranges from 15%
to 50%. For each event, this efficiency depends on the
variability of the noise background. In cases of lower ef-
ficiency, we have also checked that the waveforms that
are successfully reconstructed by cWB have parameter
distributions that are statistically indistinguishable from
those of the injected waveforms.

BW employs Bayesian inference to characterize detec-
tions made by the CBC and cWB search pipelines. As
such, no cuts are made on the waveform reconstructions,
which means that for quiet signals, some of the samples
will be drawn from the prior distribution, resulting in a
wide spread in the match distributions.

The distribution of match values for each event are
used to compute p-values. The overall consistency of
the template based and minimally-modeled waveform re-
constructions can then be summarized by plotting the
p-values, ranked in ascending order, against the theoret-
ical distribution. In such plots, any significant devia-
tions below the plot diagonal point to events that should
undergo further analysis. The p-values for the events
reconstructed by cWB and BW are shown in Fig. 12
in the main text. Applying the Fisher test to the en-
semble of p-values yields combined p-values of 0.57 for
the BW analysis and 0.99 for the cWB analysis, indicat-
ing that there is no reason to reject the null hypothesis
that the template based and minimally-modeled analysis
are in agreement. The Fisher test is one-sided in that
it only penalizes p-values that are lower than expected.
The cWB analysis includes instances where the p-values
are higher than predicted, indicating that the on-source
matches are higher than expected based on the off-source
distributions. The cause of this bias is likely due to an
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asymmetry between the on-source and off-source analy-
ses. The on-source analysis computes the match between
the maximum likelihood template-based waveform and
its reconstruction, while the off-source analysis computes
the match between the injected template and its recon-
struction. Ideally the analysis would be symmetric, with
the maximum likelihood template used both on-source
and off-source, but the computational cost of running
the full template-based analysis on the thousands of off-
source injections is prohibitively expensive.

Appendix C: Cosmological distance resampling

For the luminosity distance, a prior that goes as D2
L is

enforced in the sampling, following the same procedure as
described in previous publications. As this assumption
becomes increasingly unrealistic as events are detected
at greater distances, the posterior distributions shown in
this paper are derived from a physically motivated prior
that incorporates cosmological effects. We perform rejec-
tion sampling on the initial posterior samples to instead
use a prior corresponding to a uniform merger rate per
comoving volume in the rest frame of the source. Using
a standard flat ΛCDM cosmology, samples are accepted
according to the weight

w(z) ∝ 1

(1 + z)

dVc

dVE
(C1)

∝ (1 + z)−2

(
DLE(z)

DH
+ (1 + z)2

)−1

.

The initial 1/(1 + z) factor accounts for time dilation
of the observed merger rate, dVc is the comoving vol-
ume element, and dVE = D2

