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 See Tania Regimbau’s plenary talk this morning

LIGO Hanford Data Predicted

e Gravitational waves in a nutshell
= Sources and properties

Strain (102")

e Gravitational wave interferometric detectors
= Principle and main characteristics
= Advanced detectors
= A worldwide network of detectors
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LIGO Hanford Data (shifted)

e GW150914
= The Advanced LIGO « Observation 1 »
Run: September 2015 - January 2016 T
= First direct detection of gravitational waves 030 035 040 045
from a black hole binary merger Time {sec)

" Physics results Thanks to the many colleagues
from the LAL Virgo group, from Virgo and LIGO
from wich | borrowed ideas and material for this talk

Strain (10?")

e Qutlook



Gravitational waves:
sources and properties



Gravitational waves (GW)

* One of the first predictions of general relativity (1916)
= Accelerated masses induce perturbations of the spacetime
which propagate at the speed of light
= Linearization of the Einstein equations (g, =1, + h
leads to a propagation equation far from the sources

Nl <<1)
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* Traceless and transverse (tensor) waves
= 2 polarizations: « + » and « x »
— See next slide for the interpretation of these names

e Quadrupolar radiation
» Need to deviate from axisymmetry to emit GW
= No dipolar radiation — contrary to electromagnetism

e GW amplitude h is dimensionless
= Scales with the inverse of the distance from the source
= GW detectors sensitive to amplitude (hoc1/d) and not intensity (h2oc1/d?)
— Important to define the Universe volume a given detector is sensitive to



Effect of gravitational waves on test masses

* GW: propagating perturbation of the spacetime metric
= Acts on distance measurement between test masses (free falling)

- ¢ Variation doubled for

A \ B SL _ h_l— an interferometer with
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* Effect of the two GW polarizations on a ring of free masses
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A diversity of sources

* Rough classification
= Signal duration
= Frequency range
= Known/unknown waveform
= Any counterpart (E.M., neutrinos, etc.) expected?

e Compact binary coalescence
= |_ast stages of the evolution of a system like PSRB 1913+16
— Compact stars get closer and closer while loosing energy through GW
» Three phases: inspiral, merger and ringdown
— Modeled via analytical computation and numerical simulations
= Example: two masses M in circular orbit (fo\, = 2 forpical) ‘
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* Transient sources (« bursts »)
= Example: core collapses (supernovae)

* Permanent sources
= Pulsars, Stochastic backgrounds




Gravitational wave spectrum

Quantum fluctuations in early universe
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1916-2016: a century of progress

¢ 1916: GW prediction (Einstein)

1957 Chapel Hill Conference

* 1963: rotating BH solution (Kerr)

* 1990’s: CBC PN expansion
(Blanchet, Damour, Deruelle,
lyer, Will, Wiseman, etc.)

Theoretical developments

¢ 2000: BBH effective one-body
approach (Buonanno, Damour)

¢ 2006: BBH merger simulation
(Baker, Lousto, Pretorius, etc.)

Experiments

(Bondi, Feynman, Pirani, etc.)

* 1960’s: first Weber bars

* 1970: first IFO prototype (Forward)

® 1972: IFO design studies (Weiss)

* 1974: PSRB 1913+16 (Hulse & Taylor)

* 1980’s: IFO prototypes (10m-long)
(Caltech, Garching, Glasgow, Orsay)

* End of 1980°s: Virgo and LIGO proposals
* 1990’s: LIGO and Virgo funded
e 2005-2011: initial IFO « science » » runs

* 2007: LIGO-Virgo Memorandum
Of Understanding

e 2012 : Advanced detectors funded

e 2015: First Advanced LIGO science run



Gravitational wave interferometric detectors

e Instructions to build a GW detector * Solution: a Michelson interferometer
= Use free test masses — Suspended mirrors
= L_ocate them far apart — Kilometer-long arms
= Measure their relative displacement — Get rid of common mode noise
= Make sure their motion is not — Design + active control
perturbated by any external source + noise mitigation/monitoring

