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Chapter 1

The Direct Form

1.1 Introduction

The transfer function of an analog filter normally is represented as a ratio of two real
coefficients polynomials in the Laplace variable s, with the denominator’s order greater
or at least equal to the numerator’s one. Every real coefficient polynomial can be de-
composed as the product of first or second order polynomials. So an analog filter can
be implemented as a series of first or second order filters, where the filter’s order is the
degree of the denominator’s transfer function.

In order to realize a digital filter having approximately the same frequency response
of an analog one, a set of transformations is used, which allows the mapping from the
Laplace transform to the so-called z-transform. Normally such a transformation consists
in the substitution of the s Laplace variable with an appropriate function of z (z−1

corresponds to a unit time delay). One of the widely used transformations is the bilinear
transformation (See Appendix D on page 59); it consists in the following substitution:

s→ 2

T

1− z−1

1 + z−1

where T is the sampling period.
Having the z-transform of a digital filter, written as the ratio of two polynomials

in the z−1 variable, it can be easily implemented with a suitable numerical algorithm.
Indeed from the equation:

H(z) = A

1 +

M∑
k=1

bkz
−k

1 +

N∑
k=1

akz
−k

=
Y (z)

X(z)
(1.1)

remembering the meaning of z−1, it is possible to compute directly the filter’s answer
with the following recursive procedure:

yn = A

M∑
k=0

bk xn−k −
N∑
k=1

ak yn−k con b0 = 1 (1.2)

where A is the gain coefficient of the filter and obviously M 6 N .
This algorithm requires the use of M +N memory words to store previous values of

xn and yn, as well as M +N + 1 products and M +N additions. In the case of digital
filters the efficiency of its implementation is also limited by the number of memory’s
read and write cycles. This implementation, known in the literature as direct form I (see
ref[1] 4.3), requires 2M memory accesses for reading xn−k and bk, 2N memory accesses

3



4 CHAPTER 1. THE DIRECT FORM

for reading yn−k and ak plus the A gain reading. In addition, N +M memory accesses
are required for writing the new values of xn−k and bk (one can use cyclic buffers whose
management, however, is normally very expensive). In conclusion we need 3N + 3M + 1
memory accesses.

We can note though that the equation 1.2 can be interpreted as the series of two
filters, the first one realizes the zeros of the transfer function and uses only the input
signal and his previous M samples, followed by the second who realizes the poles using
the N previous output values. In formulas:

y′ = A

M∑
k=0

bk xn−k

yn = y′ −
N∑
k=1

ak yn−k

Since the filters we are considering are linear and time-invariant, the output of the
filter does not depend on the order of the factors. We can therefore create the same
filter by implementing first the poles and then the zeros. This is equivalent to putting
successively (direct form II ):

Y (z)

X(z)
= A

Y (z)

W (z)

W (z)

X(z)
(1.3)

W (z)

X(z)
= 1

/(
1 +

N∑
k=1

akz
−k

)
(1.4)

Y (z)

W (z)
= A

(
1 +

M∑
k=1

bkz
−k

)
(1.5)

The pair of equations (1.4) and (1.5) can be immediately translated into a corre-
sponding system of difference equations:

wn = xn −
N∑
k=1

akwn−k

yn = A

(
wn +

M∑
k=1

bkwn−k

) (1.6)

The set of N values wk represents the internal state of the filter. From this state
and from the actual value of the input variable xn, we are able to compute, at each
sampling time, the next state and the value of the output variable. This update requires
M +M + 1 multiplications and N +M additions but with only N memory cells to store
previous values of wn. The number of memory accesses is also reduced to 3N + M + 1
with a saving of 2M accesses. If the eq. (1.1) is obtained through the use of a bilinear
transformation, then N = M necessarily.

It can be shown that the smaller the order of a filter, the less the numerical accuracy
required for its implementation; also the parameter’s sensitivity of the filter from the
coefficient’s variations (ak and bk) is lower. So it is important to implement the filter
as a series of first or second order sections. This doesn’t imply, as can be seen easily, a
larger computing power for it’s implementation.

1.2 Realization: Numerical accuracy

The accuracy that we can obtain in the poles and zeroes placement of a digital filter
depends naturally on the arithmetic precision with which the filter’s coefficients are
represented inside a computer. Let us consider the cases of first and second order filters
only: we have seen that they are the fundamental blocks with which we can build an
arbitrary filter.
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1.2.1 First order filters:
pole and zero position

The generic analog transfer function of a first order filter is:

H(s) = A
s+ ωz
s+ ωp

(1.7)

where ωz is the angular frequency of the zero, ωp the angular frequency of the pole and
A a gain coefficient. By using a bilinear transformation we obtain:

H(z) = A
2 + Tωz
2 + Tωp

1− 2− Tωz
2 + Tωz

z−1

1− 2− Tωp
2 + Tωp

z−1
= B

1 + bz−1

1 + az−1
(1.8)

If in the eq. (1.7) the zero is absent (formally ωz =∞) then we have b = −1 in eq. 1.8;
the same thing happens for the pole’s absence and the a coefficient.

Limited arithmetic precision implies a constraint on the possible values of the a and
b coefficients and thus to the possible values of the angular frequencies. If we call n the
mantissa’s number of bits of the floating point number’s representation, then the relative
accuracy by which we can approximate a number is 2−n. From eq. (1.8), due to the fact
that the products Tωz and Tωp are much lower than 2 (that is very high sampling rate
compared to the pole’s and zero’s frequency), it happens that the a and b coefficients are
very close to −1. So, in this case, 2−n is also the absolute precision with which we can
represent these coefficients.

Let us examine now the inverse problem: given the a and b coefficients determine the
ωz and ωp values. We have:

a =
Tωp − 2

Tωp + 2
that is ωp =

2

T

1 + a

1− a
(1.9)

and an analogous relation between ωz and b.
The precision with which we can place a low frequency pole (or zero) is given by:

∆ωp =

∣∣∣∣∂ωp∂a
∣∣∣∣∆a

where the partial derivative is evaluated at a = −1. Since

∂ωp
∂a

=
4

T

1

(1− a)2

it follows that

∆ωp =
∆a

T

and, remembering that ∆a = 2−n, this implies that the pole’s (or zero’s) frequency
resolution is:

∆f =
2−n

2πT
=

2−n

2π
fc (1.10)

where fc is the sampling frequency. We found a linear dependence of the frequency
resolution both from the sampling rate and the arithmetic accuracy. In the Virgo exper-
iment fc is put at 10 KHz, n = 24 for single precisione floating point numbers, n = 32
for extended precision floating point numbers and finally n = 52 for double precision
floating point numbers. So the frequency resolution is about equal to 100µHz for single
precision, to 0.4, µHz for extended precision and to 0.4 pHz for double precision arith-
metic. In the first realization of the Virgo filters we used extended precision arithmetic
and therefore the frequency resolution for first order filters was about 0.4µHz; this value
represent also the lowest frequency that we can implement. In the actual realization we
use double precision arithmetic so that the frequency resolution for first order filters is
about 0.4 pHz; in the new realization however, the sampling frequency can be increased
up to 320 kHz, so that the frequency resolution ”drops” to about 12 pHz.
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1.2.2 First order filters:
numerical noise

We now want to evaluate the arithmetic noise introduced by a first order filter due to
the finite numerical precision with which the output sequence is evaluated starting from
the input sequence. Let’s consider the z-transform of the first order filter, eq. (1.8)

H(z) = B
1 + b z−1

1 + a z−1

Obviously we can write:

H(z) =
Y (z)

X(z)
=
W (z)

X(z)
· Y (z)

W (z)

with: 
W (z)

X(z)
=

1

1 + a z−1

Y (z)

W (z)
=
B · (1 + b z−1)

1

(1.11)

From the equations (1.11) we can derive the following recursive formulas::{
wn = −awn−1 + xn

yn = B · (wn + bwn−1)
(1.12)

Now let’s compute the filter response for a constant input (zero frequency). For this
we must evaluate the transfer function at point z = 1, which is equivalent to putting
xn = xdc and, once the transient phase is over, wn = wn−1 = wdc. So we get:{

wdc =
xdc

1 + a
ydc = B(1 + b)wdc

The critical part in evaluating the expression (1.12) is given by the sum of −awdc
and xdc. Indeed it is the sum of two numbers one of which, −awdc, is much larger than
the other. In fact, their ratio is given by

Gdc =
−a xdc
1 + a

· 1

xdc
=
−a

1 + a

and using the value of a given by (see 1.9) a =
ωpT − 2

ωpT + 2
we finally get:

Gdc =
2− ωpT
2ωpT

=
1

ωpT
− 1

2
.

We can therefore write

wdc = Gdcxdc + xdc = (Gdc + 1)xdc (1.13)

Now suppose that xdc is very close to the maximum allowable value of the input
signal. Then the value of wdc, evaluated when xdc has the maximum value , is the
maximum value that the variable w can take during the filter operation. It is easy to see
that, apart from a multiplicative constant, the sequence wn is the response of a low-pass
filter to the input sequence xn and, with the same amplitude, the value of the response
is maximum for a zero frequency input, that is, for a constant input.

Let m be the number of bits with which the input variable xn is represented: if xn
is the output of an ADC, m is the number of effective bits of the ADC; if xn repre-
sents an arbitrary signal then m is essentially equal to ceil(log2(dynamical range(xn))).
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2−mxmax is the smallest possible variation that can have an input very close to its maxi-
mum value. Also let n be the number of bits of the mantissa of wn: it essentially coincides
with the numerical precision of the processor we use to perform the calculations. Then
the smallest variation that wmax can have is wmax è 2−nwmax.

In order not to lose numerical precision and not to introduce arithmetic noise, wmax
must be sensitive to the smallest variation of the input signal, that is:

2−nwmax 6 2−mxmax

that is:
wmax
xmax

6 2n−m

But
wmax
xmax

is essentially equal to Gdc + 1 (eq. 1.13). We therefore have:

G ' 1

ωpT
6 2n−m (1.14)

and finally:

ωp >
2m−n

T
= 2m−n fc (1.15)

It is easy to see, however, that the evaluation of yn in the eq. (1.12) does not
present difficulties since it consists in the algebraic sum of numbers of the same order of
magnitude.

We got an estimate of the minimum value that the pole frequency can have in order
not to introduce arithmetic noise. So, for example, if fc is equal to 10 kHz, n = 24
(single precision)m = 16 (ADC’s ENOB), the frequency of the pole must be greater than
6.3 Hz. Instead, using the extended precision (n = 32) the frequency must be greater
than 24 mHz. Finally, using double precision (n = 52) the frequency must be greater
than 24 nHz. In current cards we use double precision arithmetic and, as already said,
the sampling frequency can reach 320 kHz and the effective resolution of the ADCs is 20
bits (m = 20): in this case the minimum pole frequency must be greater than 12µHz.

1.2.3 Second order filters
pole’s and zero’s position

In this case the generic filter’s analog transfer function is:

H(s) = A

s2 +
ωzs

Qz
+ ω2

z

s2 +
ωps

Qp
+ ω2

p

(1.16)

where ωz and ωp are the frequencies of the zeroes and poles, Qz and Qp their quality
factors and A ,as usual, a gain coefficient. For simplicity we consider only one of the
polynomials in the eq.(1.16):

P (s) = s2 +
ωs

Q
+ ω2

Applying a bilinear transformation to this last equation, we get:

P (z) =
4 + 2ωT

Q + ω2T 2

T 2(1 + z−1)2
·

·

1 +
2(ω2T 2 − 4)

4 + 2ωT
Q + ω2T 2

z−1 +
4− 2ωT

Q + ω2T 2

4 + 2ωT
Q + ω2T 2

z−2

 (1.17)
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So the z-transform of eq. (1.16) is:

H(z) = B
1 + cz−1 + dz−2

1 + az−1 + z−2
(1.18)

where the various coefficients have the following values:

B = A

4 +
2ωzT

Qz
+ ω2

zT
2

4 +
2ωpT

Qp
+ ω2

pT
2

(1.19)

a =
2(ω2

pT
2 − 4)

4 +
2ωpT

Qp
+ ω2

pT
2

(1.20)

b =

4− 2ωpT

Qp
+ ω2

pT
2

4 +
2ωpT

Qp
+ ω2

pT
2

(1.21)

c =
2(ω2

zT
2 − 4)

4 +
2ωzT

Qz
+ ω2

zT
2

(1.22)

d =

4− 2ωzT

Qz
+ ω2

zT
2

4 +
2ωzT

Qz
+ ω2

zT
2

(1.23)

Taking into account, as in the case of first order filters, that the product ωT is much
smaller than 1, we have: B ' A, a ' c ' −2 and b ' d ' 1. If in eq. (1.16) the zeroes
are absent then we have c = +2 and d = +1; if only one zero is present then:

B = A
T (ωzT + 2)

4 +
2ωpT

Qp
+ ω2

pT
2

c =
2ωzT

ωzT + 2

d =
ωzT − 2

ωzT + 2

where in this case ωz is the zero’s angular frequency. Analogous relations holds for the
coefficients B, a and b in the case of the absence of one or more poles.

We don’t consider the case of the simultaneous absence of poles and zeroes, because
this is the case of first order filters. For the same reason we don’t consider the case of
both real poles and zeroes, because we can implement such a filter as a series of two first
order sections.

We will consider thereof only the case for witch at least one polynomial in eq. (1.16)
has a couple of complex-conjugate roots. For sake of simplicity we will consider as before
only one polynomial, witch z-transform is given by eq.(1.17); let us rewrite it as:

P (z) = C(1 + az−1 + bz−2)

where obviously: 

a =
2(ω2T 2 − 4)

4 +
2ωT

Q
+ ω2T 2

b =
4− 2ωT

Q
+ ω2T 2

4 +
2ωT

Q
+ ω2T 2

(1.24)
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(for the moment the gain coefficient C is of no interest).
As in the case of first order filters, the a and b coefficients in eq (1.24) have a limited

numeric precision. So we assume a and b as independent variables and solve the system
of equations (1.24) for ω and Q; once we have ω and Q we are able to compute their
accuracy as a function of the a’s and b’s accuracies.

From eq. (1.24) we get, after some simple algebraic manipulations:
ω =

2

T

√
1 + b+ a

1 + b− a

Q =

√
(1 + b+ a)(1 + b− a)

2(1− b)

(1.25)

The accuracy with which we can define ω e Q is given by the following relations:
∆ω =

∣∣∣∣∂ω∂a
∣∣∣∣∆a+

∣∣∣∣∂ω∂b
∣∣∣∣∆b

∆Q =

∣∣∣∣∂Q∂a
∣∣∣∣∆a+

∣∣∣∣∂Q∂b
∣∣∣∣∆b

(1.26)

where the partial derivatives are evaluated at a = −2 and b = +1 (very low frequencies).
For the first partial derivative in (1.26) we have:

∂ω

∂a
=

2

T

1

2

1√
1 + b+ a

1 + b− a

∂

∂a

1 + b+ a

1 + b− a
=

=
2

ωT 2

(1 + b− a) + (1 + b+ a)

(1 + b− a)2
=

4

ωT 2

1 + b

(1 + b− a)2

so: ∣∣∣∣∂ω∂a
∣∣∣∣a=−2
b=+1

=
1

2ωT 2
(1.27)

For the second partial derivative we have:

∂ω

∂b
=

2

T

1

2

1√
1 + b+ a

1 + b− a

∂

∂b

1 + b+ a

1 + b− a
=

=
2

ωT 2

(1 + b− a)− (1 + b+ a)

(1 + b− a)2
=

4

ωT 2

−a
(1 + b− a)2

so: ∣∣∣∣∂ω∂b
∣∣∣∣a=−2
b=+1

=
1

2ωT 2
(1.28)

For the third partial derivative we have:

∂Q

∂a
=

1

2(1− b)
1

2
√

(1 + b+ a)(1 + b− a)

∂

∂a
[(1 + b+ a)(1 + b− a)] =

=
1

2(1− b)

√
(1 + b+ a)(1 + b− a)

2(1 + b+ a)(1 + b− a)
· [(1 + b− a)− (1 + b+ a)] =

= Q
−2a

2
T 2

4

4

T 2

1 + b+ a

1 + b− a
(1 + b− a)2

=
−4Qa

ω2T 2(1 + b− a)2

so: ∣∣∣∣∂Q∂a
∣∣∣∣a=−2
b=+1

=
Q

2ω2T 2
(1.29)
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Finally, for the last partial derivative we have:

∂Q

∂b
=

(1 + b− a) + (1 + b+ a)

2
√

(1 + b+ a)(1 + b− a)
(1− b) +

√
(1 + b+ a)(1 + b− a)

2(1− b)2
=

=
(1− b2) + (1 + b+ a)(1 + b− a)

2(1− b)2
√

(1 + b+ a)(1 + b− a)
=

(2 + 2b− a2)
√

(1 + b)2 − a2

2(1− b)2
1 + b+ a

1 + b− a
(1 + b− a)2

=

=
(2 + 2b− a2)

1− b
Q

T 2

4
ω2(1 + b− a)2

=
4Q

ω2T 2(1 + b− a)2

(2 + 2b− a2)

1− b

In this last equation the limit evaluation of the term
(2 + 2b− a2)

1− b
for a→ −2 and for

b→ +1 is problematic. In fact we can easily see that the value of such a limit depends on
the order by which we make a→ −2 and b→ +1: if we allow first a→ −2 such a limit
evaluates to −2, on the other hand if we allow first b → +1 we get the indeterminate
form 0/0. From the a and b definition (eq. 1.24) we know that they are not independent:

In order to evaluate the limit of
(2 + 2b− a2)

1− b
we can discard the quadratic terms in

ωT in eq. (1.24); then we replace the approximate values of a and b so obtained into
(2 + 2b− a2)

1− b
getting:

(2 + 2b− a2)

1− b
'

2 + 2
4− 2ωT/Q
4 + 2ωT/Q

−
(

−8

4 + 2ωT/Q

)2

1− 4− 2ωT/Q
4 + 2ωT/Q

After some simple algebraic manipulations we get:

(2 + 2b− a2)

1− b
' 4

2 + ωT/Q

so that when we make ωT/Q→ 0 we get the value +2 for the limit.

So finally: ∣∣∣∣∂Q∂b
∣∣∣∣a=−2
b=+1

= lim
a→−2
b→+1

∣∣∣∣ 4Q

ω2T 2(1 + b− a)2
· 2
∣∣∣∣ =

Q

2ω2T 2
(1.30)

Now we can estimate the ω’s and Q’s resolution. In fact, from equations (1.26), (1.27),
(1.28), (1.29) and (1.30), taking into account that in this case ∆a = 2ε and ∆b = ε, where
ε = 2−n, we have: 

∆ω =
3ε

2ωT 2

∆Q =
3εQ

2ω2T 2

(1.31)

We note, first of all, the quadratic dependence of the resolution on the sampling
frequency. A third order filter will show a cubic dependence, and so on, for higher order
filters. This verifies, as we have stated before, the necessity to implement a generic filter
as a series of first and second order sections.

We rewrite eq. (1.31) in order to show the relative precision of ω and Q.

