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Typical glitchgram for detectors
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Our ’typical’ gravitational waves
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Our glitch zoo

https://www.zooniverse.org/projects/zooniverse/gravity-spy
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GravitySpy project

https://www.zooniverse.org/projects/zooniverse/gravity-spy
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Why Glitch Classification?

As prompt characterization of noise will be critical for
improving sensitivity, a fast method for glitch classification
was needed.

The detchar group proposed a challenge for the development
of a method for automatic classification of glitches.

We present three methods developed for automatic glitch
classification.

We started using simulated data sets to better understand the
performance of the different glitch classifying codes.

We tested our pipelines on LIGO ER7 data
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Principal Components.

All three methods use at some stage Principal Components (PCs).

PCs are a set of orthogonal basis vectors, which are ordered so that the first PC
represents the most common feature of a set of waveforms.

Therefore, a few PCs can be used to represent all the common features of the
waveforms.

Each waveform m can be used to create a matrix A where each column of A
corresponds to one of the waveforms of length n.

The nxm waveform matrix A is factored so that

A = UΣV T (1)

where V is AT A and Σ contains the eigenvalues.

U contains the PCs, ranked by the eigenvalues, where the first PC represents
the most common feature of the waveforms, the second PC represents the
second most common feature and so on.
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Principal Components.

The signal model consists of a linear combination of PCs

ĥi =
k∑

j=1

Ujβj (2)

where ĥi is the signal model, Uj is the jth PC from the U matrix and βj is
the corresponding PC coefficient.

The values for β can be calculated by taking the dot product of h and U.

Figure: A glitch reconstructed by PCAT using 33 PCs.
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Choosing the number of Principal Components.

Results can be strongly effected by the number of Principal Components.

We use the variance method to choose the ideal number of Principal
Components.
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PC-LIB

PC-LIB is an adaptation of the parameter estimation and model selection tool
LALInference.
A set of Principal Components for a type of glitch is made using the high pass
filtered time series of fifty glitches for that type.
A linear combination of the PCs, multiplied by the PC coefficients, is then used
as the new signal model in LIB for each different population of noise transient.
The different signal models for each glitch population can then be used for
Bayesian model selection, which can determine the type of each new noise
transient that is detected in the data.
For two competing models Mi and Mj the Bayes factor is given by the ratio of
the evidences,
Model selection can then be used to identify the correct glitch type.

Figure: A glitch reconstructed by PCAT using 33 PCs.
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PCAT

Principal Component Analysis for Transients (PCAT) is a python-based
pipeline based on Principal Component Analysis.

The time series of whitened glitches are stored in a matrix on which PCA
is performed.

PCAT uses the PC coefficients to classify the glitches by using a Gaussian
Mixture Model (GMM) implementation of scikit-learn, which includes
machine learning routines for model selection.It requires the user to
specify the number of clusters and the number of principal components.

The results of the PCA can be visualized with scatter plots of the
principal component coefficients.
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Wavelet Detection Filter (WDF): transform

The wavelet transform of a signal f (t) is defined as

Wf (a, b) =< f , ψa,b >=

∫ +∞

−∞
f (t)

1√
b
ψ∗(

t − a

b
) dt (3)

where the base is a zero average function, centered around zero
and with a finite energy. The entire base is obtained by
translations and dilations of the base atom:

ψab(t) =
1√
b
ψ(

t − a

b
) (4)

The wavelet transform has a time frequency resolution which
depends on the scale b. Its time spread is proportional to b and its
frequency spread is proportional to the inverse of b.
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WDF-denoising

Let us consider a signal xi which is corrupted by additive Gaussian
random noise ni ∼ N(0, σ2) as follow

xi = hi + ni i = 0, 1, ...N − 1

Let W be an orthogonal wavelet transform. If we apply it to the
sequence of data xi we obtain

W (x) = W (h) + W (n)

Now let T be a wavelet thresholding function. Then the wavelet
thresholding based de-noising scheme can be written

ĥ = W−1(T (Wx))

that is we first take the wavelet transform of our noisy signal and
pass it through the thresholding function, then the output is
inverted and wavelet transformed.
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WDF-trigger

The wavelet coefficients contain the energy of the signal at
different scale. After the wavelet thresholding, we selected the
highest coefficients of the wavelet transform which are supposed to
contain only the signal and not the noise.

Es =

√∑
k,j

w2
k,j (5)

being wk,j the wavelet coefficients above the threshold.
In this way Esrepresent the signal energy content, so we can build
our receiver detector which represents the signal to noise ratio, as

SNR =
Es

σ̂
(6)
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WDF-ML: Machine Learning step

Completely unsupervised algorithms. No target function

Wavelets coefficients and Meta data (SNR, Freq,Duration) represents our
”features”

Features selection uses PCA transform an Spectral embedding on 2 dimensions

The Gaussian Mixture Model (GMM) machine learning classifier is then applied
to the outputs of WDF for classification.
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Pipelines summary: PC-LIB, PCAT,WDF-ML
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MDC: Data set 1

To test and compare methods we create a simulated data set in aLIGO Gaussian
noise.