Mirror M,

e Incident GW * Best sensitivity around the dark fringe
= Optical path changes
= Output power variation 10



Interferometer sensitivity

e Output power: 0Py, <P, Lh

Suspensions not drawn

 Shot noise P
= A fundamental quantum noise OP o |—n
» Fluctuation of the number of photons shotnoise At
detected during a duration At

o _ 5Pdet = 5Pshotnoise
e Minimum detectable GW amplitude such that 1160 Pronecctor g fr G501
N [ N S A S ' AN ]
b o 1 2 el
min [~ A 2 g -opd | | | 1
Pin L At E:ig ......
| © Dan Hoak |
* Improving the sensitivity o - |
= Increase incident power on the beamsplitter 5 oji
= Increase length of the interferometerarms =3~ I
. [sec] from GPS=1126259462 h "
. Rea_ching h....~10-?2 or below requires Virgo/LIGO Ba“dggzsvsno‘iffs‘g:‘;zg't'szg'tzg
= Kilowatts of laser power and design 500 W incident on the beamsplitter

= Arms about a hundred kilometer long 11



Improving the interferometer sensitivity

1
(Arm length) x ,/Light power

e Reminder: Interferometer (IFO) sensitivity o

— Use high power laser, power- and frequency-stabilized
» Tens to hundreds of watts

— Kilometric arms (Virgo: 3km; LIGO: 4km)
— Add Fabry-Perot cavities in the kilometric arms
= Light path length increased: L — L x G,
Ggp~300 for Advanced Virgo
= Low-pass filter on the IFO frequency response: Suspensions not drawn
processes faster than the light storage time are filtered

— Add recycling mirror between the input laser and the beamsplitter
= |FO set to the dark fringe | All power reflected
+ highly reflecting mirrors J back to the laser!
Pin = Pi, x Gy Gec~40 for Advanced Virgo

— Minimize transmission and losses for all mirrors
= Set the gains of the interferometer cavities

Suspensions not drawn 12



Improving the interferometer sensitivity
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Noise & sensitivity

* Noise: any kind of disturbance which pollutes the dark fringe output signal
 Detecting a GW of frequency f <> amplitude h « larger » than noise at that frequency

* Interferometers are wide-band detectors
= GW can span a wide frequency range
» Frequency evolution with time is a key feature of some GW signals
— Compact binary coalescences for instance

* Numerous sources of noise
» Fundamental
— Cannot be avoided; optimize design to minimize these contributions
= |nstrumental
— For each noise, identify the source; then fix or mitigate
— Then move to the next dominant noise; iterate...
= Environmental
— Isolate the instrument as much as possible; monitor external noises

« IFO sensitivity characterized by its power spectrum density (PSD, unit; 1/NHz)
= Noise RMS in the frequency band [f i fad = \/Lf””“ PSD?(f) df

14



Main interferometer noises

Thermal noise

(coating + suspension)
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From 1nitial to advanced detectors

» Goal: to improve the sensitivity by one order of magnitude
= \Volume of observable Universe multiplied by a factor 1,000
» Rate should scale accordingly
— Assuming uniform distribution of sources (true at large scale)

* A wide range of improvements
= Increase the input laser power
= Mirrors twice heavier
= Increase the beamspot size on the end mirrors
» Fused silica bonding to suspend the mirrors
= Improve vacuum in the km-long pipes
= Cryotraps at the Fabry-Perot ends
= Instrumentation & optical benches
under vacuum

e Advanced LIGO (aLIGO) funded a year or so before Advanced Virgo (AdV)
» Financial crisis in 2008-2010...
— aLIGO ready for its first « observation run » in September 2015
= AdV upgrade still in progress

| w—
100 million light years

16



A worldwide network
of gravitational wave
Interferometric detectors
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Interferometer angular response

e An interferometer is not directional: it probes most of the sky at any time
= More a microphone than a telescope!

