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1 Introduction

During a venting, an unbalance of pressure is present between the venting tubes and the Virgo
tower. The resulting flow of air may carry dust potentially dangerous for fused silica fibers, if
sufficiently fast and energetic.

It is the purpose of this note to estimate the speed of the flow and the resulting speed of the
dust.

In the following, for the sake of concreteness, we will assume that in the initial phase of the
venting the pressure inside the Virgo tower is plow = 10−2Pa, and that this vacuum enclosure is
placed in contact with a chamber having a pressure phigh = 10Pa, by means of a tube. In the
approximation we will make, the size of the tube does not matter provided its diameter is much
larger than the mean free path of gas molecules, an assumption we will have to verify.

In this form, turns out that this is a classical problem, the so-called Sod’s shock tube.
Gary Sod proposed this problem as a standard benchmarks to assess the accuracy of numerical

solvers; it as a classic example of one-dimensional compressible flow, and allows an analytical
solution of Euler equations.

Since the analytical solution, though direct, is somewhat cumbersome to obtain and a check of
the literature is required, we will review its derivation.

Then, we will use the resulting simulated flow to drag dust particles, and see what happens.
This is a Jupyter notebook, and uses Python for performing calculations. The sources are

available at https://dl.dropboxusercontent.com/u/18548797/ShockTubeAndDust.zip

2 Theory of a shock tube

A shock tube is an idealized device that generates a one-dimensional shock wave in a compress-
ible gas.

We have a tube with two regions containing gas at different pressure, separated by an
infinitely-thin, rigid diaphragm. The gas is initially at rest, and the left region is at a higher pres-
sure than the region to the right of the diaphragm. At time t = 0.0s, the diaphragm is ruptured
instantaneously; this simulates the opening of a valve.

What happens? A shock wave is generated: the gas at higher pressure, no longer constrained
by the diaphragm, rushes into the lower-pressure area and a one-dimensional unsteady flow is
established, consisting of:

• a shock wave traveling to the right
• an expansion wave traveling to the left
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• a moving contact discontinuity

The shock-tube problem is an example of a Riemann problem and it has an analytical solution,
as we said. The situation is illustrated in Fig. 1

Figure 1: The shock-tube problem

The contact line is the line separating the fluid on the left side from the one on the right side:
note that it does not stay fixed at the location of the diaphragm (don’t be misled by the figure).

2.1 The Euler equations

The Euler equations govern the motion of an inviscid fluid (no viscosity). They consist of the con-
servation laws of mass and momentum, and often we also need to work with the energy equation.

Let’s consider a 1D flow with velocity u in the x-direction. The Euler equations for a fluid with
density ρ and pressure p, appropriate for a fluid flowing in a tube with constant section, are:

∂ρ

∂t
+

∂

∂x
(ρu) = 0 Mass conservation (1)

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) = 0 Momentum conservation (2)

plus the Bernoulli equation, which we can write in this form:
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∂

∂t
(ρeT ) +

∂

∂x
(ρueT + pu) = 0 Energy conservation (3)

where eT = e + u2/2 is the total energy per unit mass, equal to the internal energy plus the
kinetic energy (per unit mass). We will call it also specific energy later.

This is the conservative form of Euler equations, which is more accurate for situations with
shock waves: in vector form

∂

∂t

 ρ
ρu
ρeT

+
∂

∂x

 ρu
ρu2 + p

(ρeT + p)u

 = 0 (4)

There’s one major problem there: we have 3 equations and 4 unknowns: ρ, u, e, p. However,
we can use an equation of state to calculate the pressure—in this case, we’ll use the ideal gas law.

2.2 Calculating the pressure

For an ideal gas, the equation of state is

e = e(ρ, p) =
p

(γ − 1)ρ
(5)

where γ =
Cp
CV

= 1.4 is a reasonable value to model air

p = (γ − 1)ρe . (6)

Recall from above the specific total energy

eT = e+
1

2
u2 ⇒ e = eT −

1

2
u2 ; (7)

putting it all together, we arrive at an equation for the pressure

p = (γ − 1)

(
ρeT −

ρu2

2

)
. (8)

2.3 Location of interfaces

The evolution of the interfaces in the gas can be found in analytical form. First we need to define
the dynamic of the separation surfaces: referring to the following Fig. 2

we define the following locations

• x0: location of the initial membrane
• x1: head of the rarefaction wave which moves left
• x2: other boundary of the rarefaction wave
• x3: contact discontinuity that separates the left and right fluids
• x4: head of the compression wave which moves right

for t > one can state immediately that

• x1(t) = x0 − c1t where c1 is the speed of sound in the “left” undisturbed fluid.
• x3(t) = x0 +upostt where upost is the speed of the fluid (moving to the right) before the shock

front.
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Figure 2: Regions and interfaces at t > 0

• x4(t) = x0 + ushockt where ushock is the speed of the shock front propagating in the “right”
fluid.

given our model of the fluids, we simply have that

csound =

√(
∂p

∂ρ

)
S

=

√
γ p

ρ
; (9)

it will be also useful the ideal gas equation of state

pV = mRspecificT ⇒ ρ =
p

RspecificT

Rspecific = 287.058 J kg−1K−1 (10)

where we will call R_air the value of Rspecific appropriate for dry air.

2.4 Qualitative solution

The qualitative behaviour of the solution is displayed in Fig. 3, which shows the behaviour of the
quantities p, u, ρ at a given time t, in the different regions separated by the points x1,2,3,4(t) that
we have defined earlier.

