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Abstract: we show in this note that the templates used for searching GW bursts from cosmic 

strings cusps and kinks are extremely robust with respect to the choice of the frequency power 

of the modelled waveform in the frequency domain ( ffh )( ). That means in practice that 

we can use “cusps” templates for detecting GW bursts from kinks and vice versa. 

 

 

 

I. Introduction. 
 

Simple models predict power laws for the frequency spectrum of amplitudes of gravitational 

wave (GW) bursts emitted by cosmic strings (CS). For instance Vilenkin et al. [1, 2] predict 
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 with  ~ -5/3 for CS kinks and  ~ -4/3 for CS cusps and fu is an upper frequency cut related 

to the cosmic strings parameters. 

Having a model for GW amplitudes then allows the use of standard matched filtering 

techniques for detecting GW emitted by CS, especially cusps, as we have done in the past for 

VSR1-2 and S5-6 data [3]. However the power law prediction is not so robust and, for 

example, the exponent coefficient for GW emitted by kinks can be as low as  = - 2 as 

recently recalled in [4]. 

As we use templates based on this theoretical prediction, we must question their robustness 

for detecting GW bursts emitted by CS kinks or cusps. 

 

II. Fitting factors. 
 

In order to study the robustness of templates based on Vilenkin’s power laws, we will use 

such templates but a priori mismatched with the actual waveforms. Let’s write the template in 

the frequency domain as 
1
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and the amplitude of the actual waveform as 
2

22 )( fAfh  , 

with a priori 21   . Note that 1once is fixed, the only template parameter is the upper 

frequency cut fu (related to the CS parameters) and the 1D template bank is in practice built 

with optimal placement of the frequency cut fu in the 1D parameter space. 

We define the fitting factor between h1 and h2 as the scalar product: 
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where Sh(f) denotes the noise power spectral density and the lower frequency cut fd 

corresponds to the instrumental seismic cut-off frequency. FF is a measure of how the 

template can recover the GW signal, and, for instance reaches 1 if the template perfectly 

matches the GW waveform.  

In the following we will suppose that the noise is white (we will see that this crude 

approximation doesn’t change the basic conclusions of this note), so that the fitting factor 

becomes: 
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assuming a proper normalization of the template/waveform.  

This normalization reads: 
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Now the (squared) fitting factor can be explicitly derived (after some algebra): 
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where ud ff / . As a check, we find FF =1 when 21    as expected. 

 

 

 

III. Numerical results and comments. 

 
For the numerical studies, we chose = 10Hz (lower frequency cut due to the seismic “wall”) 

and make1 and 2 vary in the range [-1,-2] for different values of fu. Some characteristic 

results are reported in the following tables. 

 

 

fu (Hz) 20 50 100 500 1000 2000 

FF (%) 99.80 99.23 98.91 98.64 98.62 98.61 

Table 1: fitting factor for 3/51   (usual “kinks” signals) and 3/42   (usual “cusps” 

signals). 

 

 

fu (Hz) 20 50 100 500 1000 2000 

FF 99.42 99.42 99.28 99.21 99.22 99.22 

Table 2: fitting factor for 3/51   (usual “kinks” signals) and 22   (possible “kinks” 

signals). 

 



 

fu (Hz) 20 50 100 500 1000 2000 

FF 99.79 99.04 98.39  97.35 97.13 96.99 

Table 3: fitting factor for 3/41   (usual “cusps” signals) and 12   (extremal “cusps” 

signals ?). 

 

The first conclusion is that whatever the set, the fitting factor is always very good and the FF 

losses are at most a few %. This result is expected to hold for a realistic noise spectral density 

since the FF losses are kept very small in the white noise case. 

A second conclusion (table 1) is that if we use “kinks” templates to detect “cusps” signals (or 

the reverse), the FF loss remains below 2%. “Kinks” templates can then be used for searching 

for “cusps” signals (and vice versa). 

 

Finally, the templates we use for usual “kinks” signals ( = -5/3) are robust enough to detect 

any similar waveforms with any  at least in the range [-2,-1]. This accounts also for a lack of 

robustness for the theoretical prediction of the exponent . 

 

Final minor note: this nice robustness can be explained from Eq.(1). If we set   21 and 

expand the expression of FF, it can be shown that this expansion is at least at the second order 

in  (the lowest non vanishing order of the expansion of each fraction is 2). 
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