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Abstract

In order to answer requirements settled by the Advanced Virgo (AdV) design, the detection system
has to be redrawn. This note focuses on the DC measurement made on the photodiodes to be used
in the control system. Basic requirements are reminded, selection process and DC characteristics
are presented. Conclusive statement should arise from a foreseen note that will take account for AC
measurements as well.
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Feature || Quant. Eff. Cs Rs Tdark Diam. Ion
typ. Value || 95 % 280pF* 100Q* 10nA* 3mm 100mA

Table 1: Typical values of features from the former Virgo InGaAs photodiodes manufactured by Hama-
matsu. The * mark stands for values under a bias voltage V, = 10V.

1 Basic requirements

The initial Virgo detection photodiodes were InGaAs PIN devices manufactured by Hamamatsu and
exhibit performances that are still, more than 15 years later, very difficult to reach. Unfortunately those
components are not available anymore making a new design of the detection readout a necessity due to
long term maintenance considerations. Furthermore, the modulation frequencies foreseen on AdV settles
additionnal constraints on the photodiode in terms of bandwidth. Indeed, it is foreseen that AdV uses
a triple phase modulated beam with the highest modulation frequency in the range of 50 — 80 MHz.
Moreover, it should be possible to access the signal at twice this frequency, which means a detection
system that could handle frequency as high as 160 MHz or so. This is well above the initial Virgo
detection system capabilities.

Due to alignement facility and limited beam size reduction (in order to reduce back scattered light),
the effective area of the photodetector should remain approximately the same as for the previous one,
that is to say a diameter of 3 mm. This characteristic is in defavour of a wide frequency bandwidth as a
photodiode bandwidth scales inversely with its stray capacitance which is proportionnal to its effective
area.

Another point lays in the fact that some of the detection port impose photodiodes to be placed under
vacuum. This impacts on the power dissipation of the system on the one side, and on the ability of the
photodiode to handle high intensity beam on the other side. The latter item can be converted into a
reduction of the number of photodiodes on a given port and, consequently, into a reduction of the effective
load. It appears that an incident optical power of 100 mW, the same as required for Virgo, would be
sufficient as a starting point.

Finally, the detection system should offer at least the same, or improved, quality response in terms
of high quantum efficiency, high linearity and low noise features as the previous one used on Virgo. On
a practical aspect, it appears that 15 years of technical developpement offer rather poor improvement,
if not regression, on the photodiodes characteristics in the wavelength range of interest. So that redoing
the same as 15 years earlier allready reveals as a challenging task.

The main Virgo photodiode characteristics are summarized in table 1 as a guide for the new selection.

2 Choice of the set of components

It should be first stated that our attention was directed toward InGaAs detector. Despite the disadvan-
tages that could suffer an alloy like InGaAs in terms of high power handling and linearity compared to a
pure material such as Ge photodetectors, the gain offered by its highest efficiency at A = 1.064 pm makes
it, from far, the most promising material.

From an exhaustive review of available commercial photodiodes, we first retained 7 manufacturers of
large area (diam. 3mm) InGaAs PIN photodetectors listed in table 2. Among those 7 manufacturers,
we purchased components from only 3: Perkin Elmer, Fermionics and Judson. Other devices beeing
eliminated because they did not fulfill one or more of the mandatory criterion listed below:

e a maximum photocurrent of, at least, 100 mA in order to handle a sufficiently high optical power
and avoid damages,

e a quantum efficiency higher than 80 % without anti-reflection coating for SNR. considerations,

e a stray capacitance lower than 400 pF together with a maximum bias voltage higher than 10V to
ensure both a large frequency bandwidth and a wide dynamic,

e a dark current lower than some 10nA in order to minimize additive noise.



Manufacturer - Reference | Purch. | Reason

Hamamatsu - G8376-SPL No Iy, <10mA, C ~ 500 pF*
eGTran - PD3M-001 No Ipp, <20mA, V, <2V, Ljgrr < 50nA
Perkin Elmer - C30664 Yes -
Roithner Laser. - PT811 No Ipn, <10mA, C ~ 800 pF*, Iarr < 200nA
Fermionics - FD3000W Yes -
GPD Opto. - GAP3010 No Ipn <10mA

Judson - J22-81-HP Yes -

Table 2: List of large area InGaAs PIN photodiode manufacturers and reference of the device of interest,
status (purchased or not) and reason if not purchased. I, stands for maximum photocurrent, V; for
maximum bias voltage, Iy, for dark current and C for capacitance. The * mark means that the value
is obtained with a 10V bias voltage applied on the photodiode.