∆ω

ω
=

∆Q

Q
=

3ε

2ω2T 2
(1.32)
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Normally the relative resolution of the frequency should be much lower than the
inverse of the quality factor, that is:

∆ω

ω
<

1

Q

and imposing this condition on eq. (1.32), we obtain:

∆ω

ω
=

3ε

2ω2T 2
<

1

Q

that is:

ω > fc

√
3εQ

2
(1.33)

We note that the minimum frequency we can implement is proportional to the square
root of the arithmetic precision we are using: the number of mantissa bits needed to
implement a generic filter grows linearly with the filter’s order.

1.2.4 Second order filters:
numerical noise

As in the case of the first order filter, we now evaluate the arithmetic noise introduced
by the finite numerical precision with which the output sequence is evaluated starting
from the input sequence. Let’s examine for now the two distinct classic implementations,
namely the direct form I and the direct form II. The z-transform of a generic second order
filter, as we have already seen (1.18), is:

H(z) = A
1 + cz−1 + dz−2

1 + az−1 + bz−2

From this we can derive the following recursive procedure for the direct form I :

yn = A(xn + a xn−1 + b xn−2)− c yn−1 − d yn−2 (1.34)

or, in the case of the direct form II using the state variable wn:{
wn = −awn−1 − bwn−2 + xn

yn = A · (wn + cwn−1 + dwn−2)
(1.35)

We first deal with the direct form II which is the one that is normally used. We
proceed as in the case of the first order by evaluating the response of the filter with
constant input. For this we have to evaluate the transfer function for z = 1, which is
equivalent to putting xn = xdc e wn = wn−1 = wn−2 = wdc. We thus obtain:{

wdc =
xdc

1 + a+ b
ydc = A(1 + c+ d)wdc

As in the case of the first order we note that part critical part in evaluating the
expression (1.35) is given by the sum of (−a− b)wdc and xdc. Again, this is the sum of
two numbers one of which, (−a − b)wdc, is much larger than the other. In fact, their
ratio is given by

Gdc =
(−a− b)xdc

1 + a+ b
· 1

xdc
=
−a− b

1 + a+ b

and using the values of a and b given by (1.20) and (1.21) we obtain:

a+ b =

2(ω2
pT

2 − 4) + 4− 2ωpT

Qp
+ ω2

pT
2

4 +
2ωpT

Qp
+ ω2

pT
2

=

3ω2
pT

2 − 2ωpT

Qp
− 4

4 +
2ωpT

Qp
+ ω2

pT
2
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and

1 + a+ b =

3ω2
pT

2 − 2ωpT

Qp
− 4 + 4 +

2ωpT

Qp
+ ω2

pT
2

4 +
2ωpT

Qp
+ ω2

pT
2

=

=
4ω2

pT
2

4 +
2ωpT

Qp
+ ω2

pT
2

(1.36)

from which, finally:

Gdc =

4 +
2ωpT

Qp
− 3ω2

pT
2

4ω2
pT

2

and, since we consider ωpT � 1, we can put:

Gdc '
1

ω2
pT

2
(1.37)

The maximum value of wn in the case of a second order filter with a merit factor
Q >

√
2, is given by wmax ' Qwdc (if ωpT � 1 three consecutive values of wn differ

very little from each other and, for our purpose, we can essentially assume them equal).
We will therefore have:

wmax ' QpGdc '
Qp
ω2
pT

2
(1.38)

As with the first order filters, let m be the number of bits of the input variable xn,
with its smallest variation, in case of maximum amplitude, given by 2−mxmax and let
n be the number of bits of the mantissa of wn, so that the smallest variation that can
having wmax is given by 2−nwmax. In order not to lose numerical precision and not to
introduce arithmetic noise it is necessary, also in this case, that wmax is sensitive to the
smallest variation of the input, that is:

2−nwmax 6 2−mxmax

ossia:
wmax
xmax

6 2n−m

But
wmax
xmax

is essentially equal to QpGdc (eq. 1.38)

Gmax '
Qp
ω2
pT

2
6 2n−m (1.39)

and finally:

ωp >

√
Qp

2(n−m)/2 T
=
√
Qp

fc
2(n−m)/2

(1.40)

As one can see, the situation in the second order case is much more critical since
wmax is proportional to Qp and inversely proportional to the textbfsquare of ωpT.

Again the evaluation of yn in the eq. (1.35) does not present difficulties since it is
the algebraic sum of numbers of the same order of magnitude.

We have therefore obtained a limitation on the minimum value that can take the
pole frequency so as not to introduce arithmetic noise. So, for example, if fc is equal to
10 kHz, n = 24 (single precision arithmetic) m = 16 (ADC ENOB), the pole frequency
must be greater than 100 Hz. With extended precision arithmetic (n = 32) the frequency
must be greater than 6.3 Hz. Finally, using double precision arithmetic (n = 52) the
frequency must be greater than 6.1 mHz. These values must be multiplied by the square
root of the factor of merit Qpworsening the situation.
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Even in the current implementation, in which we use double precision, a sampling rate
of up to 320 kHz and ADC with 20 effective bits (m = 20) of resolution, the minimum
pole frequency must be greater than 0.78,Hz (multiplied possibly by

√
Qp).

A detailed analysis of the implementation of the direct form I shows that the situation
essentially does not change. In fact, the equation (1.34) shows that in this case we sum
a very small number given by A(xn + a xn−1 + b xn−2) with a larger number given by
−c yn−1 − d yn−2. Always taking into account the behavior for constant input the first
term is equal to Axdc(1 + a+ b), while the second one is given by ydc(−c− d). Since the
output ydc = Axdc and that the sum (−c− d) is of the order of the unit, the ratio of the
two terms of the sum is given by:

Gdc =
1

1 + a+ b
' 1

ω2
pT

2

.
As one can see, also from the point of view of the arithmetic noise, the two imple-

mentations direct form I and direct form II are perfectly equivalent.
The situation obviously worsens if we examine the direct implementation of higher

order filters. Let’s take into consideration the equation (1.4) that we rewrite here:

W (z)

X(z)
=

1

1 +

N∑
k=1

akz
−k

(1.41)

Setting z = 1 we can immediately compute the value of the ratio between wdc and xdc

wdc
xdc

=
1

1 +

N∑
k=1

ak

Since the coefficients ak of z−k, in the equation (1.41), are real, we can decompose
the polynomial of z−1 in the product of polynomials of at most first and second degree
with real coefficients. That is, we can write:

1 +

N∑
k=1

akz
−k =

M∏
1

(1 + aimz
−1)

L∏
1

(1 + ajlz
−1 + bjlz

−2)

with N = M + 2L. Therefore, setting z = 1, we have:

1 +

N∑
k=1

ak =

M∏
1

(1 + aim)

L∏
1

(1 + ajl+ = bjl).

But, from the above analysis, we have 1 + aim ' ωimT and 1 + ajl + bjl ' ωj
2
l T

2 so
that ultimately:

wdc
xdc
' 1

M∏
1

(ωimT )

L∏
1

(ω2
jl
T 2)

=
fNc

M∏
1

(ωim)

L∏
1

(ω2
jl

)

(1.42)

The latter expression clearly shows that arithmetic noise grows exponentially with
the filter order. Hence the need to decompose a complex filter into the series of multiple
first and second order filters. The implementation of a second-order filter in direct form
also introduces an arithmetic noise that can be intolerable. In the next chapter we will
study alternative embodiments that solve this problem at the expense of a lower efficiency
from the point of view of the number of arithmetic operations and the number of memory
access cycles.
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Chapter 2

From second to first order

2.1 Cascade filters with complex coefficients

The problem with the direct implementation of second order filters is that they are ...
second order filters! The trend of the ratio wdc

xdc
as f 2

c depends on the fact that in the
transfer function we are dealing with a second order polynomial.

One might think one can resort to higher numerical precision, e.g. quadruple pre-
cision; this solution becomes, however, computationally prohibitive. Instead, without
increasing the arithmetic precision needed, we can recast the implementation of a sec-
ond order filter into a series of two first order filters, for which the relative parameter
resolution dependence is linear with the sampling frequency and not quadratic.

The solution is based on the fact that, since we can always decompose a second
degree polynomial into the product of two first order polynomials with the use of complex
coefficients, then we can decompose a second order filter with a series of two complex
first order filters.

First of all we note that if an analog filter has a pair of complex-conjugate poles (or
zeroes), this is also true for the corresponding numerical filter obtained with a bilinear
transformation. For the moment we will consider filters for which both the poles and the
zeroes are complex-conjugate; the case in which the poles or the zeroes, but not both,
are real will be considered later. Clearly the case in which both the poles and zeroes are
real is of no interest, because in this case the filter is a series of two real first order filters.

So we consider the eq. (1.18), which is the z-transform of a generic second order filter,
and we suppose that both the numerator and the denominator have complex-coniugate
roots. We can rewrite this equation in the form:

H(z) = B
1 + cz−1 + dz−2

1 + az−1 + bz−2
= B

1− uz−1

1− vz−1

1− uz−1

1− vz−1
(2.1)

Such an equation describes a series of two first order filters with complex coefficients.
It’s clear that if the input to the first filter is a real numerical sequence, it will produce
a complex sequence; such a sequence, transformed by the second filter, which is the
complex-conjugate of the first one, will produce the real output sequence.

That is, if we neglect the inessential gain term B:

Y (z)

X(z)
=
P (z)

X(z)

Y (z)

P (z)
=

1− vz−1

1− uz−1

1− vz−1

1− uz−1

P (z)

X(z)
=

1− vz−1

1− uz−1

Y (z)

P (z)
=

1− vz−1

1− uz−1

All we have said before is explained in the following picture:

15
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xn 1− v z−1

1− u z−1

prn

pin

1− vz−1

1− uz−1

yn

Figure 2.1: Complex-conjugate filters

where, obviously, p(n)r and p(n)i are the real and imaginary part respectively of the
complex sequence p(n).

Now, let u = G+ jH and v = E + jF , we will have necessarily:

(1− (G+ jH)z−1)(1− (G− jH)z−1) = 1 + az−1 + bz−2

and so:
2G = −a e G2 +H2 = b (2.2)

analogous equations hold between the coefficients E, F and c, d. We note that, due to
the fact that a ' −2 and b ' 1, we have G ' −1 and H ' 0.

Before we examine the dependency of the ω’s and Q’s resolution on the new param-
eters, we take a look on how we could implement such a filter with a set of difference
equations.

From the relations:

Y

X
=

(1− (E + jF )z−1)(1− (E − jF )z−1)

(1− (G+ jH)z−1)(1− (G− jH)z−1)
=
Y

P

P

X

P

X
=

(1− (E + jF )z−1)

(1− (G+ jH)z−1)
=
P

V

V

X
;

V

X
=

1

(1− (G+ jH)z−1)
;

P

V
=

(1− (E + jF )z−1)

1

Y

P
=

(1− (E − jF )z−1)

(1− (G− jH)z−1)
=

Y

W

W

P
;

W

P
=

1

(1− (G− jH)z−1)
;

Y

W
=

(1− (E − jF )z−1)

1

we obtain the following recursive formulas:

vrn =xn +Gvrn−1 −H vin−1

vin = +Gvin−1
+H vrn−1

prn = vrn −E vrn−1 +F vin−1

pin = vin −E vin−1
−F vrn−1

wrn= prn +Gwrn−1+H win−1

win = pin +Gwin−1
−H wrn−1

yn =wrn−E wrn−1−F win−1

(2.3)

We note, first of all, that it’s necessary to store only the terms v(n− 1)r, v(n− 1)i,
w(n − 1)r and w(n − 1)i; from these and from the input variable x(n), we are able
to compute the new values of v(n), w(n) and the output variable y(n). So, at every
cycle, we need 8 DSP’s memory accesses to read and to write the filter’s status; 4 more
memory accesses are needed to read the filter’s coefficients: this amounts to a total of
12 memory accesses. The corresponding second order filter needs, instead, 8 memory
accesses: 4 accesses to read and to write the filter’s state and 4 accesses to read the
filter’s coefficients. For what concern the arithmetic, we note that the complex filter
needs 13 additions and 14 multiplications instead of 4 additions and 4 multiplications.
Due to the fact that, in this case, the computing speed is more limited by the number of
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memory accesses than by the arithmetic computation, a precise analysis will show that
a complex filter implementation requires a computing time which is exactly double the
time required by the corresponding second order filter.

2.1.1 Pole’s and zero’s position

Now we turn back to the estimation of the ω’s and Q’s accuracy in a complex filter; in
order to do that, we will limit ourselves to the analysis of only one polynomial. Using
eq. (1.24) we are able to express the new coefficients G and H as a function ofω and Q.
So we have: 

G = ω2T 2 − 4

4 +
2ωT

Q
+ ω2T 2

H =
2ωT

√
4− 1

Q2

4 +
2ωT

Q
+ ω2T 2

(2.4)

and, analogously from eq. (1.25) we obtain ω and Q as a function of G and H:
ω =

2

T

√
1 +G2 + 2G+H2

1 +G2 − 2G+H2

Q =

√
(1 +G2 + 2G+H2)(1 +G2 − 2G+H2)

2(1−G2 −H2)

(2.5)

To compute the ω’s and Q’s resolution, we need to compute their partial derivatives
with respect to G and H: then we should evaluate these partial derivatives for G→ −1
and H → 0. In order to compute these derivatives we can use equations (1.27), (1.28),
(1.29) and (1.30).

In fact, making use of the compound derivatives formulas, we get:

∂ω

∂G
=
∂ω

∂a

∂a

∂G
+
∂ω

∂b

∂b

∂G

that is: (
∂ω

∂G

)
G=−1
H=0

=
1

2ωT 2

(
∂a

∂G
+
∂b

∂G

)
=

1 +G

ωT 2

We only need to evaluate the term (1 + G). From the definition of G (eq. (2.4)) we
have:

1 +G = 1 +
ω2T 2 − 4

4 +
2ωT

Q
+ ω2T 2

=

2ωT

Q
+ 2ω2T 2

4 +
2ωT

Q
+ ω2T 2

Neglecting the ω2 term in the numerator of this last equation with respect to the ω
term and neglecting both the ω2 and the ω terms in the denominator compared to the
constant term, we obtain the following asymptotic behaviour of the (1 +G) term:

lim
G→−1

(1 +G) =
ωT

2Q

so, finally, we have: (
∂ω

∂G

)
G=−1
H=0

=
1

ωT 2

ωT

Q
=

1

2QT
(2.6)
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For what concerns the second partial derivative, we have:

∂ω

∂H
=
∂ω

∂a

∂a

∂H
+
∂ω

∂b

∂b

∂H

that is: (
∂ω

∂H

)
G=−1
H=0

=
1

2ωT 2

(
∂a

∂H
+

∂b

∂H

)
=

0 + 2H

2ωT 2

and from eq (2.4), neglecting both the ω2 and the ω terms in the denominator compared
to the constant term, we obtain:(

∂ω

∂H

)
G=−1
H=0

=
1

2ωT 2
ωT

√
4− 1

Q2
=

1

2T

√
4− 1

Q2
(2.7)

For what concerns the third partial derivative, we have:

∂Q

∂G
=
∂Q

∂a

∂a

∂G
+
∂Q

∂b

∂b

∂G

that is: (
∂Q

∂G

)
G=−1
H=0

=
Q

2ω2T 2

(
∂a

∂G
+
∂b

∂G

)
=
Q(1 +G)

ω2T 2

and making use of what we already done for the first partial derivative, we obtain:(
∂Q

∂G

)
G=−1
H=0

=
Q

ω2T 2

ωT

2Q
=

1

2ωT
(2.8)

Finally, for the last partial derivative, we have:

∂Q

∂H
=
∂Q

∂a

∂a

∂H
+
∂Q

∂b

∂b

∂H

that is: (
∂Q

∂H

)
G=−1
H=0

=
Q

2ω2T 2

(
∂a

∂H
+

∂b

∂H

)
=

QH

ω2T 2

and making use of what we already done for the second partial derivative, we obtain:(
∂Q

∂H

)
G=−1
H=0

=
Q

ω2T 2

ωT

2

√
4− 1

Q2
=

Q

2ωT

√
4− 1

Q2
(2.9)

Let us write down the equivalent of eq. (1.26):
∆ω =

∣∣∣∣ ∂ω∂G
∣∣∣∣∆G+

∣∣∣∣ ∂ω∂H
∣∣∣∣∆H

∆Q =

∣∣∣∣∂Q∂G
∣∣∣∣∆G+

∣∣∣∣ ∂Q∂H
∣∣∣∣∆H

where, due to the fact that G ' −1 and H ' 0, we have ∆G = ε and ∆H = 0. So:
∆ω =

ε

2QT

∆Q =
ε

2ωT

(2.10)

Showing the relative precision of ω and Q we have:

∆ω

ω
=

∆Q

Q
=

ε

2ωQT
(2.11)
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We note, first of all, the linear, instead of quadratic, dependance of ∆ω and ∆Q as a
function of the sampling frequency: so we succeed in our scope. From eq. (2.10) we have
that for Q = 0.5, that is when the two poles (or zeroes) become real and coincident, we
have

∆ω = ε/T

which is exactly the same expression we obtained for the first order filters.

Imposing, as we have done for the second order filter, that:

∆ω

ω
<

1

Q

we get finally:

ω >
εfc
2

(2.12)

and this expression should be compared with eq.(1.33).

What has been developed up to now, considering only the case of both complex poles
an zeroes, can be extended easily, with less modifications, to the case where the poles or
the zeroes are real. For example, in the case of real zeroes, we get the following relations:

Y

X
=

(1 + az−1)(1 + bz−1)

(1 + (c′ + id′)z−1)(1 + (c′ − id′)z−1)
=
Y

U

U

X

U

X
=

(1 + az−1)

(1 + (c′ + id′)z−1)
=
U

V

V

X
;

V

X
=

1

(1 + (c′ + id′)z−1)
;

U

V
=

(1 + az−1)

1

Y

U
=

(1 + bz−1)

(1 + (c′ − id′)z−1)
=

Y

W

W

U
;

W

U
=

1

(1 + (c′ − id′)z−1)
;

Y

W
=

(1 + bz−1)

1

and from these we get the following recursive formulas:

v(n)r = x(n)− c′v(n− 1)r+ d′v(n− 1)i

v(n)i = − c′v(n− 1)i− d′v(n− 1)r

u(n)r = v(n)r+ a v(n− 1)r

u(n)i = v(n)i+ a v(n− 1)i

w(n)r =u(n)r− c′w(n− 1)r− d′w(n− 1)i

w(n)i = u(n)i− c′w(n− 1)i+ d′w(n− 1)r

y(n) = w(n)r+ b w(n− 1)r

Analogous relations hold in the case of real poles. All that has been said for what
concerns the arithmetic precision holds also for the cases where there are real poles or
zeroes.