* The GW signal is a linear combination of its two polarisations
h(t) = F.(1) x h,(t) + F(t) x h,(t)
» F, and F_ are antenna pattern functions which depend on
the source direction in the sky w.r.t. the interferometer plane
— Maximal when perpendicular to this plane
— Blind spots along the arm bisector (and at 90 degres from it)

+ polarization x polarization unpolarized

S

¥ fmmans

7
=
e
il %\

18



A network of interferometric detectors

Hanovre
| (Allemagne)

Hanford
(Etat de Washington, aux Etats-Unis)

* Asingle interferometer is not
enough to detect GW . _ ' <
= Difficult to separate a signal ~ ~ PONSREES __,,9 _ ATRAVERS LENONDE
from noise confidently N\ e ¥
» There have been unconfirmed
claims of GW detection

Livingston
(Louisiane, Etats-Unis)

LIGO

KAGRA

(prés de Pise en ltalie)
I (en construction)

Virgo

— Need to use a
network of interferometers

e Agreements (MOUSs) between the
different projects — Virgo/LIGO: 2007

] SOURCE
= Share data, common analysis,
publish together
- . IFO | A
« [FO: non-directional detectors: pair | ey
non-uniform response inthe sky % VH | 2720
GHOST V-L 26.39
» Threefold detection: reconstruct H-L | 1000

source location in the sky

19



Exploiting multi-messenger information

eTransient GW events are energetic
» Only (a small) part of the released energy is converted into GW

— Other types of radiation released: electromagnetic waves and neutrinos

* Astrophysical alerts = tailored GW searches
= Time and source location known ; possibly the waveform

— Examples: gamma-ray burst, type-11 supernova

» GW detectors are also releasing alerts to a worldwide network of telescopes
= Agreements signed with ~75 groups — 150 instruments, 10 space observatories

EQ 600
LIGO Hanford ? KAGRA & @
° Virgo
IGO Livingston e )
IGQ4India @ A A
LV NN

elep Jajsuel]

Send info
to observers \W /\/

Validate

DQ, sign-offs
—— Analyze data, > ( fg )
identify triggers, i
GW tify trigg Trigger Select event
data estimate FAR, database ;
infer sky map .can.dldates
(Pipelines, FAR)

 Low latency h-reconstruction and data transfer between sites
= Online GW searches for burst and compact binary coalescences
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The Advanced LIGO
«Observation 1» Run
(2015/09 — 2016/01)

21



aLIGO O1 Run: Observing time

e September 2015 — January 2016
» GW150914 showed up a few days before the official start of O1,
during the « Engineering Run 8 »
— Both interferometers were already working nominally

100 ILIG(_) obs?ervmg tllme
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0 | 1 | 1 1 | | |
0 2 4 § 8 10 12 14 16

Time [weeks] from 2015-09-18 15:00:00 UTC (1126623617.0)



aLIGO O1 Run: Sensitivity

e Sensitiviy much improved with respect to the initial detectors
= Factor 3-4 in strain
— Factor 30-60 in volume probed

e Gain impressive at low frequency — where the signal GW150914 is located

10—21 )

w gl j

Strain Noise (1/«./ Hz)
S S

| /7

—24 [ /

10 100 1000
Frequency (Hz)
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aLI1GO O1 Run: GW150914-like horizon

» Sky-averaged distance up to which a given signal can be detected

= In this case a binary black hole system with the measured GW150914 parameters

'2;2000';”\"',;\.'|"'"" R
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2 ol

=

() T 1 2 3 4 5
Time [weeks| from September 12
GW150914
time

* Only depends on the actual sensitivity of the interferometer
= Online monitoring tool used during data taking

GW150914

| Estimated

distance
(410 Mpc)

24



GW 150914
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Compact binary coalescence search