Data set 1 is an ideal data set where all of the glitch types are well separated in
frequency and SNR.

The data set contains 1000 sine Gaussian waveforms and 1000 Gaussian
waveforms in simulated Gaussian noise.

The sine Gaussian waveforms have a frequency = 400Hz and an SNR between 5
and 30.

The Gaussian waveforms are centred at f = 0Hz and have an SNR between 20
and 250.
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Data Set 1 Results

Table shows the % of detected transients that were classified in each type.

A few low frequency SG, and low SNR G were in the incorrect classes.

Overall classification efficiency very good!

SG G
PCAT Type 1 99% 0%
PCAT Type 2 1% 100%

LIB Type 1 99.9% 5%
LIB Type 2 0.1% 95%

WDF Type 0 99.5% 2.4%
WDF Type 1 0.3% 46.1%
WDF Type 2 0.2% 51.5%
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MDC: Data set 2

We use a second data set to see if we can classify glitches by waveform
morphology only.

We use 1000 sine Gaussian waveforms and 1000 Ring-down waveforms.

All waveforms have identical frequency 400Hz and a identical duration 2ms.

The SNR of the simulated glitches is between 10 and 500.
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Data Set 2 Results

Table shows the % of detected transients that were classified in each type.

The few transients in the incorrect class are those with the lowest SNR.

5PCs PCAT, 7PCs LIB and 10 PCs WDF-ML.

All methods can classify by waveform morphology alone.

SG RD
PCAT Type 1 1.1% 97.4%
PCAT Type 2 98.9% 2.5%

LIB Type 1 97.8% 4.8%
LIB Type 2 2.2% 95.2%

WDF-ML Type 0 8.7% 100%
WDF-ML Type 1 48.0% 0%
WDF-ML Type 2 43.3% 0%
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MDC: Data Set 3

The third data set is to see what happens if different types have a very
wide range of parameters.

The simulated glitches are Gaussian, sine Gaussian and Ring-down
waveforms at five second intervals.

The frequencies are distributed linearly between 40-1500 Hz.

Majority of the glitches have an SNR between 1 and 300.
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Data Set 3 Results

PCAT 20PCs, LIB 5PCs, WDF-ML 10PCs.

All methods have the Gaussians in there own class.

Cannot distinguish between the sine Gaussian and Ring-down waveforms when
the parameter range is so large.

SG G RD
PCAT Type 1 15.5% 0% 13.6%
PCAT Type 2 36.8% 0% 41.4%
PCAT Type 3 14.2% 0% 13.0%
PCAT Type 4 9.1% 0% 13.0%
PCAT Type 5 0.8% 0% 0.3%
PCAT Type 6 21.8% 0% 17.2%
PCAT Type 7 1.8% 100% 1.5%

LIB Type 1 39.5% 4.9% 23.8%
LIB Type 2 17.3% 88.3% 23.2%
LIB Type 3 43.3% 6.8% 53.0%

WDF-ML Type 0 89.5% 9.6% 86.9%
WDF-ML Type 1 5.9% 49.7% 7.0%
WDF-ML Type 2 4.6% 40.7% 6.1%

Classification methods for noise transients in advanced gravitational-wave detectors
Class. Quant. Grav., 32 (21), pp. 215012, 2015.
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Real Data: ER7 LIGO data

Data from the 7th aLIGO engineering run (ER7), which began
on the 3rd of June 2015 and finished on the 14th of June
2015. The average binary neutron star inspiral range for both
Hanford and Livingston detectors in data analysis mode
during ER7 was 50− 60 Mpc.

The total length of Livingston data analysed is ∼ 87 hours.

The total length of Hanford data analysed is ∼ 141 hours.
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Real Data: ER7 L1
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Real Data: ER7 H1
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ER7 L1 results
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ER7 H1 results
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Conclusion

In the ER7 data from aLIGO Livingston PCAT missed 90 transients and
classified 95% of the remaining transients correctly.

PC-LIB missed 33 transients and classified 98% of the remaining transients
correctly.

WDF-ML classified all transients and 97% of them were correct.

In aLIGO Hanford PCAT missed 120 transients and classified 99% of the
remaining transients correctly.

PC-LIB missed 6 transients and classified 95% of the remaining transients
correctly.

WDF-ML classified all transients and 92% of them were correct.

We conclude that our methods have a high efficiency in real non-stationary and
non-Gaussian detector noise.

To be submitted:
Classification methods for noise transients in advanced gravitational-wave detectors II:
performance tests on Advanced LIGO data. (by the authors)
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What’s next?

Three different methods have been developed for the fast classification of noise
transients.

Transients are split in to types by waveform morphology first, and then can be
split up in to further types by frequency and SNR.

Results are similar for all methods.

We plan to use Dictionary Based Algorithm

We plan to use Images Deep Learning Classification

Next we plan on looking at how these codes perform when using data from
multiple auxiliary channels.
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