2.1.2 Arithmetic noise

We evaluate, as usual, the response of the filter with constant input. In the equations (2.3)
on page. 16 we put xn = xdc. We obtain the following equations:



20 CHAPTER 2. FROM SECOND TO FIRST ORDER

vdcr =xdc +Gvdcr −H vdci (2.13)
vdci = +Gvdci +H vdcr (2.14)

pdcr = vdcr −E vdcr +F vdci (2.15)
pdci = vdci −E vdci −F vdcr (2.16)

wdcr= pdcr +Gwdcr +H wdci (2.17)
wdci = pdci +Gwdci−H wdcr (2.18)

ydc =wdcr−E wdcr−F wdci (2.19)

From now on, to simplify writing, we will omit the suffix dc and write the DC values
of the signals using capital letters. We first deal with the calculation of the values of Vr,
Vi, Pr and Pi. From the second equation (2.14) we can derive the value of Vi that we
will replace in the first equation (2.13) obtaining in succession:

Vi =
H

1−G
Vr

Vr

[
(1−G) +

H2

1−G

]
= X

dalle quali: 
Vr =

1−G
(1−G)2 +H2

X

Vi =
H

1−G
· 1−G

(1−G)2 +H2
X =

H

(1−G)2 +H2
X

(2.20)

Also in this case it is important to compute the ”gain” of the filter obtained from the
equation (2.13):

Gv =
GVr −HVi

X
= G

1−G
(1−G)2 +H2

−H H

(1−G)2 +H2

=
G(1−G)−H2

(1−G)2 +H2
(2.21)

Since we have (see equations (2.2) on page 16 and (1.36) on page 12):

(1−G)2 +H2 = 1− 2G+G2 +H2 = 1 + a+ b =
4ω2

pT
2

4 +
2ωpT

Qp
+ ω2

pT
2

G(1−G)−H2 = G−G2 +H2 = −a/2− b =

2ωpT

Qp
− 2ω2

pT
2

4 +
2ωpT

Qp
+ ω2

pT
2

, (2.22)

we ultimately get:

Gv =

2ωpT

Qp
− 2ω2

pT
2

4ω2
pT

2 =
1

2QpωpT
− 1

2
.

For what concern Vr and Vi, using in the equations (2.20) the values of 1 + a+ b and
H given by (1.36) on page 12 and from (2.4) on page 17, we have:

Vr = GvX +X =

(
1

2QpωpT
+

1

2

)
X

Vi =

2ωpT

√
4− 1

Q2
p

4ω2
pT

2 =
1

2ωpT

√
4− 1

Q2
p

(2.23)
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The values of Gv and Vr thus obtained are obviously not the maximum values they
can have. We obtain their maximum values at the resonance frequency. For Q� 1 they
are given by (see Appendix E on page 65):

Vmaxr '
(

2Qp
ωpT

+
ωpT

2
+

1

2

)
X '

(
2Qp
ωpT

+
1

2

)
X (2.24)

Gmax '
2Qp
ωpT

− 1

2
(2.25)

The value of Vi at the resonance frequency is (always see Appendix E)

−
4− ω2

pT
2

8ωpT
X ' − 1

2ωpT
X

The equation (2.25) shows a situation similar to that of the first order filters. The
minimum frequency of the complex pole that we can realize without introducing arith-
metic noise is 2Qp times greater than the frequency of a corresponding real pole. So for
example with Qp = 100, using extended precision, a sampling rate of 10 kHz and 16-bit
resolution for the input signal, the minimum pole frequency is about 4.9 Hz. With double
precision this limit drops to about 4.9µHz. Finally with double precision, a sampling
frequency of 320 kHz and 20 bit input signal dynamics, the minimum pole frequency is
about 2.5 mHz. These values must be compared with those shown on page 7 and on page
13.

The evaluation of Pr and Pi starting from the equations (2.15) and (2.16) on page
20 does not present difficulties from a numerical point of view. In fact it is the sum of
numbers whose module ratio is at most equal to about 4Q2

z : vdci , which is about 2Q
times greater than vdcr and, in turn, F which is about 2Q times greater than 1 +E (see
eq. 2.23 and eq. 2.4).

The evaluation of Wr and Wi from the equations (2.17) and (2.18) on page 20 is
numerically equivalent to that of Vr e di Vi, just as that of the output Y is analogous to
that of P . Therefore the conclusions we have reached regarding the minimum frequency
of the achievable complex pole remain the same. One can easily see that the situation
does not change if the zeros (or poles) are real (I leave the proof of it as a useful exercise).

One last consideration regarding this realization: we said that 12 memory accesses,
13 sums and 14 products are needed instead of the 8 memory accesses, 4 sums and 4
products of the equivalent direct form realization and therefore this realization turns out
to be about 1.5 times less efficient from the memory point of view and about 3.5 times
less efficient from the arithmetic point of view. In reality, if there are multiple signals
that must be processed by the same filter (this is the case with anti-aliasing or anti-image
filtering during down-sampling or up-sampling phases), the difference between the two
realizations is much less pronounced. In effect, the filter, as described, processes a real
input signal to produce a real output signal. However, nothing prevents you from having
a complex input signal and producing a complex output signal as shown in the following
figure.

xrn

xin

1− v z−1

1− u z−1

prn

pin

1− vz−1

1− uz−1

yrn

yin

Figure 2.2: Complex filters in series

Due to the linearity of the system and the fact that the overall filter is a real filter,
the output, seen as a complex signal, is given by the input multiplied by a real transfer
function. Therefore the output sequence yrn is equal to the filtered input sequence xrn .
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The same relationship exists between the output sequence yin and the input sequence
xin . We can therefore write the following recursive formulas

vrn =xrn +Gvrn−1 −H vin−1

vin =xin +Gvin−1
+H vrn−1

prn = vrn −E vrn−1 +F vin−1

pin = vin −E vin−1
−F vrn−1

wrn= prn +Gwrn−1+H win−1

win = pin +Gwin−1
−H wrn−1

yrn =wrn−E wrn−1−F win−1

yin =win−E win−1
+F wrn−1

which require, with respect to the realization (2.3), 3 additional sums and 2 products
for a total of 16 sums and 16 products, or 8 sums, 8 products and 6 memory accesses
for each signal. The direct form requires, as already said, 4 sums, 4 products and 8
memory accesses. The ”stereo” realization would seem even more efficient as regards
access to memory and only a factor 2 more penalized as regards arithmetic operations.
However, in the case of multiple signals, using the direct form we can, provided we have
a sufficient number of available registers, read the filter coefficients once and for all thus
saving 4 memory accesses. In the case of two signals, therefore, 8 sums, 8 products and
12 memory accesses are required against 16 sums, 16 products and 12 memory accesses
of the ”stereo” realization.

2.2 Parallel filters with complex coefficients

Instead of writing the ratio of two second degree polynomials as the product of the ratio
of two first degree polynomials, possibly with complex coefficients, we can always write
it as the sum of the ratio of two first degree polynomials, always possibly with complex
coefficients. We can therefore replace a second order filter with the series of two first
order filters with complex coefficients. Starting from the transfer function we can write

H(z) = B
1 + cz−1 + dz−2

1 + az−1 + bz−2
= B

[
1/2− vz−1

1− uz−1
+

1/2− vz−1

1− uz−1

]
and placing u = G+ jH and v = E + jF and assuming without loss of generality B = 1
we have

H(z) =
Y

X
=

1/2− (E + jF )z−1

1− (G+ jH)z−1
+

1/2− (E − jF )z−1

1− (G− jH)z−1
=
U

X
+
V

X

U

X
=
U

S

S

X
=

1/2− (E + jF )z−1

1− (G+ jH)z−1
,

V

X
=
V

T

T

X
=

1/2− (E − jF )z−1

1− (G− jH)z−1
;

S

X
=

1/2

1− (G+ jH)z−1
,

U

S
=

1− 2(E + jF )z−1

1
;

T

X
=

1/2

1− (G− jH)z−1
,

V

T
=

1− 2(E − jF )z−1

1

(2.26)

Obviously it must be

1 + az−1 + bz−2 =(1− (G+ jH)z−1)(1− (G− jH)z−1)

1 + cz−1 + dz−2 =(1/2− (E + jF )z−1)(1− (G− jH)z−1)

+(1/2− (E − jF )z−1)(1− (G+ jH)z−1)

1 + az−1 + bz−2 =1− 2Gz−1 + (G2 +H2)z−2

1 + cz−1 + dz−2 =1− (G+ 2E)z−1 + 2(GE +HF )z−2
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from which
2G = −a G2 +H2 = b

G+ 2E = −c 2(GE +HF ) = d
(2.27)

From the equations (2.26) we can arrive at the following recursive formulas:

srn = + Gsrn−1
− H sin−1

+ 1/2xn
sin = + Gsin−1

+ H srn−1

urn = − 2E srn−1
+ 2F sin−1

+ srn

trn = + Gtrn−1 + H tin−1 + 1/2xn
tin = + Gtin−1

− H trn−1

vrn = − 2E trn−1 − 2F tin−1 + trn

(2.28)

The filter output is yn = urn + vrn . We don’t need uin and vin because with real
input the sum uin + vin is identically zero.

From the relations (2.28) we obtain the following recursive formulas for (s + t)rn ,
(s− t)in e (u+ v)rn :

(s+ t)rn = G (s+ t)rn−1 − H (s− t)in−1 + xn
(s− t)in = G (s− t)in−1

+ H (s+ t)rn−1

(u+ v)rn = − 2E (s+ t)rn−1 + 2F (s− t)in−1 + (s+ t)rn

(2.29)

replacing in the last of the (2.29) (s+ t)rn with the help of the first, we obtain:

yn = K1(s+ t)rn−1 +K2(s− t)in−1 + xn

where
K1 = G− 2E = c− a

K2 = 2F −H =
a(a− c) + 2(d− b)√

4d− c2
(2.30)

By placing w1n = (s + t)rn and w2n = (s − t)in we finally get the following filter
implementation

w1n = Gw1n−1 − H w2n−1 + xn
w2n = H w1n−1 + Gw2n−1

yn = K1w1n−1 +K2w2n−1 + xn

(2.31)

which is an implementation of a State Variable filter.
The filter thus implemented requires 4 memory accesses for reading the filter coeffi-

cients (G, H, K1 and K2), 4 memory accesses for reading/writing the status (w1n and
w2n) for a total of 8 memory accesses, 5 sums and 6 products versus 8 memory accesses,
4 sums and 4 products of direct implementation.

2.2.1 Poles Position

Since in this realization the filter coefficients, which are the coordinates of the poles
v, u = E ± jF , are the same as in the cascade realization, the analysis of the position
of the poles leads to exactly the same conclusions as previously discussed (see equations
(2.10 and (2.11)). Again, therefore, we have a linear instead of a quadratic dependence
of ∆ω and ∆Q from the sampling frequency.

2.2.2 Arithmetic noise

Proceeding as with the series filter we calculate the response of the filter with constant
input. In the equations (2.31) we put xn = xdc, w1n = w1dc and w2n = w2dc. We thus
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obtain the following system:

{
w1dc = Gw1dc −H w2dc + xdc

w2dc = H w1dc +Gw2dc
(2.32)

namely

{
(1−G)w1dc + H w2dc = xdc

−H w1dc + (1−G)w2dc = 0

which once solved gives


w1dc =

(1−G)xdc
1− 2G+G2 +H2

w2dc =
H xdc

1− 2G+G2 +H2

(2.33)

and using the values of ((1−G)−H2 ((2.22) on page 20), G and H ((2.4) on page 17):


w1dc =

2ωpT

Q
+ 2ω2

pT
2

4ω2
pT

2 xdc =

(
1

2QpωpT
+

1

2

)
xdc

w2dc =

2ωpT

√
4− 1

Q2

4ω2
pT

2 xdc =
1

2ωpT

√
4− 1

Q2
xdc

(2.34)

From the equations (2.32) we can write the ”gains” of the filter:


Gw1 = Gw1dc −H w2dc =

G(1−G)−H2

1− 2G+G2 +H2

Gw2 =
H w1dc
Gw2dc

=
(1−G)

G

and using the values of (G(1 − G) − H2) and (1 − 2G + G2 + H2) already obtained
previously (see eq. (2.22) on page 20)


Gw1 =

2ωpT

Qp
− 2ω2

pT
2

4ω2
pT

2 =
1

2QpωpT
− 1

2

Gw2 =

2ωpT

Qp
+ 2ω2

pT
2

4− ω2
pT

2 ' ωpT

2Qp

(2.35)

The detailed evaluation of the values of w1, w2 and of the ”gains” at the resonant
frequency can be found in the appendix F. Here are the results obtained:
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

w1
RIS
'


√

4Q2
p + 1

2ωpT
+

Qp√
4Q2

p + 1

x
RIS

'
(
Qp
ωpT

+
1

2

)
x
RIS

w2
RIS
'


√

4Q2
p + 1

2ωpT
+

√
4Q2

p + 1

8

x
RIS

'
(
Qp
ωpT

+
Qp
4

)
x
RIS

(2.36)


Gw1RIS


√

4Q2
p + 1

2ωpT
−
√

4Q2
p + 1

 ' Qp
ωpT

Gw2RIS '
2ωpT

Qp(4− Ω′2)

√
4Q2 + 1 ' ωpT

(2.37)

The first of the equations (2.37) shows that in the case of parallel filters an improve-
ment of a factor two is obtained compared to the series (see eq. (2.25 on page 21))

In the next chapter we will show that this realization is somewhat optimal.
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Chapter 3

Minimum arithmetic noise

3.1 On state variable filters

A generic second order system can be described with the following state-space model:

S = z−1AS + BX

Y = CS + DX
(3.1)

where S is the state vector, X is the input vector, Y the output vector, A, B, C, D real
matrices of suitable size. The eigenvalues Of the A matrix are the poles of the system.
Its eigenvectors or eigenstates are the normal modes of the system. The A matrix is Also
known as the transition matrix. It allows the transition from the state at time n to the
state at time n+ 1. The dynamics of the system is determined by the properties of the
matrix A which, in the case of a second order system, is a 2x2 square matrix and the

state vector S has two components u and v so that we can write S =
(
u v

)T
. We will

also assume that the input vector X has only one component so that the matrix B is a
2x1 rectangular matrix whose components we will denote b1 and b2. We will now deal
with the study of the first of the equations (3.1). The second of the equations (3.1) does
not present problems from the numerical point of view and therefore we will not take it
into consideration.

We have seen in chapter 1 that a second order filter, whose transfer function, apart
from a multiplicative coefficient inessential for our study, is given by

H(z) =
1 + cz−1 + dz−2

1 + az−1 + bz−2
,

can be implemented, using an auxiliary variable w, through the following recursive for-
mulas (direct form II ):

wn = −awn−1 − bwn−2 + xn

yn = wn + cwn−1 + dwn−2 = (c− a)wn−1 + (d− b)wn−2 + xn

wn−1 = wn

wn−2 = wn−1

27
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X wn
z−1

wn−1
z−1

wn−2

−b

−a

d

c
y

Figure 3.1: Controller canonical form

Identifying the state S =
(
u v

)T
con la coppia S =

(
wn−1 wn−2

)T
we can write(

u
v

)
= z−1

(
−a −b
1 0

)(
u
v

)
+

(
1
0

)(
x
)

y =
(
c− a d− b

) (u
v

)
+
(
1 0

)(x
0

) (3.2)

We obviously have:

A =

(
−a −b
1 0

)
B =

(
1
0

)
C =

(
c− a d− b

)
D =

(
1 0

) (3.3)

This implementation is represented in figure 3.1 and is known in linear systems theory
as Controller canonical form (see ref [2] 2.1).

Let us now consider a generic second order system. The evolution of its state is
described by the generic transition matrix A and by the generic input matrix B. The
A matrix is a 2x2 matrix while the B matrix is a 2x1 matrix. We therefore have the
following system u = a1z

−1u+ a2z
−1v + b1x

v = a3z
−1u+ a4z

−1v + b2x
(3.4)


(
1− a1z

−1
)
u− a2z

−1v = b1x

−a3z
−1u+

(
1− a4z

−1
)
v = b2x

(3.5)

which solved gives 
u =

b1
(
1− a4 z

−1
)

+ b2 a2 z
−1

(1− a1 z−1) (1− a4 z−1)− a2 a3 z−2
x

v =
b2
(
1− a1 z

−1
)

+ b1 a3 z
−1

(1− a1 z−1) (1− a4 z−1)− a2 a3 z−2
x

(3.6)

The denominator of the solutions (3.6) is

Den =
(
1− a1 z

−1
) (

1− a4 z
−1
)
− a2 a3 z

−2

= (a1 a4 − a2a3) z−2 − (a1 + a4) z−1 + 1 (3.7)

= Det(A)z−2 − Tr(A)z−1 + 1
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With the ”gains” of the filter
Gu =

a1z
−1u+ a2z

−1v

b1x

Gv =
a3z
−1u+ a4z

−1v

b2x

(3.8)

we can write the state’s equations (3.4) in the following way:u = Gu b1x+ b1x = (Gu + 1) b1x

v = Gv b2x+ b2x = (Gv + 1) b2x
(3.9)

From the recursive equations (3.4) we also obtain two other conditions necessary for
not introducing arithmetic noise: the ratio of the terms that appear in the sum to the
numerators must not have a direct or inverse quadratic dependence on the sampling
frequency. Therefore it must be:

G′u =
a1u

a2v
= O(ωpT ) oppure O(ω−1

p T−1)

G′v =
a3u

a4v
= O(ωpT ) oppure O(ω−1

p T−1)
(3.10)

These relations are obviously valid, the first for a2 6= 0 and the second for a4 6= 0;
otherwise we must take into consideration the reciprocals of the (3.10) in which case
either we will have G′u = 0 or G′v = 0. The relationships (3.10) also apply if b1 or b2 are
null.

By using the (3.6) and remembering the (3.7) the ”gains” become

Gu =
a1b1z

−1 − a1a4b1z
−2 + a2b2z

−1 + a2a3b1z
−2

b1 Den

=
(a1b1 + a2b2) z−1 − (a1a4 − a2a3) b1z

−2

b1 Den

=
(a1b1 + a2b2) z−1

b1 Den
− Det(A)z−2

(Det(A)z−2 − Tr(A)z−1 + 1)
(3.11)

Gv =
a3b1z

−1 + a2a3b2z
−2 + a4b2z

−1 − a1a2b2z
−2

b2 Den

=
(a3b1 + a4b2) z−1 − (a1a4 − a2a3) b2z

−2

b2 Den

=
(a3b1 + a4b2) z−1

b2 Den
− Det(A)z−2

(Det(A)z−2 − Tr(A)z−1 + 1)
(3.12)

Obviously in the direct form II, implemented through the (3.2), we have a1 = −a,
a2 = −b, a3 = 1, a4 = 0, b1 = 1 and b2 = 0 and therefore Det(A) = b, Tr(A) = −a,
Den = 1 + a z−1 + b z−2 and the ”gain” Gu becomes:

Gu =
−a z−1

Den
− Det(A)z−2

(Det(A)z−2 − Tr(A)z−1 + 1)

=
−a z−1 − b z−2

1 + a z−1 + b z−2
=

1

1 + a z−1 + b z−2
− 1

Regarding the ”gain” Gv we note that, if b2 = 0, Gv loses meaning and eq. (3.4)
simply states that the current value of v is the previous value of u, which obviously
presents no numerical problem.
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We can get the value of Gu with constant input and at the resonance frequency by
setting z = 1 and z = ejΩ where Ω = 2 arctan(ω0T/2) (see the properties of the bilinear
transformation in the appendix D)

Gudc =
1

1 + a+ b
− 1 =

1

ω2
pT

2
+

1

2ωpTQp
− 3

4

Guris =
Qp
ω2
pT

2

(
1 +

ωpT

2Qp
+

1

2

)
+O (ωpT )

(3.13)

where we made use of the relations (1.36) on page 12.We note the quadratic dependence
on the sampling frequency.