At location x4(t), which is the separation between regions 4 and 5, all quantities are discontin-
uous: we have a shock.

Instead, at point x3(t) a priori only the density ρ is discontinuous. In the drawing, ρ3 < ρ4, but
it is not necessarily so (won’t be so for the parameters we will use).

In all regions the quantities are constant within the region, except in the expansion (or fan)
zone 2 in which they vary.
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Figure 3: Gas quantities at t > 0

2.5 Rankine-Hugoniot conditions

If a conserved quantity q exhibits a jump at a certain position xs(t), hence a shock, which trav-
els from a “left” space to a “right” space with speed us(t) = dxs

dt we can write the conservation
equation in integral form as follows

d

dt

∫ xs(t)

xL

q(x, t)dx+

∫ xL

xs(t)
q(x, t)dx = −

∫ xR

xL

df

dx
dx ; (11)

taking the derivative with respect to time, then setting xL = xs − ε, xR = xs + ε, and sending
ε→ 0, one obtains

us (qL − qR) = fL − fR (12)

where the suffixes L,R represent the limit values immediately to the left and to the right of the
discontinuity.

This allows obtaining the Rankine-Hugoniot conditions for discontinuities obeying Euler con-
tinuity equations

us(ρL − ρR) = ρLuL − ρRuR
us(ρLuL − ρRuR) = (ρLu

2
L + pL)− (ρRu

2
R + pR)

us (ρLeT,L − ρReT,R) = uL(ρLeT,L + pL)− uR(ρReT,R + pR) (13)

These equations will allow us obtaining the values of the different quantities defined in Fig. 3

Shock speed us Considering the shock between regions 4 and 5, and using the first RH condi-
tions, plus the condition u5 = 0, we obtain

ushock(ρ4 − ρ5) = ρ4upost (14)

where u3 = u4 = upost is the speed of the fluid immediately to the left of the discontinuity.
Hence
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ushock = u4
ρ4

ρ4 − ρ5
= u4

(
ρ4
ρ5

)[(
ρ4
ρ5

)
− 1

]−1

(15)

we need now the ratio ρ4
ρ5

, and of course u4.

Ratio ρ4/ρ5 We can now exploit the other two conditions (here u4 = upost)

u4
ρ4

ρ4 − ρ5
ρ4u4 = ρ4u

2
4 + p4 − p5

u4
ρ4

ρ4 − ρ5

[
ρ4

(
e4 +

1

2
u24

)
− ρ5e5

]
= u4

[
ρ4

(
e4 +

1

2
u24

)
+ p4

]
(16)

which simplify into

ρ4ρ5
ρ4 − ρ5

u24 = p4 − p5

ρ4ρ5
ρ4 − ρ5

(
e4 +

1

2
u24 − e5

)
= p4 (17)

Eliminating u24 one obtains

ρ4ρ5
ρ4 − ρ5

(e4 − e5) =
1

2
(p4 + p5) (18)

using the equation of state this becomes

p4ρ5 − p5ρ4
ρ4 − ρ5

=
γ − 1

2
(p4 + p5) (19)

which allows to write

ρ4
ρ5

=

[
p4
p5

+ η2
] [

1 + η2
p4
p5

]−1

η2 ≡ γ − 1

γ + 1
(20)

These will be useful as references, however a different choice of variables allows an easier
solution.

2.5.1 Formulas in terms of Ms

It is convenient to express the three RH conditions in terms of the Mach number of the shock wave,
defined as

Ms =
us
c5
, where c5 =

√
γp5
ρ5

(21)

us: starting from
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u4 = us

(
1− ρ5

ρ4

)
ρ4ρ5
ρ4 − ρ5

u24 = p4 − p5

p4ρ5 − p5ρ4
ρ4 − ρ5

=
γ − 1

2
(p4 + p5) (22)

one can re-express as

u4 = Msc5

(
1− ρ5

ρ4

)
M2
s

(
1− ρ5

ρ4

)
=

1

γ

(
p4
p5
− 1

)
p4
p5

ρ5
ρ4
− 1 =

γ − 1

2

(
1− ρ5

ρ4

)(
p4
p5

+ 1

)
(23)

solving for u4 and for the ratios of pressures and densities one obtains

p4
p5

=
2γ

γ + 1
M2
s −

γ − 1

γ + 1
ρ5
ρ4

=
2

γ + 1

1

M2
s

+
γ − 1

γ + 1

u4 = c5
2

γ + 1

(
Ms −

1

Ms

)
(24)

in terms of the Mach number of the shock, which we have now to determine. To that end, we
will proceed backwards through the other transitions.

2.6 Contact discontinuity

The boundary between regions 3 and 4 is actually continuous for p and u, hence we can write

u3 = u4 p3 = p4 (25)

instead, the density ρ exhibits a jump; with the condition upost = u3,4 on the speed of the
contact discontinuity, the RH relations are trivially satisfied.