LdΩ is the Euclidean vol-
ume element. DH = c/H0 is the Hubble distance and

E(z) '
√

Ωm(1 + z)3 + ΩΛ for ΛCDM, and we use Hub-
ble constantH0 = 67.9 km s−1 Mpc−1 and matter density
Ωm = 0.306 = 1− ΩΛ [231].
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FIG. 12. P-value plot for the candidate events recon-
structed by the minimally modeled pipelines in O3a. The
upper panel is from the BW analysis and the lower panel
is from the cWB analysis. The cWB analysis includes
the candidate events that have been both detected and
reconstructed (listed in Table IV), and those that have
not been detected but have been reconstructed offline.
(GW190513 205428, GW190707 093326, GW190728 064510,
GW190814, GW190828 065509). The BW analysis uses the
same selection of BBH candidate events as were used for test-
ing general relativity [36]. The p-values are sorted in increas-
ing order and plotted vs. the order number (which is also
the cumulative number of candidate events). Each p-value
is obtained from the observed on-source match value and the
corresponding off-source distribution of the match values from
off-source injections. The green band indicates the theoretical
90% symmetric distribution about the null hypothesis (dark
green line). Only deviations below the green 90% confidence
band indicate disagreement, and we see that there are none.
A few of the cWB p-values are above the band, indicating
either a statistical fluctuation, or an overfitting, which we at-
tribute to a small asymmetry between the way the on-source
and off- source matches are computed.
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FIG. 13. Jensen–Shannon divergence DJS of one-dimensional marginal distributions using different waveform models. The
vertical axes show DJS between one-dimensional posteriors using SEOBNRv4P and either SEOBNRv4PHM or NRSur7dq4.
The horizontal axes show DJS between one-dimensional posteriors using SEOBNRv4P and IMRPhenomPv2. The gray regions
show the selection criteria from Eq. (A3a): any events in these regions are presented using higher-order multipole moment
results in Sec. VII.
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FIG. 14. Marginal posterior distributions on the mass ratio q, effective inspiral spin χeff , and source-frame chirp mass M for
GW190924 021846 and GW190521 074359, with the IMRPhenomPv2 and SEOBNRv4P waveform families.
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FIG. 15. Marginal posterior distributions on mass ratio q, effective inspiral spin χeff , and source-frame chirp mass M, for
GW190519 153544, GW190602 175927, GW190706 222641, and GW190929 012149 with the SEOBNRv4P, SEOBNRv4PHM,
and NRSur7dq4 waveform families.
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FIG. 16. The upper panels show waveform reconstructions for GW190519 153544 in the LIGO Livingston detector. The
waveform posterior from the template-based analysis (shown in orange) is compared to the BW analysis in the upper left panel,
and to the cWB analysis in the upper right panel. The lower two panels show the distribution of overlap values when running
BW and cWB on waveforms drawn from the template based analysis that are injected into data surrounding the event. The
fraction of runs with matches below that of the on-source analysis give the p-value for the event.
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FIG. 17. Off-source vs. on-source match values for the candi-
date events in O3a. The upper panel displays the results of
the BW analysis, and the lower panel shows the results of the
cWB analysis. The on-source match on the horizontal axis
is the value obtained comparing the maximum likelihood PE
waveform with point estimates from the minimally-modeled
waveform reconstructions. The off-source match on the ver-
tical axis is the median value of the match distribution ob-
tained from off-source injection of sample waveforms from the
template-based posterior distribution. In both panels, the er-
rors bars denote the 90% equal-tailed confidence interval.
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[204] A. Bohé, G. Faye, S. Marsat, and E. K. Porter,
Quadratic-in-spin effects in the orbital dynamics and
gravitational-wave energy flux of compact binaries at
the 3PN order, Class. Quantum Grav. 32, 195010
(2015), arXiv:1501.01529 [gr-qc].

[205] C. K. Mishra, A. Kela, K. G. Arun, and G. Faye, Ready-
to-use post-Newtonian gravitational waveforms for bi-
nary black holes with nonprecessing spins: An update,
Phys. Rev. D 93, 084054 (2016), arXiv:1601.05588 [gr-
qc].

[206] A. Matas et al., Aligned-spin neutron-star–black-hole
waveform model based on the effective-one-body ap-
proach and numerical-relativity simulations, Phys. Rev.
D 102, 043023 (2020), arXiv:2004.10001 [gr-qc].

[207] J. E. Thompson, E. Fauchon-Jones, S. Khan, E. Ni-
toglia, F. Pannarale, T. Dietrich, and M. Hannam, Mod-
eling the gravitational wave signature of neutron star
black hole coalescences: PhenomNSBH, Phys. Rev. D
101, 124059 (2020), arXiv:2002.08383 [gr-qc].

[208] P. Schmidt, F. Ohme, and M. Hannam, Towards mod-
els of gravitational waveforms from generic binaries II:
Modelling precession effects with a single effective pre-
cession parameter, Phys. Rev. D 91, 024043 (2015),
arXiv:1408.1810 [gr-qc].

[209] A. Buonanno and T. Damour, Effective one-body ap-
proach to general relativistic two-body dynamics, Phys.
Rev. D 59, 084006 (1999), arXiv:gr-qc/9811091.

[210] A. Buonanno and T. Damour, Transition from inspiral
to plunge in binary black hole coalescences, Phys. Rev.
D 62, 064015 (2000), arXiv:gr-qc/0001013.

