Formulae for Fabry-Perot cavity
accurate parameter measurement

via optical transfer function

Francois Bondu and Olivier Debieu

CNRS, UMR 6162 ARTEMIS,
Observatoire de la cote d’Azur,
BP 4229 06504 Nice CEDEX J, France

We show how the transfer function from frequency noise to Pound-Drever-
Hall signal for a Fabry-Perot cavity can be used to measure accurately cavity
length, cavity linewidth, mirror curvatures, misalignments, laser beam shape
mismatching with resonant beam shape, cavity impedance with respect to

vacuum. (©) 2005 Optical Society of America

1. Introduction

A Fabry-Perot cavity is commonly made resonant with a monochromatic continuous wave
laser via a Pound-Drever-Hall signal:'™* the laser is phase modulated with a radio-frequency
sinewave, and the photodiode current from the reflected light is demodulated with the same
sinewave. When applied to a Fabry-Perot cavity with a length in the kilometer scale, as it is
the case in interferometric gravitational wave detectors,”® it is particularly easy to scan the
transfer function between an additional frequency noise and the demodulated current over
one or more free spectral ranges. Some details of this transfer function have already shown to
be useful to measure very accurately the cavity length.®'? Here we give analytical formulae
of the details of the transfer function in order to extract accurate cavity parameters without
the need of a software optical model.

Throughout this paper, a monochromatic light beam of frequency v is described as a plane
wave by a scalar function ¢, describing the electrical field . = 1y exp(i27v(t — z/c)),
where c is the speed of light and Py = |¢|? is the light power. The properties of a mirror are
described by scalar parameters: power transmission 7', power reflection R, and losses L such
that R+ L +T = 1. Fied reflection and transmission are denoted with r, ¢; the convention
is to have +r for a right side reflection, —r for a left side reflection. Input mirror parameters
are denoted with subscript 1, and far end mirror parameters with subscript 2. Lgr = L1+ Lo



are the resonant beam round-trip losses; this number may also include intra cavity medium
losses, and non plane wave losses: scatter losses, clipping, etc. The modulation frequency

fmoa 1s not close to a multiple of the free spectral range FSR.

2. Cavity reflection for monochromatic light

We assume in this section a monochromatic source, perfectly well aligned and shape-matched
to the resonant mode of a Fabry-Perot cavity. In a scalar model, the reflectivity of a cavity

for a monochromatic wave (ratio of reflected wave to incoming wave) is described as

ry — r2(1 — L) exp(—ic)

R(f) = (1)

1 — ryrgexp(—ia)
where f is the detuning of the laser from the cavity resonance, and the round-trip phase «

is given by

_AnfL,
¢

a(f) (2)

where L, is the cavity length.

™

At first order in Z, where F is the finesse, the finesse is

Fo
2
F = 3
Ty + 15+ Lyy )
the on-resonance reflectivity ¢ = R(0), due to cavity impedance mismatching,
C _ T — 7"2(1 — Ll) ~ 2T1 (4)
1—7”17”2 T1+T2+LRT

¢ = 0 holds for an optimally coupled cavity (resonant cavity impedance matched to vacuum).
0 < ¢ <1 is for an under-coupled cavity; —1 < < 0 is for an over-coupled cavity.

The cavity power build-up (cavity gain) G is

o 4T,
- Ty+ T+ Lpr

(5)

and the on-resonance cavity transmissitivity

ATVT,

T = 6
(T1 + T2 + LRT)2 ( )

so that T is optimal for 77 = 15, and then 7' =1 if Lzt = 0.
Then the cavity reflectivity simply writes, for all frequencies f not in a linewidth distance

from an integer multiple of FSR:

_ C+if/fe (7)
L+if/fp

where fp is the cavity half linewith, fp = FSR/(2F). If f is close to an integer multiple of

FSR, then f should be replace with (f — FSR) in the preceding equation.

R(f)
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3. Error signal for a swept frequency

The input beam is phase modulated with a radio-frequency:

VYpm = Yme exp (im sin(27 finoat)) (8)

where fi04 18 the modulation radio frequency and m its modulation index. If m < 1, then

the incoming field can be expanded as a carrier and two sidebands:

Ypman = o exp(i2mvt) (1 + e moat — Zemnfut) 9)

The Fabry-Perot cavity being a linear system, the reflected light writes:
_ : M o7 froat M o fooat
77bpm,ref - 77&0 exp(z?wvt) R(f) + R(f + fmod)?e - R(f - fmod)?e (10)

The current of a photodiode placed on this reflected light beam will see a power [ty ref|, SO
that when in-phase demodulated, and all radio frequencies filtered out, the Pound-Drever-

Hall signal writes:?

SPDH = Kph%POI(R*(f)R(f + fmod) - R(f)R*(f - fmod)) (11)

where Ky, is the photodiode Volts per Watts conversion, and 7 is the imaginary part oper-
ator; x denotes the conjugate operator.

Let’s denote fi; = fimoda — FSR X Int(fioa/FSR), where Int is the integer part operator. If
f < fur , then the Pound-Drever-Hall signal reduces to:

flfp
L+ (f/fr)?

This signal appears when the laser frequency is swept, or, equivalently, the cavity length is

SPDH = — phPom(l — C) (12)

swept.