The judson photodiode is a recent development of back-illuminated photodiode whereas to 2 others are
usual front illuminated components. This should offer a higher linearity, due to lower fluctuations in the
value of the serial resistance, and better tolerance to high optical power. Several photodiodes of each type
were purchased in order to check for reproducibility of the measurements. Due to cost considerations and
availability of the devices, we get 3 from Fermionic, 5 from Perkin Elmer and 2 from Judson.

A couple of remarks about manufacturers should be addressed. First, Hamamatsu who provided the
initial set of Virgo photodiodes can not guaranty as good requirements as 15 years ago. After discussions
with people from Hamamatsu, it appeared that only a specific selection of components could guaranty
similar (but still below) performances with a cost per unit increased by one order of magnitude. Then,
eGTran photodiodes were selected for the Advanced LIGO experiment. From our point of view, those
devices present rather poor performances and so were not retained.

Beside commercial solution, we joined some discussion initiated by the Nice group with a french
laboratory of the CNRS, the CHREA, working in the field of semiconductor material to investigate more
specialized components. Unfortunately, a specific component would have required a full design that
wouldn’t have been compatible with both, our time scale and budget.

3 DC measurements

3.1 Dark current

The first measurement performed was the dark current Iz,,r on each photodiode. This is a residual
current, flowing whereas no light is impinging the sensitive area. It constitues an additive noise and
reflects somehow the quality of the semiconductor. We are expected as low value of I;,.1 as possible.
Typical value of I, beeing in the range of 1nA or so, its measurement is quite tricky and implies the
use of dedicated Pico-Ammeter together with a proper shielding to avoid parasitics. The measurement
setup uses a Keithley 487 pico ammeter with a 10fA sensitivity.

Results are summarized on a log scale on figure 1 and on a linear one for the best devices on figure 2.
The Perkin Elmer photodiodes exhibit both the best and the worst results. It seems that 2 of the
5 components come from a bad batch. One of those faulty devices is above datasheet specifications and
will be replaced by the manufacturer, the other one lies just below. This illustrates the scattering from
one batch to the other and the need of several devices to get an average idea of their performances. Other
photodiodes exhibit good values of dark current, well below 10 nA.

3.2 Equivalent electrical scheme

From an electric point of view, PIN photodiodes such as those we are using can be expressed as an
equivalent electrical scheme depicted on figure 3. The capacitance C; is called the junction Capacitance.
It originates from the presence of an equal amount of p and n charges on each side of the intrinsic
high resistivity layer (the so called "I” layer). Associated to the ohmic losses induced resistance R, this
parameter limits the usable bandwidth by providing the device a R-C tranfert function of the form given
in eq. 1.
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Figure 1: I, measurement results for each photodiode (legend on the figure) as a function of the bias
voltage. The y-scale is logarithmic so all devices appears on the plot. Please note that dark currents
values are negative due to convention considerations.
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Figure 2: Subest of I, measurement results for each photodiode (legend on the figure) as a function
of the bias voltage on a linear scale. The devices labelled PE0796 and PE0797 do not appear on this
plot because their dark current is out of scale.Please note that dark currents values are negative due to
convention considerations.
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Figure 3: PIN photodiode equivalent electrical scheme loaded by an Rj impedance.
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Figure 4: Serial resistance R in €2 for each photodiode as a function of the applied bias voltage. Mea-
surements were made using a HP 4284 CLR-meter at 1 MHz.
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with w, = BFRORC I, the photodiode photocurrent, V; the device output voltage, Rs and Cj
the device electrical characteristic and Ry, the load resistance.

As mentionned above, the Cy value scales linearly with the effective area of the component and with
the inverse of the thickness of its I layer. Whereas the effective area has to remain constant for pratical
purposes, the I thickness can be increased by applying a bias voltage on the component so that the C;
value is reduced by an equal amount.

Both R, ans C, parameters were determined for each photodiode using a CLR-meter (ref. HP 4284A)
at a frequency of 1 MHz. The electric model used to interpret the reflectivity measurements is made up
of a serial capacity and resistance so that they can be directly identified to those on figure 3. Indeed the
current, source is, first, an open circuit with no incident light and, then, appears in parallele to Cs with
incident light because flowing charges orginate from the junction, accross the I layer.

