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1 Introduction

During previous targeted searches of GW signals from core-collapse supernovae (CCSNe) [Abbott
et al., 2016, 2020] the collaboration has used some extreme emission models as a limit of plausible
GW emission. One of the models, the so-called long-lasting bar mode model (long-bar hereafter),
consists of a rotating cylinder [Ott, 2010] which mimics the presence of bar-mode instabilities in
the proto-neutron star formed after the star has collapsed. As the sensitivity improves, this model
has began to be tested and some constraints have been possible with the data of the O1-O2 run
[Abbott et al., 2020]. Given that the sensitivity will increase in future runs and better constraints
on the model are foreseeable, one should question if a cylindrical bar is the best possible model
to describe bar-modes and if the constraints that we are getting on the parameters of the model
(such as length, diameter and mass of the bar) are the more interesting ones from an observational
perspective.

2 GW from rotating rigid bodies

The reduced mass quadrupole momentum is defined as [see e.g. Misner et al., 2017]

Iij =

∫
dV ρ

[
xixj −

1

3
δij(x

2
1 + x2

2 + x2
3)

]
. (1)

where ρ is the rest mass density and xi ≡ {x, y, x} the Cartesian coordinates. In the quadrupolar
approximation, the transverse-traceless (TT) GW signal is given by

hTTij =
2

D

G

c4
P kl
ij Ïkl , (2)

where P kl
ij is the TT projector operator and D the distance to the source.

If we consider a rigid body rotating around the z axis (no precession or nutation) with a
rotational frequency frot, the quadrupolar GW emission can be written, without loss of generality
as [Zimmermann and Szedenits, 1979, Brady et al., 1998, Jaranowski et al., 1998]

h+ =
1

2
h0 (1 + cos2 i) cos(2πf0t) (3)

h× = h0 cos i sin(2πf0t) (4)

where i is the inclination angle of the observer with respect to the z axis, f0 = 2frot and

h0 =
2

D

G

c4
Ixx − Iyy

2
(2πf0)2. (5)

We can particularise this expression to different rigid bodies.
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2.1 Triaxial ellipsoid

If we consider a triaxial ellipsoid rotating about a principal axis then

h0 =
2

D

G

c4
Izzε

2
(2πf0)2, (6)

where the ellipticity is defined as

ε ≡ Ixx − Iyy
Izz

(7)

and is a measure of the deformation of the star. This approach has been used in searches for
continuous GWs from isolated rotating neutron stars [Abbott et al., 2019a].

2.2 Rotating cylinder

In previous SN searches papers [Abbott et al., 2016, 2020] we have considered a spinning cylinder
[Ott, 2010], with radius R, length L and mass M . In this case

Ixx =
1

12
M(3R2 + L2), (8)

Iyy =
1

2
MR2, (9)

Izz =
1

12
M(3R2 + L2), (10)

i.e.

Ixx − Iyy =
1

12
M(L2 − 3R2), (11)

and therefore

h0 =
2

D

G

c4
1

6
M(L2 − 3R2)(2πfrot)

2 =
2

D

G

c4
1

24
M(L2 − 3R2)(2πf0)2 (12)

Note that the case of the rotating cylinder can also be written in terms of ellipticity considering

ε =
L2 − 3R2

L2 + 3R2
. (13)

In this case, the zero-ellipticity limit corresponds to

L =
√

3R =

√
3

2
(2R) ≈ 0.866(2R). (14)

A cylinder with this particular length-to-radius ratio should not emit any gravitational wave.

3 Motivation

From the perspective of GW detection any rotating rigid body will emit the same GW signal
provided they have the same Iyy − Ixx and have the same inclination i and distance D. Therefore
the shape of the rigid body that we consider for our model of the bar mode should be irrelevant.

However, the interpretation of the results depends on the model used. SN searches during
the previous GW observational campaigns have allowed to put constraints for the first time on the
amplitude of the waveform h0, or if one considers the distance known, in the combination Iyy−Ixx.
However, we have interpreted this result using a particular model (cylindrical bar) and tried to
put constraints in the parameter space formed by M , L and R. The use of this particular model
has several problems:
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• The shape of a cylindrical bar do not resemble the shape of the bar (actually an l=2 mode)
developing in the proto-neutron star; it is actually more similar to a triaxial ellipsoid.

• As detectors improve we will put better constraints on Iyy− Ixx. At some point we will be in
a regime in which our constrain is sufficiently small such that we are in the regimen in which
L ∼

√
R. At this point it will become very difficult to interpret the system as a cylindrical

bar. It would be much more appropriate the use of the ellipticity ε, that will go smoothly to
zero as we improve our sensitivity (or make a detection).

• Cylinders with length L <
√

3R have negative ellipticity, which corresponds to an oblate
ellipsoid rotating with respect to an axis perpendicular to the symmetry axis (like a spinning
coin). This case is not relevant for the case of the bar-mode instability.

As a conclusion, I suggest the use of a triaxial ellipsoids as a model for the bar mode instability.
The advantages are:

• We can perform a series of simulations with constant f0 and several values of εIzz. The result
will put an upper limit on the acceptable value for εIzz. The range of values can be extended
towards zero as we increase sensitivity.