2.7 Relation between regions 3 and 1

Since transformations are isoentropic, except through the shock which causes the gas to reheat,
the regions 1 and 3 are related by an adiabatic transformation, hence

p1
ργ1

=
p3
ργ3

⇒ ρ3
ρ1

=

(
p3
p1

) 1
γ

. (26)

The other result we need is the conservation of Riemann invariants, which requires developing
the solution of hyperbolic equations with the method of characteristics: the interested reader may
consult for instance the excellent notes by Susanne Höfner. We have
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u1 +
2c1
γ − 1

= u3 +
2c3
γ − 1

; (27)

as u1 = 0, one obtains

u3 =
2

γ − 1
(c1 − c3) (28)

We have now sufficient information and we can establish the analytical solution

2.8 Compatibility equation

From the relation between u4 and Ms obtained with RH conditions between regions 4 and 5, and
equality of velocity in regions 3, 4, we have

Ms −
1

Ms
=
γ + 1

2

u4
c5

=
γ + 1

2

u3
c5

; (29)

then using the just mentioned condition on u3 we have

γ + 1

2

u3
c5

=
γ + 1

γ − 1

c1 − c3
c5

=
c1
c5

γ + 1

γ − 1

(
1− c3

c1

)
. (30)

Then we can use the isoentropic relation to establish that

c3
c1

=

√
p3
p1

ρ1
ρ3

=

√
p3
p1

(
p1
p3

) 1
γ

=

(
p3
p1

) γ−1
2γ

=

(
p3
p5

p5
p1

) γ−1
2γ

(31)

and we use one of the RH conditions at interface 4, 5

p3
p5

=
2γ

γ + 1
M2
s −

γ − 1

γ + 1
(32)

to close the circle and come back to Ms. So in summary we have a compatibility equation

Ms −
1

Ms
=
c1
c5

γ + 1

γ − 1

{
1−

[
p5
p1

(
2γ

γ + 1
M2
s −

γ − 1

γ + 1

)] γ−1
2γ

}
(33)

which can be solved for Ms numerically.

2.9 Fan expansion region 2

We have left out from our discussion the evolution of the “other boundary” of the expansion
region 2, which we called x2; again using the technique of characteristics, it is possible to show
that

x1(t) = x0 − c1t
x2(t) = x0 + (u3 − c3) t (34)

now again, in any point x between x1(t) and x2(t), the fluid will have speed u, sound speed c,
density ρ which depend on time: again using the method of characteristics it is possible to assert
that the relation between the position x and the time t is given by
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x = x0 + (u− c) t ⇔ x− x0
t

= u− c ; (35)

using the characteristic from region 1 one obtains also

u1 +
2c1
γ − 1

= u+
2c

γ − 1
⇒ c = c1 −

γ − 1

2
u (36)

combining one obtains, inside the fan expansion region

u =
2

γ + 1

[
c1 +

x− x0
t

]
c = c1 −

γ − 1

2
u =

2

γ + 1
c1 −

(
γ − 1

γ + 1

)
x− x0
t

p = p1

(
c

c1

) 2γ
γ−1

ρ = γ
p

c2
(37)

2.10 Summary formulas

In summary, we have the following relations which allow us to solve the Shock tube problem

Fundamental definitions

c =

√
γp

ρ

e =
p

(γ − 1) ρ
(38)

Compatibility equation

Ms −
1

Ms
=
c1
c5

γ + 1

γ − 1

{
1−

[
p5
p1

(
2γ

γ + 1
M2
s −

γ − 1

γ + 1

)] γ−1
2γ

}
(39)

allows to compute Ms from the unperturbed states 1, 5.

RH conditions

p3 = p4 = p5

[
2γ

γ + 1
M2
s −

γ − 1

γ + 1

]
ρ4 = ρ5

[
2

γ + 1

1

M2
s

+
γ − 1

γ + 1

]−1

u3 = u4 = c5
2

γ + 1

(
Ms −

1

Ms

)
(40)

allow computing p3,4, ρ4, u3,4
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Isoentropy

ρ3 = ρ1

(
p3
p1

) 1
γ

c3 =

√
γp3
ρ3

(41)

allow computing ρ3, c3

Lines of separation

x1(t) = x0 − c1t
x2(t) = x0 + (u3 − c3) t
x3(t) = x0 + u3t where u3 = u4

x4(t) = x0 + ust = x0 +Msc5t (42)

describe the position of the separation lines for t > 0.

Expansion region (2) At a given time t, for x ∈ [x1(t), x2(t)], within the region 2 one has

u2(x, t) =
2

γ + 1

[
c1 +

x− x0
t

]
c2(x, t) = c1 −

γ − 1

2
u =

2

γ + 1
c1 −

(
γ − 1

γ + 1

)
x− x0
t

p2(x, t) = p1

(
c2(x, t)

c1

) 2γ
γ−1

ρ2(x, t) = γ
p2(x, t)

[c2(x, t)]
2 = ρ1

(
c2(x, t)

c1

) 2
γ−1

(43)

which is the only region in which quantities are not constant.

2.11 Code for simulating the state of a shock tube

We will simulate everything with Python with the help of a few libraries.