The state-space representation is not unique. Given any non-singular T matrix we
can obtain a new representation by placing:

S̃ = T−1S Ã = T−1A T B̃ = T−1B C̃ = C T D̃ = D

The Ã matrix is said to be similar to the A matrix. The new state becomes
ũ =

b̃1
(
1− ã4 z

−1
)

+ b̃2 ã2 z
−1

(1− ã1z−1) (1− ã4z−1)− ã2 ã3 z−2
x

ṽ =
b̃2
(
1− ã1 z

−1
)

+ b̃1 ã3 z
−1

(1− ã1 z−1) (1− ã4 z−1)− ã2 ã3 z−2
x

(3.14)

We obviously have that Det(Ã−λI) = Det(A−λI) and therefore a similitude trans-
formation leaves the determinant and the trace of the matrices unchanged and therefore
also leaves the value of Den.unchanged.

Let us now consider a generic T transformation. If we multiply the matrix T by a
constant, this is simply equivalent to a change of scale that absolutely does not change
the dynamics of the filter so we can always assume that Det(T) = 1. Therefore we have
for T and its inverse T−1

T =

(
t1 t2
t3 t4

)
T−1 =

(
t4 −t2
−t3 t1

)
and the components of the matrices Ã and B̃ become

ã1 = a1 t1 t4 + a2 t3 t4 − a3 t1 t2 − a4 t2 t3

ã2 = (a1 − a4) t2 t4 + a2 t
2
4 − a3 t

2
2

ã3 = (a4 − a1) t1 t3 + a3 t
2
1 − a2 t

2
3

ã4 = −a1 t2 t3 − a2 t3 t4 + a3 t1 t2 + a4 t1 t4

b̃1 = b1 t4 − b2 t2
b̃2 = −b1 t3 + b2 t1

(3.15)

Two cases now arise depending on whether the value of b2 is null or not.

3.2 The b2 = 0 case

Let’s first examine the much more important case where the coefficient b2 is zero and
b1 = 1. The state (3.6) simply becomes

u =
b1
(
1− a4 z

−1
)

Den
x =

1− a4 z
−1

Den
x

v =
b1 a3 z

−1

Den
x =

a3 z
−1

Den
x

(3.16)
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The ”gain” of the Gu filter is given directly by the first of the (3.8). As we have
already noted, if b2 = 0, the second of the (3.8) loses its meaning; but if a4 6= 0 we can
identify the ”gain” Gv with G′v, that is as the ratio of the first to the second term of the
sum a3z

−1u+ a4z
−1v of the eq. (3.4). We therefore have:

Gu =
a1z
−1u+ a2z

−1v

b1x
=
a1z
−1u+ a2z

−1v

x

Gv =
a3z
−1u

a4z−1v
=
a3

a4
· u
v

(3.17)

With the help of the ”gains” we can rewrite the state equations in the following way
(see eq. (3.4)): 

u = Gu x+ x = (Gu + 1)x

v = (Gv + 1) a4z
−1v

(3.18)

and using the (3.16)
Gu =

a1 z
−1
(
1− a4 z

−1
)

+ a2a3 z
−1

Den
z−1 =

a1z
−1

Den
− Det(A)z−2

Den

Gv =
1− a4z

−1

a4 z−1

(3.19)

Let’s consider the similarity transformations such that even b̃2 = 0. It must be t3 = 0
(see eq. (3.15)) and since Det(T) = 1 it must be t4 = 1/t1. Therefore the matrix T

becomes T =

(
t1 t2
0 1/t1

)
. The matrices Ã and B̃, the transforms of the matrices A and

B of the eq. (3.3), take the following form

Ã =

(
−a− t1 t2 −a t2/t1 − b/t21 − t22

t21 t1 t2

)
B̃ =

(
1/t1

0

)
(3.20)

It is easy to verify that Det(Ã) = b and Tr(Ã) = −a as it necessarily must be. The
state (3.14) becomes 

ũ =
1− t1 t2 z−1

Den

x

t1

ṽ =
t21 z
−1

Den

x

t1

(3.21)

and the ”gains” G̃u and G̃v (with Gu I mean the ”gain” of the direct form II ) become
G̃u =

(−a− t1 t2) z−1

Den
− Det(A)z−2

Den
= Gu −

t1 t2 z
−1

Den

G̃v =
1− t1 t2 z−1

t1 t2 z−1

(3.22)

Let’s analyze the behavior with constant input and at the resonance frequency. The
asymptotic value of the state as a response to a constant input becomes

ũ =
1− t1 t2

Den

xdc
t1

ṽ =
t21

Den

xdc
t1

(3.23)
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while the corresponding ”gains” value, given by the (3.22) are
G̃udc = Gudc −

t1 t2
1 + a+ b

G̃vdc =
1− t1 t2
t1 t2

(3.24)

Let’s first examine the behavior of G̃u in detail. We know from eq (3.13) that the
value of Gudc contains a quadratic dependence on the sampling frequency and more
precisely it is

Gudc =
1

1 + a+ b
− 1 =

1

ω2
pT

2
+

1

2ωpTQp
− 3

4

so that

G̃udc =
1− t1 t2
ω2
pT

2
+

1− t1 t2
2ωpTQp

+
1− t1 t2

4
− 1

To remove the quadratic dependence on the sampling frequency we have an infinite
number of choices. Just put t1 t2 = 1 + ωpT · R(ωpT ), where R(ωpT ) is an arbitrary
function of the argument with the only obvious limitation that there must be no poles
in the origin, to have

G̃udc =
R(ωpT )

ωpT
+
R(ωpT )

2Qp
+
ωpT ·R(ωpT )

4
− 1

We must now decide the most appropriate form for R(ωpT ). The most obvious choice

seems to be simply R(ωpT ) = 0, that is t1 t2 = 1, in which case the ”gain” G̃udc is reduced

to the constant -1, the ”gain” G̃vdc is canceled (eq. (3.24)) and the state becomes G̃vdc
si annulla (eq. (3.24)) e lo stato diviene

ũdc = 0

ṽdc =
t1xdc

1 + a+ b
=

(
1

ω2
pT

2
+

1

2ωpTQp
+

1

4

)
t21
xdc
t1

(3.25)

The fact that the state variable ũdc and the ”gain” G̃vdc cancel each other does not
mean that the system is indeterminate. It is only their asymptotic value that cancels out
with constant input. The transient phase of the state, with one unit step at the input,
is a damped oscillation: the u component of the state is a damped oscillation with zero
mean and initial amplitude equal to approximately 1/ωp T ; the component v , on the
other hand, is a damped oscillation around the value of 1/ω2

p T
2 and an initial amplitude

equal to approximately 1/ω2
p T

2. The calculation shows that the ”gain” Gu is a damped
oscillation with an average value of -1 and an initial amplitude equal to 1/ωp T . We have
the same behavior for the ”gain” Gv with the difference that its asymptotic value is zero.
There is therefore a linear dependence of the ”gains” with the sampling frequency. For
the detailed calculation of the state transient phase and ”gains” with t1 t2 = 1 see the
appendix G.

All this, however, concerns the behavior of the filter with constant input. Let us now
analyze its behavior at the resonance frequency. From the equation (3.22) we get the
following expression for the ”gain” Gu:

G̃u =
(−a− t1 t2) z−1 −Det(A)z−2

Den
=

(−a− t1 t2) z−1 − b z−2

Den
.

Its square module at the resonance frequency is

|G̃u|2RIS =

[
(−a− t1 t2) z−1 − b z−2

] [
(−a− t1 t2) z − b z2

]
|Den|2

∣∣∣∣∣
z=ejΩ

=
a2 + 2 a (t1 t2) + (t1 t2)

2
+ b2 + 2a b cos Ω + 2 (t1 t2) b cos Ω

|DEN|2
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and is a quadratic function of the product (t1 t2). DEN is the value of Den at the
resonance frequency (see (F.6) of the appendix F on page74). The minimum value of

|G̃u|2RIS occurs when

2 a+ 2 (t1 t2) + 2 b cos Ω = 0

that is when

t1 t2 = −a− b cos Ω = cos Ω =
4− ω2

pT
2

4 + ω2
pT

2
(3.26)

where we made use of the relationships (E.6) of the appendix Eon page 66. With this

choice of the product (t1 t2) the minimum value of G̃u becomes

min(G̃u)
RIS

= z−1 −a− cos Ω− b cos Ω + j b sin Ω

DEN
= e−jΩ −a− cos Ω(1 + b) + j b sin Ω

DEN

= e−jΩ
−a+

a

1 + b
(1 + b) + jb sin Ω

DEN
= e−jΩ j b sin Ω

DEN

= e−jΩ

j
4− 2ωpT/Qp + ω2

pT
2

Den

4ωpT

4 + ω2
pT

2

−j
16ω2

pT
2/Qp

Den(4 + ω2
pT

2)
e−jΩ

= −
4− 2ωpT/Qp + ω2

pT
2

4ωpT/Qp
= − Qp

ωpT
+

1

2
− ωpT Qp

4

Again from the equation (3.22) we obtain for the square module of the ”gain” Gv at
the resonance frequency the following expression:

|G̃v|2RIS =
(1− (t1 t2) e−jΩ)(1− (t1 t2) ejΩ)

(t1 t2)2
=

1 + (t1 t2)2 − 2(t1 t2) cos Ω

(t1 t2)2

also a quadratic function of the product (t1 t2).We get the minimum value of |G̃v|2RIS
when

[2(t1 t2)− 2 cos Ω] (t1 t2)2 −
[
1 + (t1 t2)2 − 2(t1 t2) cos Ω

]
2(t1 t2)

(t1 t2)4
= 0

(t1 t2)2 − (t1 t2) cos Ω− 1− (t1 t2)2 + 2(t1 t2) cos Ω = (t1 t2) cos Ω− 1 = 0

that is when

t1 t2 =
1

cos Ω
=

4 + ω2
pT

2

4− ω2
pT

2
(3.27)

With this choice of the product (t1 t2) the minimum value of Gv becomes

min(G̃v)RIS = cos Ω(cos Ω + j sin Ω)− 1 = sin2 Ω + j sin Ω cos Ω

= sin Ω(sin Ωj cos Ω) =
4ωp T

4 + ω2
pT

2
ejΩ

whose module is obviously
4ωp T

4 + ω2
pT

2

From all this analysis it turns out that the optimal value of the product t1 t2 is of the
order of unity. The most obvious choice still seems to be to put t1 t2 = 1. However, given
that all the values of t1 t2 close to 1 give a linear dependence of the filter parameters
with the sampling frequency and that moreover the values of the parameters themselves
do not change significantly from their optimal values, the choice more opportune to
adopt is to minimize the number of filter coefficients in order to minimize the number
of processor memory accesses. This is achieved, for example, by making ã1 = ã4 i.e. for
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−a− t1 t2 = t1 t2 i.e. forr t1 t2 = −a/2 = g. With this choice and bearing in mind that

Det(Ã) = b = g2 + h2 the matrix A becomes

Ã =

(
g −h2/t21

t21 g

)

The value of t21 does not affect the parameter values so we can make ã2 and ã3 take

opposite values equal to h. In this way, only 2 coefficients are needed for the Ã matrix.
Finally, we can multiply the matrix T per t1 without, as we have seen, altering the
matrix Ã. In this way, the input matrix takes the form b̃ = (1 0)T . Note that this
choice satisfies all the constraints that we had established regarding the ratios of the
state matrix coefficients. The state variable filter thus obtained is the one we developed
in the previous chapter and is the one currently implemented in Virgo.



Appendix A

Digital Signal Processing

The content of this appendix is a brief introduction to Digital Signal Processing. It is
based mostly on the first chapters of [1] and is essentially a brief summary of it. For
further details, see the original work.

A.1 Numerical Sequences

In numerical signal processing, we are dealing with signals that are defined only for
discrete values of t and are therefore represented as sequences of numbers. Discrete-time
signals can be generated by sampling continuous-time signals or directly generated by
some discrete-time processes (synthesizers, etc.). In the case of signals generated by
the sampling of continuous-time signals, the sampling time is normally a multiple of a
fundamental time T, the reciprocal of which is called the sampling frequency.

In analogy to the treatment of continuous time signals carried out by analog systems,
we can define numerical signal processing systems in which both the input and the output
are represented by numerical sequences. If the numbers of the numerical sequences take
only discrete values, then we speak of digital processing systems.

The theory of discrete-time systems deals with the processing of signals which are
represented by numerical sequences. The expression

x = {x(n)} −∞ < n < +∞

represents a numerical sequence x, in which the n-th number of the sequence is denoted
by x(n).

Just as in the analog world there are significant signals such as the Dirac’s Delta
Function, the unit step etc., also in the digital world there are significant numerical
sequences of fundamental importance.

� The sequence unit-impulse also called simply impulse

δ(n) =

{
0 n 6= 0

1 n = 0

� The sequence unit-step

u(n) =

{
0 n < 0

1 n > 0

We have the following obvious relationships

u(n) =

+∞∑
k=−∞

δ(k)

δ(n) = u(n)− u(n− 1)

35
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A sequence x(n) is said to be periodic with period N if

x(n) = x(n+N) ∀n

and furthermore it is said that y is a shifted version of the sequence x if

y(n) =
∑

k = −∞+∞x(n− n0)

Various operations can be defined on the sequences and in particular

x · y = {x(n)y(n)} Product

x+ y = {x(n) + y(n)} Sum

α · x = {αx(n)} Product with a constant

An arbitrary sequence can be represented as the sum of delayed and suitably scaled
unit samples

x(n) =

+∞∑
k=−∞

x(n)δ(n− k) (A.1)

A.2 Linear Time-Invariant Systems

A system is defined by an operator T [·] which maps an input sequence x(n) into an
output sequence y(n)

y(n) = T [x(n)]

.
A system is linear if the superposition principle holds: if y1(n) and y2(n) are the

system’s responses to inputs x1(n) and x2(n) then we have:

T [a x1(n) + b x2(n)] = a T [x1(n)] + b T [x2(n)] = a y1(n) + b y2(n)

with a and b arbitrary constants.
Representing a generic sequence x(n) as the sum of scaled and delayed unit pulses,

see (A.1), assuming the linearity of the system and denoting with hk(n) the response of
the system to the impulse δ(n− k), we have:

y(n) =

+∞∑
k=−∞

x(k)T [δ(n− k)] =

+∞∑
k=−∞

x(k)hk(n). (A.2)

Therefore the system is completely characterized by the response hk(n) to the impulse
δ(n− k). If only linearity is imposed on the system then hk(n) will generally depend on
both n and k.

The class of time-invariant (shift-invariant) systems is characterized by the property
that if y(n) is the system’s response to the input x(n) then y(n − k) is the system’s
response to the input x(n − k). When the index n is associated with time, it is called
invariance by time translation. The property of the time-invariance implies that if h(n)
is the answer to δ(n) then the answer to δ(n− k) is simply h(n− k). Therefore we have:

y(n) =

+∞∑
k=−∞

x(k)h(n− k). (A.3)

Each linear and time-invariant system is completely characterized by its
response to the unit impulse h(n).

The expression (A.3) is commonly called convolution sum and y(n) is said to be the
convolution of x(n) with h(n). It is indicated by:

y(n) = x(n) starh(n)
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. With a change in the sum index we have

y(n) =

+∞∑
k=−∞

h(k)x(n− k)

so that the convolution sum has the commutative property. The order in which two
sequences are convolved is not important: the system response is the same if we exchange
the role of the input and the impulse response.

Two linear and time-invariant systems in cascade correspond to a linear and time-
invariant system whose response to the unit impulse is the convolution sum of the two
responses. Since the order in which two sequences are convolved is not important, the
answer does not depend on the order in which the two systems are cascaded

Figure A.1:

Since the convolution sum is a linear operation, it follows that a linear and time-
invariant system consisting of the parallel of 2 systems is equivalent to a single system
whose response to the unit impulse is the sum of the two individual responses

Figure A.2:

A.3 Stability e Causality

A stable system is a system for which each limited input sequence outputs a sequence
that is also limited. The linear and time-invariant systems are stable if and only if:

S =

+∞∑
k=−∞

|h(k)| <∞
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In fact, if the above relationship holds and i x is a limited sequence, that is if |x(n)| > M
for every n, then:

|y(n)| =

∣∣∣∣∣
+∞∑

k=−∞

h(k)x(n− k)

∣∣∣∣∣ 6M

+∞∑
k=−∞

|h(k)| <∞

that is, the output sequence y is limited. On the other hand, if S is not limited then a
limited input sequence can be found which produces an unlimited output sequence. One
such sequence is for example the following:

h(n) =


h∗(−n)

|h(n)|
h(n) 6= 0

0 h(n) = 0

x(n) is obviously limited while the output value for n = 0 is:

y(0) =

+∞∑
k=−∞

x(−k)h(k)) =

+∞∑
k=−∞

|h(k)|2

h(k)
= S =∞

A system is said to be causal if the value of the output sequence for n = n0 depends
only on the values of the input sequence for n 6 n0. Therefore:

se x1(n) = x2(n) per n < n0

allora: y1(n) = y2(n) per n < n0

A linear and time-invariant system is causal if and only if the response to the unit
impulse is null for n < 0.

So, for example, if the response to the unit impulse is given by the sequence h(n) =
anu(n), since the answer is null for n < 0, the system is causal. With regards to stability,
we have:

S =

+∞∑
k=−∞

|h(k)| =
+∞∑
k=0

|a|k

If |a| < 1 the geometric series converges to the value S = 1/(1 − |a|) and the system is
stable, while for |a| > 1 the series diverges and the system is unstable.

A.4 Difference Equations

An important class of linear and time-invariant systems is that consisting of systems for
which the input x(n) and the output y(n) satisfy a linear, constant coefficients difference
equation of the form:

N∑
k=0

aky(n− k) =

M∑
r=0

brx(n− r) (A.4)

In general, such a system is not necessarily causal. For example the difference equation
y(n)− ay(n− 1) = x(n) for x(n) = δ(n) is satisfied both by the sequence y(n) = anu(n)
than from the sequence y(n) = −anu(−n−1). The first solution corresponds to a causal
system that is stable for |a| < 1 and the second solution to a stable non-causal system
only if |a| > 1.Normally it is assumed that a difference equation represents a causal
system.

As with ordinary differential equations, a difference equation has a family of solutions:
a solution of the associated homogeneous equation can be added to each particular so-
lution of the equation. The solution becomes unique if the so-called initial conditions
are specified. If the system is causal, we must specify the initial conditions so that if
x(n) = 0 for n < n0 then y(n) = 0 for n < n0. If we assume that the system is causal,
we can explicitly write the relationship that links the output to the input:

y(n) = −
N∑
k=1

ak
a0
y(n− k) +

M∑
r=0

br
a0
x(n− r)



A.5. FIR AND IIR SYSTEMS 39

A.5 FIR and IIR Systems

Generally in a linear and time-invariant system, the response sequence to the unit impulse
can be of finite or infinite duration. If the response to the unit impulse is of finite duration,
we speak of FIR (finite impulse response); vice versa, if the response to the unit impulse
is of infinite duration we speak of textbf IIR systems (infinite impulse response).