[211] P. Schmidt, M. Hannam, S. Husa, and P. Ajith,
Tracking the precession of compact binaries from their
gravitational-wave signal, Phys. Rev. D 84, 024046
(2011), arXiv:1012.2879 [gr-qc].

[212] M. Boyle, R. Owen, and H. P. Pfeiffer, A geometric
approach to the precession of compact binaries, Phys.
Rev. D 84, 124011 (2011), arXiv:1110.2965 [gr-qc].

[213] R. O’Shaughnessy, B. Vaishnav, J. Healy, Z. Meeks, and
D. Shoemaker, Efficient asymptotic frame selection for
binary black hole spacetimes using asymptotic radia-
tion, Phys. Rev. D 84, 124002 (2011), arXiv:1109.5224
[gr-qc].

[214] E. Ochsner and R. O’Shaughnessy, Asymptotic frame
selection for binary black hole spacetimes II: Post-
Newtonian limit, Phys. Rev. D 86, 104037 (2012),
arXiv:1205.2287 [gr-qc].

[215] P. Schmidt, M. Hannam, and S. Husa, Towards mod-
els of gravitational waveforms from generic binaries: A
simple approximate mapping between precessing and
non-precessing inspiral signals, Phys. Rev. D 86, 104063
(2012), arXiv:1207.3088 [gr-qc].

[216] T. Damour, A. Nagar, and L. Villain, Measurability of
the tidal polarizability of neutron stars in late-inspiral
gravitational-wave signals, Phys. Rev. D 85, 123007
(2012), arXiv:1203.4352 [gr-qc].

[217] A. Maselli, V. Cardoso, V. Ferrari, L. Gualtieri,
and P. Pani, Equation-of-state-independent relations
in neutron stars, Phys. Rev. D 88, 023007 (2013),
arXiv:1304.2052 [gr-qc].

[218] L. Santamaria et al., Matching post-Newtonian and
numerical relativity waveforms: systematic errors and
a new phenomenological model for non-precessing
black hole binaries, Phys. Rev. D 82, 064016 (2010),
arXiv:1005.3306 [gr-qc].

[219] T. Dietrich, A. Samajdar, S. Khan, N. K. Johnson-
McDaniel, R. Dudi, and W. Tichy, Improving the NR-
Tidal model for binary neutron star systems, Phys. Rev.
D 100, 044003 (2019), arXiv:1905.06011 [gr-qc].

[220] G. Ashton and S. Khan, Multiwaveform inference of
gravitational waves, Phys. Rev. D 101, 064037 (2020),
arXiv:1910.09138 [gr-qc].

[221] J. Skilling, Nested sampling for general bayesian com-
putation, Bayesian Analysis 1, 833 (2006).

[222] C. Pankow, P. Brady, E. Ochsner, and
R. O’Shaughnessy, Novel scheme for rapid parallel
parameter estimation of gravitational waves from
compact binary coalescences, Phys. Rev. D 92, 023002
(2015), arXiv:1502.04370 [gr-qc].

[223] J. Lange et al., Parameter estimation method that di-
rectly compares gravitational wave observations to nu-
merical relativity, Phys. Rev. D 96, 104041 (2017),
arXiv:1705.09833 [gr-qc].

[224] D. Wysocki, R. O’Shaughnessy, J. Lange, and Y.-L. L.
Fang, Accelerating parameter inference with graph-
ics processing units, Phys. Rev. D 99, 084026 (2019),
arXiv:1902.04934 [astro-ph.IM].

[225] R. Smith, G. Ashton, A. Vajpeyi, and C. Talbot,
Massively parallel Bayesian inference for transient
gravitational-wave astronomy (2019), arXiv:1909.11873
[gr-qc].

[226] G. Ashton et al., BILBY: A user-friendly Bayesian in-
ference library for gravitational-wave astronomy, Astro-
phys. J. Suppl. 241, 27 (2019), arXiv:1811.02042 [astro-
ph.IM].

[227] I. Romero-Shaw et al., Bayesian inference for compact
binary coalescences with BILBY: Validation and appli-
cation to the first LIGO–Virgo gravitational-wave tran-
sient catalogue (2020), arXiv:2006.00714 [astro-ph.IM].