In [4]: import numpy
import math
from scipy.optimize import fsolve

def c_sound(gamma,p,rho):
'''Computes the sound speed

Parameters:
-----------
gamma, p, rho
'''
return math.sqrt(gamma*p/rho)

R_air = 287.058

def rhoIdealGas(p,R,T):
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'''Computes the density

Parameters:
-----------
p, R, T
'''
return p/(R*T)

def TIdealGas(p,R,rho):
'''Computes the temperature

Parameters:
-----------
p, R, rho
'''
return p/(R*rho)

class ShockTube:
def __init__(s, **kwargs):

"""Sod's shock tube

Optional parameters
-------------------
p1 : float

pressure Left of the shock (default 1.)
rho1 : float

density Left of the shock (default 1.)
p5 : float

pressure Right of the shock (default 0.1)
rho5 : float

density Right of the shock (default 0.125)
x0 : float

initial position of diaphragm (default 0.)
gamma : float

Cv/Cp ratio (default 1.4)
"""
s.u1 = 0.
s.p1 = float(kwargs.get('p1',1.))
s.rho1 = float(kwargs.get('rho1',1.))
s.u5 = 0.
s.p5 = float(kwargs.get('p5', 0.1))
s.rho5 = float(kwargs.get('rho5', 0.125))
s.gamma = float(kwargs.get('gamma', 1.4))
s.x0 = float(kwargs.get('x0',0.))
s.T = float(kwargs.get('T',293.15))
s.Rs = float(kwargs.get('Rs',287.058))

# compute state quantities in constant zones
s.c1 = math.sqrt(gamma*s.p1/s.rho1)
s.c5 = math.sqrt(gamma*s.p5/s.rho5)
s.Ms_func = (lambda Ms : Ms - 1./Ms - s.c1/s.c5 * \

(s.gamma + 1.)/(s.gamma - 1.) * \
(1. - ( s.p5/s.p1 * ((2. * s.gamma)/(s.gamma + 1.)*Ms**2 -\
(s.gamma - 1.)/(s.gamma + 1.)) )**((s.gamma - 1.)/(2.*s.gamma))))

s.Ms = fsolve(s.Ms_func, s.c5)[0]
s.u4 = s.c5*2./(s.gamma+1.)*(s.Ms - 1./s.Ms)
s.u3 = s.u4
s.p4 = s.p5*((2.*s.gamma)/(s.gamma+1.)*(s.Ms)**2 - (s.gamma-1.)/(s.gamma+1.))
s.p3 = s.p4
s.rho4 = s.rho5/(2./((s.gamma+1.)*(s.Ms**2)) + (s.gamma-1.)/(s.gamma+1.))
s.rho3 = s.rho1*(s.p3/s.p1)**(1./s.gamma)
s.c3 = math.sqrt(gamma*s.p3/s.rho3)
s.c4 = math.sqrt(gamma*s.p4/s.rho4)
s.uShock = s.Ms*s.c5

# rarefaction zones; calls valid only for t > 0
s.c2 = (lambda x,t: 2./(s.gamma+1.)*s.c1 - \

(s.gamma-1.)/(s.gamma+1.)*(x-s.x0)/t if t > 0. else s.c1)
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s.u2 = (lambda x,t: 2./(s.gamma+1.)*(s.c1 + (x - s.x0)/t) if t > 0. else 0.)
s.rho2 = (lambda x,t: s.rho1*(s.c2(x,t)/s.c1)**(2./(s.gamma-1.)))
s.p2 = (lambda x,t: s.p1*(s.c2(x,t)/s.c1)**((2.*s.gamma)/(s.gamma-1.)))

# limits of zones: calls valid only for t > 0
s.x1 = (lambda t : s.x0 - s.c1 * t)
s.x2 = (lambda t : s.x0 + (s.u3 - s.c3) * t)
s.x3 = (lambda t : s.x0 + s.u3 * t)
s.x4 = (lambda t : s.x0 + s.uShock * t)

def __str__(s):
s0 = r'Shock tube with $\gamma=${}:'.format(s.gamma) + '\n'
s1 = r'$c_1=${}, $\rho_1=${}, $u_1=${}, $p_1=${}'.format(s.c1,s.rho1,s.u1,s.p1) + '\n'
s3 = r'$c_3=${}, $\rho_3=${}, $u_3=${}, $p_3=${}'.format(s.c3,s.rho3,s.u3,s.p3) + '\n'
s4 = r'$c_4=${}, $\rho_4=${}, $u_4=${}, $p_4=${}'.format(s.c4,s.rho4,s.u4,s.p4) + '\n'
s5 = r'$c_5=${}, $\rho_5=${}, $u_5=${}, $p_5=${}'.format(s.c5,s.rho5,s.u5,s.p5)
#return r'a\nb'
return s0 + s1 + s3 + s4 + s5

def State(s, xVec, t,**kwargs):
"""Tube state

Parameters
-------------------
xVec : numpy array

positions at which state should be computed
t : time

time at which the state should be computed
"""
verbose = bool(kwargs.get('verbose',False))
pVec = numpy.zeros_like( xVec )
rhoVec = numpy.zeros_like( xVec )
uVec = numpy.zeros_like( xVec )
x1 = s.x1(t)
x2 = s.x2(t)
x3 = s.x3(t)
x4 = s.x4(t)
for (i,x) in enumerate(xVec):

if x > x4:
uVec[i] = s.u5
pVec[i] = s.p5
rhoVec[i] = s.rho5

elif x > x3:
uVec[i] = s.u4
pVec[i] = s.p4
rhoVec[i] = s.rho4

elif x > x2:
uVec[i] = s.u3
pVec[i] = s.p3
rhoVec[i] = s.rho3

elif x > x1:
uVec[i] = s.u2(x,t)
pVec[i] = s.p2(x,t)
rhoVec[i] = s.rho2(x,t)

else:
uVec[i] = s.u1
pVec[i] = s.p1
rhoVec[i] = s.rho1

if verbose:
print "x1 = ", x1, " x2 = ", x2, " x3 = ", x3, " x4 = ", x4

return (uVec, pVec, rhoVec)

