GPU version of the Polgraw all-sky F-statistic pipeline

M. Bejger (Copernicus Center)

collaboration with

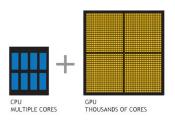
Jan Bolek (Warsaw Technical University), Paweł Ciecieląg (Copernicus Center), Aleksander Garus (ETH Zürich), Andrzej Królak (IMPAN).

Outline

- * CPU vs GPU concept,
- * description of the all-sky F-stat search for candidate signals,
- * Implementation of the GPU version,
- * CPU version performance testing.

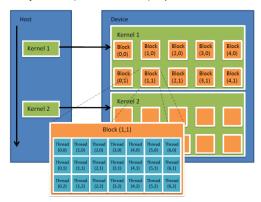
Central Processing Units vs Graphics Processing Units

CPU: a **few** cores optimized for **sequential serial** processing



GPU: **thousands** of smaller (⇒ more efficient) cores designed for handling **multiple tasks simultaneously**

* Host (CPU) – Device (GPU) interaction, executing many kernels (device functions) in parallel



Platform & programming model for this project: CUDA (Compute Unified Device Architecture) of NVIDIA

C vs CUDA: Hello world! example

```
#include (stdio.h)
                                                       #include (stdio.h)
      #define N 7
                                                       #define N 7
 3
                                                  3
                                                  4
 4
      int main() {
                                                       __global__ void add_arrays(char *a, int *b) {
                                                           a[threadIdx.x] += b[threadIdx.x]:
 5
                                                  5
 6
          char a[N] = "Hello ":
 7
          int b[N] = {15, 10, 6, 0, -11, 1, 0};
                                                       int main() {
 8
 9
          printf("%s", a);
                                                 10
                                                           char a[N] = "Hello ":
10
                                                           int b[N] = {15, 10, 6, 0, -11, 1,0};
11
                                                 11
          // adding int to char
12
                                                 12
13
          int i:
                                                 13
                                                           char *ad: int *bd:
14
          for (i=0; i<N; i++)
                                                 14
                                                           const int csize = N*sizeof(char);
              a[i] += b[i];
                                                           const int isize = N*sizeof(int);
1.5
                                                 1.5
                                                 16
16
17
          printf("%s\n", a);
                                                 17
                                                           printf("%s", a);
18
                                                 18
                                                           cudaMalloc((void**)&ad, csize);
19
          return 0:
                                                 19
20
                                                 20
                                                           cudaMalloc((void**)&bd. isize);
21
          // in ASCII
                                                 21
          // H 72, e 101, l 108, o 111
                                                           cudaMemcpy(ad, a, csize, cudaMemcpyHostToDevice);
22
                                                 22
         // W 87, r 114, d 100, ! 33
23
                                                 23
                                                           cudaMemcpy(bd, b, isize, cudaMemcpyHostToDevice);
      }
24
                                                 24
                                                           dim3 dimBlock(N); dim3 dimGrid (1);
                                                 25
                                                 26
                                                           // adding int to char
                                                 27
                                                           add_arrays <<< dimGrid, dimBlock >>> (ad, bd);
                                                 28
                                                           cudaMemcpy(a, ad, csize, cudaMemcpyDeviceToHost);
                                                 29
                                                 30
                                                           cudaFree (ad):
                                                 31
                                                           printf("%s\n", a);
                                                 32
                                                 33
                                                           return EXIT SUCCESS:
                                                 34
                                                                                                            4/14
```

