
Andrea Cesarini

Nonlinear waveform reconstruction study

European Gravitational Observatory (EGO), Cascina,  Pisa, Italy

!"#$%&'"
()*+,

EGO - Via E. Amaldi 56021 S. Stefano a Macerata - Cascina (PI)        ego@ego-gw.it        Tel +39 050
752511        Fax +39 050 752550

What is EGO
What is VIRGO

Job Opportunities

Welcome to EGO - VIRGO web site http://www.ego-gw.it/

1 of 1 08/11/2012 15:31

EGO - Via E. Amaldi 56021 S. Stefano a Macerata - Cascina (PI)        ego@ego-gw.it        Tel +39 050
752511        Fax +39 050 752550

What is EGO
What is VIRGO

Job Opportunities

Welcome to EGO - VIRGO web site http://www.ego-gw.it/

1 of 1 08/11/2012 15:37

Higher-Order Spectral Analysis (HOSA) 

A. CESARINI -   VIR-0426A-12



Study

2

Supervisor: 
 Dr.  Elena Cuoco

Aim: 
Searching for a nonlinear approach for waveform 
transient signal reconstruction

Internship: 
Data and Noise Analysis Group

A. CESARINI -   VIR-0426A-12



3

Generalizing spectral analysis

“Cumulants are combination of moments”

Higher-Order Spectral Analysis (HOSA)

2nd-order Fourier transform

3rd-order
triple correlation 

bispectrum
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4 High-order spectral analysis1

REWORD - The Fourier transform of third-order cumulant is called bispectral density or bispectrum. The2

primary benefit of adopting high-order spectral analysis (HOSA)6, or high-order frequency response function3

analysis, is to provide information regarding the transfer of energy among different frequencies due to nonlinear4

interrelations. In signal processing first- and second- order statistics have gained significant importance. How-5

ever, many signals, especially when it comes to nonlinearities, can not be examined properly by second order6

statistical methods. The first- and second-order cumulants of a stationary signal are its mean, µ = E[x(t)]7

and its variance, E[(x(t)− µ)2]. Higher order cumulants are nonlinear combinations of the statistical moments.8

Without loss of generality, we assume that the analyzed signals are zero mean since nonlinear order cumulants9

are invariant to a shift of mean (REF).10

f11

4.1 Direct bispectral computation12

The Fourier transform of third-order cumulant is called bispectral density, or bispectrum. Moreover, the bispec-13

trum is the FT of the triple correlation or triple product integral [3].The autocorrelation of a stationary process,14

x(t), is15

c2(τ) = E [x∗(t)x(t+ τ)] (4.1)

where E[·] is the ensemble average operator and the “∗” symbol indicates the complex conjugate when the input16

signal is complex and the transposition when the input signal is real. Knowing that the PSD7 is defined as the17

FT of the autocorrelation in the continuous case18

P (f) =

� ∞

−∞
c2(τ) e

−j2πfτ dτ (4.2)

or, equivalently,19

P (f) = E [X∗(f)X(f)] ≥ 0 (4.3)

where f and t are continuous-time parameters. For real signals, the power spectrum is symmetric, P (f) =20

P (−f).21

The bispectrum, or double FT of the third-order covariance c3(τ1, τ2), can be computed analogously,22

c3(τ1, τ2) = E [x∗(t)x(t+ τ1)x(t+ τ2)]

B(f1, f2) =

� ∞

−∞

� ∞

−∞
c3(τ1, τ2) e

−j2π(f1τ1+f2τ2) dτ (4.4)

where ω = 2πf [8]. It should be clear that the bispectrum is zero if there is no (triple) correlation; actually, a23

bursting features in the bispectrum correspond to rather flat features in the triple correlation and therefore we24

might conclude that there are slow changes in the original signal.25

In the discrete-time domain, the FT is a continuous function of frequency periodic for 2π. Here we assume the26

the stationary8 third-order correlation function values c3(n1, n2, n3) of a properly sampled signal are contained in27

the principal bispectrum domain contained in one of its symmetric subset delimitated by an isosceles triangular28

region [8]. Then,29

c3(n1, n2, n3) = E [x∗(t+ n1)x(t+ n2)x(t+ n3)] (4.5)

P3(λ1,λ2,λ3) =
1

(2π3)

∞�

n1,n2,n3=−∞
c3(n1, n2, n3) e

−j(λ1n1+λ2n2+λ3n3) dτ (4.6)

6In the present work, higher order spectra are defined in terms of Fourier coefficients.
7A not necessary but sufficient condition for the existence of the power spectrum is that the autocorrelation sequence of terms

is absolutely summable.
8Stationarity requires c3(n1, n2, n3) = c3(n1 − n3, n2 − n3, 0) suggesting that f3 is nonzero when (λ1 + λ2 + λ3) mod 2π = 0