2.11.1 Check: Sod’s test conditions

The first test proposed by Sod in his 1978 paper is as follows, rescaled to atmospheric pressure.
In a tube spanning from x = −10m to x = 10m with the rigid membrane at x = 0m, we have
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the following initial gas states:

ICL =

 ρL
uL
pL

 =

 1 kg/m3

0 m/s
105 Pa



ICR =

 ρR
uR
pR

 =

 0.125 kg/m3

0 m/s
104 Pa


where ICL are the initial density, velocity and pressure on the left side of the tube membrane

and ICR are the initial density, velocity and pressure on the right side of the tube membrane.
The analytical solution to this test for the velocity, pressure and density, should look like the

plots in Fig. 4

Figure 4: Analytical solution, with Sod’s parameters

In [22]: # A function to display the solutions
%matplotlib inline

import matplotlib.pyplot as plt

def displayState(xVec, uVec, pVec, rhoVec, gamma, R, title):

plt.figure("Sod",figsize=(16,10))
plt.subplot(231)
plt.plot(xVec,uVec,lw=2)
plt.xlabel(r"$x$ [m]",fontsize=16)
plt.ylabel(r"$u$ [m/s]",fontsize=16)
plt.title("Velocity",fontsize=18)

plt.subplot(232)
plt.plot(xVec,pVec,lw=2)
plt.xlabel(r"$x$ [m]",fontsize=16)
plt.ylabel(r"$p$ [Pa]",fontsize=16)
plt.title("Pressure",fontsize=18)

plt.subplot(233)
plt.plot(xVec,rhoVec,lw=2)
plt.xlabel(r"$x$ [m]",fontsize=16)
plt.ylabel(r'$\rho\,\mathrm{[kg/m^3]}$',fontsize=16)
plt.title("Density",fontsize=18)

# Compute also temperature and energy density
plt.subplot(234)
plt.plot(xVec,TIdealGas(pVec,R,rhoVec),lw=2)
plt.xlabel(r"$x$ [m]",fontsize=16)
plt.ylabel(r'$T$ [K]',fontsize=16)
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plt.title("Temperature",fontsize=18)

plt.subplot(235)
plt.plot(xVec,pVec/((gamma-1.)),lw=2)
plt.xlabel(r"$x$ [m]",fontsize=16)
plt.ylabel(r'$e\ \mathrm{[J/m^3]}$',fontsize=16)
plt.title("Internal energy density",fontsize=18)

plt.subplot(236)
plt.plot(xVec,rhoVec * (uVec**2),lw=2)
plt.xlabel(r"$x$ [m]",fontsize=16)
plt.ylabel(r'$e\ \mathrm{[J/m^3]}$',fontsize=16)
plt.title("Kinetic energy density",fontsize=18)

return

In [23]: # Check: with Sod's test parameters

sodTube = ShockTube(gamma=1.4, p1=1.E+5, rho1=1., p5=1.E+4,rho5=0.125)

xVec = numpy.linspace(-10,10,500)
uVec,pVec,rhoVec = sodTube.State(xVec,0.01,verbose=True)

displayState(xVec, uVec, pVec, rhoVec, gamma, R_air, "Sod Test 1")

x1 = -3.74165738677 x2 = -0.222222145279 x3 = 2.93286270125 x4 = 5.54080292854

It is worth noticing that in Sod’s test the two initial gas states are not at the same temperature,
if they are air.
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2.11.2 Check: Höfner test parameters

Since the coding is tricky, it is worth performing another check: Höfner provides other test param-
eters, that we try in the following. We should obtain a result similar to the one in the following
Figure

Figure 5: Another analytical solution, using Höfner’s test parameters

In [27]: # Check: with Höfner's test parameters
gamma = 1.4
p1 = 10./gamma
rho1 = 8.
p5 = 1./gamma
rho5 = 1.

hoefnerTube = ShockTube(x0=0.5,p1=10./gamma,rho1=8., p5=1./gamma, rho5=1.)
print hoefnerTube

xVec = numpy.linspace(0.,1.,500)
uVec,pVec,rhoVec = hoefnerTube.State(xVec,0.2,verbose=True)

displayState(xVec, uVec, pVec, rhoVec, gamma, R_air, "Sod Test 1")

Shock tube with $\gamma=$1.4:
$c_1=$1.11803398875, $\rho_1=$8.0, $u_1=$0.0, $p_1=$7.14285714286
$c_3=$0.942761918361, $\rho_3=$3.41055542543, $u_3=$0.876360351945, $p_3=$2.1652155575
$c_4=$1.19447496583, $\rho_4=$2.12458969364, $u_4=$0.876360351945, $p_4=$2.1652155575
$c_5=$1.0, $\rho_5=$1.0, $u_5=$0.0, $p_5=$0.714285714286
x1 = 0.27639320225 x2 = 0.486719686717 x3 = 0.675272070389 x4 = 0.831126308943
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We are therefore confident that the code we’ve written is correct.