» Well-predicted waveform FT of the data Signal template
— Matched-filtering technique (optimal) N . 7
= Noise-weighted cross-correlation of [T E RS g ;
data with a template (expected signal) (t) = e Sulf) ‘ f
» Parameter space covered by a !
template bank Noise power spectral density

= Analytical for NS-NS, BH-NS
= Analytical + numerical for BH-BH
= Parameters: mass and spin

of the initial black holes

— ~250,000 templates in total

-y
o
iy
|

* Look for triggers from the two IFOs
using the same template and coincident in time
» Check matching between signal and template

Mass 2 [M ]

10Y 4

e Offline search 100 10! 102
= Part of the parameter space searched online Mass 1 [Me]
» Two independent offline pipelines 26



Burst search

e Search for clusters of excess power (above detector noise) in time-frequency plane

= \Wavelets
GW150914 signal strong enough to be immediately identified on spectrograms

Q
512 = E
R Hanford Livingston g £
I o
= 256 =
o 6 5
c 128 o)
(] 4 o
3 N
> 64 S5
o =
32 05
0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45 =

Time (s) Time (s)

 Chirp-like shape: frequency and amplitude increasing with time

e Coherent excess In the two interferometers
» Reconstructed signals required to be similar

e Efficiency similar to (optimal) matched filtering for binary black hole — short signal
= Online last September for O1 27



Data quality

* Detector configuration frozen to integrate enough data for background studies
= ~40 days (until end of October) corresponding to 16 days of coincidence data
— Steady performances over that period

* Tens of thousands of probes monitor the
Interferometer status and the environment
= Virgo: h(t) ~ 100 kB/s

DAQ ~ 30 MB/s

 Help identifying couplings
with GW channel
= Quantify how big a disturbance should
be to produce such a large signal
= Not to mention the distinctive shape
of the GW150914 signal

 Extensive studies performed
» Uncorrelated and correlated noises -
» Bad data quality periods identified and vetoed
— Clear conclusions: nominal running, no significant environmental disturbance 28




Background estimation

e Studies show that GW150914 is not due to issues with the interferometer running,
nor the reflection of environmental disturbances (correlated or not)
— How likely is it to be due to « expected » noise fluctuations?
= Assess signal significance!

* Input: (only) 16 days of coincidence data
— Time shift method to generate a
much larger background dataset o t

A “zero-lag” trigger (true coincidence)

. _ IFO 2
e Reminder: real G\W events are shifted t

by 10 ms at most between IFOs

= Light travel time over 3,000 km
A “time-lag” trigger (accidental coincidence)

» By shifting one IFO datastream by a IFQl
(much) larger time, one gets new AT
datastreams in which « time » coincidence
are necessarily due to noise IFO 2

= 16 days of coincident data — tens of thousands years of background « data »



Signal significance — CBC analysis

] ] 20 3¢ 40 5. >5.10
* x-a>_<|s_: detection , 2030 465.10  >5.1c
statistic used to 0% mmm Search Result i
rank events 101} — Search Background
(the « SNR ») 100 b m — Background excluding GW150914 .
= GW150914. hd f
c 10-1}
strongest < : L|_| T
. 21|
event (truein @ 1077 -|_L Ev1soh1a ]
both IFOs) © 1073} LI'I.,_ é
o _ I
= Observed 210 *t LN
(zero-lag) 2 107> L n N
events 10-6| 'W| lrh’]l“'-u rl ']uﬂ |.
* Solid lines: 1077} 1' !.! Ll | L |
2 background 10-8L | | ']ﬂ | | " 1 | | ] | |
estimations 8 10 12 14 16 18 20 22 24

) Detection statistic O
(from time-lag) He

* SNR ~ 23.6; false alarm rate < 1 event / 203,000 years
false alarm probability <2x10-7 (> 5.1 o)



Why two black holes?

Inspiral Merger Ring-
down

* Result of matched filtering!