Calculation of the F-statistic

To estimate how well the model matches with the data x(t), we calculate \mathcal{F} ,

$$\mathcal{F} = \frac{2}{S_0 T_0} \left(\frac{|F_a|^2}{\langle a^2 \rangle} + \frac{|F_b|^2}{\langle b^2 \rangle} \right)$$

where S_0 is the spectral density, T_0 is the observation time, and

$$F_a = \int_0^{T_0} x(t)a(t) \exp(-i\phi(t))dt, F_b = \dots$$

and a(t), b(t) are amplitude modulation functions (depend on the detector location and sky position of the source),

$$h_1(t) = a(t)\cos\phi(t), \quad h_2(t) = b(t)\cos\phi(t),$$

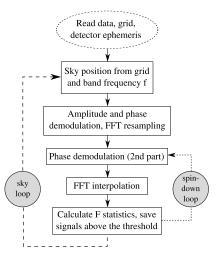
$$h_3(t) = a(t)\sin\phi(t), \quad h_4(t) = b(t)\sin\phi(t),$$

related to the model of the signal $(h_i, i = 1, ..., 4)$

$$h(t) = \sum_{i=1}^4 A_i h_i(t).$$

For triaxial ellipsoid model: dependence on extrinsic $(h_0, \psi, \iota, \phi_0)$ and intrinsic $(f, \dot{f}, \alpha, \delta)$ parameters.

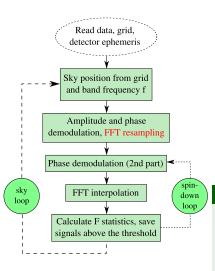
F-stat all-sky search description



Main parameters in coherent search for continuous wave signals:

- ★ bandwidth 1Hz
- ★ sampling time 0.5 s
- ★ data length N = 344656 (two sideral days)
- \star 4D grid: $\alpha,\,\delta,\,f,\,\dot{f}\,$ sky positions, frequency and spindown
- * Uses the F-statistic defined in Jaranowski, Królak & Schutz (1998), algorithm described and tested in Astone et al. (2010)
- \star No. of F-statistic evaluations $\propto f^3$ (no. of sky positions $\propto f^2$, spindown $\propto f$)

F-stat all-sky search description



Basically the whole loop over sky (α, δ) can be computed in parallel since the sky positions are independent of each other

The majority of computing is spent on

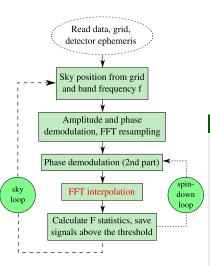
- ★ calculating the phase (trigonometric functions, $\gtrsim 30\%$)
- **★** FFT (≳ 50%)

Efficient FFT requires 2^N data points $(N_{data}=344656<2^{19}) \rightarrow$ padding with zeros to $N=2^{19}$

FFT: resampling

- * Resampling to barycentric time FFT and inverse:
 - \star nearest-neighbour ($\simeq 5\%$ error),
 - \star splines ($\simeq 0.1\%$ error)

F-stat all-sky search description



The majority of computing is spent on

- * calculating the phase (trigonometric functions, $\gtrsim 30\%$)
- **★** FFT (≳ 50%)

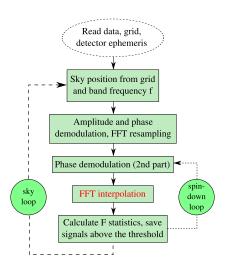
Efficient FFT requires 2^N data points $(N_{data}=344656<2^{19}) o$ padding with zeros to $N=2^{19}$

FFT: Interpolation

Grid coincides with Fourier frequencies - possible loss of signal (max. 36.3% when *f* is half way between the Fourier frequencies)

- * FFT (length N) & interbinning (max. $\simeq 13\%$ error): DFT component in the middle of two Fourier frequencies approximated by $X((k+1/2)\simeq (X(k+1)-X(k))/\sqrt{2}$
- \star FFT zero-padding (length 2N, max. \simeq 10% error)

F-stat: parallelization strategy



How to do FFT with GPU:

- ★ use CUDA cuFFT library:
 - well-optimized (Cooley-Tukey, Bluestein), 1D/2D/3D double precision complex/real transforms, multiple transforms, in- and out-of-place transforms,
 - cannot launch many instances at the same time (at least not with every card/CUDA version).
- * write custom kernel for FFT, launch concurrently.
- * cuSPARSE (sparse matrix routines)

Results of implementation on GPUs

- ⋆ Input data loaded to device once,
 - One detector version, but easy to generalize (CPU network-of-detectors version exists),
- ★ Sequence of kernels launched in a loop from CPU,
- Time resampling done using double precision, everything else (main spindown loop) using single precision,
- * Asynchronous output transfer to host.