2.12 Virgo 1500W conditions

In this case we make the following assumptions

• p1 = 10Pa
• p5 = 10−2 Pa

as for the densities, we assume that the ideal gas law holds, hence

ρ =
p

RspecificT

Rspecific = 287.058 J Kg−1K−1 (44)

where Rspecific is appropriate for dry air. Further, we assume the two gases are both at room
temperature, that is T = 20C

In [28]: # With Virgo 1500W conditions
def rhoIdealGas(p,R,T):

return p/(R*T)

T_room = 20 + 273.15
gamma = 1.4
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p1 = 10.
rho1 = rhoIdealGas(p1,R_air,T_room)
p5 = 1.E-2
rho5 = rhoIdealGas(p5,R_air,T_room)

virgoTube = ShockTube(p1=p1,rho1=rho1,p5=p5,rho5=rho5)
print virgoTube

Shock tube with $\gamma=$1.4:
$c_1=$343.236760531, $\rho_1=$0.000118833926364, $u_1=$0.0, $p_1=$10.0
$c_3=$181.167519286, $\rho_3=$4.86825325129e-06, $u_3=$810.346206228, $p_3=$0.114131572789
$c_4=$580.508861062, $\rho_4=$4.74150410755e-07, $u_4=$810.346206228, $p_4=$0.114131572789
$c_5=$343.236760531, $\rho_5=$1.18833926364e-07, $u_5=$0.0, $p_5=$0.01

Shock velocities are higher than in Sod’s example, hence the shock propagates over much
shorter time scales.

In [29]: # Let's check with Virgo 1500W
%matplotlib inline

import matplotlib.pyplot as plt

xVec = numpy.linspace(-1,3,1000)
uVec,pVec,rhoVec = virgoTube.State(xVec,0.002,verbose=True)
displayState(xVec, uVec, pVec, rhoVec, gamma, R_air, "Virgo 1500 W")

x1 = -0.686473521063 x2 = 1.25835737388 x3 = 1.62069241246 x4 = 2.16272536409
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In this case, the speed of the flow reaches very high velocities, order 800ms−1 ! But densities
are low, can they drag dust particles?

The other interesting aspect is that the air at the shock front is heated considerably, up to 800K.
Again density is low, so this overheated air is probably not an issue.

3 Particle transport

We will assume a simple Lagrangian model for the transport of dust [Stover,2014]: neglecting
gravity effects since we are in 1D, we will simply write that

dup
dt

= FD (u− up) (45)

where up is the speed of the dust particle in the air flux u and FD is the Stokes drag coefficient,
which can be expressed as

FD =
18µ

ρpd2pCc
(46)

in which ρp, dp are respectively the particle’s mass density and diameter. We are assuming
spherical dust, which is a conservative assumption: dust flakes will likely undergo larger accelera-
tions.

The parameter µ is the dynamic viscosity of the fluid; at room temperature the air viscosity is
assumed to be

µ = 18.27× 10−6Pa s (47)

roughly independent on pressure.
The parameter Cc is the slip correction factor (Cunningham, 1910):

Cc = 1 +
2λ

dp

(
A1 +A2 e

−A3 dp
λ

)
A1 = 1.257, A2 = 0.4, A3 = 0.55 (air) (48)

in the formula, λ
dp

is the ratio of the mean free path in the gas to the particle size, and corrects
for gas rarefaction, driving FD to zero as λ increases.

In turn, the mean free path of molecules having diameter dm can be estimated using kinetic
theory and a cross-section for collisions πd2m (Pfeiffer Vacuum, mean-free-path)

λ =
kB T√
2π p d2m

; (49)

the state equation for ideal gases allows to rewrite T/p = (ρRspecific)
−1 in terms of the gas

density ρ and the gas constant per unit mass Rspecific

λ =
kB√

2π ρRspecific d2m
; (50)

we remind that Rspecific(dry air) = 287.058 [Jkg−1K−1], and we will assume dm = 4 × 10−10

as an average for air.
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In [30]: # We check here the mean free path

mu_air = 18.27E-6
R_specific = 287.058
d_m_air = 4.E-10

from scipy.constants import Boltzmann as kB

def f_lambda(rho,d_m):
return kB/(math.sqrt(2.)*math.pi*rho*R_specific*d_m**2)

def f_C_c(lambda_mfp, d_p):
return 1.0 + (2.*lambda_mfp)/d_p*(1.257 + 0.4*numpy.exp(-(0.55*lambda_mfp)/d_p))

def f_F_D(lambda_mfp, d_p, rho_p):
return 18.*mu_air/(rho_p*(d_p**2)*f_C_c(lambda_mfp,d_p))

#f_lambda(1.,4.E-10) should be ~ 6.7e-8 m

p_vec = numpy.logspace(-2,5)
rho_vec = p_vec / (R_specific * T_room)

plt.plot(p_vec, f_lambda(rho_vec,d_m_air))
plt.title(r'Mean free path (air, room T)')
plt.yscale('log')
plt.xscale('log')
plt.xlabel(r'$p\ [\mathrm{Pa}]$',fontsize=16)
plt.ylabel(r'$\lambda\ [\mathrm{m}]$',rotation=0,fontsize=16)

The mean free path, obviously, varies significantly as a function of pressure and temperature,
or equivalently of density. In the following we will have to take this into account, since gas density
is not constant.
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Note that the Cunningham correction factor is therefore very significant and cannot be ne-
glected, in the regimes we consider. In the following 3D plot we show its dependency on dp and
the pressure p.

