Status of the Advanced Virgo detector

F. Piergiovanni

on behalf of The Virgo Collaboration

GWPAW, Osaka, 06/17/2015

Talk outline

- The Advanced Virgo challenges
- Where we stand and what we are going to do
- Construction and integration highlights
- Perspectives and conclusions

The Advanced Virgo project

Advanced Virgo is a major upgrade of the Virgo ground based gravitational wave interferometric detector

The project involves: 5 countries, 20 labs and ~200 authors. APC Paris ARTEMIS Nice EGO Cascina **INFN** Firenze-Urbino INFN Genova INFN Napoli **INFN** Perugia INFN Pisa INFN Roma La Sapienza **INFN** Roma Tor Vergata INFN Trento-Padova LAL Orsay - ESPCI Paris LAPP Annecy LKB Paris LMA Lyon NIKHEF Amsterdam POLGRAW(Poland) RADBOUD Uni. Nijmegen RMKI Budapest

The short history

• 2nd generation of interferometric GW detectors :

aLIGO, AdVirgo, GEOHF, KAGRA, LIGO India

The sensitivity curve

The main changes: how to gain a factor 10

The low and medium frequency range

- Lowering the thermal noise of suspensions and mirrors:
 - ✓ Doubling the mirror weight (42kg)
 - \checkmark Suspending the mirrors with fused silica fibres
 - \checkmark Enlarging the beam size on the test masses
 - \checkmark Mirror coatings engineered for low dissipations

• Lowering the residual gas noise:

✓ installing cryotraps

- •Limiting the environmental noise:
 - ✓ Photodiodes under vacuum on suspended benches
 - \checkmark Baffles to shield tubes, mirrors, vacuum chambers preventing scattered light diffusion

The main changes: how to gain a factor 10

A step by step approach

The mail goal is to join aLIGO in 2016 observational runs

- Reach the early configuration sensitivity :
- no signal recycling
- no high power laser (up to 25W)

Reducing :

- locking complexity (optics configuration similar to Virgo+)
- the thermal effects and the compensation system requirements

Further steps towards the full sensitivity will be planned with the partners

- A 60W laser system (Virgo+) is already installed and in operation
 - The power stabilization works at 23W and all the noise spectrum is well understood
- The high power laser amplifier is under tests:
 - ✓ the AdVirgo requirements are satisfied in terms of lifetime stability and intensity noise
 - ✓ Full scale integration test are ongoing.

SIB1

Installed & integrated in tower

The EIB in the Laser lab

SIB2 completed

Minitower installed

Integration is ongoing

The IMC end mirror in tower

- The Input Mode Cleaner commissioning has started one year ago
- Duty cycle continuously improving (99% during weekends)
- Tested up to 31W of input power

• Reference cavity locked since November 2014

- The noise has been reasonably well understood
- The noise hunting is ongoing

Mirrors

Mirrors

• All the AdVirgo large mirrors have been completed on schedule

✓ The mirror figures are better than the specifications

Risk reduction for aberration and scattered light

Mirror "maps" are used in simulations to predict the interferometer behavior

Incidence 0°	Advanced VIRGO Requirements removed)		LMA Measurements £2150 mm
Radius of Curvature (m) Surface 1	1425 +/- 10 m ⊘ 150 mm		1424.56 m ⊘150 mm
Astigmatism amplitude (Zernike term)°	< 5nm Ø 150 mm		0.52 nm ⊘150 mm
Transmitted wavefront Incidence 0° (before coating)	x		0.77 nm RMS Ø150 mm (Curvature removed)
Average Scattering (45° incidence) Surface 1	< 10 ppm Ø 150 mm		3 ppm ∅ 150 mm
Absorption HR Surface 1	< 0.5 ppm	0.22 +/- 0.06 ppm ⊘150 mm	
Transmission at 1064 nm 1° incidence	1.4 +/- 0.1%	1.375 % +/- 0.007% ⊘150 mm	
Transmission at 532 nm 0* incidence	0.5% < T< 2%	1.01% (witness sample, spectrophotometric measurement)	
Reflectivity AR Surface 2 at 1064 nm 3° incidence	<100 ppm	58 +/- 9 ppm ∅ 150mm	
Reflectivity AR Surface 2 at 800 nm 0° incidence	<1%	# 0.1% (witness sample, spectrophotometric measurement)	
Reflectivity AR Surface 2 at 532 nm 0° incidence	2%	# 0.2% (witness sample, spectrophotometric16 measurement)	

Mirrors

- The "ears" have been silicate bonded to the mirror flats on 3 over 4 test masses
- Each bonding strength is tested

The beam splitter has been the first large mirror integrated in tower A large beam needs a large BS: 550 mm diameter

Suspensions

Suspensions

Suspensions

The electronics has been redesigned from scratch: integration foreseen in fall 2015

integrated

Thermal compensation

The actuators

- CO2 laser has been characterized
- CO2 laser benches almost complete
- Acoustic enclosure already on site

• The ring heaters production and integration will follow the payloads integration planning

•The first installed RH follows the prototypes behavior

Thermal compensation

The sensors

- The Hartmann wavefront sensor:
 - \checkmark The design has been finalized
 - \checkmark The installation is in progress
 - ✓ Many tests are underway on a dedicated test facility

- The phase camera:
 - ✓ Installation and tests on the devices are underway
 - \checkmark Integration with the compensation system is in progress

Signal detection

- The detection system main optical bench has been installed
- Integration is foreseen soon

- A new Output Mode Cleaner has been realized:
- Developed for DC detection
- Two monolithic cavities in series
- Filtering high order modes and optical field

Signal detection

Mini-towers:

• Five new minitowers have been produced to suspend in vacuum photodiodes benches

•Pre-commissioning with dummy mass in progress

Vacuum system

Cryotraps & enlarged links

- Cooling-down test achieved for the two cryotraps placed at the end towers
- The main vessels are installed at the inputs and the integration is quite complete
- two smaller cryostats are being installed at the short tower

enlarged links installation is almost completed

Commissioning

- Reaching the design sensitivity is a long term effort
- In spite of the increasing complexity the expected AdVirgo commissioning duration is much shorter than for Virgo

- A lot of experience gained
- Many instrumental weaknesses solved (mirror quality, new payload design, thermal compensation...)
- Environmental isolation improved (stray light mitigation, acoustic enclosures, ...)
- The impressive experience of the extremely fast aLIGO commissioning

Commissioning

General co

Calibration

Arm hudee

relative calibration IT asymetric Michelson

sure arm cavity

The plan in a sketch:

- The commissioning is already started on light injection system and IMC
- Many tests have been anticipated to save time also on other sub-systems
- The step by step procedure foresees:

Jul 15 Aug 15 Sep 15 Oct 15 Nov 15 Dec 15 Jan 16 21 28 5 12 19 26 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24

-

3/4/2015 211.33 d 11/3/2015 10 days

11/3/2015 2 wks

11/10/2015 1 wk

11/10/2015 5 days

Conclusion

- Advanced Virgo is currently in a crucial phase of installation
- A lot of parallel activities are ongoing requiring a big and constant organization effort
- The schedule is very tight and all the arising issues have to be promptly faced coordinating the works of all the groups
- All the groups are fully committed to end the installation/integration phase within 2015 to achieve the first lock in the first months of 2016
- The main target is to join LIGO in observational run during 2016
- The steps towards the transition to the full configuration will be decided with the partners

