Brute force correlation
of drifting lines

Bas Swinkels (Nikhef)

Detchar meeting, 22/06/2018

(D)) iane= Nik[hef

Motivation

« Current motivation: some annoying lines that drift in frequency, would like to correlate these to all
possible channels

 Similar idea as Matlab code by Soumen Koley used to correlate aliased lines to mirror temperature just
before 02

« Need to correlate other things as well: line frequency, brms, range with channels ...
« Old idea of making a flexible pipeline of tools, see VIR-0503A-17

* Ideally use code that can also work at LIGO

/{@}} B. Swinkels — Brute force - DetChar Nik|hef 2

Step 1: speeding up
spectrograms

« Making a spectrogram over several days costs hours, and if you used the wrong NFFT you have to start
over

« Typically interested only in a small frequency band (so daily and weekly plots on VIM/MoniWeb are still
very useful to find them, but typically you want to ‘zoom in’)

« Use demodulation to reduce data by factor 100-1000! Same trick used for online drum-mode
tracker, see |b #38844

« Download raw data in small chunks, multiply with complex sine, decimate in several steps, save
complex time series to hdf5 file

« Have to do this only once, can redo the next step many times
« Speed: ~15 min to demodulate full day at 10kHz

« Todo: use multiprocessing to speed things up, needs way of avoiding filter transients of decimation filter

//@}} B. Swinkels — Brute force - DetChar Nik|hef 3

Step 1: speeding up
spectrograms

>>> ., /demod.py -h

usage: demod.py [-h] [--ffl FFL] [--chan CHAN] --f_demod F_DEMOD --f_out F_OUT
[--gstart GSTART] [--gstop GSTOP]

Tool to demodulate and decimate channels

optional arguments:

-h, --help show this help message and exit

--ffl FFL ffl file to read input from

--chan CHAN channel name, needed if source contains multiple channels

--f_demod F_DEMOD demodulation frequency, must be integer

--f_out F_OUT sample frequency of output signal, must be a sub-multiple
of the one of the input signal

--start START gps time of start of period to process, accepts any valid
input to gwpy.to_gps

--stop STOP gps time of end of period to process, accepts any valid

input to gwpy.to_gps

//@}} B. Swinkels — Brute force - DetChar Nik|hef 4

Step 2: tracking lines

« No peak is the same, need to tune NFFT, number of averages, to resolve the line in the best way
« Drifting lines can cross, can be very close, ...

« ldea: no artificial intelligence is will do better than your brain, so do this step by hand using a fast GUI

/{@}} B. Swinkels — Brute force - DetChar Nik|hef 5

Step 2: tracking lines

state = 2, nfft = 1000, navg = 1, At = 5, Af=0.1

g :
g) P o g Y -n"l i I"i| 1
T L] T | i |“-:' 1 R "ﬁl Bt g 'h\ IR o i A, LRI ";-lll'lullw Iﬂ"' s .\'I‘

¥ ¥ A i i &
i T e P 0 PR e 0 i o o RO A Y i o Wy l ;

o L% iy T i B

i

N
I
=
>
=)
c
]
F]
o
o
w

|i"' |

b T
h P Y,

! 1 ¥
T i il
¥ pF i

WA il o
ik, I.-" ."""
| ‘H“le" F"'

| ‘Ml"

3000 4000
Time (s) after gps = 1211691300 (2018-05-30 04:54:42 UTC)

B. Swinkels — Brute force - DetChar

Step 2: tracking lines

state = 2, nfft = 2000, navg = 2, At = 100, Af = 0.01

™
T
=
>
1]
=
]
=
o
@
S

30000 40000 50000
Time (s) after gps = 1212451200 (2018-06-07 23:59:42 UTC)

. Swinkels — Brute force - DetChar

Step 2: tracking lines

state = 3, nfft = 2000, navg = 1, At = 50, Af= 0.01
-11
MMMWM""""”MMM

112

N
I
=
=
u
c
u
=2
o
i
S

30000 40000 70000 -50 =25
Time (s) after gps = 1211920200 (2018-06-01 20:29:42 UTC)

B. Swinkels — Brute force - DetChar Nik|hef 8

Step 2: tracking lines

« Based on Matplotlib: things like zooming, panning, saving images come for free
* Interactive: can use keyboard to change NFFT, number of averages

 Very fast: redrawing spectrogram costs about 1 second!