In [31]: from mpl_toolkits.mplot3d import Axes3D

# assume rho_p appropriate for Al
rho_Al = 2700

d_Vec = numpy.logspace(-6,-4)
p_Vec = numpy.logspace(-2,1)
rho_Vec = p_Vec / (R_specific * 293.15)
lambda_Vec = f_lambda(rho_Vec,d_m_air)

d_Vec3D, p_Vec3D = numpy.meshgrid(d_Vec, p_Vec)
d_Vec3D, lambda_Vec3D = numpy.meshgrid(d_Vec, lambda_Vec)

F_D_Vec = numpy.log10(f_F_D(lambda_Vec3D, d_Vec3D, rho_Al))
d_Vec3D, p_Vec3D = numpy.meshgrid(numpy.log10(d_Vec), numpy.log10(p_Vec))

fig = plt.figure("Cunningham", figsize=(10,5))
axes = fig.gca(projection='3d')
axes.plot_surface(d_Vec3D, p_Vec3D, F_D_Vec)
axes.set_xlabel(r'$\log_{10}(d_p)$ [m]',fontsize=16)
axes.set_ylabel(r'$\log_{10}(p)$ [Pa]',fontsize=16)
axes.set_zlabel(r'$\log_{10}(F_D)\ [\mathrm{s}^{-1}]$',fontsize=16)
axes.set_title(r'Drag coefficient',fontsize=18)

If not for the Cc factor, the drag factor FD would behave as d−2
p , but for large λ/dp, which is our

case, Cc behaves as d−1
p and the drag goes as d−1

p as well. Anyway, smaller particles are dragged
better, as expected. Also higher pressures help.

3.1 Simulating dust transport

We will assume that dust is transported by the air flow, without causing a back action on the gas:
hence we can use the solutions obtained for the velocity u of the gas, the density ρ and the pressure
p in order to deduce the specific force acting on a particle, according to the equations
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dxp
dt

= up(t)

dup
dt

= FD(λ(xp, t), dp, ρp) [u(xp, t)− up(t)] . (51)

note that the FD factor depends on quantities λ(xp, t), u(xp, t) that in turn vary both with posi-
tion and time, that’s why we have to evolve also particle’s position xp(t).

We will integrate in time with a predictor-corrector scheme, which is second-order accurate,
with two steps

• predictor:

x∗p(t+ ∆t) = xp(t) + ∆tup(t)

u∗p(t+ ∆t) = up(t) + ∆tFD(λ(xp, t), dp, ρp) [u(xp, t)− up(t)] (52)

• corrector:

xp(t+ ∆t) = xp(t) +
∆t

2

[
up(t) + u∗p(t)

]
(53)

up(t+ ∆t) = up(t) +
∆t

2

{
FD(λ(xp, t), dp, ρp) [u(xp, t)− up(t)] + FD(λ(x∗p, t), dp, ρp)

[
u(x∗p, t)− u∗p(t)

]}
We need now a time grid and the evolution of the corresponding gas quantities. We have seen

that eveything happens relatively quickly, so we want a sufficiently fine time grid.

In [32]: deltaT = 1.E-3
T_sim = 0.2

# At t~0 some formulas fail. Instead of correcting, we start shortly after
t_Vec = numpy.linspace(10.*deltaT,T_sim,T_sim/deltaT)
x_Vec = numpy.linspace(-40.,40.,1000)

# build the status at different times
# Rows address time, columns address position
p_Mat = numpy.zeros( (len(t_Vec), len(x_Vec)) )
rho_Mat = numpy.array( p_Mat )
u_Mat = numpy.array( p_Mat )
virgoTube = ShockTube(p1=p1,rho1=rho1,p5=p5,rho5=rho5)
for (i,t) in zip(range(0,len(t_Vec)), t_Vec):

u_Mat[i,:],p_Mat[i,:],rho_Mat[i,:] = virgoTube.State(x_Vec,t)

We can visualize the evolution by means of an animation (won’t display in LaTeX)

In [33]: # Load libraries to animate and to convert into a movie
from matplotlib import animation
from IPython.display import HTML

def animate(i,x,lines, matrices):
for (line,mat) in zip(lines,matrices):

line.set_data(x,mat[i,:])
return lines

fig, axes = plt.subplots(1,3)
fig.set_size_inches(15,4)
line_u, = axes[0].plot([],[], lw=2)
line_p, = axes[1].plot([],[], lw=2)
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line_rho, = axes[2].plot([],[], lw=2)
for ax in axes:

ax.set_xlim(x_Vec[0],x_Vec[-1])
axes[0].set_ylim(0.,1000.)
axes[0].set_title('Velocity')
axes[1].set_ylim(1.E-3,10.)
axes[1].set_yscale('log')
axes[1].set_title('Pressure')
axes[2].set_ylim(1.E-7,1.E-4)
axes[2].set_yscale('log')
axes[2].set_title('Density')

In [34]: # Try animating: we animate only up to 0.05 s
anim = animation.FuncAnimation(fig,animate, frames=len(t_Vec)/4, fargs=(x_Vec,[line_u,line_p,line_rho],[u_Mat,p_Mat,rho_Mat]),interval=100)

HTML(anim.to_html5_video())

Out[34]: <IPython.core.display.HTML object>

We have now air velocities, pressures and densities at specified grid positions: to compute
values at arbitrary positions we need interpolating functions, that we will organize in dictionaries

In [35]: from scipy.interpolate import interp1d
dict_u = {}
dict_p = {}
dict_rho = {}
for i in range(0,len(t_Vec)):

dict_u[i] = interp1d(x_Vec, u_Mat[i,:])
dict_p[i] = interp1d(x_Vec, p_Mat[i,:])
dict_rho[i] = interp1d(x_Vec, rho_Mat[i,:])