• This approach is backwards compatible with previous results, because the limit on εIzz can
be computed in terms of the limits for the cylinder that we found in previous searches.

• We do not need any new development or implementation to perform the analysis. We can
use the already available pipelines and reinterpret all the results in terms of εIzz.

• There is plenty of literature on the momentum of inertia of neutron stars (Izz) both from the
theoretical and observational perspective (pulsar spin-down, glitches ...). Using the existing
constraints for Izz it is possible to put constraints to ε, which is a direct measurement of
deformation of the proto-neutron star. We can use a canonical value of the moment of inertia
of neutron stars of Izz = 1045 g cm2, similarly to Abbott et al. [2019a].

Ranges for the possible values of Izz and ε could be easily provided if the collaboration thinks
this is the appropriate approach for the next observing runs.

4 Waveforms

4.1 Previously used long-bar waveforms

The waveforms previously used for the bar-mode are described in Ott [2010] and the companion
python code bargw.py (https://dcc.ligo.org/LIGO-T1000553/public). A more detailed de-
scription of the waveforms can be found in Gossan et al. [2016a]. The waveforms consist essentially
of the the waveform described in section 2.2 windowed by a Gaussian profile of width τ = ∆t/4,
being ∆t the duration of the signal. Some comments should be made about the waveforms:

• The explicit expressions for h+ and h× that can be derived from [Ott, 2010] are wrong
in a ”−” sign in h×. This probably comes from a wrong sign in Eq. (6) of this work
(sin 2Ωt → − sin 2Ωt). This sign differs from the expressions found in Zimmermann and
Szedenits [1979], Brady et al. [1998], Jaranowski et al. [1998]. However, the results are
correct if one considers that the bar is rotating clockwise instead of counterclockwise.

• The output of bargw.py is the real and imaginary part of h, not h+ = Re(h) and h× =
−Im(h) (note the missing ”−” in h×). For ϕ = θ = 0 it can be easily checked that the
result from the python script does not result in Eqs. (16-17) in [Ott, 2010]. The results of the
script are actually consistent with making the transformation Ω → −Ω, which compensates
the error in the expressions in [Ott, 2010]
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• bargw.py has a bug in the implemented expression for −2Y2±1, it contains the term sin θ +
(1 + cos θ) but it should be sin θ(1 + cos θ) according to [Ott, 2010]. The bug does not affect

the computation because the coefficient multiplying this spherical harmonic is Hquad
2±1 = 0.

• The shape of the Gaussian window is not described in [Ott, 2010]. The window implemented
in bargw.py is

exp

(
− (t−∆t/2)2

τ2

)
. (15)

However, in [Gossan et al., 2016b] the window is

exp

(
− (t−∆t)2

τ2

)
. (16)

As we show below this time shift is not relevant for the analysis as long as 2πf0τ >> 1,
which is always the case.

As a result, despite of the errors in [Ott, 2010] and bargw.py, which compensate each other, the
numerical output of the code is correct.

4.2 Ad-hoc waveforms

Previous all-sky burst searches Abadie et al. [2012], Abbott et al. [2019b] and supernova searches
[Abbott et al., 2016, 2020] have used sine-Gaussian waveforms as a model for unmodeled burst.
According to Abadie et al. [2012]

h+(t) =
1

2
A (1 + α2) exp

(
− t

2

τ2

)
sin(2πf0t+ ϕ), (17)

h×(t) = Aα exp

(
− t

2

τ2

)
cos(2πf0t+ ϕ), (18)

where A is the amplitude, τ is related to the duration and f0 the observed frequency. α is the
waveform ellipticity (do not confuse with the neutron star ellipticity, ε). α can take values in the
interval [0, 1], where α = 0 corresponds to linearly polarised waves and α = 1 to circular polarised
waves. ϕ is an arbitrary phase that we use to encapsulate the different definitions used by different
authors. In particular for [Ott, 2010] its value is ϕ = 4πf0τ and for [Gossan et al., 2016b] is
ϕ = 8πf0τ .

The functional form of this expression is identical to the waveform of a triaxial ellipsoid or a
rotating cylinder given by Eqs. (3)and (4) making the next identifications

• A = h0

• Add a phase +π/2 to the harmonic dependence

• f0 → −f0

• α = cos i

In order to recover the results of bargw.py there is an additional phase +π (i.e. a global ”−” sign
in h).

