GPU version of the Polgraw all-sky F-statistic
pipeline

M. Bejger (Copernicus Center)

collaboration with

Jan Bolek (Warsaw Technical University),
Pawet Ciecielag (Copernicus Center),
Aleksander Garus (ETH Zirich),
Andrzej Krélak (IMPAN).

1/14

Outline

* CPU vs GPU concept,

x description of the all-sky F-stat search for candidate signals,
* Implementation of the GPU version,

x CPU version performance testing.

/14

Central Processing Units vs Graphics Processing Units

GPU: thousands of smaller (= more efficient)
cores designed for handling multiple tasks
simultaneously

* Host (CPU) — Device (GPU) interaction, executing
many kernels (device functions) in parallel

CPU: a few cores optimized for
sequential serial processing

+

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES

Platform & programming model for this project:
CUDA (Compute Unified Device Architecture) of NVIDIA
3/14

C vs CUDA: Hello world! example

1 #include <stdio.h>

2 #define N 7

3

4 int main() {

5

6 char a[N] = "Hello ";

7

8 int b[N] = {15, 10, 6, 0, -11, 1, 0};
9
10 printf ("%s", a);
11
12 // adding int to char

13 int i;

14 for (i=0; i<N; i++)

15 ali]l += p[il;

16

17 printf ("%s\n", a);

18

19 return 0;
20
21 // in ASCII
22 // H 72, e 101, 1 108, o 111
23 // W 87, r 114, d 100, ! 33
24 ¥

0D U W

#include <stdio.h>
#define N 7

__global__ void add_arrays(char *a, int *b) {
a[threadIdx.x] += b[threadIdx.x];
¥

int main() {

char a[N] = "Hello ";
int b[N] = {15, 10, 6, 0, -11, 1,03};

char *ad; int *bd;
const int csize = N*sizeof (char);
const int isize = N*sizeof (int);

printf£("%s", a);

cudaMalloc((void**)&ad, csize);
cudaMalloc((void**)&bd, isize);

cudaMsmcpy(ad, a, csize, cudaMamcpyHostToDevice);
cudaMemcpy(bd, b, isize, cudaMemcpyHostToDevice);

dim3 dimBlock(N); dim3 dimGrid (1);
// adding int to char
add_arrays<<<dimGrid, dimBlock>>>(ad, bd);

cudaMemcpy(a, ad, csize, cudaMemcpyDeviceToHost);
cudaFree(ad);

printf("%s\n", a);
return EXIT_SUCCESS;

¥ 4/14

Calculation of the F-statistic

To estimate how well the model matches with the data x(t), we calculate F,

2 (IRP . IRP
=y (<a2> + <b2>>

where S is the spectral density, Ty is the observation time, and

Fa= /TO x(t)a(t) exp(—ip(t))dt, Fo = . ..
0

and a(t), b(t) are amplitude modulation functions (depend on the detector
location and sky position of the source),

hi(t) = a(t) cos ¢(t), ha(t) = b(t) cos ¢(1),
ha(t) = a(t)sin (1), ha(t) = b(t) sin (1),

related to the model of the signal (h;, i = 1,...,4)

h(t) =" Ahi(1).

For triaxial ellipsoid model: dependence on extrinsic (ho, %, ¢, ¢o) and intrinsic
(f, f, e, §) parameters.

/14

F-stat all-sky search description

" Read data, grid.
detector ephemeris

e

Sky position from grid
and band frequency f

Y

Amplitude and phase

demodulation, FFT resampling

Y

‘Phase demodulation (2nd part) r‘

Calculate F statistics, save
signals above the threshold

Main parameters in coherent search for
continuous wave signals:

* bandwidth 1Hz
* sampling time 0.5 s
* data length N = 344656 (two sideral days)

* 4D grid: «, 6, f, f - sky positions, frequency
and spindown

* Uses the F-statistic defined in
Jaranowski, Krélak & Schutz (1998), algorithm
described and tested in Astone et al. (2010)

* No. of F-statistic evaluations x 2
(no. of sky positions o 2, spindown o f)

F-stat all-sky search description

" Read data, erid

detector ephemeris

e

Sky position from grid
and band frequency f

v

Amplitude and phase

demodulation, FFT resampling

Y

Calculate F statistics, save
signals above the threshold

,,,,,,,,,,,,

spin-
down
loop

Basically the whole loop over sky («, J) can
be computed in parallel since the sky
positions are independent of each other

The majority of computing is spent on

* calculating the phase (trigonometric
functions, 2 30%)

* FFT (Z 50%)
Efficient FFT requires 2" data points
(Ngata = 344656 < 2'°) — padding with zeros to
N = 219

FFT: resampling

* Resampling to barycentric time - FFT and
inverse:
* nearest-neighbour (~ 5% error),
* splines (~ 0.1% error)

F-stat all-sky search description

" Read data, erid
detector ephemeris

Sky position from grid
and band frequency f

v

Amplitude and phase
demodulation, FFT resampling

Y

‘Phase demodulation (2nd part) “

1
|
1
1
|
1
1
1
|
1
1
1

- - spin-

FFT interpolation e

loop

T :