Results are presented on figure 4 for the serial resistance and on figure 5 for the serial capacitance.
Characteristics offer a good reproducibility from one component to the other. As expected, the Judson
photodiodes exhibit both the lowest capacitance and resistance values making them the most promising
device in term of frequency bandwidth. It should also be noted that a bias voltage of —10V is sufficient
as no significant improvement of Cy appears with higher values.

3.3 Linearity and quantum efficiency

The next parameter to be determined is the DC linearity as a function of the incident optical power. This
allows us to extract estimations for both the quantum efficiency and the linearity of the devices. The
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Figure 5: Serial capacitance Cs in pF for each photodiode as a function of the applied bias voltage.
Measurements were made using a HP 4284 CLR-meter at 1 MHz.
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Figure 6: DC linearity measurement setup.

first one beeing estimated from the slope of the adjusted response of the photodiode, the second from the
dispersion from this model.

For this measurement, we had to face the difficulty of finding an absolute estimation of the optical
power of the laser beam. Devices like optical power meters offer an accuracy of approximately 10 % which
is too large for our concern. Instead, we used one of the previous Virgo photodiodes as a reference to our
measurement. This photodiode is labelled "D21” and, from previous estimations (years ago...), exhibits a
quantum efficiency of 97 %. Whatever the accuracy of this number is, our measurements reflect a trusted
relative estimation of the new set of photodiodes capabilities.

The measurement setup is depicted on figure 6. The optical power of the beam is modified directly on
the source front panel. The beam is splitted on a beam splitter of T = 0.46 & R = 0.54, which values have
been measured within 1%, and signals, from both the photodiode under test and the D21 photodiode,
are digitized using Virgo amplifier, demodulation board and ADC. The overall DC transimpedance gain
of the acquisition channel has been measured as:

‘/out(v) =0.109 x Iln (mA) (2)

For each data set, the optical power of the beam is slowly increased from zero up to a maximum value,
then decreased back to zero again. The maximum value is given by the dynamic of the electronic which
is close to 90 mW (corresponding to an output voltage of 8 V). On each data set, a simple linear model
was fitted. The slope reflects the relative quantum efficiency of a given photodiode with respect to the
D21 reference photodiode as illustrated on figure 7.

The estimation of linearity is somehow tricky as it should take account for several effects like satura-
tion, dispersion, thermal effect due to the incident power, etc. ... We therefore estimate linearity using
the residual of the above linear fit. As the residual distribution is not a gaussian one (and is not expected
to be), we rather use the width of the residual distribution as illustrated on figure 8.

As our most important source of error is due to miss-alignement of the photodiodes, those measure-
ments were repeated 5 times for each photodiode (with a complete replacement of the component...) to
get an most accurate estimation of the parameters. The final results for each photodiode are summarized
in table 3 for both the quantum efficiency and the linearity. It appears that Fermionics photodiodes
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Figure 7: Linear fit of the measured output voltage in V. The reference photodiode, D21, is on the X-axis
and the device under test, here Fermionics 1, on the Y one. Systematics are corrected so the adjusted
parameters on the plot reflects the true relation between quantum efficiency of the 2 photodiodes.
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Phd | F1 F2 F3 3] 12

n 90.5+1.8% 89.6 +2.8% 91.14+2.0% 80.2+£0.5% 781+ 1.4%
linearity | 97.7£82.7mV 55.8£325mV 61.0£324mV 30.5£19.0mV 352+22.0mV

Phd | PE94 PE95 PE96 PE97 PE98

Ui 87.0+1.2% 872+ 1.7% 87.8+1.0% 88.8£0.7% 88.3+0.5%
linearity | 35.6 £13.8mV 40.0£22.0mV 33.5+7.0mV 308+7.0mV 323+94mV

Table 3: Summarized measured values of the quantum efficiency and linearity for each photodiode. The
error bar is determnied by the standard deviation over 5 measurements. For the quantum efficiency, a
virgo photodiode with a quantum efficiency of 97 % was used as a reference. Plots from which those
values are extracted are joined in the Annex of this note.

| <n>| <lin.>]| <Cs>| <Rs> | < lgark >

Fermionics 90 % 72mV 300 pF 13Q —2.5nA
Perkin Elmer | 88 % 34mV 190 pF 8Q —1.0nAx
Judson 80 % 33mV 170 pF 2Q —1.5nA

Table 4: Summarized DC characteristics of the photodiodes for each manufacturer. The mark * refers to
a value of ;4,1 without the 2 faulty Perkin Elmer photodiodes.

surprisingly exhibit the best quantum efficiency, followed by the Perkin Elmer components. However,
those Fermionics suffer a poor linearity which is a factor of 2 above other devices.

