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1 Introduction

The long cavities of the Virgo interferometer (north and west arms) consist in Fabry-Perot
cavities when the interferometer is locked to take data in Science Mode. They are used to
increase the power of the laser that is stored in the cavities.

The response of Virgo to a change in the cavity di�erential length is a modi�cation of the
laser power measured at the level of the dark fringe. It is de�ned as a transfer function in W/m.

When a cavity is locked, its response to a length modi�cation behaves as a simple pole
whose frequency depends on the �nesse of the cavity. The average response of the cavities is
taken into account in the reconstruction of the strain signal h(t) to search for gravitationnal
waves. The �nesses of the cavities are expected to vary by a few percent as function of the
mirror temperatures [1, 2].

The aim of this note is to estimate the variations of the �nesses during the run VSR1 (May
18th to October 1st, 2007).

The method used to determine the cavity �nesse, based on the comparison of the Airy peaks
in the data with simulations, is described in the �rst section. The results and monitoring of
the cavity �nesse during VSR1 are then given. They are then compared to the variation of the
power transmitted by the cavities.
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2 Finesse reconstruction method

The �nesse of the Fabry-Perot cavities depends on the mirror amplitude re�ectivities ρ1 and ρ2

as:

F =
π
√

R

1−R
(1)

with R = ρ1ρ2 (2)

The intensity re�ection coe�cients are de�ned as r1 = ρ2
1 and r2 = ρ2

2.
It can also be extracted from the TEM00 (Transverse Electro-Magnetic) Airy peaks [3]. Airy

peaks are visible in the time variation of the power stored in the cavity when the length of the
cavity changes. The powers in the north and west cavities are monitored through photodiodes
in the external end-benches. The channel names are Pr_B7_DC and Pr_B8_DC respectively.

The �nesse is de�ned as the ratio of the distance between two consecutive TEM00 resonances
(FSR, Free Spectral Range) to their linewidth (FWHM, Full Width Half Maximum). However,
due dynamical e�ects, the Airy peaks are distorted and the line width cannot be measured
directly. The distorsion depends on the speed of the cavity mirrors. This parameter can be set
in a dynamical simulation of a cavity which predicts the shape of the Airy peaks. A �t of the
data with the simulation allows to estimate the �nesse.

2.1 Estimation of the cavity length as function of time

The speed of the cavity is estimated from the cavity length time variation. The variation of
the cavity length between two TEM00 resonances is equal to λ/2 where λ is the wavelength of
the laser (1064 nm).

An exemple of the cavity power as function of time is given in the �gure 1. In order to
reconstruct the cavity length time variations, the issue is to �nd the cavity length extrema. A
few paremeters have been de�ned from three Airy peaks (i − 1) to (i + 1) around the current
one indexed by i: the amplitudes and widths of the peaks, Aj and Wj, and the time between
the peaks: ∆tj = tj − tj−1. The following conditions are used to de�ne an extremum:

• when the Airy peak is at one extremum (speed close to 0), it is much larger than its
neighbours: Wi > 2Wi−1 and Wi > 2Wi+1.

• when the Airy peak is after the lengh extremum and the extremum is close to next peak:
∆ti > ∆ti−1 and ∆ti > ∆ti+1 and Wi > 1.05Wi+1

• when the Airy peak is soon after the lengh extremum: ∆ti < ∆ti−1 and ∆ti < ∆ti+1 and
Wi > 1.05Wi+1

If these conditions are not ful�lled, the cavity length is incremented by ±λ/2 depending on the
current direction. An example of reconstructed cavity length time variation is shown in the
�gure 1.
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If the cavity is excited but not too much (angularly and longitudinally), its length varies
sinusoidally with time. A cosine function can be �t to the points: l(t) = ai + bi cos(ωit + Φi).
For a given Airy peak at ti, the �t is computed over a window of ?? s (or extended in order to
enclose at least 5 peaks). The speed is then derived from l(t) as |v(ti)| = biωi sin ωiti + Φi.

The cavity lenght can be reconstructed in di�erent types of data.

• free swinging cavity: the cavity length variation is not really sinusoidal. The determina-
tion of its extrema, and therefore the cavity speed are not precise.

• swinging cavity with one mirror excited with a ∼ 1 Hz line. The cavity length variation
is dominated by the 1 Hz excitation and the speed is reconstructed within ∼ 20%.
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(a) Cavity length vs time.
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(b) Cavity length vs time, zoom.
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(c) Cavity length vs time, zoom.
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(d) Cavity power vs time.