Higher-order 
statistics do not 

maintain memory 
of gaussianity 

(filtering).

mean
1st-order

correlation
spectrum

2nd-order
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Fourier transform of the autocorrelation

The statistics of a 
Gaussian signal is 

completely described by 
using its 1st- and its 2nd-

order statistics
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Higher-order spectral analysis (HOSA)

Generalized (non Gaussian) signals

- Gaussian noise suppression
- Study of dataset quasi-Gaussianity
- Nonlinear frequency coupling

Figure 1: Accuracy and Reliability of Time Frequency Techniques

1.2.1 Gabor Transform

The expansion of a signal into a discrete set of Gaussian elementary signals was originally

suggested by Gabor in 1946, and the analytic expression for Gabor coefficients was later

derived by Bastiaans [17]. An important property of the Gabor transform is that its coeffi-

cients reveal the localized frequency distribution of a signal or an image[18], instead of the

global frequency information as provided by the coefficients of the Fourier transform. This

has proven to be very useful for texture analysis [63], biomedical imaging [72], speech recog-

nition [60] and other areas. The study of the Gabor transform will be useful not only for its

own applications, but also for the understanding and applications of the wavelet transform

since the two transforms are different manifestations of the same group representations

theory.

1.2.2 Wavelets

A Wavelet is a kind of mathematical function used to divide a given function into differ-

ent frequency components and study each component with a resolution that matches its

scale [19]. The wavelets are scaled and translated into copies known as ”daughter wavelets”

of a finite length or fast-decaying oscillating waveforms known as the ”mother wavelets”

[20,21]. The Wavelet transforms have advantages over traditional Fourier transforms [22]

for representing functions that have discontinuities and sharp peaks, and for accurately

deconstructing and reconstructing finite, non-periodic and/or non-stationary signals.
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Representations

In real cases when signals are heavily 
corrupted, averaging the redundant 

information is possible to treat the noise. 

Higher-order cumulants (>2) of pure Gaussian signals 
are zero and contain redundant information about 

the deterministic portion of the signals.

The spectral density is a function of frequency and not a function of 
time. However, the spectral density of small "windows" of a longer 

signal may be calculated and plotted versus the time associated with 
the window.  The figure shows the variations in the accuracy and 

reliability of these techniques (Subramanian, 1990).

1D Spectrum Phase coupling associated with 
nonlinearities cannot be correctly identified
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Discrete time treatment

- Bispectrum symmetries of a band-limited signal.
 
- For a real signal the bispectrum is completely 
determined by a single octant (blue). 

- For a complex signal the symmetry relation (iii) is 
not applicable and a second octant is necessary in 
order to determine the bispectrum (red).

Bispectrum redundant information
(“Polyspectra”)

The support of the bispectrum of a bandlimited signal
is a hexagon (Fig. 3). From Eq. (19) we can now deduce
three symmetry relations:

(i) JP3) = T(3)

(ii) TP3) = [p3),

(iii) T1'3 = [i > q] * if T(x) is real.

Fig. 3. Hexagonal support of the bispectrum of a bandlimited signal
and its symmetry relations. For a real signal the bispectrum is
completely determined by a single octant, as indicated by the dark-
rastered area. Starting from this octant all other octants are deter-
mined by the use of the symmetry relations (i), (ii), and (iii) in Eq.
(20). For a complex signal the symmetry relation (iii) is not applicable
and a second octant is necessary in order to determine the bispectrum

(indicated by the bright-rastered area).

will always be zero if we insert for Z2 a correct complex
zero of T(z). Otherwise infinitely many z 1 exist where
the product will not be zero. From the knowledge of the
complex zeros of T(z) we can then reconstruct the
spectrum T(u) of a signal except for a factor exp( +
-yz), with a = 0, 2ri 1/3, 2ri 2/3, and y is a complex
constant. For real functions T(x) the spectrum T(u)
is completely determined except for a constant factor,
as discussed above.

So far we have shown that it will be possible in prin-
ciple to reconstruct a signal in amplitude and phase
from its bispectrum. In the next section we shall de-
scribe a more practical, recursive algorithm for this
purpose. The fact that there are several ways to find
the complex zeros gives a hint of the high degree of re-
dundancy in the bispectrum. We can be optimistic
therefore and use this redundancy for improving the
signal-to-noise ratio.
IV. Recursive Reconstruction of Fourier Amplitude
and Fourier Phase from Bispectra

In this section we shall discuss a recursive algorithm
for the signal reconstruction from bispectra. For
practical reasons the reconstruction algorithm is applied
to a discrete version §P(') of the bispectrum:

p = T'(3)(p. Aul,q- AU 2 )

= T(p- Au,) T(q AU2 )'(-p. Au - q A 2)
= Tp Tq p-q, (19)

where Au = Au 2 is a suitable sampling distance in the
bispectral domain and Tp,Tq,T-p-q are sampled
Fourier transforms of the signal.