Two issues might be mentionned here. First, the measured quantum efficiency for new photodiodes
is expected to be lower than the one from Virgo photodiodes as there is no AR coating on the tested
devices. This coating implies an important extra cost per unit that will only be justified and paid off for
the final purchase. The commonly admitted gain of AR coating is roughly 4 % per interface (so a gain of
8 % per photodiode).

The other point concerns the linearity. Indeed the criterion we used is biased by the linearity of the
reference photodiode. Both errors sums quadratically. This is of a minor importance if the photodiode,
such as a Fermionics, has a poor linearity compared to the reference but does not allow us to distinguish
between the Perkin Elmer and Judson components. We therefore redo the above measurement using a
Judson photodiode as a reference but did not see significant improvement.

4 Conclusion

We presented here the photodiode DC characterization. The measurement bench has been defined in order
to characterize the set of component to be purchased for the detection system. The DC measurement
results are summarized in table 4. It seems that both Perkin Elmer and Judson photodiodes are the most
favoured candidate. Indeed, despite their high quantum efficiency, the Fermionics components couldn’t
offer a sufficient bandwidth. Additionnal AC measurements are needed to bring a conclusive statement.
A prerequisite of those AC measurements is the design of suitable preamplifier, which, in turn, implies
the knowledge of the device to be used with it. Those issues will be discussed in a forecoming note.



A Fermionics 1



V-Raw-952359540-115.gwf | X2/ ndf 4.782e+07 / 8327

Offset  2.372e-05+2.108e-06

F1[V]

6 Slope 0.9329+5.018e-07

/
5 /
/

& /

N\

N\

0 1 2 3 4 5 6
D21 voltage [V]

Figure 9: Linear fit #1 of Fermionics 1
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Figure 11: Residual plot #1 of Fermionics 1
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Figure 12: Linear fit #2 of Fermionics 1
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Figure 14: Residual plot #2 of Fermionics 1
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Figure 15: Linear fit #3 of Fermionics 1
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Figure 17: Residual plot #3 of Fermionics 1
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Figure 18: Linear fit #4 of Fermionics 1
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Figure 19: Residual distribution #4 of Fermionics 1
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Figure 20: Residual plot #4 of Fermionics 1
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Figure 21: Linear fit #5 of Fermionics 1
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Figure 24: Linear fit #1 of Fermionics 2
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Figure 25: Residual distribution #1 of Fermionics 2
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Figure 26: Residual plot #1 of Fermionics 2
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Figure 27: Linear fit #2 of Fermionics 2




Dist of residuals

Entries 10400

25007 | Mean -0.003013
L RMS  0.01978
2000}
1500
1000f
500[ Hiﬂﬁf
07\ L1l [ Lrlom Il [ ﬂ-’\erJ_U_\HL\
-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02

Figure 28: Residual distribution #2 of Fermionics 2
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Figure 29: Residual plot #2 of Fermionics 2
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Figure 31: Residual distribution #3 of Fermionics 2
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Figure 32: Residual plot #3 of Fermionics 2
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Figure 33: Linear fit #4 of Fermionics 2
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Figure 34: Residual distribution #4 of Fermionics 2
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Figure 35: Residual plot #4 of Fermionics 2
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Figure 36: Linear fit #5 of Fermionics 2
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Figure 37: Residual distribution #5 of Fermionics 2
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Figure 38: Residual plot #5 of Fermionics 2
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Figure 39: Linear fit #1 of Fermionics 3
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Figure 40: Residual distribution #1 of Fermionics 3