Figure 1: Cavity power and estimated length vs time. (a) Reconstructed north cavity length
variations for a dataset with speci�c injections. (b) Reconstructed cavity length variations in a short
window, with the cosine �t. (c) Same, but with larger time window. (d) NE cavity power (Pr_B7_DC)
as function of time in the same window as (b).
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2.2 Simulation of the Airy peak shapes

The time domain simulation of a Fabry-Perot cavity including dynamical e�ects is computed
using the SIESTA1 program [4].

A set of simulations are performed scanning the cavity speed and �nesse from 0.5 to 30µm/s
and 40 to 60 respectively, with steps of 1 for both parameters. The time serie of the simulated
photodiode readout is sampled at 20�kHz.

Typical values of the mirror re�ectivities (in intensity) are initially set to r1 = 0.882 and
r2 = 0.999957. For a given cavity �nesse, the re�ection r1 of the input mirror of the cavity
is modi�ed accordingly to equation 2 in the simulation. The speed of the cavity elongation is
directly a parameter of the simulation con�guration. An exemple of SIESTA con�guration �le
is given in annexe.

For every sets of parameters (speed, �nesse), the time serie of the simulated Airy peak is
stored in a 3-dimension table within ±0.020 ms (801 samples) around the peak maximum. The
amplitude of the peak is set such that the integral of the time serie is 1. The shape of the
Airy peaks is then lineraly interpolated between the di�erent simulated sets in order to have a
continuous function. The �gure 2 shows the shape of the Airy peaks as function of the cavity
�nesse for a speed of 10µm/s and as function of the cavity speed for a �nesse of 50.

(a) Finesse 50. (b) Speed 10 µm/s

Figure 2: Shape of the simulated Airy peaks (a) as function of the cavity speed for a �nesse of
50. (b) as function of the cavity �nesse for a speed of 10 µm/s,

1SIESTA version v4r00
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2.3 Fit of the Airy peaks

Errors of ±10−7 W have been used for the measurements of the cavity power time series
Pr_B7, 8_DC (±1.7 10−3 V for the voltage time series Pr_B7, 8_d1, 2_DC). Every Airy peak
i detected in this time serie is �tted using MIGRAD2. The �t has four parameters: time of
the maximum, amplitude, cavity �nesse and cavity speed (when using the voltage channels
Pr_B7, 8_d1, 2_DC (in V), an o�set is added as a �fth parameter).

The initial time of the peak is set to its maximum ti. This parameter is constrained within
±200 µs around ti. The initial amplitude is set to the integral of the measured Airy peak. The
initial value of the �nesse is set to its nominal value of 50. The initial speed of the cavity is
set to the estimation described above. When the cavity length is close to a sine (with the 1 Hz
excitation), the speed is constrained to vary by less than 30% from its initial value. Else, it is
let free.

The Airy peaks with an estimated cavity speed outside the range [3; 20] µm/s are not used.
A few cuts are applied in order to select the �good quality� �ts.

• no error returned by MIGRAD,

• the parameters are not close to the edge of the simulated table,

• χ2 probability higher than 10%.

2GRADiend MInimisation
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3 Measurements of the cavity �nesse during VSR1

3.1 Measurements from Airy peaks in free swinging cavities

No speci�c data were taken during VSR1 to measure the �nesse of the cavities. Datasets with
free swinging mirrors have been selected. The criteria were at least 30 seconds (and maximum
500 seconds) of data in step 0, with the BS and cavity mirrors aligned
(i.e. Sc_NE_Gain_tyMarMis = 0) and PR misaligned (Sc_PR_Gain_tyMarMis =
−150).

About 600 datasets have been selected during VSR1. The north and west cavity �nesses have
been �t using the voltage signal Pr_B7_d1_ACp and power signal Pr_B8_DC respectively.
Since the cavities are not excited, the cavity motion is not well estimated. Thus the speed is
let free in the Airy peak �ts.

For every datasets, some checks are performed on a few distributions. Examples are shown
in the �gures 3, 4, 5 and 6. The mean of the distribution of the error-weigted �tted �nesse is
a way to measure the �nesse of the dataset. The �tted �nesse as function of the �tted speed
(before the selection on the speed) is used to check that there is no correlation between both
parameters. The relative di�erence between the �tted speed and its initial estimation is not
really usefull since the initial estimation is rather bad. The di�erence between the �tted time
of the maximum and its initial value is lower than 100 µs.

The datasets are then selected using a few quality criteria. The number of correctly �tted
Airy peaks must be higher than 100. Four estimations of the �nesse are performed: the average
values of the raw and error-weigted �nesse distributions, the value from a Gaussian �t of the
raw distribution and the median value of the �tted �nesse. The di�erences between the values
must be lower than 0.5. The error of the Gaussian �t and the �tted sigma of the distribution
must be lower than 0.5 and 1 respectively.

