
B. Swinkels – Brute force - DetChar 1

Brute force correlation
of drifting lines

Detchar meeting, 22/06/2018

Bas Swinkels (Nikhef)

Advanced
Virgo

B. Swinkels – Brute force - DetChar 2

Motivation

● Current motivation: some annoying lines that drift in frequency, would like to correlate these to all
possible channels

● Similar idea as Matlab code by Soumen Koley used to correlate aliased lines to mirror temperature just
before O2

● Need to correlate other things as well: line frequency, brms, range with channels ...

● Old idea of making a flexible pipeline of tools, see VIR-0503A-17

● Ideally use code that can also work at LIGO

B. Swinkels – Brute force - DetChar 3

Step 1: speeding up
spectrograms

● Making a spectrogram over several days costs hours, and if you used the wrong NFFT you have to start
over

● Typically interested only in a small frequency band (so daily and weekly plots on VIM/MoniWeb are still
very useful to find them, but typically you want to ‘zoom in’)

● Use demodulation to reduce data by factor 100-1000! Same trick used for online drum-mode
tracker, see lb #38844

● Download raw data in small chunks, multiply with complex sine, decimate in several steps, save
complex time series to hdf5 file

● Have to do this only once, can redo the next step many times

● Speed: ~15 min to demodulate full day at 10kHz

● Todo: use multiprocessing to speed things up, needs way of avoiding filter transients of decimation filter

B. Swinkels – Brute force - DetChar 4

Step 1: speeding up
spectrograms

>>> ./demod.py -h
usage: demod.py [-h] [--ffl FFL] [--chan CHAN] --f_demod F_DEMOD --f_out F_OUT
 [--gstart GSTART] [--gstop GSTOP]

Tool to demodulate and decimate channels

optional arguments:
 -h, --help show this help message and exit
 --ffl FFL ffl file to read input from
 --chan CHAN channel name, needed if source contains multiple channels
 --f_demod F_DEMOD demodulation frequency, must be integer
 --f_out F_OUT sample frequency of output signal, must be a sub-multiple
 of the one of the input signal
 --start START gps time of start of period to process, accepts any valid
 input to gwpy.to_gps
 --stop STOP gps time of end of period to process, accepts any valid
 input to gwpy.to_gps

B. Swinkels – Brute force - DetChar 5

Step 2: tracking lines

● No peak is the same, need to tune NFFT, number of averages, to resolve the line in the best way

● Drifting lines can cross, can be very close, ...

● Idea: no artificial intelligence is will do better than your brain, so do this step by hand using a fast GUI

B. Swinkels – Brute force - DetChar 6

Step 2: tracking lines

B. Swinkels – Brute force - DetChar 7

Step 2: tracking lines

B. Swinkels – Brute force - DetChar 8

Step 2: tracking lines

B. Swinkels – Brute force - DetChar 9

Step 2: tracking lines

● Based on Matplotlib: things like zooming, panning, saving images come for free

● Interactive: can use keyboard to change NFFT, number of averages

● Very fast: redrawing spectrogram costs about 1 second!

● User can define bounding-box using mouse clicks, exclude bad regions (unlocks)

● Maximum frequency is searched within this box, saved to file in hdf5 format

● Can also compute BRMS of the same box

B. Swinkels – Brute force - DetChar 10

Step 3: correlate

● Pretty standard brute-force correlator (see e.g. lb #24349), this has been done by many others

● Loop over all channels in ffl, blacklist a few, calculate a FOM based on correlation, rank channels

● Use residuals of a polyfit as figure of merit, so could potentially find quadratic relations

● Very basic algorithm, can in future be swapped out for more sophisticated algorithms like Francesco’s
code (VIR-0406A-18) or LIGO’s LASSO code (LIGO-P1800173)

● Speed: about 1-2 days of 10000 channels from trend takes ~10 min, already uses multiprocessing

B. Swinkels – Brute force - DetChar 11

Step 3: correlate

>>> ./correlate.py -h
usage: correlate.py [-h] --source SOURCE [--chans CHANS [CHANS ...]]
 --f_target F_TARGET --aux_source AUX_SOURCE
 [--fit_order FIT_ORDER] [--ntop NTOP] [--start START]
 [--stop STOP]