1
1
|
1

Calculate F statistics, save
signals above the threshold

The majority of computing is spent on

* calculating the phase (trigonometric
functions, 2 30%)

* FFT (2 50%)

Efficient FFT requires 2" data points
(Nyata = 344656 < 2'°) — padding with zeros to
N — 219

FFT: Interpolation

Grid coincides with Fourier frequencies -
possible loss of signal (max. 36.3% when f is
half way between the Fourier frequencies)

* FFT (length N) & interbinning (max. ~ 13%
error): DFT component in the middle of two
Fourier frequencies approximated by
X((k+1/2) ~ (X(k+1) = X(K)) /V2

* FFT zero-padding (length 2N, max. ~ 10%
error)

F-stat: parallelization strategy

Read data, grid,

\._ detector ephemeris .

Sky position from grid
and band frequency f

Y

Amplitude and phase

demodulation, FFT resampling

Y

FFT interpolation

Calculate F statistics, save
signals above the threshold

How to do FFT with GPU:
* use CUDA cuFFT library:

= well-optimized (Cooley-Tukey,
Bluestein), 1D/2D/3D double precision
complex/real transforms, multiple
transforms, in- and out-of-place
transforms,

~~ cannot launch many instances at the
same time (at least not with every
card/CUDA version).

* write custom kernel for FFT, launch
concurrently.

* CUSPARSE (sparse matrix routines)

9/14

Results of implementation on GPUs

* Input data loaded to device once,

* One detector version, but easy to generalize (CPU network-of-detectors version
exists),

+ Sequence of kernels launched in a loop from CPU,

« Time resampling done using double precision, everything else (main
spindown loop) using single precision,

* Asynchronous output transfer to host.

Current GPU results: ~ x50 speedup with respect to the optimized CPU code

Estimated time 7 to match one template:
% CPU (Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz) ~ 4 x 1072 s
% GPU (GeForce GTX Titan) ~ 8 x 10~* s

Also testing on:
* Intel(R) Core(TM) i5, 2.8GHz

* GPUs:

* GeForce GTX 560 Ti
* GeForce GTX 480

Performance scaling - favorably for high frequencies (fast spindown loop on
GPU).

10/14

Profiling the CPU version with perf

Initially we were using gprof and Callgrind/KCachegrind, but later learned
about perf (of 1inux-tools) and found it much more useful to estimate
performance in FLOPS:

* perf stat -e r5300c0 -e r530110 -e r532010 -e r534010 -e
r538010 -e r531010 -e r530111 -e r530211, where the switches
correspond to different operations on a Sandy Bridge processor:

* 530111 SIMD_FP_256:PACKED_SINGLE
r530211 SIMD_FP_256:PACKED_DOUBLE
r530110 X87

r531010 SSE_FP_PACKED_DOUBL
r532010 SSE_FP_SCALAR_SINGLE
r534010 SSE_PACKED_SINGLE

r538010 SSE_SCALAR_DOUBLE

(SIMD - Single Instruction Multiple Data, SSE - Streaming SIMD Extensions)

Xk ot X ok X

Estimated performance is 25% of peak performance on Sandy Bridge

11/14

Profiling the CPU version with perf

: 59K of event 'cycles’, Event count (approx.): 44758382322

Also useful to locate the
time-expensive parts of the code
(with a direct view into the assembly
code):
* perf record -B -e
task-clock:u,cycles:u,
instructions:u

* perf report

Fast libraries for commonly used functions in CPU version

* Obvious choice is icc Intel compiler + Math Kernel Library (MKL), with
optimizing flags
-march=native -mtune=native -0Ofast -unroll-agressive -ipo
-use-intel-optimized-headers -opt-prefetch

* We also have a good experience with gcc, FFTW3 and optimized math
libraries (using latest SSE & AVX instructions):

* SLEEF (SIMD Library for Evaluating Elementary Functions) - trigonometric
functions (among others) in double precision without table look-ups, conditional
branches etc. http://shibatch.sourceforge.net
or

* YEPPP - high-performance SIMD-optimized mathematical library for x86, ARM,
and MIPS processors. http://www.yeppp.info

* FFTW3 Planner Flags - FFTW_PATIENT instead of FFTW_MEASURE

* compiler flags: -03 -ffast-math -funsafe-loop-optimizations
-funroll-loops -march=native -mtune=native -mavx

Changing the libraries from standard math to optimized ones + remembering
about FFTW3 planner flags - > 30% speedup in case of CPU.

13/14

Summary/references

We have a quite well-optimized CPU code (£ memory access optimizations), and
a working GPU code that may still need some optimization (+ extenstion to a
network of detectors).

> P. Astone, K. M. Borkowski, P. Jaranowski, M. Pietka and A. Krélak, PRD, 82, 022005
(2010)

v

https://developer.nvidia.com/cuFFT
» P. Jaranowski, A. Krélak, and B. F. Schutz, PRD 58, 063001 (1998).

> https://github.com/mbejger/polgraw-allsky.git

14/14