 User can define bounding-box using mouse clicks, exclude bad regions (unlocks)
« Maximum frequency is searched within this box, saved to file in hdf5 format

« Can also compute BRMS of the same box

/{@}} B. Swinkels — Brute force - DetChar Niklhef

Step 3: correlate

* Pretty standard brute-force correlator (see e.qg. |Ib #24349), this has been done by many others
 Loop over all channels in ffl, blacklist a few, calculate a FOM based on correlation, rank channels
* Use residuals of a polyfit as figure of merit, so could potentially find quadratic relations

« Very basic algorithm, can in future be swapped out for more sophisticated algorithms like Francesco’s
code (VIR-0406A-18) or LIGO’s LASSO code (LIGO-P1800173)

« Speed: about 1-2 days of 10000 channels from trend takes ~10 min, already uses multiprocessing

//@}} B. Swinkels — Brute force - DetChar Nik|hef 10

>>> ,/correlate.py -h

usage: correlate.py [-h]
--f_

Step 3: correlate

--source SOURCE [--chans CHANS [CHANS ...]]
target F_TARGET --aux_source AUX_SOURCE

[--fit_order FIT_ORDER] [--ntop NTOP] [--start START]
[--stop STOP]

Tool to correlate channels

optional arguments:
-h, --help
--source SOURCE

--chans CHANS [CHANS ..

--f_target F_TARGET

show this help message and exit

source for channel for which to find correlation

]

channel names (can be omitted if source constains
single channel)

sample frequency at which correlation is performed,
ideally same as aux data

--aux_source AUX_SOURCE

--fit _order FIT_ORDER

--ntop NTOP
--start START

--stop STOP

(@)

source for auxiliary channels (name of ffl for now)

order of polynomial fit

number of winning channels to report

gps time of start of period to process, accepts any
valid input to gwpy.to_gps

gps time of end of period to process, accepts any
valid input to gwpy.to_gps

B. Swinkels — Brute force - DetChar Nik|hef

11

Step 4: report results

Brute-force search for correlation from

PRCL_line_freq = -2.14e+03 + 6,56e +01 * SPRB_ElectronicBox_Up_Temperature

ey T —— gps = 1211922075.0 (2018-06-01 21:00:57 UTC) to
sy " Mo gps = 1212049775.0 (2018-06-03 08:29:17 UTC)
Order of fit: 1

i) *** Best correlation for channel peak_freq ***
5, rank residual channel
£ 1 7.08e+03 V1:SPRB_ElectronicBox_Up_Temperature
£ 2 8.43e+03 VI1:SPRB_ElectronicBox_Down_Temperature
£ 3 2.40e+04 V1:SPRB_B4_Cam2_temp

4 3.94e+04 V1:SPRB_B4_Cam2_press
7 5 4.59e+04 V1:ENV_TCS_NE_RH_TE

6 4.87e+04 V1:SPRB_LC_LVDT_BR_H_FL_V_in_mag_mean
” 7 5.70e+04 V1:SPRB_LC_LVDT_FR_H_BL_V_in_mag_mean

8 6.94e+04 V1:SPRB_LC_LVDT_FL_H_BR_V_in_mag_mean
el 9 7.71e+04 V1:SPRB_LC_NULL_H_mean

10 7.91e+04 V1:Sc_IB_MAR_TX_CORR_mean

0 20000 40000 60000 80000 100000 120000
Time (s)

« Print ranking, make plots of winning channel, ...

 Follow-up investigations ...

/{@}} B. Swinkels — Brute force - DetChar Niklhef 12

Data types

« Thinking about these tools, you see they all use the same basic data types:

time series data

data sources (e.qg. raw.ffl, LIGO’s datafinder, something saved by the user)
channels, with option to blacklist

segments (e.g. you only want to analyze data when ITF is locked)

lists of events (e.g. omicron triggers for UPV/Excavator)

* Most of these are well supported in Duncan Macleod’s gwpy library (still working on ffl support)
https://gwpy.github.io/

« gwpy can read and write these to many different file formats (gwf, txt, hdf5, ...). Try to allow all possible
inputs, write by default to hdf5 only

* Should be possible to make code work at LIGO with minimal modifications

« Planning to deprecate parts of virgotools in favor of gwpy: gps conversion, reading data from gwf, ...

(@)

B. Swinkels — Brute force - DetChar Nik|hef 13

Some comments

« All of this is work in progress, will do first release of code in the next days

« The basic algorithms are straightforward, the complications come from boring things like missing
samples, comparing channels with different sample rates

 Gaps in target data (e.g. unlocks) can be handled by using NaNs’s (for short gaps) or by considering
data as a list of segments (for long gaps, not yet implemented). Will add threshold channel (e.q.
META ITF_LOCK index > 120)

 Missing data in auxiliary channels is bad: you only know there is one at the moment you get the data.
Skipping channel can hide interesting channels. Could interpolate gaps?

« Need to consider channels at different sample rates (at first missed SPRB temperature at 0.2 Hz).
Sample rates of 1-2-5-10 are a PITA when doing up/down sampling, power of 2 sample rates would
simplify things a lot

« Blacklisting: for now skipping * min, * max, * rms, VAC * and Daq_* to speed things up. Need to
periodically check full list

* Slow monitoring channels on all noisy machines are essential, commissioning time/missed Mpc is much
more expensive than some ‘cheap’ temperature sensors

/{@}} B. Swinkels — Brute force - DetChar Niklhef 14

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