If in the difference equation (A.4) that describes the system it is N = 0 so that:

y(n) =
1

a0

[
M∑
r=0

brx(n− r)

]

then the system is a FIR system: in fact the expression is identical to the sum of convo-
lution with:

h(n) =


bn
a0

n = 0, 1, · · · ,M

0 altrimenti

A FIR type system can always be described by a difference equation with N = 0; in
a type IIR system, on the other hand, you must necessarily have N > 0.

A.6 The numerical signals in the frequency domain

A fundamental property of linear and time-invariant systems is that their stationary
response to a sinusoidal input signal is a sinusoidal output signal of the same input
frequency and with amplitude and phase determined by the system itself. It is this
property that makes the representation of signals by sinusoids or complex exponentials
(Fourier representation) so useful in the theory of linear systems.

So for discrete-time systems we have:

x(n) = ejnΩ per −∞ < n < +∞

y(n) =

+∞∑
k=−∞

h(k)ej(n−k)Ω = ejnΩ
+∞∑

k=−∞

h(k)e-jkΩ

If we define

H(ejΩ) =

+∞∑
k=−∞

h(k)e-jkΩ (A.5)

we can write:
y(n) = H(ejΩ)ejnΩ

Therefore H(ejΩ) describes the change in the complex amplitude of a complex expo-
nential with angular frequency Ω and is called the system frequency response at the unit
impulse h(n). In terms of amplitude and phase we have:

H(ejΩ) = |H(ejΩ)|e-j arg[H(ejΩ)]

Since a sinusoidal signal can be expressed as the sum of two complex exponentials,
the frequency response to a sinusoidal signal is:

x(n) = A cos(nΩ0 + ϕ) =
A

2
ejϕejnΩ0 +

A

2
e−jϕe−jnΩ0

y(n) =
A

2

[
H(ejΩ0ejϕejnΩ0 +H(e−jΩ0e−jϕe−jnΩ0

]
=

= A|H(ejΩ0)| cos(nΩ0 + ϕ+ θ)

where
θ = arg

[
H(ejΩ0)

]
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is the system phase response for the angular frequency Ω0.

From the definition of H(ejΩ) we note that it is a continuous function of Ω and also
that it is periodic function of period 2π. This means that the frequency response of a
discrete-time system to a sinusoidal signal with angular frequency Ω is strictly the same
response to a signal with angular frequency Ω0 + 2π.

Since H(ejΩ) is a periodic function of Ω, it can certainly be represented by a Fourier
series. Indeed its definition:

H(ejΩ) =

+∞∑
k=−∞

h(k)e-jkΩ

represents it in the form of a Fourier series whose coefficients are the sequence h(n),
i.e. the response to the unit impulse. We can therefore obtain the sequence h(n) from
the frequency response using the relationship that gives us the Fourier coefficients of a
periodic function:

h(n) =
1

2π

∫ +π

−π
H(ejΩ)ejnΩdΩ

This obviously can be generalized to an arbitrary sequence: thus given a sequence
x(n) we define its Fourier transform and its anti-transform through the relations:

X(ejΩ) =

+∞∑
n=−∞

x(n)e-jnΩ (A.6)

x(n) =
1

2π

∫ +π

−π
X(ejΩ)ejnΩdΩ (A.7)

all this obviously if the series converges.

It can easily be shown that if the sequence y(n) is the system response to the sequence
x(n), i.e.

y(n) =

+∞∑
k=−∞

x(k)h(n− k)

then

X(ejΩ) = H(ejΩ)X(ejΩ)

A.6.1 Some properties of the Fourier transform

Here is a summary of the most important properties of the Fourier transform for numer-
ical sequences.

� Definizioni:

– xe(n) è conjugate-symmetric if xe(n) = x∗e(−n)

– xo(n) è coniugate-antisymmetric if xo(n) = −x∗e(−n)

� One can always write x(n) = xe(n) + xo(n) with

– xe(n) = 1
2 [x(n) + x∗(−n)]

– xo(n) = 1
2 [x(n)− x∗(−n)]

� One can always write X(ejΩ) = Xe(e
jΩ) +Xo(e

jΩ) with

– Xe(e
jΩ) = 1

2 [X(ejΩ) +X∗(e−jΩ)]

– Xo(e
jΩ) = 1

2 [X(ejΩ)−X∗(e−jΩ)]
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� In general:

x(n) → X(ejΩ)

x∗(n) → X∗(e−jΩ)

x∗(−n) → X∗(ejΩ)

Re[x(n)] → Xe(e
jΩ) coniugate-symmetric part of X(ejΩ)

j Im[x(n)]→ Xo(e
jΩ) coniugate-antisymmetric part of X(ejΩ)

xe(n) → Re[X(ejΩ)]

xo(n) → j Im[X(ejΩ)]

� If x(n) is real:

X(ejΩ) = X∗(e−jΩ) The Fourier transform is coniugate-symmetric

Re[X(ejΩ)] = Re[X(e−jΩ)] the real part is even

Im[X(ejΩ)] = − Im[X(e−jΩ)] the imaginary part is odd

|X(ejΩ)| = |X∗(e−jΩ)| the amplitude is even

arg[X(ejΩ)] = − arg[X(e−jΩ)] the phase is odd
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Appendix B

The Sampling Theorem

B.1 Sampling of continuous time signals

Discrete-time signals are often obtained by sampling continuous-time signals. We intend
to derive the relationship between the spectra Xa(jω) of the analog signal and X(ejΩ) of
the sampled signal. If xa(t) is an analog signal whose Fourier representation is given by:

1

2π

∫ +∞

−∞
Xa(jω)ejωtdω

with

Xa(jω) =

∫ +∞

−∞
xa(t)e−jωtdt

indicating with x(n) = xa(nTs) the sequence obtained by sampling with period Ts of the
continuous signal we have:

x(n) = xa(nTs) =
1

2π

∫ +∞

−∞
Xa(jω)ejωnTsdω

=
1

2π

+∞∑
r=−∞

∫ (2r+1)π/Ts

(2r−1)π/Ts

Xa(jω)ejωnTsdω.

With the change of variable ω = Ω/Ts + 2πr/Ts and changing the order of addition
and integration we have:

x(n) =
1

2π

+∞∑
r=−∞

∫ (2r+1)π/Ts

(2r−1)π/Ts

Xa(jω)ejωnTsdω

=
1

2π

∫ (2r+1)π/Ts

(2r−1)π/Ts

+∞∑
r=−∞

Xa(jω)ejωnTsdω

=
1

2π

∫ +π

−π

+∞∑
r=−∞

Xa(jΩ/Ts + j2πr/Ts)e
jnΩdΩ

to be compared with the definition:

x(n) =
1

2π

∫ +π

−π
X(ejΩ)ejnΩdΩ

Ultimately we have:

X(ejΩ) =
1

Ts

+∞∑
r=−∞

Xa(jΩ/Ts + j2πr/Ts) (B.1)
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i.e. in terms of the analog frequency ω:

X(jω) =
1

Ts

+∞∑
r=−∞

Xa(jω + j2πr/Ts) (B.2)

This result constitutes the so-called Sampling Theorem. It determines the Fourier trans-
form of a numerical sequence obtained by sampling an analog signal as a function of
the Fourier transform of the analog signal itself. As can be seen, the spectrum of the
sampled signal is given by the superposition of the analog spectrum and its shifted copies
of multiples of the sampling frequency.

If the sampling frequency is too low, the shifted versions of the analog spectrum
overlap and information is lost. In this case the high frequency components of Xa(jω)
are reflected in the low frequencies of X(ejΩ) and this effect, for which a high component
frequency is converted to a low frequency, it is called aliasing.

Vice versa, if the sampling frequency is at least double the maximum frequency
present in the analog signal, there is no such overlap of the spectra and therefore there
is no loss of information. The least frequency for which this occurs is known as Nyquist
frequency. In reality, this statement is a bit too restrictive: it is easy to see that in
order not to have information loss it is sufficient that the sampling frequency is at least
equal to twice the analog band for which the signal spectrum is significantly different
from zero. In fact, even in this case the shifted copies of the analog spectrum do not
overlap and from the spectrum of the sampled signal it is always possible to go back
to the starting analog spectrum. The reconstruction of the analog signal starting from
the sampled one, provided that the Nyquist criterion has been satisfied, is a procedure
known as interpolation and is the topic of the next paragraph.

Before continuing we will give a further demonstration of the sampling theorem which,
although not very rigorous from a mathematical point of view, has the advantage of being
more direct and more intuitive.

We define sampler a linear system whose output, for an input signal x(t), is an
analog signal x̃(t) consisting of a sequence of Dirac deltas, spaced from each other by
the sampling period Ts, and whose amplitude is equal to the value that the input signal
assumes at the time nTs. We can formally write the sampler output as follows:

x̃(t) =

+∞∑
l=−∞

x(lTs)δ(t− lTs). (B.3)

It is obvious that such a linear system is not time-invariant. In fact, if the input
signal is a shifted version of x(t) the sampler output is

+∞∑
l=−∞

x(lTs − τ)δ(t− lnTs) 6= x̃(t− τ)

especially since x̃(t−τ) ≡ 0 unless it is τ = kTs with k integer. The fact that the sampler
is not invariant for time translations also implies that in this case the commutative
property does not apply. For example, a system consisting of a sampler followed by a
forming filter produces a completely different output from a filter followed by a sampler.

Keeping in mind the properties of the Dirac delta, we can rewrite the sum in eq.
(B.3) as follows

x̃(t) =

+∞∑
l=−∞

x(lTs)δ(t− lTs) =

+∞∑
l=−∞

x(t)δ(t− lTs) = x(t)

+∞∑
l=−∞

δ(t− lTs) (B.4)

We can therefore characterize the process of sampling a signal as the product of the
signal itself with a periodic Dirac delta sequence of period Ts. Ts.
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x(t) x(t)
∑
δ(t− lTs)

fc = 1/Ts

Figure B.1: Campionatore ideale

Since the Dirac delta sequence is periodic, we can represent it with a Fourier series

+∞∑
l=−∞

δ(t− lTs) =

+∞∑
r=−∞

Cre
jrωst

where

ωs = 2πfs =
2π

Ts

and the development coefficients Cr are given by

Cr =
1

Ts

∫ +Ts/2

−Ts/2

[
+∞∑
l=−∞

δ(t− lTs)

]
ejrωstdt

=
1

Ts

+∞∑
l=−∞

∫ +Ts/2

−Ts/2
δ(t− lTs)ejrωstdt =

1

Ts

Therefore
+∞∑
l=−∞

δ(t− lTs) =
1

Ts

+∞∑
r=−∞

ejrωst (B.5)

Using the (B.5) in the (B.5) we have

x̃(t) = x(t)
1

Ts

+∞∑
r=−∞

ejrωst (B.6)

whose Fourier transform is

X(jω) =
1

Ts

∫ +∞

−∞

[
x(t)

+∞∑
r=−∞

ejrωst

]
e−jωtdt

=
1

Ts

+∞∑
r=−∞

∫ +∞

−∞
x(t)e−j(ω−rωs)tdt

(B.7)

The integral following the sum symbol is the Fourier transform of the input signal eval-
uated at the angular frequency ω − rωs∫ +∞

−∞
x(t)e−j(ω−rωs)tdt = Xa[j(ω − rωs)]

Therefore

X(jω) =
1

Ts

+∞∑
r=−∞

Xa[j(ω − rωs)] (B.8)

that is, the spectrum of the sampled signal is given by the spectrum of the original signal
superimposed on all its shifted copies of rωs.

A further proof derives from the observation that, as seen from (B.4), the sampled
signal is given by the product of the analog signal with a sequence of Dirac deltas. It
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is known from the theory that the Fourier transform of the product two functions of
time is given by the product of convolution in the frequency domain of the transforms
of the functions themselves. It is therefore a matter of carrying out the convolution
product of the Fourier transform of xa(t) with the Fourier transform of a series of Dirac
deltas. To compute the Fourier transform of a series of δ(t− lTs) we use its Fourier series
representation given by eq. (B.5). Let ∆(jω) denote the Fourier transform of the Dirac
delta series

∆(jω) =

∫ +∞

−∞

[
1

Ts

+∞∑
r=−∞

ejrωst

]
e−jωtdt =

1

Ts

+∞∑
r=−∞

∫ +∞

−∞
ej(rωs−ω)tdt

=
2π

Ts

+∞∑
r=−∞

δ(ω − rωs) = ωs

+∞∑
r=−∞

δ(ω − rωs)

(B.9)

where we used the well-known relationship δ(x) = 1
2π

∫
ejxtdt and the fact that the Dirac

delta is an even function.
Therefore the spectrum of a series of Dirac deltas of period T is also a series of Dirac

deltas of period ωs multiplied by ωs.
We now evaluate the spectrum of the sampled signal with the convolution product of

Xa(jω) with j∆(ω)

X(jω) =
ωs
2π

∫ +∞

−∞
Xa(jω′)

+∞∑
r=−∞

δ(rωs − ω − ω′)dω′

=
1

Ts

+∞∑
r=−∞

Xa[j(ω − rωs)]

result that coincides with eq. (B.8)
From the proof of the sampling theorem we obtain a further important important

result: the spectrum of a sampled signal (or a numerical sequence) is periodic
of period ωs.

B.2 Reconstruction of a band limited signal

If during the sampling of an analog signal the Nyquist criterion is satisfied, having no
loss of information, the inverse procedure is possible, i.e. the recovery of the analog
signal starting from its samples. Such a procedure is called interpolation. A possible and
widely used implementation of the interpolation is the following: we start from the result
obtained from the sampling theorem and represent the spectrum of the sampled signal
as superposition of the spectrum of the continuous signal with its translated copies of
integer multiples of ωs (see eq. (B.2))

X(jω) =
1

Ts

+∞∑
r=−∞

Xa(jω + j2πr/Ts)

The signal x(t) is obviously equal to the Fourier anti-transform of its spectrum.
Compliance with Nyquist’s criterion requires that Xa(jω) be different from zero for
−π/T < ω < π/T . We can therefore write

x(t) =
1

2π

∫ +∞

−∞
Xa(jω)ejωtdω =

1

2π

∫ +π/T

−π/T
Xa(jω)ejωtdω

But, again due to the Nyquist criterion, within the range −π/T < ω < π/T the
spectrum of the analog signal Xa(jω) coincides, apart the factor T , with that of the
sampled signal X(jω) so

x(t) =
1

2π

∫ +π/T

−π/T
T X(jω)ejωtdω
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We also know that the numerical sequence x(kT ), that is the samples of the analog
signal, are the coefficients of the Fourier series with which the spectrum of the sequence
itself is represented (see eq (A.6)). Substituting therefore in the previous expression
X(jω) with its Fourier series we obtain

x(t) =
T

2π

∫ +π/T

−π/T

[
+∞∑

k=−∞

x(kT )e−jkωt

]
ejωtdω =

+∞∑
k=−∞

x(kT )

[
T

2π

∫ +π/T

−π/T
ejω(t−kT )dω

]

The evaluation of the integral in square brackets is elementary∫ +π/T

−π/T
ejω(t−kT )dω =

1

j(t− kT )
ejω(t−kT )

∣∣∣∣+π/T
−π/T

=
2π

T

sin[(π/T )(t− kT )]

(π/T )(t− kT )

for which we ultimately have

x(t) =

+∞∑
k=−∞

x(kT )
sin[(π/T )(t− kT )]

(π/T )(t− kT )
(B.10)

To conclude an observation: the relationship (B.10) that we have obtained allows
the reconstruction of the analog signal starting from its samples. However, it has a
peculiarity: to give the value x(t) at time t requires knowledge not only of the samples
prior to time t but also of future values. It is therefore a non-causal process and cannot
be used in real-time applications but proves very useful for off-line processing.
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Appendix C

The z-Transform

One of the characteristics of the Laplace transform, which facilitates the study and
design of time-invariant and continuous-time linear systems, consists in the fact that
it transforms the differential equation that describes the system itself into an algebraic
equation that is much simpler. to be treated.

The z-transform is the equivalent procedure applicable to time-invariant and discrete-
time linear systems, transforming the difference equation that describes the system into
an algebraic equation whose study is much simpler.

C.1 Definition

Given a numerical sequence x(n) its z-transform X(z) is a function of the complex vari-
able z given by

X(z) =

+∞∑
n=−∞

x(n)z−n (C.1)

The transform thus defined is also called the bilateral z-transform; sometimes it is
useful to also consider the so-called unilateral z-transform

X(z) =

+∞∑
n=0

x(n)z−n (C.2)

Obviously the bilateral and unilateral z-transform coincide for causal numerical se-
quences for which x(n) = 0 for n < 0.

Expressing the complex variable z in polar form, z = ρ ejΩ, we have:

X(r ejΩ) =

+∞∑
n=−∞

x(n)(ρ ejΩ)−n =

+∞∑
n=−∞

x(n)ρ−nejΩn (C.3)

Therefore we can interpret the z-transform of the sequence x(n) as the Fourier trans-
form of x(n) multiplied by an exponential sequence. For r = 1, that is for |z| = 1, the
z-transform coincides with the Fourier transform of the sequence. There is a perfect anal-
ogy with the Laplace transform: its value along the imaginary axis, that is, for s = jω,
coincides with the Fourier transform.

C.2 Region of Convergence

In general, the z-transform does not necessarily converge for all numerical sequences or
for all the values of the complex variable z. For each given sequence, the set of values of

49
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z for which the z-transform converges, that is:∣∣∣∣∣
+∞∑

n=−∞
x(n)z−n

∣∣∣∣∣ <∞
it is called the convergence region.

It may happen that the z-transform converges even if the corresponding Fourier trans-
form does not converge and vice versa. For example. the sequence x(n) = u(n) is not
absolutely convergent and therefore its Fourier transform does not converge; however its
z-transform is absolutely convergent for |z| > 1.

Generally, the convergence region of the bilateral transform is an annular region of
the z plane

R− < |z| < R+

where it can be R− = 0 and R+ =∞.
The power series that defines the bilateral z-transform is a Laurent series. A Lau-

rent series represents an analytic function within the convergence region and therefore,
within the convergence region, the z-transform and all its derivatives must be continuous
functions of z.

An important class of z-transforms are those for which X(z) is a rational function,
that is, it is the ratio of two polynomials in z. The roots of the numerator are the zeros
of X(z) and the roots of the denominator are its poles.

For example the sequence x(n) = anu(n) whose transform Z is

X(z) =

+∞∑
n=−∞

anu(n)z−n =

+∞∑
n=0

(a z−1)n =
1

1− a z−1
=

z

z − a
per |z| < |a|, (C.4)

it has a zero for z = 0 and a pole for z = a. The convergence region is the region outside
the circle of radius a.

In general:

� The convergence region of a sequence of finite length is the entire z plane with at
most the exclusion of the point z = 0 and the point z =∞.