28



IREEENT
0 ("“V"‘M/
ML
NN A

z N7

-0.06

o
N

Y@ata - Yestim
e

~. 2

0 1 2 3 4 5 6 7
X Vector

Figure 41: Residual plot #1 of Fermionics 3
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Figure 42: Linear fit #2 of Fermionics 3
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Figure 43: Residual distribution #2 of Fermionics 3
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Figure 44: Residual plot #2 of Fermionics 3
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Figure 45: Linear fit #3 of Fermionics 3
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Figure 46: Residual distribution #3 of Fermionics 3
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Figure 47: Residual plot #3 of Fermionics 3
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Figure 48: Linear fit #4 of Fermionics 3
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Figure 49: Residual distribution #4 of Fermionics 3
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Figure 50: Residual plot #4 of Fermionics 3
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Figure 51: Linear fit #5 of Fermionics 3
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Figure 52: Residual distribution #5 of Fermionics 3
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Figure 53: Residual plot #5 of Fermionics 3
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Figure 54: Linear fit #1 of Judson 1
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Figure 55: Residual distribution #1 of Judson 1
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Figure 56: Residual plot #1 of Judson 1

V-Raw-954577831-83.gwf | XeIndf  3.509e+07 /7160

Offset -0.001845 + 1.17e-06

> ¢ Slope  0.827 +3.417e-07
— 6 L 4
= |
2 e
ke
S SF
s [
41 /

N\

N\

0 1 2 3 4 5 6 7
D21 voltage [V]

Figure 57: Linear fit #2 of Judson 1
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Residuals Dist of residuals
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Figure 58: Residual distribution #2 of Judson 1
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Figure 59: Residual plot #2 of Judson 1
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Figure 60: Linear fit #3 of Judson 1
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Figure 61: Residual distribution #3 of Judson 1
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Figure 62: Residual plot #3 of Judson 1
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Figure 63: Linear fit #4 of Judson 1
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Figure 64: Residual distribution #4 of Judson 1
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Figure 65: Residual plot #4 of Judson 1
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Figure 66: Linear fit #5 of Judson 1
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Figure 67: Residual distribution #5 of Judson 1
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Figure 68: Residual plot #5 of Judson 1
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Figure 69: Linear fit #1 of Judson 2
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Figure 70: Residual distribution #1 of Judson 2
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Figure 71: Residual plot #1 of Judson 2
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Figure 72: Linear fit #2 of Judson 2
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Figure 73: Residual distribution #2 of Judson 2
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Figure 74: Residual plot #2 of Judson 2
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Figure 75: Linear fit #3 of Judson 2
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Figure 76: Residual distribution #3 of Judson 2
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Figure 77: Residual plot #3 of Judson 2
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Figure 78: Linear fit #4 of Judson 2
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Figure 79: Residual distribution #4 of Judson 2
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Figure 80: Residual plot #4 of Judson 2
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Figure 81: Linear fit #5 of Judson 2
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Figure 82: Residual distribution #5 of Judson 2
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Figure 83: Residual plot #5 of Judson 2
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Figure 84: Linear fit #1 of Perkin Elmer 94
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Figure 85: Residual distribution #1 of Perkin Elmer 94

95



T T T
¥

o Ydata ©restim
o
=

o

o
T T T

-

>

-0.005 i

0.0l

005115225
X Vector

Figure 86: Residual plot #1 of Perkin Elmer 94
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Figure 87: Linear fit #2 of Perkin Elmer 94
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Figure 88: Residual distribution #2 of Perkin Elmer 94
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Figure 89: Residual plot #2 of Perkin Elmer 94
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Figure 90: Linear fit #3 of Perkin Elmer 94
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Figure 91: Residual distribution #3 of Perkin Elmer 94
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Figure 92: Residual plot #3 of Perkin Elmer 94
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Figure 93: Linear fit #4 of Perkin Elmer 94
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Figure 94: Residual distribution #4 of Perkin Elmer 94
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Figure 95: Residual plot #4 of Perkin Elmer 94
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Figure 96: Linear fit #5 of Perkin Elmer 94
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Figure 97: Residual distribution #5 of Perkin Elmer 94
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Figure 98: Residual plot #5 of Perkin Elmer 94
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Figure 99: Linear fit #1 of Perkin Elmer 95
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Figure 100: Residual distribution #1 of Perkin Elmer 95
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Figure 101: Residual plot #1 of Perkin Elmer 95

| V-Raw-954576009-118.gwf |

PE0795 [V]

8

7

X2 I ndf 1.729e+08 / 9581
Offset -0.01365 + 1.797e-06

Slope 0.9117 +2.821e-07

/,

/

/

/

5

6 7 8 9
D21 voltage [V]