For the datasets passing the quality criteria, the �nesses obtained from the Gaussian �t
are given in appendix B and shown in the �gure 7. Time variations are clearly visible, with
amplitude of ±1.5 around the average value for both cavities. The average values obtain
from the few measurements during VSR1 are 49.1 and 51.5 for the north and west cavities
respectively.

3.2 Comparison with the locked cavity power variations

When the interferometer is locked (step 12), the north and west cavities are controlled such
that the laser TEM00 mode resonates. The mirror relative positions are thus controlled such
that the power that is stored inside the cavity is at a maximum of an Airy peak.

The power stored in the cavity, measured through the channels Pr_B{7, 8}_DC, is propor-
tionnal to the cavity �nesse. The relative variation of the cavity power gives a measurement of
the relative variation of the cavity �nesse.

The variations of the cavity powers in step 12 during VSR1 have been computed. They
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(a) Checks (b) Raw �tted �nesse

Figure 3: Distributions for the north cavity at GPS 865551091. (a) Distribution of the
error-weighted �tted �nesse, �nesse as function of speed, relative speed di�erence, time di�erence. (b)
Distribution of the �tted �nesse.
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(a) Checks (b) Raw �tted �nesse

Figure 4: Distributions for the west cavity at GPS 865551091. (a) Distribution of the
error-weighted �tted �nesse, �nesse as function of speed, relative speed di�erence, time di�erence. (b)
Distribution of the �tted �nesse.
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(a) Checks (b) Weighted �nesse

Figure 5: Distributions for the north cavity at GPS 868086730. (a) Distribution of the �tted
�nesse, �nesse as function of speed, relative speed di�erence, time di�erence. (b) Distribution of the
error-weighted �tted �nesse.
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(a) Checks (b) Weighted �nesse

Figure 6: Distributions for the west cavity at GPS 868086730. (a) Distribution of the �tted
�nesse, �nesse as function of speed, relative speed di�erence, time di�erence. (b) Distribution of the
error-weighted �tted �nesse.
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have been normalised such that they match, on average, the �nesse where there are direct
measurements within one hour (normalisation factors of 575 and 627 for the north and west
cavity powers respectively). The comparison of the �nesse variations estimated by both methods
are shown in the �gure 8. A zoom on the beginning of the run (�gure 9), when the etalon e�ect
changed by one period on the NI mirror due to temperature variations.

The behavior of the cavity �nesse measured in this note and the transmitted power of
the cavities are similar. It somehow validate the measurements using the Airy peak shape.
However, two types of systematic errors can be highlighted:

• during periods with constant transmitted power value, the dispersion of the cavity �nesse
measurements is of the order of 0.2,

• the normalisation factor of the cavity power might change as function of time. It is
expected to change due to di�erent mirror and/or photodiode alignements. Using a
constant normalisation factor during VSR1, di�erences up to 1 are seen between the
normalized power and the �nesse.

Figure 7: Finesse vs time during VSR1 for the west (black) and north (red) cavities. The lines
gives the average values during the run.
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Figure 8: Cavity �nesse and normalised power transmitted by the north and west cavities.
The transmitted powers have been normalised by 575 and 627 respectively.
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Figure 9: Zoom on the cavity �nesse and normalised power transmitted by the north and
west cavities. During this period, the etalon e�ect of the NI mirror went along a full period due to
high temperature variations.
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4 Conclusion

The �nesse of the north and west cavities have been measured during VSR1 using the shape
of the Airy peaks seen in the transmitted power of the free swinging cavities. It permits to
monitor the absolute value of the �nesse and to estimate the amplitude of the �nesse variation
to about ±2 around their average values, as expected from the etalon e�ect in the input mirrors.
Systematic errors of the order of 0.2 can be estimated from the dispersion of the measurements
within short time-scales.

The variations of the measured �nesse follow the variations of the power transmitted by the
locked cavities. Di�erences of the order of 2% (∆F ∼ 1) can be used as pessimistic systematic
errors on the absolute value of the �nesse using the Airy peak shape.
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A SIESTA con�guration �le

Con�guration �le for the SIESTA simulation. In this simulation, the NE mirror is moving
at 10 µm/S (MISweep). The NE and NI re�ection coe�cients are respectively 0.999957 and
0.881968 The simulated �nesse is thus 50.