� The convergence region of a right one-sided sequence is external to a circle of radius
R− and can include the point z =∞ (causal sequence)

� The convergence region of a left one-sided sequence is inside a circle of radius R+

and can include the point z = 0

� The convergence region of a bilateral sequence, seen as the sum of a left unilateral
sequence converging for |z| < R+ and a right unilateral sequence converging for
|z| > R−, is the common convergence region given by R− < |z| < R+ if R− < R+;
if instead R− > R+ this region does not exist and the series does not converge.

For example in the case of a bilateral sequence whose z-transform is

X(z) =

+∞∑
n=n1

x(n)z−n,

if we assume that the series is absolutely convergent for z = z1, that is

+∞∑
n=n1

|x(n)z−n1 | <∞,

then the series obviously converges also for every |z| > |z1|. If n1 > 0 (causal sequence)
the series also converges for z =∞.
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We also observe that if a right one-sided series converges for z = z1, then each term
of the series is limited and therefore there is a finite constant A such that

|x(n)z−n1 | < A per n > n1,

placing |z1| = ρ with ρ > R− we have

|x(n| < Aρn

that is, the sequence, for n → +∞, cannot grow faster than an exponential. If the
convergence region of x(n) includes the unit radius circumference, so that ρ < 1,can be
chosen, then |x(n)| must tend to zero at least exponentially.

Similar considerations can be made for left unilateral sequences, i.e. the sequence, for
n→ −∞, cannot grow faster than an exponential and, if the convergence region includes
the unit circle, x(n) tends to zero for n→ −∞.

The z-transform of the left unilateral sequence x(n) = −bnu(−n− 1) is:

X(z) =

−1∑
n=−∞

−bnz−n =

∞∑
n=1

−b−nzn = 1−
∞∑
n=0

b−nzn

which is convergent if |z| < |b| nel in which case

X(z) = 1− 1

1− b−1z
=

z

z − b

A comparison with the analogous right one-sided sequence x(n) = anu(n) shows that to
uniquely define the z-transform, in addition to the function X(z), the convergence region
must also be specified.

C.3 Inversion

The inverse of the z-transform can be easily evaluated using Cauchy’s integral theorem
which states:

1

2πj

∮
C

zk−1dz =

{
1, se k = 0

0, altrimenti.

where C is a closed path traveled in a counterclockwise direction that includes the origin.
By applying this theorem to the z-transform of a sequence x(n) multiplied by zk−1

and integrating along a path that includes the origin and which lies entirely within the
convergence region we have:

1

2πj

∮
C

X(z)zk−1dz =
1

2πj

∮
C

+∞∑
n=−∞

x(n)z−n+k−1dz

=

+∞∑
n=−∞

x(n)
1

2πj

∮
C

z−n+k−1dz = x(k)

The request that the integration path lies entirely within the convergence region allows
us to exchange the integration order with the addition order.

Definitely:

x(n) =
1

2πj

∮
C

X(z)zn−1dz

The above expression is normally useful for n > 0; for n < 0 we can use the following

x(n) =
1

2πj

∮
C

X(p−1)p−n−1dp z = p−1
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If the z-transform is a rational function, the evaluation of its anti-transform can be
considerably simplified by using the residue theorem:

x(n) =
1

2πj

∮
C

X(z)zn−1dz =
∑

[sum of residues of X(z)zn−1 in the poles inside C]

If X(z) has a pole of order k for z = z0, then we can write

X(z)zn−1 =
Ψ(z)

(z − z0)k
where Ψ(z) is analytic in z = z0

and

Res
[
X(z)zn−1 in z = z0

]
=

1

(k − 1)!

[
dk−1Ψ(z)

dzk−1

]
z=z0

In particular if the pole is of the first order then

Res
[
X(z)zn−1 per z = z0

]
= Ψ(z0)

Another widely used method for evaluating the z-anti-transform of a rational function
is based on the partial fraction expansion of the function itself. This method is especially
applied when dealing with causal sequences that are equal to zero for n < 0.

It is known that a rational function F (z) = N(z)/Q(z), where N(z) e Q(z) are
polynomials of the complex variable z, we can decompose it into partial fraction. The
procedure to be followed is based on the fact that if F (z) has at the point z = pi a pole
of orde l, the function G(z) = (z − pi)lF (z) is regular at point z = pi and can therefore
be developed in Taylor series. Its serial development is

G(z) = Ail +Ai(l−1)(z − pi) +Ai(l−2)(z − pi)2 + · · ·+Aai(l−k)(z − pi)k + · · ·

where

Aij =
1

(l − j)!

[
dl−j(z − pi)l

dzl−j

]
z=pi

(C.5)

We can therefore write

F (z) =
G(z)

(z − pi)l
=

l∑
j=1

Aij
(z − pi)j

+H(z) (C.6)

where H(z) is in turn a rational function that contains the remaining poles of F (z). The
part under the summation symbol in the (C.6) is known in complex variable function
theory as the main part of Laurent’s series development relative to the pole pi. Continuing
with the same method we can finally write

F (z) =

k∑
i=1

l∑
j=1

Aij
(z − pi)j

+ P (z) (C.7)

where k is the number of distinct poles of F (z), the coefficients Aij are obtained by the
(C.5), and P (z) is a polynomial z. Normally, however, since the degree N(z) is less than
or equal to that of Q(z), P (z) is reduced to a possibly zero constant.

Since the z-transform is a linear operation, the z-anti-transform of a rational function
is given by the sum of the z-anti-transforms of the elements of its decomposition into
simple fractions. Let’s first examine the case of j = 1. From the relationship (C.4)
we know that the z-anti-transform of z/(z − a) the sequence x(n) = anu(n). For the
z-anti-transform of Ai1/(z − pi) we can proceed in this way

Ai1
z − pi

=
Ai1
pi

(
z

z − pi
− 1

)
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whose anti-transform is

x(n) =
Ai1
pi

(pni u(n)− δ(n)) = Ai1p
n−1
i u(n− 1)

that is, the exponential sequence Ai1p
n
i u(n) shifted to the right by a sample and not

divergent |pi| < 1.
As for the generic term Aij/(z − pi)j we observe that it is, apart from a numerical

multiplicative coefficient, the derivative of order j − 1 of 1/(z − pi) and therefore it is
easy to see that its anti-transform is given by the usual delayed exponential sequence of
j samples multiplied by a certain polynomial of the index n.

In short, the anti-transform of the main part relative to the pole pi is given by a
suitable polynomial of n of degree l−1 multiplied by an exponential sequence of the type
pki . It does not diverge if |pi| < 1. We have thus shown that a numerical system is stable
if all its poles lie within the unit circle of the z plane. It is the analogue of the stablity
condition of continuous time systems which are stable if all its poles lie in the left half
plane of the plane of the Laplace variable s.

Keeping in mind what has already been said about the eq.C.3 on page 49, we can
see how the z-transform plays exactly the same role in the numeric field as the Laplace
transform in a continuous field. The left half plane of the s plane corresponds to the
inside of the unit circle of the z plane; the circumference of the unit circle corresponds to
the imaginary axis textjω of the plane s; the spectrum of a continuous signal is obtained
by evaluating the Laplace transform along the imaginary axis while the spectrum of
a numeric or sampled signal is obtained by evaluating its z-transform along the unit
circumference. In this regard, we observe that in the numerical case we can travel the
unit circumference several times and this implies the periodicity of the spectrum of the
numerical signals.

There are other methods used for the evaluation of the z-anti-transform such as the
Laurent series development around the origin, the long division between polynomials etc.
For their description and use, refer to the reference [1] of the bibliography.

C.4 Proprieties

Here we list the main properties of the z-transform. The properties described here
obviously apply within the convergence region of the individual z-transforms.

� Linearity

It derives directly from the definition of the z-transform. Given two numerical
sequences x1(n) and x2(n) the z-transform of their linear combination a x1(n) +
b x2(n) is

Z{a x1(n) + b x2(n)} =

+∞∑
n=−∞

[a x1(n) + b x2(n)]z−n

= a

+∞∑
n=−∞

x1(n)z−n + b

+∞∑
n=−∞

x2(n)z−n = aX1(z) + bX2(z)

i.e. the linear combination of the respective Z transforms.

� Time delay

Given a numerical sequence x(n) whose z-transform is X(z), the z-transform of a
delayed version of k samples is given by z−kX(z). Indeed

Z{x(n− k)} =

+∞∑
n=−∞

x(n− k)z−n =

+∞∑
n=−∞

x(m)z−m−k

z−k
+∞∑

n=−∞
x(n)z−n = z−kX(z)
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where the change of variable m = n − k was made followed by the substitution
n = m

� Time advance

Given a numerical sequence x(n) whose z-transform is X(z), the z-transform of
an early version of k samples is given by zkX(z). Obviously the proof is the
same as that given for the time delay with the only replacement of −k with k.
Things differ in the case of causal sequences: a delayed causal numerical sequence
remains a causal sequence, not so for a time-advanced causal sequence. To obtain
the z-transform of a time-advanced causal sequence it is necessary to delete the
part of the series with positive powers of z. Starting from the causal sequence
x(n) and indicating the bilateral transform with Z and Z+ the one-sided right one
respectively we have

Z{x(n+ k)} = zkX(z) =

+∞∑
n=−∞

x(n)zk−n =

+∞∑
n=0

x(n)zk−n

=

k−1∑
n=0

x(n)zk−n +

+∞∑
n=k

x(n)zk−n =

k−1∑
n=0

x(n)zk−n + Z+{x(n+ k)}

so the right unilateral z-transform of x(n+ k) is

Z+{x(n+ k)} = zkX(z)−
k−1∑
n=0

x(n)zk−n

This property will be used later to find the solution of difference-equations of order
N with constant coefficients when initial conditions are specified.

� Multiplication by an Exponential Sequence

Given a numerical sequence x(n) whose z-transform is X(z), the z-transform of the
sequence anx(n) is given by X(z/a). The proof of this property is trivial. It can
be used, for example, to evaluate the z-transform of a damped sinusoidal sequence.

� Differentiation of X(z)

Given a numerical sequence x(n) whose z-transform is X(z), the z-transform of the
nx(n) sequence is given by −zdX(z)/textdz. Indeed

−zdX(z)

dz
= −z

+∞∑
n=−∞

(−n)x(n)z−n−1 =

+∞∑
n=−∞

nx(n)z−n = Z{nx(n)}

� Convolution product

Let x(n) be the numerical input sequence of a linear, time-invariant system with
h(n) as its unit impulse response, the output sequence y(n) is given by (see eq.
(A.3) on page 36)

y(n) =

+∞∑
k=−∞

x(k)h(n− k).

then the z-transform of the output sequence y(n) is given by Y (z) = H(z)X(z).
Indeed

H(z)X(z) =

+∞∑
k=−∞

x(k)z−k
+∞∑

m=−∞
h(m)z−m =

+∞∑
k=−∞

+∞∑
m=−∞

x(k)h(m)z−(k+m)

=

+∞∑
n=−∞

+∞∑
k=−∞

x(k)h(n− k)z−n =

+∞∑
n=−∞

y(n)z−n = Y (z)
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Therefore the z-transform of the convolution sum of two numerical sequences is
the product of the respective z-transforms. It is exactly the same property of
the Laplace transform: the Laplace transform of the convolution product of two
functions of time is given by the product of the respective Laplace transforms.
Once again we notice the perfect parallel between the Laplace transform in the
continuous time domain and the z-transform in the discrete time domain.

� Initial value theorem

If x(n) is a causal sequence, i.e. x(n) = 0 for n < 0 evidently

x(0) = lim
z→∞

X(z)

� Final value theorem

If x(n) is a causal sequence, i.e. x(n) = 0 for n < 0 we have

lim
n→∞

x(n) = lim
z→1

(1− z−1)X(z)

C.5 z-Transform of notable causal signals

We give here a list of z-transforms of remarkable causal sequences. They can be easily
obtained from the definition of the z-transform using one or more properties listed in the
previous paragraph.

f(nT ) F (z)

δ(nT ) 1

u(nT )
1

1− z−1

nT
Tz−1

(1− z−1)2

n2T 2 T 2z−1(1 + z−1)

(1− z−1)3

n3T 3 T 3z−1(1 + 4z−1 + z−2)

(1− z−1)4

e−anT
1

1− e−aT z−1

nTe−anT
Te−aT z−1

(1− e−aT z−1)2

n2T 2e−anT
T 2e−aT z−1(1 + e−aT z−1)

(1− e−aT z−1)3

cos(anT )
1− z−1 cos(aT )

1− 2z−1 cos(aT ) + z−2

sin(aT )
z−1 sin(aT )

1− 2z−1 sin(aT ) + z−2

e−bnT cos(anT )
1− e−bT z−1 cos(aT )

1− 2e−bT z−1 cos(aT ) + e−2bT z−2

e−bnT sin(aT )
e−bT z−1 sin(aT )

1− 2e−bT z−1 cos(aT ) + e−2bT z−2
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C.6 Applications and Examples

As the Laplace transform finds application in the analysis and in the evaluation of the re-
sponse of linear time-invariant systems that are governed by linear differential equations
with constant coefficients, so the z-transform, which is the analogue of the Laplace trans-
form for numerical systems, allows the study and solution of linear and time-invariant
systems, governed by linear difference equations. It allows to transform a system of
difference equations into an equivalent system of algebraic equations, much simpler to
handle.

Give a system that is described by a linear and constant coefficient difference equation
with input x(n) and output y(n)

N∑
k=0

aky(n− k) =

M∑
r=0

brx(n− r) (C.8)

the output y(n) for n > N can be obtained, starting from the sequence x(n), by the
following recursive formula

y(n) =
1

a0

[
M∑
r=0

brx(n− r)−
N∑
k=1

aky(n− k)

]

once we have assigned the N initial values y(0), y(1), · · · , y(N − 1).
However, if we are interested in the frequency response of the system described by

eEq. (C.8) or obtain an expression of y(n) in closed form, we must resort to the z-
transform. By applying the z-transform to the first and second members of the eq. (C.8)
we have

Z

{
N∑
k=0

aky(n− k)

}
= Z

{
M∑
r=0

brx(n− r)

}
N∑
k=0

akZ {y(n− k)} =

M∑
r=0

brZ {x(n− r)}

where we made use of the linearity of the z-transform. Using the time delay property,
for which we have Z{x(n− r)} = z−rX(z), and an analogous relation for the variable y
we can write

N∑
k=0

akz
−kY (z) =

M∑
r=0

brz
−rX(z)

that resolved gives

Y (z) =

M∑
r=0

brz
−r

N∑
k=0

akz
−k

X(z)

The ratio H(z) = Y (z)/X(z) is the transfer function of the system and is obviously
the z-transform of the response to the impulse sequence δ(n). Its value evaluated along
the unit circumference gives us the frequency response of our system

H(ejΩ) =

M∑
r=0

bre
−jrΩ

N∑
k=0

ake
−jkΩ

where the angular frequency Ω, in the case of a sampled system with period T , is equal
to Ω = ωT , with ω analog angular frequency.
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Let us now give an example of a solution of the sequence y(n) in closed form. We
aim to obtain a closed formula that provides the n-th term of the Fibonacci sequence.
The Fibonacci series is defined recursively by the following equation

Fn+2 = Fn+1 + Fn con n > 1 e condizioni iniziali F0 = 0, F1 = 1

By indicating with F(z) the z-transform of the sequence and making use of the time
advance property we can write

F{Fn+2} = z2F(z)− F0z
2 − F1z

1 = z2F(z)− z
F{Fn+1} = z1F(z)− F0z

1 = zF(z)

F{Fn} = F(z)

so that
F{Fn+2} = F{Fn+1}+ F{Fn}
z2F(z)− z = zF(z) + F(z)

F(z) =
z

z2 − z − 1

The poles of F(z) are the roots of the equation z2 − z − 1 that is

z+ = (1 +
√

5)/2 e z− = (1−
√

5)/2

che sono poli semplici. which are simple poles. Let’s decompose F(z) into simple fractions

F(z) =
z

z2 − z − 1
=

z

z+ − z−

(
1

z − z+
− 1

z − z−

)
=

1√
5

(
z

z − z+
− z

z − z−

)
and anti-transforming is finally achieved

Fn =
1√
5

(
1 +
√

5

2

)n
− 1√

5

(
1−
√

5

2

)n
We observe that the pole at the point z− lies inside the unit circle and produces the

sequence that tends to zero exponentially while the pole z+ is outside the unit circle and

generates the divergent sequence. Furthermore, the module of
(

1+
√

5
2

)n
is less than 0.5

since from n = 2, and, bearing in mind also the 1/
√

5 factor, we conclude that the n-th

term of the Fibonacci series is given by the integer closest to 1√
5

(
1+
√

5
2

)n
.
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Appendix D

The bilinear transformation

Suppose we have the following first order differential equation:

a1y
′(t) + a0y(t) = b0x(t) (D.1)

where, obviously, y′(t) is the time derivative of y(t).

Using a Laplace transform and assuming as initial condition y(0+) = 0 we get:

a1sY (s) + a0Y (S) = b0X(s)

from which we obtain the transfer function:

Ha(s) =
Y (s)

X(s)
=

b0
a1s+ a0

. (D.2)

Obviously we have:

y(t) =

∫ t

t0

y′(τ)dτ + y(t0).

Putting t = nT and t0 = (n−1)T in this last equation (1/T is the sampling frequency)
we get:

y(nT ) =

∫ nT

(n−1)T

y′(τ)dτ + y((n− 1)T )

Approximating the integral by the trapezoidal rule we obtain:

y(nT ) ' y((n− 1)T ) +
T

2
[y′(nT ) + y′((n− 1)T )]. (D.3)

On the other hand we have from eq. D.1:

y′(nT ) = −a0

a1
y(nT ) +

b0
a1
x(nT )

putting this last equation into eq. D.3 and writing yn instead of y(nT ) we get:

yn − yn−1 '
T

2

[
−a0

a1
(yn + yn−1) +

b0
a1

(xn + xn−1)

]
.

Now, using the Z transform and remembering that if xn → X(z) then xn−1 →
z−1X(z), we obtain:

H(z) =
Y (z)

X(z)
=

b0

a1
2

T

1− z−1

1 + z−1
s+ a0

. (D.4)

59



60 APPENDIX D. THE BILINEAR TRANSFORMATION

Comparing the analog transfer function expression (eq. D.2) with the discrete one
(eq. D.4), we see that we can obtain these last from the first one simply by substituting
the s Laplace’s variable with the following expression:

s =
2

T

1− z−1

1 + z−1

Obviously we can obtain an analog transfer function from a discrete one using the
inverse transformation:

z =
1 + T/2 s

1− T/2 s
.

The transformation s → 2

T

1− z−1

1 + z−1
is called bilinear transformation. We obtain it

in the case of a first order linear differential equation. Nevertheless its validity is more
general, because an Nth-order linear differential equation can be written as a set of N
first order linear differential equations.

The bilinear transformation s =
2

T

1− z−1

1 + z−1
and its inverse z =

1 + T/2 s

1− T/2 s
are confor-

mal transformations from the complex plane s to the complex plane z and vice versa.
They are a special case of flat linear conformal transformations, known in the theory of
complex functions also as homographic transformations.

