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NonNA tools:
project 
overview

Original project by Gabriele Vajente (~2015):

 https://dcc.ligo.org/LIGO-G1500230

Updated project (2018-): Python scripts based on virgotools.

Data Analysis web area:

 https://scientists.virgo-gw.eu/DataAnalysis/NonNA

Previous presentations at Virgo Env and Detchar meetings:

 https://tds.virgo-gw.eu/?content=3&r=14414

 https://tds.ego-gw.it/?content=3&r=14614

 https://tds.virgo-gw.eu/?content=3&r=14806

 https://tds.virgo-gw.eu/?content=3&r=15319
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Understanding 
the noise for 
more GW 
detections  
and better PEs

• Most of the detection and parameter estimation 
analysis pipelines rely on the assumption that the 
detectors noises are: [1]

• Gaussian distributed,

• Stationary, and

• Independent in each detector.

• Improper noise modelling may lead to incorrectly 
estimate detection significance and to systematic 
errors in the GW source properties estimates.

• Especially during commissioning phases, noises are 
likely to have non-Gaussian components and to be 
non-stationary.
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• Stationary



Non-stationary 
noise in GW 
detectors: 
example from 
Virgo C10 data
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Glitches: short duration “bursts” of excess power. Typical time scales ≲ 1 sec. 

Slow non-stationarities (spectral noise):
• Amplitude non-stationarities: bumps, “longer glitches” (≳ 1 sec),
• Frequency non stationarities: drifting/wandering lines



Data
pre-processing 
for slow non-
stationarities

• Band-limited Root Mean Square (BRMS) of the power spectral 
density of the “noisy” channel: [2]

𝐵𝑅𝑀𝑆 𝑡; [𝑓1, 𝑓2] = ∫𝑓1
𝑓2𝑆𝑛 𝑡, 𝑓 𝑑𝑓

where 𝑆𝑛 𝑡, 𝑓 , the noise power spectral density, can be estimated 
by means of some fft based method.

• Line tracking: extract from 𝑆𝑛 𝑡, 𝑓 the time series of the 
frequency maxima corresponding to the wandering line:
continue to the next page. 
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NonNA Line 
Tracker tool

NonNA Line Tracker:

Inputs: high rate target channel (e.g. DARM, Hrec), duration (up to 5-7 
days of data), frequency band where to look for the line.

Outputs: frequency maxima time series.

Notes: depending on the “noise foreground”, it needs additional fine 
toning parameters: median normalization, masks.
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Cross-
correlation 
analysis

The detector and its environment are continuously monitored by 
𝒪(10k) auxiliary sensors (~40 MB/s flux of data): photodiodes, 
seismometers, magnetometers, etc.

The idea is that some of these channels may ‘‘witness’’ the noisy 
behaviour of the detector.

Pearson cross-correlation coefficient: measures the similarity, in 
the time domain, between two time series:

𝑟𝑥𝑦 =
1

𝑁−1
σ𝑖=1
𝑁 (𝑥𝑖− ҧ𝑥)(𝑦𝑖−ത𝑦)

𝑠𝑥𝑠𝑦

where ҧ𝑥 = 1

𝑁
σ𝑖 𝑥𝑖 is the sample mean and  𝑠𝑥

2 = 1

𝑁−1
σ𝑖(𝑥𝑖− ҧ𝑥)2 the 

sample variance.
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NonNA cross-
correlation
tool
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Overview: with a “brute force approach”, the tool takes as 
arguments a target channel and a list of auxiliary channels; it 
computes their Pearson correlation coeff. and produces a 
summary html page and log file with their ranking.

Target: DARM or Hrec BRMS, BNS range, frequencies of a 
wandering line, etc.

Aux. channels: standard Detchar channels, all channels from trend 
frame, ENV_*, LSC_*_rms, etc.

Typical set up: 𝒪(10k) seconds of data, 𝒪 (10k) auxiliary channels, 
0.1 Hz output frequency.

Execution time (extreme case): 40 minutes analysis for 40k 
channels for 1 day, and 15 min for the plots.

Command string: nonna_corre.py –t LSC_DARM

-b BRMSMon_freqs.txt

-g 19-3-3-10  -d 19-3-3-12

-n [ENV_*]

-f 0.1

https://wiki.virgo-gw.eu/DetChar/DetCharChannelStandard


NonNA results
html output 
page
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BLRMS 
frequency 
bands

AUX_CHANNEL_NAME
cross-corr. value

https://scientists.virgo-gw.eu/DataAnalysis/NonNA/direnzo/test_2019-03-07_12-59-07/output.html


Cross-
correlation 
extended: 
regression 
analysis
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Motivations/ideas:

 Many channels can contribute to target non-stationarities at the same time;

 Usually, the channels are interdependent: redundant information, feedback 
mechanisms, cascade effects;

 Do the channels themselves respond to underlying noise processes?