/* Creation of the clocks for signal simulation (rates) */

/* UJclock name totalTime nClocks Freq0 Freq1 */

UJclock masterClocks 80000 2 80000 1

/* Creation of the frame builder to store the output signals into a frame file */

UFrBuilder FBuilder 1 1 0 0

/* ***** Creation of the mirrors with their surface ****** */

/* *** NI,back ****/

/*MIrror name clock susPos thermPos frontSurf backSurf initPos initOrientation */

MIrror Mir11 0 NULL NULL NULL MiSu11b 6.4 0. 0. 1. 0. 0.

/* MIsurf name curvature radius thetaX thetaY halfThickness reflection losses */

MIsurf MiSu11b 0. .2 0. 0. 0. 0.881968 .1e-3

/* *** NE, front ****/

MIrror Mir12 0 NULL NULL MiSu12f NULL 3006.4 0. 0. 1 0. 0.

MIsurf MiSu12f 2.81294e-4 .2 0. 0. 0. 0.999957 0.

/* *** WI, back ****/

MIrror Mir21 0 NULL NULL NULL MiSu21b 0. 5.6 0. 0. 1. 0.

/*MIsurf MiSu21b 0. .2 0. 0. 0. 0 .1e-3 */

MIsurf MiSu21b 0. .2 0. 0. 0. 0 0

/* *** WE, front ****/

MIrror Mir22 0 NULL NULL MiSu22f NULL 0. 3005.6 0. 0. 1. 0.

MIsurf MiSu22f 2.89855e-4 .2 0. 0. 0. 0 0.

/* *** BS, front ****/

MIrror Mirbs 0 NULL NULL MiSubsf NULL 0. 0. 0. 1. -1. 0.

MIsurf MiSubsf 0. .2 0. 0. 0. .5 0.

/* *** PR, front ****/

MIrror Mirrc 0 NULL NULL NULL MiSurcf -6. 0. 0. 1. 0. 0.

MIsurf MiSurcf 0. .2 0. 0. 0. 0. 0.
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/* Define a mirror movement */

/* MISweep name clock mirror startPos slope(m/s) axis (0=x, 2=z) */

MIsweep sweepz 0 Mir12 0. 1e-05 2

/* Create the laser */

/*IOlaser name clock surf wavelength power noise noise curvature waist window method */

IOlaser laser 0 NULL 1.064e-6 .56 NULL NULL 0. .021 .40 NO 0

/* Create the phase modulator */

OPmod mod 0 laser.oBeam 3 0. 6.26408e6 -6.26408e6 carrier NULL sb1 NULL sb2 NULL

/* Create the signals for amplitude modulation of the side bands */

USignal carrier 0.99

USignal sb1 0.075

USignal sb2 -0.075

/*dynamic simulation*/

OPglobal itf 0 mod.oBeam MiSubsf MiSu11b MiSu12f MiSu21b MiSu22f MiSurcf NO NULL

/* Create the photodiodes */

/*OPdiode name clock efficiency demodFreq demod incidentBeam withShotNoise? */

OPdiode B1 0 1. 6.26408e6 NULL itf.oBeam1 YES

OPdiode B7 0 1. 6.26408e6 NULL itf.oBeam7 YES

OPdiode B5 0 1. 6.26408e6 NULL itf.oBeam5 YES

/* Simulate local readout */

/*UFrLRdout clock adcname input gain ADCbits type */

UFrLRdout 0 Pr_B7_DC B7.dc 1. -32 adc

UFrLRdout 0 Pr_B1_DC B1.dc 1. -32 adc

/* Save output to the frame file */

/* UFrOFile clock filename Ascii? frame framePerFile */

UFrOFile -1 finesse_tmp NO FBuilder.frameH 1

B Measurements during VSR1

The measured �nesse for all the selected datasets during VSR1 are given in the following tables
for the west and the north cavities.
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912

49.230
±

0.0270
49.370

874849513.
405

48.580
±

0.0210
48.610

874849805.
397

48.580
±

0.0190
48.570

874849969.
199

48.530
±

0.0270
48.700

874850492.
119

48.540
±

0.0370
48.790

874851033.
219

48.490
±

0.0230
48.590

874855437.
150

48.550
±

0.0650
48.200

874884050.
2234

48.980
±

0.00770
48.970

874886065.
146

48.700
±

0.0530
49.120

874886253.
232

48.740
±

0.0490
49.050

874886502.
280

49.020
±

0.0270
48.620

874886661.
679

48.760
±

0.0300
48.540

875006033.
381

48.630
±

0.0440
48.420

875008084.
414

48.870
±

0.0330
49.130

875013558.
296

48.720
±

0.0530
48.880

T
able
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(co
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).
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