[228] J. S. Speagle, DYNESTY: a dynamic nested sampling
package for estimating Bayesian posteriors and evi-
dences, Mon. Not. Roy. Astron. Soc. 493, 3132 (2020),
arXiv:1904.02180 [astro-ph.IM].

[229] R. Abbott et al. (LIGO Scientific, Virgo), GW190412:
Observation of a Binary-Black-Hole Coalescence with
Asymmetric Masses, Phys. Rev. D 102, 043015 (2020),
arXiv:2004.08342 [astro-ph.HE].

[230] C. Hoy and V. Raymond, PESummary: the code agnos-
tic Parameter Estimation Summary page builder (2020),
arXiv:2006.06639 [astro-ph.IM].

[231] P. Ade et al. (Planck), Planck 2015 results. XIII. Cosmo-
logical parameters, Astron. Astrophys. 594, A13 (2016),
arXiv:1502.01589 [astro-ph.CO].

[232] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 24442 (2019).

[233] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 25087 (2019).

[234] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 25606 (2019).

[235] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 25695 (2019).

[236] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 25707 (2019).

[237] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 25814 (2019).

[238] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 25876 (2019).

[239] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 24045 (2019).

https://doi.org/10.1088/0264-9381/32/19/195010
https://doi.org/10.1088/0264-9381/32/19/195010
https://arxiv.org/abs/1501.01529
https://doi.org/10.1103/PhysRevD.93.084054
https://arxiv.org/abs/1601.05588
https://arxiv.org/abs/1601.05588
https://doi.org/10.1103/PhysRevD.102.043023
https://doi.org/10.1103/PhysRevD.102.043023
https://arxiv.org/abs/2004.10001
https://doi.org/10.1103/PhysRevD.101.124059
https://doi.org/10.1103/PhysRevD.101.124059
https://arxiv.org/abs/2002.08383
https://doi.org/10.1103/PhysRevD.91.024043
https://arxiv.org/abs/1408.1810
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.59.084006
https://arxiv.org/abs/gr-qc/9811091
https://doi.org/10.1103/PhysRevD.62.064015
https://doi.org/10.1103/PhysRevD.62.064015
https://arxiv.org/abs/gr-qc/0001013
https://doi.org/10.1103/PhysRevD.84.024046
https://doi.org/10.1103/PhysRevD.84.024046
https://arxiv.org/abs/1012.2879
https://doi.org/10.1103/PhysRevD.84.124011
https://doi.org/10.1103/PhysRevD.84.124011
https://arxiv.org/abs/1110.2965
https://doi.org/10.1103/PhysRevD.84.124002
https://arxiv.org/abs/1109.5224
https://arxiv.org/abs/1109.5224
https://doi.org/10.1103/PhysRevD.86.104037
https://arxiv.org/abs/1205.2287
https://doi.org/10.1103/PhysRevD.86.104063
https://doi.org/10.1103/PhysRevD.86.104063
https://arxiv.org/abs/1207.3088
https://doi.org/10.1103/PhysRevD.85.123007
https://doi.org/10.1103/PhysRevD.85.123007
https://arxiv.org/abs/1203.4352
https://doi.org/10.1103/PhysRevD.88.023007
https://arxiv.org/abs/1304.2052
https://doi.org/10.1103/PhysRevD.82.064016
https://arxiv.org/abs/1005.3306
https://doi.org/10.1103/PhysRevD.100.044003
https://doi.org/10.1103/PhysRevD.100.044003
https://arxiv.org/abs/1905.06011
https://doi.org/10.1103/PhysRevD.101.064037
https://arxiv.org/abs/1910.09138
https://doi.org/10.1214/06-BA127
https://doi.org/10.1103/PhysRevD.92.023002
https://doi.org/10.1103/PhysRevD.92.023002
https://arxiv.org/abs/1502.04370
https://doi.org/10.1103/PhysRevD.96.104041
https://arxiv.org/abs/1705.09833
https://doi.org/10.1103/PhysRevD.99.084026
https://arxiv.org/abs/1902.04934
https://arxiv.org/abs/1909.11873
https://arxiv.org/abs/1909.11873
https://doi.org/10.3847/1538-4365/ab06fc
https://doi.org/10.3847/1538-4365/ab06fc
https://arxiv.org/abs/1811.02042
https://arxiv.org/abs/1811.02042
https://doi.org/10.1093/mnras/staa2850
https://doi.org/10.1093/mnras/staa2850
https://doi.org/10.1093/mnras/staa2850
https://doi.org/10.1093/mnras/staa2850
https://arxiv.org/abs/2006.00714
https://doi.org/10.1093/mnras/staa278
https://arxiv.org/abs/1904.02180
https://doi.org/10.1103/PhysRevD.102.043015
https://arxiv.org/abs/2004.08342
https://arxiv.org/abs/2006.06639
https://doi.org/10.1051/0004-6361/201525830
https://arxiv.org/abs/1502.01589
https://gcn.gsfc.nasa.gov/gcn3/24442.gcn3
https://gcn.gsfc.nasa.gov/gcn3/25087.gcn3
https://gcn.gsfc.nasa.gov/gcn3/25606.gcn3
https://gcn.gsfc.nasa.gov/gcn3/25695.gcn3
https://gcn.gsfc.nasa.gov/gcn3/25707.gcn3
https://gcn.gsfc.nasa.gov/gcn3/25814.gcn3
https://gcn.gsfc.nasa.gov/gcn3/25876.gcn3
https://gcn.gsfc.nasa.gov/gcn3/24045.gcn3