The first symmetry relation (i) represents a reflection
at the axis p = q. Relation (ii) may be considered a
sheared reflection at the axis p = -2q. The last rela-
tion (iii) is a point reflection at the origin. Relation (iii)
only holds for real signals T(x) which is equivalent to
Tp being Hermitian, i.e., Tp = T* p. The symmetry
relations (20) are graphically illustrated in Fig. 3.
Figure 3 demonstrates that:

If T(x) is real, the bispectrum is completely deter-
mined by a single octant (indicated by the dark-rastered
area);

if T(x) is complex, the bispectrum is determined by
two point-symmetric octants (indicated by the two
rastered areas).

Our aim is to obtain the complex spectrum T = p
exp(i'op) from the bispectrum data pT'q = t(3)exp(ipB,q).
To this end Eq. (19) is split into two separate equations,
one concerning the phase factors and the other con-
cerning the amplitudes.

exp[i(,pp + (Pq - 'P-p-q)] = exp(iBp,q), (21)

Tp . q Fp~-q = tp(q)q.

We shall first concentrate on the case of real signals
T(x). Generalization to complex T(x) is straightfor-
ward and will be discussed in Sec. IV.C.

A. Fourier Phase Recovery for Real T(x)
For a real signal T(x) the Fourier spectrum Tp = p

exp(i'pp) is Hermitian, i.e., Tp = T* p. As a conse-
quence 'pp = -5p0p follows (especially 'po = 0).
Therefore it is sufficient to determine Pp only for pos-
itive indices p > 0. In Table I several recursive steps
for the phase computation based on Eq. (21) are listed
using this restriction. As one important point we find
that the phase 'P is not determinable. This fact will be
discussed later after writing down the first iteration
steps of Table I:
(2) (P2 = 2 - 13,1,

(4) (P3 = (P2 + P1 - 2,1 = 3'pi - 1,1 - 32,1,

(n) 'pp = P'P1 - 1,1 -32,1- . * * Op-1,1-

Apparently, the Fourier phases spp of TP can be deter-
mined except for a linear phase term (p sol). This re-
striction is not surprising since the bispectrum is known
to be blind to linear phase factors in Tp [Eq. (12)].
Because 'P1 is unknown we may arbitrarily set 'p = 0.

As a summary of the above we may conclude that 'pp
can be determined for p > 1 and that 'po and 'P1 can be
set to zero. In addition Table I shows that the phase
values spp(p > 1) have several independent represen-
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one concerning the phase factors and the other con-
cerning the amplitudes.
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We shall first concentrate on the case of real signals
T(x). Generalization to complex T(x) is straightfor-
ward and will be discussed in Sec. IV.C.

A. Fourier Phase Recovery for Real T(x)
For a real signal T(x) the Fourier spectrum Tp = p

exp(i'pp) is Hermitian, i.e., Tp = T* p. As a conse-
quence 'pp = -5p0p follows (especially 'po = 0).
Therefore it is sufficient to determine Pp only for pos-
itive indices p > 0. In Table I several recursive steps
for the phase computation based on Eq. (21) are listed
using this restriction. As one important point we find
that the phase 'P is not determinable. This fact will be
discussed later after writing down the first iteration
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(2) (P2 = 2 - 13,1,

(4) (P3 = (P2 + P1 - 2,1 = 3'pi - 1,1 - 32,1,
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Apparently, the Fourier phases spp of TP can be deter-
mined except for a linear phase term (p sol). This re-
striction is not surprising since the bispectrum is known
to be blind to linear phase factors in Tp [Eq. (12)].
Because 'P1 is unknown we may arbitrarily set 'p = 0.

As a summary of the above we may conclude that 'pp
can be determined for p > 1 and that 'po and 'P1 can be
set to zero. In addition Table I shows that the phase
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Bispectrum Analysis (2)

6

Indirect bispectral estimate

In practical cases (time-limited and band-unlimited signals), the bispectrum is computed 
by using the Fourier transform of the triple correlation (indirect estimate). The estimated 

cumulant is convolved by a 2D window function in order to obtain an improved 
estimation for the bispectrum of the signal.

Several windowing functions have been developed. Here we test the Parzen, 
the Sasaki and the Mean Squared Error (MSE) optimal Rao-Gabr windows.
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 In the special literature, these 2D windows are 
analyzed in terms of bispectrum bias supremum ( J ), 
bispectrum variance (V ) and respectively, in terms 
of MSE between the true value and estimated 
bispectrum. It is demonstrated that the MSE is 
proportional to an index of efficiency E V B= ! , the 
variance of the estimator is approximately 
proportional to the index V  and finally, the 
bispectrum bias supremum is proportional to the 
index J , where, [5]: 
 

( )
( )1 2 1 2 1 22

1 ,
2

B W d d
! !