As a conclusion long-bar and sine-Gaussian waveforms are identical and should not be necessary
to use two different kind of waveforms in any analysis.
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Table 1: Correspondence between the long-bar models, the triaxial ellipsoid model and the sine-
Gaussian parametrisation. We consider a source at a distance D = 10 kpc. There is an additional
π/2 phase difference between models, irrelevant for this work. Note that τ may be wrong by a
factor 4 (see comments in text).

long-bar/triaxial ellipsoid parameters sine-Gaussian parameters
Model M L R frot ∆t cos i Izzε h0 f0 τ α

[M�] [km] [km] [Hz] [ms] [1045 g cm2] [10−19] [Hz] [ms]
lb1 0.2 60 10 400 100 [0, 1] 1.09 0.74 −800 25 [0, 1]
lb2 0.2 60 10 400 1000 [0, 1] 1.09 0.74 −800 250 [0, 1]
lb3 0.2 60 10 800 100 [0, 1] 1.09 2.96 −1600 25 [0, 1]
lb4 1.0 60 10 400 100 [0, 1] 5.47 3.70 −800 25 [0, 1]
lb5 1.0 60 10 400 1000 [0, 1] 5.47 3.70 −800 250 [0, 1]
lb6 1.0 60 10 800 25 [0, 1] 5.47 14.8 −1600 6.25 [0, 1]

4.3 New waveforms

We propose to use the sine-Gaussian waveforms, Eqs. (17)-(18), to describe long-bar waveforms
with the next parametrisation:

A = h0 =
2

D

G

c4
Izzε

2
(4πfrot)

2, (19)

α = cos i, (20)

f0 = −2frot. (21)

To simplify we do not correct for the π/2 phase difference, because corresponds to an arbitrary
initial phase and because is likely irrelevant for burst searches. In Table 1 we show the correspon-
dence between the long-bar models and sine-Gaussians in Abbott et al. [2016, 2020]. Note that
the values for ∆t are those given for the duration of the waveform in Abbott et al. [2016, 2020]
and τ should be 1/4th of that values. However, the hrss values in table IV of Abbott et al. [2020]
are only obtained if duration is interpreted as τ directly. In any case, factor does not affects the
calculations of the next section since the factors cancel out.

It is possible to compute analytically the angle-averaged rss value of h as (see the Mathematica
notebook hrss.nb):

hrss ≡

√∫
< h2

+(t) + h2
×(t) >Ω dt = A

(π
2

)1/4
√

6τ

15

√
1− cos(2ϕ)

6
e−(2πf0τ)2/2 (22)

where we have performed the time integral in the interval [−∞,∞], and the angular average
corresponds to an average on α in the range [−1, 1]. The last term can be neglected if 2πf0τ >> 1,
which will be in all the cases considered, so the result does not depend on the arbitrary phase:

hrss ≈ A
(π

2

)1/4
√

6τ

15
≈ 0.708A

√
τ (23)

If we make the time integral using the duration of the signal [−∆t/2,∆t/2] instead, the result
barely changes (difference in the 5th significant digit).

5 Re-interpretation of O1+O2 results

Using this new framework we can re-interpret the results of the O1+O2 search for SNe re-
ported in Abbott et al. [2020] in terms of ellipticity. All the computations can be found in long-
bar estimates.ipynb. Here we just summarise the final results. Fig. 1 shows the upper limits for
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Figure 1: Upper limits for SN 2017eaw (the closest event in the sample) on the value of εIzz
depending on the observed frequency f0 and the parameter τ controlling duration of the signal.

Figure 2: Same as Fig 1 but including interpolated values (color coded and contours) within the
parameter space explored.
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SN 2017eaw on the value of εIzz depending on f0 and τ . This is the closest event in the sample
(6.72 Mpc), for which we have the most constraining upper limits. Note that since it is expressed
in units of 1045 g cm2, the canonical value of the momentum of inertia of neutron stars, it can
be directly read as an estimation of the upper limit of the ellipticity ε. Fig. 2 is a similar plot
with the addition of of interpolated values between the few scattered plots to better show the
dependence. Details on how the interpolation is done can be found in longbar estimates.ipynb.
For future searches, a more evenly spaced and denser grid of points could be done so that we have
better estimates of the constraints in the f0-τ plane.

The results show that we either had a long duration-high frequency signal with εIzz . 1 or a
short duration-low frequency signal with εIzz . 100 . This dependence can be undertood in terms
of the different parameters since the upper limits are

• proportional to 1/f0, because of the shape of the sensitivity curves at high frequencies dom-
inated by shot-noise; the ASD of the noise is proportional to f0 and at the same time hrss of
the signal is proportional to f2

0 .

• proportional to 1/
√
τ , because of the dependence of hrss on

√
τ (see Eq. (23)).

• proportional to D, because of the dependence of the wave amplitude on D.

This dependence allow us to make an average over all the constraints for all the SNe observed that
results in the next upper limits

ε = (1.6± 0.6)

(
1045 g cm2

Izz

)(
1000 Hz

f0

)√
0.1 s

τ

(
D

6 Mpc

)
(24)

where the error bar corresponds to the standard deviation.
For a galactic supernova, at a distance about 1000 times closer that the event considered here,

we expect to be sensitive to values 1000 smaller, in the range of predictions for magneto-rotational
explosions.

6 Parameter space

For future searches we have to find ways to sample properly the f0-τ plane. We can have some
estimates on the limits by looking at numerical simulations of CCSN that show signatures of bar
mode instabilities. Table 2 shows the typical values found in numerical simulations compared with
the ones used for the O1-O2 search and the proposal for O3.
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