51

[240] LIGO Scientific Collaboration and Virgo Collaboration,
GCN G298048 (2017).

[241] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 24462 (2019).

[242] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 24489 (2019).

[243] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 24109 (2019).

[244] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 24591 (2019).

[245] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 24656 (2019).

[246] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 25301 (2019).

[247] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 25367 (2019).

[248] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 25442 (2019).

[249] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 25554 (2019).

[250] LIGO Scientific Collaboration and Virgo Collaboration,
GCN 25883 (2019).

[251] LIGO Scientific Collaboration and Virgo Collaboration,
GWTC-2 data release (2020).

[252] C. D. Bailyn, R. K. Jain, P. Coppi, and J. A. Orosz,
The Mass distribution of stellar black holes, Astrophys.
J. 499, 367 (1998), arXiv:astro-ph/9708032.

[253] F. Ozel, D. Psaltis, R. Narayan, and J. E. McClintock,
The Black Hole Mass Distribution in the Galaxy, As-
trophys. J. 725, 1918 (2010), arXiv:1006.2834 [astro-
ph.GA].

[254] W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D.
Bailyn, I. Mandel, and V. Kalogera, The Mass Distri-
bution of Stellar-Mass Black Holes, Astrophys. J. 741,
103 (2011), arXiv:1011.1459 [astro-ph.GA].

[255] F. Ozel, D. Psaltis, R. Narayan, and A. S. Villarreal,
On the Mass Distribution and Birth Masses of Neutron
Stars, Astrophys. J. 757, 55 (2012), arXiv:1201.1006
[astro-ph.HE].

[256] M. C. Miller and J. M. Miller, The Masses and Spins
of Neutron Stars and Stellar-Mass Black Holes, Phys.
Rept. 548, 1 (2014), arXiv:1408.4145 [astro-ph.HE].

[257] M. Heida, P. Jonker, M. Torres, and A. Chiavassa, The
Mass Function of GX 339–4 from Spectroscopic Obser-
vations of Its Donor Star, Astrophys. J. 846, 132 (2017),
arXiv:1708.04667 [astro-ph.HE].

[258] T. A. Thompson et al., Discovery of a Candidate Black
Hole - Giant Star Binary System in the Galactic Field
(2018), arXiv:1806.02751 [astro-ph.HE].

[259] J. M. Lattimer, The nuclear equation of state and neu-
tron star masses, Ann. Rev. Nucl. Part. Sci. 62, 485
(2012), arXiv:1305.3510 [nucl-th].
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