We can now easily generate the solution: we need a function which takes lots of inputs

In [36]: def evolveParticle(deltaT, t_Vec, xp_Vec, up_Vec, d_p, rho_p):
for i in range(0,len(t_Vec)-1):

# Predictor step
xp_ast = xp_Vec[i] + deltaT*up_Vec[i]
F_D_pre = f_F_D(f_lambda(dict_rho[i](xp_Vec[i]),d_m_air), d_p, rho_p)*(dict_u[i](xp_Vec[i]) - up_Vec[i])
up_ast = up_Vec[i] + deltaT*F_D_pre
# Corrector step
xp_Vec[i + 1] = xp_Vec[i] + deltaT/2*(up_ast + up_Vec[i])
F_D_cor = f_F_D(f_lambda(dict_rho[i](xp_ast),d_m_air), d_p, rho_p)*(dict_u[i](xp_ast) - up_ast)
up_Vec[i + 1] = up_Vec[i] + deltaT/2*(F_D_pre + F_D_cor)

Equipped with our integrator for the equations of motion, we can proceed.
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3.2 Dust particle, spherical, diameter 100µm
In [37]: xp_Vec = numpy.zeros( len(t_Vec) )

up_Vec = numpy.zeros( len(t_Vec) )
xp_Vec[0] = 0. # initial position of the particle

dParticle = 100.E-6

evolveParticle(deltaT, t_Vec, xp_Vec, up_Vec, dParticle, rho_Al)
plt.plot(xp_Vec, up_Vec)
plt.xlabel(r'$x_p$ [m]',fontsize=16)
plt.ylabel(r'$u_p$ [m/s]',fontsize=16)
plt.title(r'$d_p = ${}$ m,\ \rho_p = ${}'.format(dParticle, rho_Al),fontsize=16)

In this case, speeds of the order of tens of m/s can be reached, and within a few m.
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3.3 Dust particle, spherical, diameter 50µm
In [38]: xp_Vec = numpy.zeros( len(t_Vec) )

up_Vec = numpy.zeros( len(t_Vec) )
xp_Vec[0] = 0. # initial position of the particle

dParticle = 50.E-6

evolveParticle(deltaT, t_Vec, xp_Vec, up_Vec, dParticle, rho_Al)
plt.plot(xp_Vec, up_Vec)
plt.xlabel(r'$x_p$ [m]',fontsize=16)
plt.ylabel(r'$u_p$ [m/s]',fontsize=16)
plt.title(r'$d_p = ${}$ m,\ \rho_p = ${}'.format(dParticle, rho_Al),fontsize=16)

In this case, speeds can be much higher: after 1m of tube the particle is already travelling at
20ms−1.
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3.4 Dust particle, spherical, diameter 10µm
In [39]: xp_Vec = numpy.zeros( len(t_Vec) )

up_Vec = numpy.zeros( len(t_Vec) )
xp_Vec[0] = 0. # initial position of the particle

dParticle = 10.E-6

evolveParticle(deltaT, t_Vec, xp_Vec, up_Vec, dParticle, rho_Al)
plt.plot(xp_Vec, up_Vec)
plt.xlabel(r'$x_p$ [m]',fontsize=16)
plt.ylabel(r'$u_p$ [m/s]',fontsize=16)
plt.title(r'$d_p = ${}$ m,\ \rho_p = ${}'.format(dParticle, rho_Al),fontsize=16)

In this case, speeds can be much higher: after 1m of tube the particle is already travelling at
40ms−1. clearly, much higher speeds can be achieved if the geometry allows.
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3.5 Dust particle, disk (or flake): disk diameter 100µm, thickness 10µm

This case is easily simulated, it is sufficient to lower the density by a factor 10, which takes into
account the reduction of one of the dimensions.

In [40]: xp_Vec = numpy.zeros( len(t_Vec) )
up_Vec = numpy.zeros( len(t_Vec) )
xp_Vec[0] = 0. # initial position of the particle

dParticle = 100.E-6

evolveParticle(deltaT, t_Vec, xp_Vec, up_Vec, dParticle, rho_Al/10)
plt.plot(xp_Vec, up_Vec)
plt.xlabel(r'$x_p$ [m]',fontsize=16)
plt.ylabel(r'$u_p$ [m/s]',fontsize=16)
plt.title(r'$d_p = ${}$ m,\ \rho_p = ${}'.format(dParticle, rho_Al/10),fontsize=16)

Not surpringly, the speed achieved is the same as for the previous case: the reason is that, as
we have discussed, in the regime considered the drag coefficient scales as d−1

p , hence lowering dp
by a factor of 10, or lowering the particle’s density by the same factor, achieve the same result.

Again, already after 1 m of tube the dust particle is traveling at about 40ms−1.
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4 Conclusions

The pressure imbalance between two sections of tube respectively at p1 = 10Pa, p5 = 10−2Pa is
sufficient to generate an air flow with speeds of the order of 800ms−1.

Even though densities are low, the flow is sufficient to accelerate dust particles to speeds wll
above 10ms−1, and even higher depending on the shape and density.

A limitation of this study is that the cross-section of the tube is assumed constant. Work is
in progress to simulate the case of an arbitrary variable cross section, which requires a numerical
integrator.
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