D.1 Conformal homographic transformations

The generic conformal homographic transformation is of the form:

w =
az + b

cz + d
, ad− bc 6= 0. (D.5)

The condition ad − bc 6= 0 is necessary because otherwise the function (D.5) is re-
duced to a constant. It is shown that conformal homographic transformations enjoy the
following remarkable properties:

1) they are the only conformal transformations that at each point of the complex z
plane, including the point at infinity, correspond one and only one point of the w
plane;

2) transforms each circumference of the z plane into a circumference of the w plane;

3) transforms each pair of points symmetrical with respect to a circumference C into a
pair of points symmetrical with respect to the image of C.

The straight lines are particular circumferences that pass through the point at infinity.
Proof of the 1) property is based on the following considerations:

� It cannot have essential singularities because a function that has an essential singu-
larity assumes in any neighborhood of this singularity any complex value, excluding
at most only one, an infinite number of times (Picard’s theorem): there would no
longer be biunivocal correspondence between the z plane and the w plane.

� It must have only one pole (possibly at infinity) because by definition of homogra-
phy the infinity point of the w plane must correspond to one and only one point of
the z plane. The only pole must also be a first order pole because in the vicinity
of a pole of multiplicity greater than one the function is no longer injective.

� If the pole P is not at infinity then the main part of w(z) near the pole P has the
form B

z−P ; subtracting the principal part from w(z) we will get the function ϕ(z) =

w(z) − B
z−P which is free of singularities in the whole plane and therefore ϕ(z) is

a constant function. Consequently it must be w(z) = Az + B, or a homographic
transformation.
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� If the pole P is at infinity then the principal part of w(z) is of the form Az and
proceeding as in the previous point we conclude that in this case it must be w(z) =
Az +B, a particular form of homographic transformation.

The 2) property is easily proven. If c = 0 the (D.5) is reduced to a linear transfor-
mation, that is to a rotation of the plane around the origin with dilation followed by a
translation, and therefore transforms straight lines into straight lines and circumferences
into circumferences.

So let’s assume c 6= 0. The (D.5) transformation can be written in the following way

w =
az + b

cz + d
= a/c+

(bc− ad)/c2

z + d/c
(D.6)

It can therefore be broken down into the sequence of three elementary transforma-
tions: (a) a translation w1 = z + d/c, (b) a transformation of the form w2 = k/w1 with
k = (bc− ad)/c2 and finally (c) of a further linear transformation w = w2 + a/c. Clearly
both the transformation (a), which refers to a simple translation, and the transforma-
tion (c), which is a rotation of the plane around the origin with dilation followed by a
translation, transform the circumferences into circumferences. It is therefore sufficient
to consider only the elementary transformation (b) of the form

w =
k

z
(D.7)

and prove that it too transforms circumferences into circumferences. The equation of a
generic circumference l in the Cartesian plane is

A(x2 + y2) + 2Bx+ 2Cy +D = 0, (D.8)

where A = 0 n the case of a straight line. We can rewrite it in form

Azz + ∆z + ∆z +D = 0 dove ∆ = B − iC. (D.9)

The D.7 transformation transforms the circumference l into the curve of equation

Dww + ∆kz + ∆kz +Akk = 0 (D.10)

which is the equation of a circumference (or a straight line).
Let’s now consider the property 3). Given a circumference C with center O and of

radius R, two points A1 e A2 are symmetrical with respect to C if they lie on the same
radius, one on radius itself and the other on its extension, and are such that the product
of the distance OA1 by the distance OA2 is equal to the square of the radius R. Let’s
now take a generic circumference passing through the points A1 e A2.

O

C

R
O′

C ′

A1

A2

M

Figure D.1: Symmetrical points
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Since, by a well-known geometry theorem, the product of the length of the secant
OA2 by the length of its external part OA1 must be equal to the square of the length of
the tangent conducted by the point O at the circumference C ′ and on the other hand,
since the points A1 and A2 are symmetrical, this product must be equal to the square
of the radius R, we deduce that the radius OM is tangent to the circumference C ′,
i.e. the circumference C ′ is orthogonal to the circumference C. But the circumference
C ′ is a generic circumference passing through the points A1 and A2 and therefore each
circumference belonging to the bundle of circumferences passing through two symmetrical
points with respect to the circumference C is orthogonal to the circumference C itself.
Since a homographic transformation F (·), transforms circumferences into circumferences
and that one of the most remarkable properties of conformal transformations is the
conservation of angles, we can conclude that the bundle of circumferences passing through
the points F (A1) and F (A2) are orthogonal to the circumference F (C). But this is only
possible if the points F (A1) and F (A2) are symmetrical with respect to the circumference
F (C). This proves the property 3).

D.2 Proprieties if the bilinear transformation

The inverse of the bilinear transformation s =
2

T

1− z−1

1 + z−1
, that is z =

1 + sT/2

1− sT/2
, maps

the entire s plane into the z plane. This mapping is one-to-one: to a point of the s plane
corresponds one and only one point of the z plane and vice versa. The image of the point
s = σ + jω becomes

z =
1 + σT/2 + jωT/2

1− σT/2 + jωT/2
(D.11)

From the eq. (D.11) we see that if σ < 0 then |z| < 1 for any value of ω, while
for σ > 0 we have |z| > 1 and e for σ = 0 we have |z| = 1. Therefore the bilinear
transformation maps points of the left half-plane of s plane, inside the unit circle in the
s plane and vice versa. A pole located in the left half plane of the s plane will have
as image a pole inside the unit circle in the z plane. The bilinear transformation
transforms stable analog filters into corresponding stable numeric filters and
vice versa. The frequency axis jω of the s plane is placed in one-to-one correspondence
with the unit circumference of the z plane.

We now find which value of the ”angular frequency” Ω in the z plane corresponds to
a particular value of the analog frequency ω. We have

|z| = ejΩ =
1 + jωT/2

1− jωT/2

from which

Ω = arg

(
1 +

jωT

2

)
− arg

(
1− jωT

2

)
= 2 arctan

(
ωT

2

)
(D.12)

This means that a generic analog function Ha(s) assumes at the point jω the same
value as the corresponding H(z), obtained from Ha(s) by means of the bilinear trans-
formation, at the point ejΩ with Ω given by eq. (D.12). In other words, the spectrum
of di H(z) is obtained from that of Ha(s) by simply ”compressing” the frequency axis
−∞ 6 ω 6 +∞ in the range −π 6 Ω 6 +π using the equation (D.12). There is there-
fore a distortion of the frequency axis, known as frequency warping which is small for
ω � 1/T .

We could remove this distortion in the following way: we build a new analog function
H ′a(s) which assumes at the point s = 2j/T arctan (ωT/2) the same value that Ha(s)
assumes at the point jω. Let’s say that

H ′a

(
j
2

T
arctan

ωT

2

)
= Ha(jω)
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that is

H ′a(jω) = Ha

(
j
2

T
tan

ωT

2

)
. (D.13)

We obviously want that if Ha(s) is a rational function of s, so is H ′a(s). Therefore we
cannot simply set H ′a(s) = Ha(2/T tanh(sT/2)) which, even if it satisfies the condition
(D.13), is a transcendent function. However, we can obtain a rational function that
satisfies the condition (D.13) at least for the critical frequencies of the filter that we want
to implement.

This pre-distortion of frequencies is called frequency pre-warping.
For example, if we want to build a Butterworth filter of a certain order k and that has

a cutoff frequency of ω = ω0, we first design an analog filter of order k that has a cutoff
frequency of ω = 2/T tan(ω0T/2). We then apply the bilinear transformation to the
latter filter and starting from th H(z) thus obtained we get a corresponding difference
equation that we can solve with a simple recursive algorithm.

We can apply this procedure for the realization of more complex Chebyshev, elliptical
etc. filters. Butterworth filters have the characteristic of being most flat in the passband,
those of Chebyshev of the first type of being equi-ripple in the pass-band, those of
Chebyshev of the second type of being equi-ripple in the stop band and the elliptical ones
of being equi-ripple in both pass-band and stop-band. These properties are preserved by
applying the procedure described above, which shows a remarkable utility of the use of
bilinear transformation.

Summarizing the procedure to be used is the following:

1. Specify the set of critical frequencies {ωk} for the filter you want to realize.

2. Pre-warping of critical frequencies in {ω′k = 2/T tan(ωkT/2)}

3. Design an analog filter with transfer function H ′a(s) using the critical frequencies
{ω′k} obtained with pre-warping

4. Obtain the corresponding numeric filter H(z) using the bilinear transformation

5. Implement H(z) starting from the corresponding difference equation preferably
using low order cascade sections.

∑
n

dny(t)
dtn =

∑
k

dnx(t)
dtn

d/dt→s
Ha(s)

ωk→2/T tan(ωkT/2)

pre-warp
H ′a(s)

s→
2T

1−
z
−

1

1
+
z
−

1

b
ilin

e
a
r

tra
n
sfo

rm

y(n−k)←z−k
H(z)

d
k
y
(
t
)

d
t
k
→
y
(n
−
k
)

∑
n

dny(t)
dtn =

∑
k

dnx(t)
dtn

Figure D.2: Use of the bilinear transformation
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Appendix E

Cascade filters with complex
coefficients

Consideriamo un filtro passa basso analogico del secondo ordine. Sia Let’s consider a
second order analog low pass filter. Let

H(s) =
ω 2

0

s2 +
ω0s

Q
+ ω 2

0

be its analog transfer function. With the help of the bilinear transformation we can
obtain its z-transform:

H(z) = A
(1 + z−1)2

1 + az−1 + bz−2

where

A =
ω 2

0 T
2

4 +
2ω0T

Q
+ ω 2

0 T
2

a =
2(ω 2

0 T
2 − 4)

4 +
2ω0T

Q
+ ω 2

0 T
2

b =

4− 2ω0T

Q
+ ω 2

0 T
2

4 +
2ω0T

Q
+ ω 2

0 T
2

(E.1)

If we indicate, using polar coordinates, with ρ ejα and ρ e−jα the position of the
complex conjugated poles in the z plane, we must force:(

1− ρ ejαz−1
) (

1− ρ e−jαz−1
)

= 1 + az−1 + bz−2 (E.2)

from witch {
ρ2 = b

2ρ cosα = −a
(E.3)

We can implement the second order filter through the series of two first order sections
with complex conjugated coefficients.

xn 1 + z−1

1− u z−1

prn

pin

1 + z−1

1− u∗z−1

yn

Figure E.1: Cascade filters with complex coefficients
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where prn and pin represent the real and the imaginary part of the complex sequence pn
and u = g + jh = ρ ejα is the pole of cartesian coordinates (g, h) or polar coordinates
(ρ, α). Let’s write some realations that will come in handy later. To simplify the writing
we put Ω = 2 arctan(ω0T/2), which is the image of ω0 on the unit circumference.

Ω = 2 arctan(ω0T/2)

Ω′ = ω0T

Den = 4 + 2Ω′/Q+ Ω′2

a =
2Ω′2 − 8

Den

b =
4− 2Ω′/Q+ Ω′2

Den

g = ρ cosα = − a

2
=

4− Ω′2

Den

h = ρ sinα =

√
b− a2

4
=

4Ω′
√

1− 1

4Q2

Den

1 + b =
2Ω′2 + 8

Den

1− b =
4Ω′/Q

Den

1 + b+ a =
4Ω′2

Den

1 + b− a =
16

Den

1 + g = 1− a/2 =
2Ω′/Q+ 8

Den

1− g = 1 + a/2 =
2Ω′2 + 2Ω′/Q

Den

(E.4)

Moreover, since it is Ω′/2 = tan(Ω/2) we have
sin2 Ω

2
=

Ω′2

4 + Ω′2

cos2 Ω

2
=

4

4 + Ω′2

(E.5)


sin Ω =

4Ω′

4 + Ω′2
= 2Q

1− b
1 + b

cos Ω =
4− Ω′2

4 + Ω′2
=
−a

1 + b

(E.6)

Let’s just consider the first section of the filter:

xn 1 + z−1

1− u z−1

prn

pin

xn z + 1

z − ρ ejα

prn

pin

Figure E.2:

We aim to evaluate the response of the filter with constant input and at the resonance
frequency. We break down the filter into the cascade of two stages: the first for the
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realization of the pole and the second for the realization of the zero. That is, we write:

P

X
=

1 + z−1

1− ρ ejαz−1
=
V

X

P

V
;

V

X
=

1

1− ρ ejαz−1
;

P

V
=

1 + z−1

1

For the response with constant input we have to compute the value of the transfer
function for z = 1, while for the response to the resonance frequency we have to compute
the value of the transfer function for z = ejΩ where Ω = 2 arctan(ω0T/2) (see properties
of the bilinear transformation).

E.1 Constant input response

Let’s put z = 1 and note that in this case it is V = P/2, so we will only deal with P .
We have: P . Abbiamo:

pdc = xdc
2

1− ρ ejα
= xdc

2(1− ρ e−jα)

(1− ρ ejα)(1− ρ e−jα)
= xdc

2(1− ρ e−jα)

1 + a+ b
,

separating the real and the imaginary part
pdcr = xdc

2− 2ρ cosα

1 + a+ b
=

2 + a

1 + a+ b
xdc

pdci = xdc
−2ρ sinα

1 + a+ b
=
−
√

4ρ2 − a2

1 + a+ b
xdc

(E.7)

and using some of the (E.4) we finally get:
pdcr = xdc

ω 2
0 T

2 +
ω0T

Q

ω 2
0 T

2
=

(
1

Qω0T
+ 1

)
xdc

pdci = xdc

−4ω0T

√
4− 1

Q2

4ω 2
0 T

2
= − 1

ω0T

√
4− 1

Q2
xdc.

(E.8)

As regards the ”gain” for constant input, remember that its value is Gv = (Vr/xdc−1)
(see eq. (2.23) on page 20

Gv =
1

2Qω0T
− 1

2

In the case of the response with constant input we could reach the same result by
solving the difference equation of the filter. In fact from the transfer function:

P

X
=

1 + z−1

(1 + (g + jh)z−1)
(E.9)

we get the following recursive formulas:{
prn=xn + x(n− 1)+ g pr(n− 1)−h pi(n− 1)

pin = + g pi(n− 1)+h pr(n− 1)

from which, placing xn = xdc, prn = pdcr and pin = pdci , we have sequentially
pdci = − h

1− g
pdcr

pdcr (1− g) = 2xdc +
h2

1− g
pdcr

, (E.10)
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

pdcr =
2

1− g +
h2

1− g

xdc =
2(1− g)

1 + g2 + h2 − 2g
xdc

=
2(1 + a/2)

1 + ρ2 + a
xdc =

2 + a

1 + a+ b
xdc

pdci = − h

1− g
2 + a

1 + a+ b
xdc = − 2h

1 + a+ b
xdc = −

√
4ρ2 − a2

1 + a+ b
xdc

(E.11)

which are exactly the same relations obtained previously (see (E.7)).

E.2 Resonance frequency response

Let’s now compute the response of the first section of the filter to the resonance frequency.
V

X
=

1

1− ρ ejαz−1

P

V
= 1 + z−1

placing z = ejΩ

V

X
=

1

1− ρ ejαe−jΩ
=

1− ρ e−jαejΩ

1 + ρ2 − 2ρ cos(Ω− α)

and separating the real and the imaginary part
Vr =

1− ρ cos(Ω− α)

1 + ρ2 − 2ρ cos(Ω− α)
X

Vi =
ρ sin(α− Ω)

1 + ρ2 − 2ρ cos(Ω− α)
X

(E.12)

The numerator of Vr becomes

1− ρ cos(Ω− α) = 1− ρ cosα cos Ω− ρ sinα sin Ω

= 1− 4− Ω′2

Den
· 4− Ω′2

4 + Ω′2
−

4Ω′
√

1− 1

4Q2

Den
· 4Ω′

4 + Ω′2

=

8 Ω′

Q
+

2 Ω′3

Q
+ 16 Ω′2 − 16Ω′2

√
1− 1

4Q2

(4 + Ω′2) Den

=

2 Ω′

Q
(4 + Ω′2) + 16 Ω′2

(
1−

√
1− 1

4Q2

)
(4 + Ω′2) Den

,

the numerator of Vi

ρ sin(α− Ω) = ρ sinα cos Ω− ρ cosα sin Ω =

=

4Ω′
√

1− 1

4Q2

Den
· 4− Ω′2

4 + Ω′2
− 4− Ω′2

Den
· 4Ω′

4 + Ω′2

=

−4Ω′(4− Ω′2)

(
1−

√
1− 1

4Q2

)
(4 + Ω′2) Den

,
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and finally the denominator

1 + ρ2 − 2ρ cos(Ω− α) = 1 + b− 2ρ cosα cos Ω− 2ρ sinα sin Ω

= 1 + b+ a cos Ω− 2h sin Ω

=
2Ω′2 + 8

Den
+

2Ω′2 − 8

Den
· 4− Ω′2

4 + Ω′2
−

8Ω′
√

1− 1

4Q2

Den
· 4Ω′

4 + Ω′2

=

32Ω′2
(

1−
√

1− 1

4Q2

)
(4 + Ω′2) Den

,

We have therefore finally

Vr =

2 Ω′

Q
(4 + Ω′2) + 16 Ω′2

(
1−

√
1− 1

4Q2

)
(4 + Ω′2) Den

· (4 + Ω′2) Den

32Ω′2
(

1−
√

1− 1

4Q2

)

=

4 + Ω′2

16Ω′Q
· 1

1−
√

1− 1

4Q2

+
1

2

X =

(
(4 + Ω′2)(2Q+

√
4Q2 − 1)

8Ω′
+

1

2

)
X

Vi =

−4Ω′(4− Ω′2)

(
1−

√
1− 1

4Q2

)
(4 + Ω′2) Den

· (4 + Ω′2) Den

32Ω′2
(

1−
√

1− 1

4Q2

)
= − 4− Ω′2

8 Ω′
X

(E.13)

For what concern P , since it is P = (1 + z−1)V , placing z = cos Ω + j sin Ω we have

Pr = Vr(1 + cos Ω) + Vi sin Ω =

=

(
(4 + Ω′2)(2Q+

√
4Q2 − 1)

8Ω′
+

1

2

)
8

4 + Ω′2
X − 4− Ω′2

8 Ω′
4 Ω′

4 + Ω′2
X

=

(
2Q+

√
4Q2 − 1

Ω′
+

1

2

)
X =

(
2Q+

√
4Q2 − 1

ω0T
+

1

2

)
X

Pi = − Vr sin Ω− Vi(1 + cos Ω) =

= −

(
(4 + Ω′2)(2Q+

√
4Q2 − 1)

8Ω′
+

1

2

)
4 Ω′

4 + Ω′2
X − 4− Ω′2

8 Ω′
8

4 + Ω′2
X

= −

(
1

Ω′
+

2Q+
√

4Q2 − 1

2

)
X = −

(
1

ω0T
+

2Q+
√

4Q2 − 1

2

)
X

(E.14)

At the limit for Q� 1 we have
Pr '

(
4Q

ω0T
+

1

2

)
X ' 4Q

ω0T
X

Pi ' −
(

1

ω0T
+ 2Q

)
X
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while for Q = 1/2, which is the limit case of two coincident poles, we have
Pr = +

(
1

ω0T
+

1

2

)
X

Pi = −
(

1

ω0T
+

1

2

)
X



Appendix F

State Space Filters

Let’s consider a system described by the following state-space model:

S = z−1AS + BX, Y = CS + DX

where S is the state vector, X is the input vector, Y the output vector, A, B, C, D
real matrices of suitable size.