Current GPU results: $\sim \times 50$ speedup with respect to the optimized CPU code

Estimated time τ to match one template:

- \star CPU (Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz) \simeq 4 \times 10⁻² s
- ★ GPU (GeForce GTX Titan) $\simeq 8 \times 10^{-4}$ s

Also testing on:

- ⋆ Intel(R) Core(TM) i5, 2.8GHz
- * GPUs:
 - ⋆ GeForce GTX 560 Ti
 - * GeForce GTX 480

Performance scaling - favorably for high frequencies (fast spindown loop on GPU).

Profiling the CPU version with perf

Initially we were using gprof and Callgrind/KCachegrind, but later learned about perf (of linux-tools) and found it much more useful to estimate performance in FLOPS:

- * perf stat -e r5300c0 -e r530110 -e r532010 -e r534010 -e r538010 -e r531010 -e r530111 -e r530211, where the switches correspond to different operations on a Sandy Bridge processor:
 - * r530111 SIMD_FP_256:PACKED_SINGLE
 - * r530211 SIMD_FP_256:PACKED_DOUBLE
 - * r530110 X87
 - * r531010 SSE_FP_PACKED_DOUBL
 - * r532010 SSE FP SCALAR SINGLE
 - * r534010 SSE_PACKED_SINGLE
 - * r538010 SSE SCALAR DOUBLE

(SIMD - Single Instruction Multiple Data, SSE - Streaming SIMD Extensions)

Estimated performance is 25% of peak performance on Sandy Bridge

Profiling the CPU version with perf

Also useful to locate the time-expensive parts of the code (with a direct view into the assembly code):

```
* perf record -B -e
  task-clock:u,cycles:u,
  instructions:u
```

* perf report

```
Samples: 59K of event 'cycles'. Event count (approx.): 44758302322
                 [kernel.kallsyms]
                 libveppp.so
                                        sincos@plt
                                          libc memalign
                                        init arrays
                                          printf fp
                                        fftw twiddle awake
```

Fast libraries for commonly used functions in CPU version

- Obvious choice is icc Intel compiler + Math Kernel Library (MKL), with optimizing flags
 - -march=native -mtune=native -Ofast -unroll-agressive -ipo
 -use-intel-optimized-headers -opt-prefetch
- We also have a good experience with gcc, FFTW3 and optimized math libraries (using latest SSE & AVX instructions):
 - * SLEEF (SIMD Library for Evaluating Elementary Functions) trigonometric functions (among others) in double precision without table look-ups, conditional branches etc. http://shibatch.sourceforge.net or
 - * YEPPP high-performance SIMD-optimized mathematical library for x86, ARM, and MIPS processors. http://www.yeppp.info
- ★ FFTW3 Planner Flags FFTW_PATIENT instead of FFTW_MEASURE
- * compiler flags: -03 -ffast-math -funsafe-loop-optimizations -funroll-loops -march=native -mtune=native -mavx

Changing the libraries from standard math to optimized ones + remembering about FFTW3 planner flags ->30% speedup in case of CPU.

Summary/references

We have a quite well-optimized CPU code (\pm memory access optimizations), and a working GPU code that may still need some optimization (+ extenstion to a network of detectors).

- P. Astone, K. M. Borkowski, P. Jaranowski, M. Piętka and A. Królak, PRD, 82, 022005 (2010)
- ► https://developer.nvidia.com/cuFFT
- P. Jaranowski, A. Królak, and B. F. Schutz, PRD **58**, 063001 (1998).
- https://github.com/mbejger/polgraw-allsky.git