Figure 102: Linear fit #2 of Perkin Elmer 95
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Figure 103: Residual distribution #2 of Perkin Elmer 95
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Figure 104: Residual plot #2 of Perkin Elmer 95
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Figure 105: Linear fit #3 of Perkin Elmer 95
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Figure 106: Residual distribution #3 of Perkin Elmer 95
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Figure 107: Residual plot #3 of Perkin Elmer 95
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Figure 108: Linear fit #4 of Perkin Elmer 95
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Figure 109: Residual distribution #4 of Perkin Elmer 95
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Figure 110: Residual plot #4 of Perkin Elmer 95
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Figure 111: Linear fit #5 of Perkin Elmer 95
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Figure 112: Residual distribution #5 of Perkin Elmer 95
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Figure 113: Residual plot #5 of Perkin Elmer 95
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Figure 114: Linear fit #1 of Perkin Elmer 96
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Figure 115: Residual distribution #1 of Perkin Elmer 96
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Figure 116: Residual plot #1 of Perkin Elmer 96
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Figure 117: Linear fit #2 of Perkin Elmer 96
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Figure 118: Residual distribution #2 of Perkin Elmer 96
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Figure 119: Residual plot #2 of Perkin Elmer 96
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Figure 120: Linear fit #3 of Perkin Elmer 96
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Figure 121: Residual distribution #3 of Perkin Elmer 96
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Figure 122: Residual plot #3 of Perkin Elmer 96
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Figure 123: Linear fit #4 of Perkin Elmer 96
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Figure 124: Residual distribution #4 of Perkin Elmer 96
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Figure 125: Residual plot #4 of Perkin Elmer 96
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Figure 126: Linear fit #5 of Perkin Elmer 96
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Figure 127: Residual distribution #5 of Perkin Elmer 96
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Figure 128: Residual plot #5 of Perkin Elmer 96
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Figure 129: Linear fit #1 of Perkin Elmer 97
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Figure 130: Residual distribution #1 of Perkin Elmer 97
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Figure 131: Residual plot #1 of Perkin Elmer 97
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Figure 132: Linear fit #2 of Perkin Elmer 97
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Figure 133: Residual distribution #2 of Perkin Elmer 97
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Figure 134: Residual plot #2 of Perkin Elmer 97

84



| V-Raw-954588995-54.gwf | | x/nd  1436e+07 /3414

Offset -0.007527 + 1.85e-06

Slope  0.9126 +4.126e-07
i /
. /

//

PE0797 [V]

AN

N\

/,
1 /

0 1 2 3 4 5 6 7
D21 voltage [V]

Figure 135: Linear fit #3 of Perkin Elmer 97
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Figure 136: Residual distribution #3 of Perkin Elmer 97
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Figure 137: Residual plot #3 of Perkin Elmer 97
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Figure 138: Linear fit #4 of Perkin Elmer 97
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Figure 139: Residual distribution #4 of Perkin Elmer 97
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Figure 140: Residual plot #4 of Perkin Elmer 97
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Figure 141: Linear fit #5 of Perkin Elmer 97
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Figure 142: Residual distribution #5 of Perkin Elmer 97
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Figure 143: Residual plot #5 of Perkin Elmer 97
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Figure 144: Linear fit #1 of Perkin Elmer 98
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Figure 145: Residual distribution #1 of Perkin Elmer 98
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Figure 146: Residual plot #1 of Perkin Elmer 98
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Figure 147: Linear fit #2 of Perkin Elmer 98
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Figure 148: Residual distribution #2 of Perkin Elmer 98
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Figure 149: Residual plot #2 of Perkin Elmer 98
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Figure 150: Linear fit #3 of Perkin Elmer 98
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Figure 151: Residual distribution #3 of Perkin Elmer 98
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Figure 152: Residual plot #3 of Perkin Elmer 98
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Figure 153: Linear fit #4 of Perkin Elmer 98
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Figure 154: Residual distribution #4 of Perkin Elmer 98
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Figure 155: Residual plot #4 of Perkin Elmer 98
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Figure 156: Linear fit #5 of Perkin Elmer 98
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Figure 157: Residual distribution #5 of Perkin Elmer 98
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Figure 158: Residual plot #5 of Perkin Elmer 98
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