Tool to correlate channels

optional arguments:
 -h, --help show this help message and exit
 --source SOURCE source for channel for which to find correlation
 --chans CHANS [CHANS ...]
 channel names (can be omitted if source constains
 single channel)
 --f_target F_TARGET sample frequency at which correlation is performed,
 ideally same as aux data
 --aux_source AUX_SOURCE
 source for auxiliary channels (name of ffl for now)
 --fit_order FIT_ORDER
 order of polynomial fit
 --ntop NTOP number of winning channels to report
 --start START gps time of start of period to process, accepts any
 valid input to gwpy.to_gps
 --stop STOP gps time of end of period to process, accepts any
 valid input to gwpy.to_gps

B. Swinkels – Brute force - DetChar 12

Step 4: report results

● Print ranking, make plots of winning channel, ...

● Follow-up investigations ...

Brute-force search for correlation from
gps = 1211922075.0 (2018-06-01 21:00:57 UTC) to
gps = 1212049775.0 (2018-06-03 08:29:17 UTC)
Order of fit: 1

*** Best correlation for channel peak_freq ***

rank residual channel
 1 7.08e+03 V1:SPRB_ElectronicBox_Up_Temperature
 2 8.43e+03 V1:SPRB_ElectronicBox_Down_Temperature
 3 2.40e+04 V1:SPRB_B4_Cam2_temp
 4 3.94e+04 V1:SPRB_B4_Cam2_press
 5 4.59e+04 V1:ENV_TCS_NE_RH_TE
 6 4.87e+04 V1:SPRB_LC_LVDT_BR_H_FL_V_in_mag_mean
 7 5.70e+04 V1:SPRB_LC_LVDT_FR_H_BL_V_in_mag_mean
 8 6.94e+04 V1:SPRB_LC_LVDT_FL_H_BR_V_in_mag_mean
 9 7.71e+04 V1:SPRB_LC_NULL_H_mean
 10 7.91e+04 V1:Sc_IB_MAR_TX_CORR_mean

B. Swinkels – Brute force - DetChar 13

Data types

● Thinking about these tools, you see they all use the same basic data types:

– time series data

– data sources (e.g. raw.ffl, LIGO’s datafinder, something saved by the user)

– channels, with option to blacklist

– segments (e.g. you only want to analyze data when ITF is locked)

– lists of events (e.g. omicron triggers for UPV/Excavator)

● Most of these are well supported in Duncan Macleod’s gwpy library (still working on ffl support)
https://gwpy.github.io/

● gwpy can read and write these to many different file formats (gwf, txt, hdf5, ...). Try to allow all possible
inputs, write by default to hdf5 only

● Should be possible to make code work at LIGO with minimal modifications

● Planning to deprecate parts of virgotools in favor of gwpy: gps conversion, reading data from gwf, ...

B. Swinkels – Brute force - DetChar 14

Some comments

● All of this is work in progress, will do first release of code in the next days

● The basic algorithms are straightforward, the complications come from boring things like missing
samples, comparing channels with different sample rates

● Gaps in target data (e.g. unlocks) can be handled by using NaNs’s (for short gaps) or by considering
data as a list of segments (for long gaps, not yet implemented). Will add threshold channel (e.g.
META_ITF_LOCK_index > 120)

● Missing data in auxiliary channels is bad: you only know there is one at the moment you get the data.
Skipping channel can hide interesting channels. Could interpolate gaps?

● Need to consider channels at different sample rates (at first missed SPRB temperature at 0.2 Hz).
Sample rates of 1-2-5-10 are a PITA when doing up/down sampling, power of 2 sample rates would
simplify things a lot

● Blacklisting: for now skipping *_min, *_max, *_rms, VAC_* and Daq_* to speed things up. Need to
periodically check full list

● Slow monitoring channels on all noisy machines are essential, commissioning time/missed Mpc is much
more expensive than some ‘cheap’ temperature sensors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