We want to examine the case of a second order filter with complex conjugated poles.
Its transfer function is

H(z) =
Y (z)

X(z)
=

1 + c z−1 + d z−2

1 + a z−1 + b z−2
=
W (z)

X(z)

Y (z)

W (z)

where

W (z)

X(z)
=

1

1 + a z−1 + b z−2

Y (z)

W (z)
=

1 + c z−1 + d z−2

1

so we get the following recursive formulas

wn = −awn−1 − bwn−2 + xn

yn = wn + cwn−1 + dwn−2 = (c− a)wn−1 + (d− b)wn−2 + xn

wn−1 = wn

wn−2 = wn−1

By identifying the state (u v)T with the pair (wn−1 wn−2)T we can write(
u

v

)
= z−1

(
−a −b

1 0

)(
u

v

)
+

(
1 0

0 1

)(
x

0

)

y =
(
c− a d− b

) (u
v

)
+
(
1 0

) (x
0

)
We obviously have:

A =

(
−a −b

1 0

)
B =

(
1 0

0 1

)
C =

(
c− a d− b

)
D =

(
1 0

)
As you know, the state-space representation is not unique. Given any non-singular

matrix T, a new representation can be obtained by placing:

S̃ = T−1S Ã = T−1A T B̃ = T−1B C̃ = C T D̃ = D

71
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The filter’s poles are given by the solutions of the equation z2 + a z + b = 0, that is

z1,2 = −a
2
± j

√
b− a2

4
= ρ e±jα. (F.1)

To simplify the writing we put

g = −a
2

e h =

√
b− a2

4

and build the following transformation matrix and its inverse:

T =

(
1 g/h

0 1/h

)
T−1 =

(
1 −g

0 h

)

so the new matrices become:

Ã =

(
1 −g

0 h

)(
−a −b

1 0

)(
1 g/h

0 1/h

)

=

(
−a− g −b

h 0

)(
1 g/h

0 1/h

)
=

(
g −h

h g

)

B̃ =

(
1 −g

0 h

)(
1 0

0 1

)
=

(
1 −g

0 h

)

C̃ =
(
c− a d− b

)(1 g/h

0 1/h

)
=
(
c− a (cg − ag + d− b)/h

)
=

(
c− a a(a− c) + 2(d− b)√

4b− a2

)
D̃ =

(
1 0

)
and the equations of state of the new representation in turn become(

u

v

)
= z−1

(
g −h

h g

)(
u

v

)
+

(
1 −g

0 h

)(
x

0

)

y =

(
c− a a(a− c) + 2(d− b)√

4b− a2

)(
u

v

)
+

(
1 0

)(x
0

) (F.2)

and from these we can write the following recursive formulas for the evolution of the
state of the filter

un = g un−1 − h vn−1 + xn
vn = hun−1 + g vn−1

(F.3)

Since in this case B̃X = X we have for the evolution of the state S the following
equation S = z−1ÃS + X whose solution is S = (I − z−1Ã)−1X. The determinant of

(I−z−1Ã) is (1−z−1g)2 +z−2h2 = 1+a z−1 +b z−2. The second component of the input

vector is zero so we only need the 11 and 21 components of the matrix (I − z−1Ã)−1

(1− z−1g)/(1 + a z−1 + b z−2)

and

z−1h/(1 + a z−1 + b z−2).
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Therefore, the u, v components of the S state are

u =
1− g z−1

1 + a z−1 + b z−2
x

v =
h z−1

1 + a z−1 + b z−2
x

(F.4)

Using the (F.3) and the (F.4) we can copute the ”gains” of the filter

Gu =
g u− h v

x
=
g − (g2 + h2)z−1

1 + a z−1 + b z−2
=

−a/2− b z−1

1 + a z−1 + b z−2

Gv =
hu

g v
=
h(1− g z−1)

g h z−1
=

1− g z−1

g z−1
=

2 + a z−1

−a z−1

(F.5)

Now putting z = 1 and z = ejΩ where Ω = 2 arctan(ω0T/2) (see properties of the
bilinear transformation), we can compute the value of the state and of the ”gains” with
constant input and at the resonance frequency.

F.1 Constant input response

Let’s put in (F.4) and (F.5) z = 1. As for the state we have

udc
xdc

=
1− g

1 + a+ b
=

2

(
ω 2

0 T
2 +

ω0T

Q

)
4ω 2

0 T
2

=

(
1

2ω0T Q
+

1

2

)

vdc
xdc

=
h

1 + a+ b
=

2ω0T

√
4− 1

Q2

4ω 2
0 T

2
=

1

ω0T

√
1− 1

4Q2

where we made use of (E.4) and (F.1). As for the ”gains” we have (F.1). Per quanto
riguarda i ”guadagni” abbiamo

Gudc =
−a/2− b
1 + a+ b

=

2ω0T

Q
− 2ω 2

0 T
2

4ω 2
0 T

2
=

1

2ω0T Q
− 1

2

Gvdc =
2 + a

−a
=

2ω0T

Q
+ 2ω 2

0 T
2

4− ω 2
0 T

2
' ω0T

2Q

The results obtained so far coincide with (2.34) and (2.35).

F.2 Resonance frequency response

If we denote by DEN the denominator of the (F.4) at the resonant frequency, i.e. for
z = ejΩ we have

DEN = (1 + a z−1 + b z−2)|z=ejΩ

= 1 + a cos Ω + b cos 2Ω + j(a sin Ω + b sin 2Ω)

The real part is

1 + a cos Ω + b cos 2Ω = 1 + a cos Ω + b (2 cos2 Ω− 1)

= 1− b+ cos Ω (a+ 2b cos Ω) = 1− b− a

1 + b

(
a− 2ab

1 + b

)
= 1− b− a

(1 + b)

a− ab
(1 + b)

= (1− b)
[
1− a2

(1 + b)2

]
=

(1 + b) sin2 Ω

2Q
sin Ω
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and the imaginary part is

a sin Ω + b sin 2Ω = a sin Ω + 2b sin Ω cos Ω = sin Ω (a+ 2b cos Ω)

= sin Ω

(
a− 2ab

1 + b

)
= sin Ω

a− ab
(1 + b)

= a
sin2 Ω

2Q

= − (1 + b) sin2 Ω

2Q
cos Ω

where we made use of the relations cos Ω =
−a

1 + b
and sin Ω = 2Q

1− b
1 + b

(see eq. (E.6)).

The denominator therefore becomes

DEN =
(1 + b) sin2 Ω

2Q
sin Ω− j

(1 + b) sin2 Ω

2Q
cos Ω

=
(1 + b) sin2 Ω

2Q
(sin Ω− j cos Ω) = −j

(1 + b) sin2 Ω

2Q
e−jΩ

= −j
(8 + 2Ω′2)16Ω′2

2QDen(4 + Ω′2)2
e−jΩ = −j

16Ω′2/Q

Den(4 + Ω′2)
e−jΩ

(F.6)

and its square modulus

|DEN|2 =
256 Ω′4/Q2

Den2(4 + Ω′2)2

The u component of the state vector at the resonance frequency divided by the input
is (eq. (F.4))(u

x

)
RIS

=
1− g z−1

1 + a z−1 + b z−2

∣∣∣∣
z=ejΩ

= j (1− g e−jΩ)
Den(4 + Ω′2)

16Ω′2/Q
ejΩ

= j

(
cos Ω + j sin Ω− 4− Ω′2

Den

)
Den(4 + Ω′2)

16Ω′2/Q

= − 4Ω′Den

16Ω′2/Q
+ j

(4− Ω′2)Den− (4− Ω′2)(4 + Ω′2)

16Ω′2/Q

= −QDen

4Ω′
+ j

(4− Ω′2)2Ω′/Q

16Ω′2/Q
= −4Q+ 2Ω′ + Ω′2Q

4Ω′
+ j

(4− Ω′2)

8Ω′

and its modulus∣∣∣u
x

∣∣∣
RIS

=

√
64Q2 + 16Ω′2 + 4Ω′4Q2 + 64Ω′Q+ 32Ω′2Q2 + 16Ω′3Q+ 16− 8Ω′2 + Ω′4

8Ω′

=
4 + Ω′2

8Ω′

√
16Ω′Q

4 + Ω′2
+ 4Q2 + 1

=
(4 + Ω′2)

√
4Q2 + 1

8Ω′

[
1 +

8Ω′Q

(4 + Ω′2)(4Q2 + 1)
+O(Ω′2)

]
=

√
4Q2 + 1

2Ω′
+

Q√
4Q2 + 1

+O(Ω′)

As regards the component v of the state vector at the resonance frequency we have( v
x

)
RIS

=
h z−1

1 + a z−1 + b z−2

∣∣∣∣
z=ejΩ

= jh e−jΩ Den(4 + Ω′2)

16Ω′2/Q
ejΩ

= j
2Ω′
√

4Q2 − 1

QDen

Den(4 + Ω′2)

16Ω′2/Q
= j

(4 + Ω′2)
√

4Q2 − 1

8Ω′
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and of course its modulus

∣∣∣ v
x

∣∣∣
RIS

=
(4 + Ω′2)

√
4Q2 − 1

8Ω′

Now let’s compute the values of the ”gains” at the resonance frequency. For the
”gain” Gu we have (see eq. F.5)

GuRIS =
−a/2− bz−1

1 + az−1 + bz−2

∣∣∣∣
z=ejΩ

= j(−a/2− be−jΩ)
Den(4 + Ω′2)

16Ω′2/Q
ejΩ

= j
[
(4− Ω′2) cos Ω + j(4− Ω′2) sin Ω− (4 + Ω′2 − 2 Ω′/Q)

] 4 + Ω′2

16Ω′2/Q

= −Q(4− Ω′2)

4 Ω′
+ j

(4− Ω′2)2 − (4 + Ω′2)2 + 2(4 + Ω′2) Ω′/Q

16Ω′2/Q

= −Q(4− Ω′2)

4 Ω′
+ j

(
4 + Ω′2

8Ω′
−Q

)
(F.7)

whose modulus is

|Gu|RIS =

√
Q2

16 Ω′2

[
(4− Ω′2)2 +

(4 + Ω′2)2

4Q2
+ 16 Ω′2 − 4 Ω′(4 + Ω′2)

Q

]

=
Q

4 Ω′

√
(4 + Ω′2)2 +

(4 + Ω′2)2

4Q2
− 4 Ω′(4 + Ω′2)

Q

=
Q(4 + Ω′2)

4 Ω′

√
1 +

1

4Q2
− 4 Ω′

Q(4 + Ω′2)

=

√
4Q2 + 1

2 Ω′
− Q√

4Q2 + 1
+O(Ω′)

(F.8)

while for the ”gain” Gv we have (always see eq. F.5)

GvRIS =
2 + az−1

−az−1

∣∣∣∣
z=ejΩ

=
2ejΩ + a

−a

=
4 + 2 Ω′/Q+ Ω′2

4− Ω′2
cos Ω− 1 + j

4 + 2 Ω′/Q+ Ω′2

4− Ω′2
sin Ω

=
2 Ω′/Q

4 + Ω′2
+ j

4 + 2 Ω′/Q+ Ω′2

4− Ω′2
4 Ω′

4 + Ω′2

(F.9)

whose modulus is

|Gv|RIS =
4 Ω′

4− Ω′2

√
(4− Ω′2)2 + 4Q2(4 + 2 Ω′/Q+ Ω′2)2

4Q2 (4 + Ω′2)2

=
4 Ω′

4− Ω′2

√
(4− Ω′2)2 + 4Q2(4 + Ω′2)2 + 16 Ω′2 + 16QΩ′(4 + Ω′2)

4Q2 (4 + Ω′2)2

=
4 Ω′

4− Ω′2

√
1 +

1

4Q2
+

4 Ω′

Q(4 + Ω′2)

=
Ω′
√

4Q2 + 1

2Q
+

Ω′2√
4Q2 + 1

+O(Ω′3)

(F.10)
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We summarize the results obtained in the following table

Valore ω0 T → 0
Q� 1

ω0 T → 0

Q = 1/2

ω0 T → 0

udc
xdc

1

2ω0 T Q
+

1

2

1

2ω0 T Q

1

2ω0 T Q

1

ω0 T

vdc
xdc

1

ω0 T

√
1− 1

4Q2

√
4Q2 + 1

2ω0 T Q

1

ω0 T
0

Gudc
1

2ω0 T Q
− 1

2

1

2ω0 T Q

1

2ω0 T Q

1

ω0 T

Gvdc

2ω0 T

Q
+ 2ω2

0 T
2

4− ω2
0 T

2

ω0 T

2Q

ω0 T

2Q
ω0 T

∣∣∣u
x

∣∣∣
RIS

√
4Q2 + 1

2ω0 T
+

Q√
4Q2 + 1

+O(ω0T )

√
4Q2 + 1

2ω0 T

Q

ω0 T

√
2

2ω0 T

∣∣∣ v
x

∣∣∣
RIS

(4 + ω2
0 T

2)
√

4Q2 − 1

8ω0 T

√
4Q2 + 1

2ω0 T

Q

ω0 T

√
2

2ω0 T

|Gu|RIS

√
4Q2 + 1

2ω0 T
− Q√

4Q2 + 1
+O(ω0T )

√
4Q2 + 1

2ω0 T

Q

ω0 T

√
2

2ω0 T

|Gv|RIS
ω0 T

√
4Q2 + 1

2Q
+O(ω2

0 T
2)

ω0T
√

4Q2 + 1

2Q
ω0 T ω0 T

√
2



Appendix G

State Space Filters: Unit step
response

In this appendix we intend to explicitly compute the evolution of the state S when the
matrices A e B have the following form and the inputx(n) is the sequence ”unit step”
u(n)

A =

(
−a−1 − a−b− 1

1 1

)
B =

(
1

0

)
with the usual meaning of the coefficients a and b. The state (u v)T is given by

u =
1− z−1

1 + az−1 + bz−2
x

v =
z−1

1 + az−1 + bz−2
x

If we indicate, using polar coordinates, with ρ ejα and ρ e−jα the position of the
complex conjugated poles in the z plane, then

1 + az−1 + bz−2 =
(
1− ρ ejαz−1

) (
1− ρ e−jαz−1

)
The z-transform of the input is x(z) = Z[u(n)] =

1

1− z−1
. The z-transform of the u

component of the state is

u(z) =
1− z−1

(1− ρ ejαz−1) (1− ρ e−jαz−1)

1

1− z−1
= z

z

(z − ρ ejα) (z − ρ e−jα)

= z

(
A

z − ρ ejα
+

B

z − ρ e−jα

)
where A and B are the residues of the function F (z) =

z

(z − ρ ejα) (z − ρ e−jα)
respec-

tively in the polesi z = ρ ejα and z = ρ e−jα. Since the poles are of the first order, their
values are

A = lim
z→ρ ejα

F (z)
(
z − ρ ejα

)
=

ρ ejα

ρ ejα − ρ e−jα
=

ejα

2j sinα

B = lim
z→ρ e−jα

F (z)
(
z − ρ e−jα

)
=

ρ e−jα

ρ e−jα − ρ ejα
=
−e−jα

2j sinα

Therefore, the z-transform of the u component of the state becomes

u(z) =
1

2j sinα

(
z ejα

z − ρ ejα
− z e−jα

z − ρ e−jα

)
=

1

2j sinα

(
ejα

1− ρ ejαz−1
− e−jα

1− ρ e−jαz−1

)
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and since ρ < 1

u(z) =
1

2j sinα

(
ejα

∞∑
n=0

ρnejnαz−n − e−jα
∞∑
n=0

ρne−jnαz−n

)

=
1

2j sinα

∞∑
n=0

ρn
(

ej (n+1)α − e−j (n+1)α
)
z−n =

1

sinα

∞∑
n=0

ρn sin[(n+ 1)α]z−n

and the response of the u component of the state to the unit step is

u(n) =
ρn sin[(n+ 1)α]

sinα
=

4 + 2Ω0 T/Q+ Ω2
0 T

2

2 Ω0 T

Q√
4Q2 − 1

ρn+1 sin[(n+ 1)α]

Proceeding analogously for the component v of the state we have for its z-transform

v(z) =
z−1

(1− ρ ejαz−1) (1− ρ e−jαz−1)

1

1− z−1
= z

z

(z − ρ ejα) (z − ρ e−jα) (z − 1)

= z

(
A

z − ρ ejα
+

B

z − ρ e−jα
+

C

z − 1

)
,

A, B and C are the residues of F (z) =
z

(z − ρ ejα) (z − ρ e−jα) (z − 1)
. Also in this case

the poles are of the first order and therefore the residue values are

A = lim
z→ρ ejα

F (z)
(
z − ρ ejα

)
=

ρ ejα

(ρ ejα − ρ e−jα) (ρejα − 1)

=
ejα
(
ρe−jα − 1

)
2j sinα (1 + ρ2 − 2ρ cosα)

=
ρ− ejα

2j sinα (1 + ρ2 − 2ρ cosα)

B = lim
z→ρ e−jα

F (z)
(
z − ρ e−jα

)
=

ρ e−jα

(ρ e−jα − ρ ejα) (ρe−jα − 1)

=
e−jα

(
ρejα − 1

)
−2j sinα (1 + ρ2 − 2ρ cosα)

=
ρ− e−jα

−2j sinα (1 + ρ2 − 2ρ cosα)

C = lim
z→1

F (z) (z − 1) =
1

(1− ρ ejα) (1− ρ e−jα)
=

1

1 + ρ2 − 2ρ cosα

Therefore, the z-transform of the v component of the state becomes

v(z) =
1

1 + ρ2 − 2ρ cosα

[
1

2j sinα

(
ρ− ejα

1− ρ ejαz−1
− ρ− e−jα

1− ρ e−jαz−1

)
+

1

1− z−1

]
=

1

1 + a+ b

{
1

2j sinα

∞∑
n=0

[
ρn+1

(
ejnα − e−jnα

)
−

−ρn
(
ej (n+1)α − e−j (n+1)α

)]
+ 1
}
z−n

=
1

1 + a+ b

{
1

sinα

∞∑
n=0

[
ρn
(
ρ sinnα− sin(n+ 1)α

)]
+ 1

}
z−n

and the response of the v component of the state to the unit step is

v(n) =
1

1 + a+ b

{
1

sinα

[
ρn
(
ρ sinnα− sin(n+ 1)α

)]
+ 1

}
=

1

1 + a+ b

{
ρn sinnα(ρ2 − ρ cosα)

ρ sinα
− ρn cosnα(ρ sinα)

ρ sinα
+ 1

}
=

4 + 2Ω0 T/Q+ Ω2
0 T

2

4 Ω2
0 T

2

{
Ω0 T Q− 1

2
√

4Q2 − 1
ρn sinnα− ρn cosnα+ 1

}
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