# **Characterization of the Dihedron Pedestal**

first results

Alessandro Bertolini, Th. S. Bauer

In the past, we tried different set-ups; now we think we have found a way to *reliably* measure the TF between a pedestal and the dihedron itself.

#### Two essential ingredients:

- we use a soft pendulum;
  a solid plate of ~ 9kg, 35 \* 45 cm, 2 cm thick is suspended
  by 3 nylon strings of ~ 2m length;
  the plate can be excited horizontally by a coil-magnet device;
  the pedestal is bolted to the plate such that the longitudinal
  direction is parallel to the excitation of the pendulum plate.
- 2. two *vertical* sensors on both sides of the dihedron pedestal serve to understand non-horizontal movements of the pendulum plate.

We measure the *horizontal* response of the pedestal base plate, and on top of the dihedron.



Three different contacts between pedestal and dihedron have been studied:

- 1. a completely flat surface;
- 2. three steel spheres to insure a 3-point contact;
- 3. three flat circular contact spots (diameter 5 mm).

Note: for the case of a completely flat surface, it might be important to check both orientations of the dihedron, as only one surface is really flat.

In the next section, we show

- 1. TF = top-dihe/base-pedestal;
- 2. top-dihe (longitudinal);
- 3. base-pedestal (longitudinal)
- 4. pendulum 1 (vertical)
- 5. pendulum 2 (vertical)









3 steel spheres

lowest  $f: \sim 320 \text{ Hz}$ 

Q:~100

flat surface

lowest  $f: \sim 220 \text{ Hz}$ 

Q:~20

3 circular flats

lowest f : ~500 Hz ??

Q:~100??

vertical movement of

pendulum plate?

One sees a complex structure, but it seems as if

- 3-circular-flats have longer TF==1 (up to > 400 Hz);
- all 4 sensors have very similar structures above 500 Hz;
- notably, the V-sensors on pendulum plate are excited above 500 Hz.

In the next section, we concentrate on

1. pendulum 1 (vertical)

2. pendulum 2 (vertical)







## **Marionetta movement**

## Setup is not entirely reproducible:

position of magnet wrt. coil depends on

- stretching of suspension wires,
- torsion,
- realignment after modifications.



## **Marionetta movement**

#### However:

at f > 500 Hz, general structure identical; whereas at f < 500, some differences visible;

#### this indicates:

- *intrinsic excitation of marionetta* at higher frequencies, and
- coupled oscillations (i.e. induced through the dihedron) below ~ 500 Hz.

Reproducibility checks – here, the set-up was untouched for a longer stretch in time - resulted in better spectra.

This has probably to do with the fact that the position between magnet and coil is unchanged during the measurement, and possibly also well centered – which would eliminate torque, and thus vertical movement during the excitation.

In the following some pair-wise comparisons between different contact points.



3 steel spheres

flat surface

rather similar, but higher Q for 3 steel spheres.



600

800

flat surface, inverted dihedron

flat surface

rather similar, but higher f for inverted pendulum. This indicates different contact points!

10<sup>-5</sup>

200

400

1000



flat surface, inverted dihedron (title of plot is wrong)

flat surface, inverted dihedron

exact repetition in order to see whether differences between inverted and non-inverted dihedron persist.

dihedron has definitely a lower and an upper side.



3 circular flats, inverted dihedron



3 circular flats

Differences due to inversion of dihedron!

Note that here "inverted dihedron" is similar to the other contacts!!

#### **Conclusions:**

- 1. Work in progress.
- 2. Pendulum is good set-up for characterization measurements.
- 3. Vertical movement of pendulum plate is important, and plays important role above ~ 500 Hz;
- 4. At present, a "3 circular flats 5 mm Ø" seems best; should be optimized and symmetrized.
- 5. Final results soon available. Notably, need to confirm the TFs of the "three circular flats".