

Omicron: UPV over Omicron triggers

Omicron is currently running on VSR2 data

About 150 channels have been processed so far.

Auxiliary triggers can be used to produce efficient vetoes.

The most straight-forward way to do so is to use UPV

Omicron triggers are stored in root files for better performances

→ A UPV plugin needed to be developed to directly read and process Omicron triggers

The original UPV method has been reproduced and a few improvements have been implemented

We consider 1 auxiliary channel, then:

- 1/ we divide the Omicron clusters into frequency bins
- 2/ we raise the SNR threshold in each bin and then:
- 3/ we define a time segment for each cluster with the length of the cluster
- 4/ we use this set of segments to veto h(t) triggers
- 5/ we measure the use-percentage for this set of segments

We stop there if:

1/ UP > 50% 2/ eff/dead-time > 2

Otherwise we raise the threshold even more

The frequency is crucial to get good vetoes.

For example, magnetic sensors are mostly useful between 1 and 4Hz

UPV: Example of a Pr_B2_8MHz_AC

UPV: Example of a magnetic sensor

To measure the performance we used the DQperf tool available in GWOLLUM We use 1 week of h(t) triggers as a testing sample

We used vetoes produced by:

NewUPV: https://wwwcascina.virgo.infn.it/DataAnalysis/DQburst/UPVperf

OldUPV: https://www.cascina.virgo.infn.it/DataAnalysis/DQburst/OldUPVPerf/

standard DQ flags: https://www.cascina.virgo.infn.it/DataAnalysis/DQburst/BRMSPerf/

UPV: Performance

Em_MABDCE03

OldUPV, SNR>8:

N vetoed events: 78

UP = 94.5%

Eff/deadtime = 7.2

Entries 21678 Mean 9,995 RMS 10.65 — all triggers — remaining triggers — flagged triggers 10² 10 10 10 10³ SNR [-]

NewUPV, SNR>8:

N vetoed events: 215

UP = 69.6%

Eff/deadtime = 15.3

Pr_B2_DC

OldUPV, SNR>8:

N vetoed events: 76

UP = 81.5%

Eff/deadtime = 6.4

NewUPV, SNR>8:

N vetoed events: 803

UP = 60.1%

Eff/deadtime = 32.4

OldUPV, SNR>8:

N vetoed events: 20

UP = 81.8%

Eff/deadtime = 6.3

NewUPV, SNR>8:

N vetoed events: 2634

UP = 38.4%

Eff/deadtime = 7.2