! !

" " " " " "
! " "

= " # # ,   (26) 

 

( )
( )

2
1 2 1 22

1 ,
2

V W d d
! !
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! " "

= # # , (27) 

 

( )
( ) ( )2

1 2 1 2 1 22

1 ,
2

J W d d
! !

! !

" " " " " "
! " "

= "# # . (28) 

 
 In the Table 1 the values of these indexes 
obtained in [5] are presented. 
 As one can see from this table, the bispectrum 
estimator obtained by using of MSE optimal window 
assures the smallest MSE between the true value and 
the estimated bispectrum. Also, it has good values 
for the bias and the variance. 
 
                                                                         Table 1 

Index Window J V B E 
Daniell 99468.5 0.1199 8990 1078.5 
Parzen 8392.43 0.0409 1324.78 54.2 
Hamming 60664.8 0.9067 6261.80 567.76 
Priestley 288002 0.2032 10909.3 2216.91 
Sasaki 1315.2 0.0486 2007.43 97.29 
MSE 
optimal 2220.74 0.0691 458.69 31.68 

Indexes J , V , B  and E  of the analyzed 2D 
window functions 

 
 In order to obtain the smallest variance of the 
estimator, Parzen window is indicated to be used. 
This window has also a good value of the MSE and a 
moderate value for the bias. Also, for the smallest 
bispectrum bias supremum, Sasaki window is 
recommended to be used. It has a very good value 
for the variance and a moderate value of the MSE. 
 A compromise between these three indexes is 
given by Daniell window. The Hamming window 

has the largest variance and the Priestley window has 
the largest bispectrum bias supremum. 
 
5 Bispectral resolution and leakage 
effect of 2D windows 
In some higher-order statistical signal processing 
applications (e.g., quadratic phase coupling detection 
problem, birange profile reconstruction), it is 
important to calculate the bispectral resolution and 
leakage effect of the indirect bispectrum estimate for 
different types of 2D window functions. 
 In order to see the bispectral resolution of the 
indirect estimate, it must take into account the 2D 
discrete-time Fourier transforms of 2D window 
functions and the cross sections through the main 
lobes of these at -3 dB level. 
 In the Fig.2 these transforms are presented. As 
one can see from this figures, they have a larger or a 
narrower main lobe and a bigger or a smaller 
sidelobe level. The shapes of the main lobes and of 
the sidelobes are also different. 
 In the Fig.3 the cross sections through the main 
lobes are indicated. Consequently, we will have very 
good information and a suggestive visual view on the 
bispectral resolution of the analyzed 2D window 
functions. 
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Bispectrum Analysis (2)
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Windowing:  sin10Hz-30Hz
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Windowing:  SG10Hz
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Windowing Rao-Gabr:  SG10Hz+white at low SNR (<0.6)
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Signal extraction/filtering/reconstruction

10

Robust Amplitude and Phase reconstruction algorithm

Inverse Filtering

Filtering Frequency-domain via DCTTesting

J.Walker, 2003, “Application of the Bispectrum to Glottal Pulse Analysis”

 G.Sundaramoorthy, 1990, “Bispectral Reconstruction of Signals in Noise 
Amplitude Reconstruction Issues”

 M.Nakamura, 1993, “Waveform Estimation from Noisy Signals with 
Variable Signal Delay Using Bispectrum Averaging”

M.Pulakka et al., 2005, “A Toolkit for Voice Filtering and Parametrisation”

 D.V.Fevralev et al., 2006, “Combined bispectrum-filtering technique for 
signal shape estimation with DCT-based adaptive filter”

 D.V.Fevralev et al., 2006, “Signal shape reconstruction by DCT-based 
filtering of Fourier spectrum recovered from bispectrum data”

Debug

To be coded
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HOSA Integration
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Traditional (stationary) approach
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HOSA Integration (2)
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Background 
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HOSA Integration (4)
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HOSA analysis  
of the 

background

Background 
bispectral 
estimate

Background 
characterization

Signal-to-Background estimate

HOSA Integration (5)
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• Prompt data 
monitoring for 
nonstationary 
nonlinear coupling in 
the frequency-domain

Nonstationary nonlinear correlations of frequency lines

• Search for multi-channel 
nonlinear coupling of 
events produced by:

-> Gravitational wave
-> Laser fluctuation
-> Electromagnetics
-> Seism
-> Thermal noise

• Nonlinear correlation test

HOSA Integration (6)
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•  Test on real data

•  Modify for suiting performance of an in-time analysis

•  Integrate it as tool on NMAPI framework

What next...
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