4. Transfer function

To compute the transfer function of a cavity kept on resonance by means of a locked feedback
loop, one need to model two phase modulations, one for extracting the error signal, and the

second one, at frequency f, to measure the transfer function.

Vin = Yme exp(im sin(27 finoat)) exp(ibsin (27 ft)) (13)

where b is the modulation index for the measurement frequency line. The phase modulation
bsin(27 ft) corresponds to a frequency modulation bf cos(2m ft). One assumes a modulation

index b < 1 in the following calculations.



We have then in the input light 9 frequency components. As for the swept error signal
calculation, the response of the cavity to each of these 9 lines has to be computed. When the
error signal is in-phase demodulated, and all radio frequencies filtered out, the transfer func-
tion between the input frequency modulation line at frequency f and output demodulated
signal is:

m 1
Fppn = KphPOZﬁ< — R*(fo) R(fo + fmoa + f) — R(fo) R*(fo — fmoa — f)
— R(fo) R*(fo + fmoa — f) — R*(fo) R(fo — fimoa + f) (14)
+ R(fo + fmoa) B (fo — f) + R*(fo — fmoa) R(fo + [)

+ B (fo+ fmoa) R(fo + f) + R(fo = fmoa) ' (fo — /)

where fj is the detuning between the carrier frequency and the cavity resonance.
In the case where the detuning fy is perfectly zero, we also have the property R*(f) =

R(—f) and the transfer function reduces to:

FPDH - KphPO%% ( - C [R(fmod + f) + R(_fmod =+ f)] +R(f)[R(fmod) +R(_fmod)]) (15)

5. Parameter measurements

5.A. Cavity pole, low frequency measurement

In equation 15, if f < fjs, then the transfer function is simply

1 1-¢
Fopy = Koy Pym— —>—
R S T

We have a simple low-pass filter. A fit of the measured transfer function would allow to

(16)

estimate the pole frequency fp.

5.B.  Cavity pole and cavity length, measured at FSR

For frequencies in a linewidth distance from the free spectral range, the transfer functon

1(1-Q(f —FSR)/fp
Fepy = KynPom—

Pon T e i (F — FSR)/
We have a very narrow dip arround the free spectral range. A precise measurement of this dip
allows to have accurate values for both fp and FSR, thus the cavity finesse F = FSR/(2fp),

and the cavity length L. = ¢/(2FSR).

reduces to

(17)

5.C.  Cavity impedance matching and cavity length

For all frequencies at a linewidth distance from fy; (or FSR — fy,),

1 ¢
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The transfer function, around fj;, displays a bump for an over-coupled cavity, and a notch
for an under-coupled cavity. For an optimally coupled cavity, like mode-cleaner cavities in
interferometric gravitational detectors, ( is close to zero; measuring the transfer function may
be the only way to decide the sign of (. The measurement of the reflected power measures
(%, and is biased by misalignments and mismatching: a detailed measurement around fj,
does not suffer these strong biases.

The measurement of the transfer function around FSR— f,; allows to fit cavity free spectral

range, cavity pole and cavity impedance matching (.

5.D.  Cavity misalignment and mirror curvatures

Let’s assume that we have a fraction |a|?> < 1 of the light coupled to the TEMO01 mode of the
cavity. The 9 sidebands on TEMO0O0 mode have a response with f; replaced by 0 in equation
14, while the 9 sidebands on TEMO01 mode have a response with fy replaced by fo1, where
for = (FSR/m)asin(L./R) is the detuning of the resonance of the TEM01 mode. R is the
effective radius of curvature: (1 — L./R) = (1 — L./Ry)(1 — L./ Ry).

After some algebra, the transfer function happens to be:

FPDH,mismatch - FPDH(fOOa f) - |a|2FPDH(f017 f) (19)

with foo = 0. Close to a resonance of a TEMO01 mode, this reduces to

- 1 |a)? 1
FPDH,mismatch — KphPOm(l - C)J (1 - T 1+ Z(f _ fOl)/fP> (20)

The fit of the transfer function around fy; allows to measure the effective radius of curvature

R, the cavity pole fp, and the amount of light coupled in TEM01 mode |a|?

5.E.  Beam mismatching and mirror curvatures

The case is similar to the one of misalignment, except that fy; is replaced with foo = 2 fo;.

6. Conclusion

An analytical formula (equation 14) for the transfer function between a frequency noise and
demodulated current, while the cavity is locked, is developped.

The measure of the low frequency shape of the transfer function allows to fit with equation
16 the cavity pole fp.

The measure of the dip in the transfer function at FSR gives, via equation 17, the cavity
pole fp and the free spectral range FSR. We can deduce then the cavity length L. and the
finesse F. If the cavity mirror transmissions are known, we have then with equation 3 the
round-trip losses Lrr, and thus cavity gain build-up and transmissitivity without any DC

power measurement.



As shown in equation 18, the transfer functions at the modulation frequency, aliased by
the free spectral range, gives information about cavity free spectral range, cavity pole, and
cavity impedance matching with vacuum.

The transfer function details at the frequencies of the TEMO01 and TEMO02 modes give the
amount of light coupled in TEMO01 mode (misalignment) and TEM02 mode (beam shape
mismatching). The mirror effective curvature and cavity pole are also measured.

An other paper shows that this is effective in measuring accurately cavity parameters, and

extrapolate the round trip losses in the ppm range.!!
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