Regression analysis: model the target (𝑦) as a linear combination of the aux. 
channels (𝑥𝑛):

ො𝑦𝑖 = 𝛽0+ 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +⋯+ 𝛽𝑛𝑥𝑛𝑖 ≡ X𝑖𝜷

𝑒𝑖 = 𝑦𝑖 − ො𝑦𝑖 is the residual difference between the estimate ො𝑦𝑖 and the target 𝑦𝑖 .

Make a 
model

Evaluate the 
coefficients (𝜷) 

according to 
some criterion

Assess the
goodness of the 

model according to 
some criterion:

𝑅2, 𝑅adj
2 , AIC, BIC

Inference on 
the results:
identify the 
likely noise 

source(s)



Ordinary Least 
Square 
solution
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Under the Classical Linear Model (CLM) assumptions

 X𝑖 ≡ 𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑛𝑖 is full rank (independent aux channels)

 𝐸 𝑒𝑖 = 0, 𝐸 𝑒𝑖
2 = 𝜎2 and 𝐸 𝑒𝑖𝑒𝑗 = 0

the Gauss-Markov theorem says that the Ordinary Least Squares (OLS) 
estimator ෡𝜷 of the regression coefficients is BLUE: [3]

 Best (minimum variance, according to the Cramèr-Rao lower bound [4])

 Linear function of 𝑦

 Unbiased (𝐸 ෡𝜷 = 𝜷)

 Estimator of 𝜷

If the 𝑒𝑖’s are also normally distributed, ෡𝜷 becomes efficient, and reliable 𝒕
and 𝑭 tests can be carried out to asses channels and models significances.

However:

 Often CLM assumptions don’t hold: correlated auxes, homoscedasticity, etc.;

 It could be preferable to have a smaller variance in change of a biased estimate.



Principal 
component 
regression

Intermediate step: perform a Principal Component 
Analysis (PCA) of the auxiliary channels, then regress 
the target onto these PCs:

𝑋𝑇𝑋 = 𝑉Λ𝑉𝑇

where Λ = diag(𝜆1, 𝜆2, … , 𝜆𝑛), and 𝜆𝑖 is the variance 
of the 𝑖-th principal component.
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Pros:

 Since the zero-energy PCs are automatically omitted, OLS optimal solution is 
recovered: multicollinearity problem fixed;

 Dimensionality reduction: keeping only a number (𝑝) of the PCs introduces a 
bias (hard shrinkage) but reduces the variance of the estimate:

Reconstruction error (bias): 𝑥𝑖 − ො𝑥𝑖
(𝑝) 2

= σ𝑝
𝑛 𝜆𝑖

Variance reduction: Cov ෡𝜷OLS − Cov(෡𝜷PCA
𝑝

)~𝜎2σ𝑝
𝑛 1

𝜆𝑖

 Step towards understanding the underlying data generating processes (DGP).

Image credit Wikipedia

https://en.wikipedia.org/wiki/Principal_component_analysis


Correlated 
auxiliary 
channels and 
explained 
variance 
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Example: all ENV_*_rms channels (137) on 3 hours of data at 0.1 Hz output 
frequency.

Keeping just half of the principal components allows to explain ~95% of the 
data variance.

Normalized cumulative sum of principal values



Cons: what 
about the 
interpretability 
of these PCs?

Cons:

 PCs are “geometrical objects” not corresponding to any physical sensor or 
place in the detector. How can we interpret them?

Possible solution:
Exploiting Virgo channel names convention [5],

V1:SUBSYSTEM_LOCATION_SENSOR_...

we can produce, for every PC and its contribution to the regression, the 
histograms corresponding to which SUB, LOC and SENS are most 
contributing to it.
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Some finer points:

 Aux channels principal values are “a priori” not related with the target. So, 
why removing smaller ones? [6]
Possible solutions: supervised PCR [7], PLS regression.

 How to choose 𝑝?
Possible solutions: fixing the explained variance (e.g. 95%) or by iteration, 
according to some criterion (𝑅adj

2 , AIC, BIC), if 𝑛 is not too big (≲ 400).



NonNA
regression 
analysis 
example

Results:
54k seconds of data, 216 model params.

𝑅adj
2 ≃ 72%.

Many channels related with the pre-
stabilized laser and the injection 
subsystem (based on their 𝑡-statistics).

Refer to the spectrogram on page 4
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Conclusions/
discussion

Two tools for (slow) non-stationary noise investigation have been 
presented:

 Based on time domain cross-correlation analysis: Pearson 
correlation coefficient, and regression analysis;

 Fast results exploiting multiprocessing on Virgo farm computers;

 Correlation tool suitable for 1 vs. 1 comparison in a  “brute force” 
approach (but beware of correlation by chance);

 Regression tool meant for explanatory purposes but suitable for 
prediction: both interpolation and extrapolation. High 
dependency of the kind of non-stationarity, though;

 PCR introduced to fix multi-collinearity problem and to reduce the 
variance, can be used to dig deeper into the origin of the noise;

 Make the information from PCs more easily accessible by noise 
hunters and commissioners.
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