= Excellent match between f ) ( ) G‘

the best template and the
measured signal

* Two massive compact objects
orbiting around each other at
75 Hz (half the GW frequency),
hence at relativistic speed,
and getting very close before -1.0 F—RNumerical relativity

I Reconstructed (template)
1

the merging: only a few Rg away! . | |

1.0 .
0.5 A .
0
5

=

— Black holes are the only So6l {4 .EE
known objects which can 2 0.5 {{ — Black hole separation 13 8

. . . 8 0.4 === Black hole relative velocity 42 &

fit this picture 5 e 11 &

Q

i i > 03E | | | i 0 o

* About 3 Mg, radiated in GW 0.30 0.35 0.40 045

e The « brighest » event ever seen me (s)

= More powerful than any gamma-ray burst detected so far
= Peak power larger than 10 times the power emitted by the visible Universe 31



Parameter estimation

* 15 parameters total
= Initial masses, initial spins, final mass, final spin,
distance, inclination angle + precession angle (if exists)

* Bayesian inference
= Probability density function for each parameter: mean value + statistical errors

 p(0[H)p(d]0, 1) !
p(fld, H) = D(dlH) Dominant
e O: Parameters
e d: Data
e H: Model

e Compare results
from two models
— Systematic errors
P(H;|d)
O” -
P(H,|d)




Parameter estimation

* Impact of the black hole parameters on the waveform

| Gw150014 n | 1, Large Spins' N
i A M |'|||f|I"|I
IIIII / 'n'.l ,-'n". Ip m M A AN A AN h'. \ II '| |' '. I|I Il || | || || |””
0 —NI'— llll/\‘\ "flll I 'III Ill" I'III \ \/ IIII'-J'III \/ llu Ill A\ I\ | Il'- I'IIII | I'II III Il' I| ll ll || || ||||||||||H
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. Half the Mass 4 1k Small Mass Ratio B
0 -
L — _1 - —
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GW15091

BACKGROUND IMAGES: TIN

:FACTSHEET

“FREQUENCY TRACE (TOP) AND TIME-SERIES

(BOTTOM) IN THE TWO LIGO DETECTORS; SIMULATION OF BLACK HOLE
HORIZONS (MIDDLE-TOP), BEST FIT WAVEFORM (MIDDLE-BOTTOM)

first direct detection of gravitational waves (GW) and first direct observation
of a black hole binary

observed by
source type
date

time

LIGO L1, H1
black hole (BH) binary
14 Sept 2015
09:50:45 UTC

likely distance

redshift

0.75 to 1.9 Gly
230 to 570 Mpc

0.054 to 0.136

interferometers arms
frequency/wavelength
at peak GW strain

duration from 30 Hz ~ 200 ms
# cycles from 30 Hz ~10
peak GW strain 1x10?%
peak displacement of +0.002 fm

150 Hz, 2000 km

peak speed of BHs ~06¢c
anaktceooise yatio P4 peak GW luminosity 3.6 x 10% ergs™
false alarm prob. < 1in 5 millien radiated GW energy 2.5.3.5 Mo
false alarm rate <1 in 200,000 yr remnant ringdown freq ~ 250 Hz
Source Masses i remnant damping time ~4ms
total mass 60 to 70 FATAAnE AiEa: Aran 180 km, 3.5 x 105 km?
primary BH s o i} consistent with passes all tests
secondary BH 25t0 33 general relativity? performed
remnant BH 58 to 67 graviton mass bound <1.2x102eV
; s o _ 0.6:451 coalescence rate of 2 t4 400 Ghied ye?
primary BH spin < 0.7 binary black holes AR
secondary BH spin <0.9 = -
online trigger latency ~ 3 min
remnant BH spin 0.57 to 0.72 # offline analysis pipelines 5

signal arrival time
delay

likely sky position
likely orientation
resolved to

arrived in L1 7 ms
before H1

Southern Hemisphere

face-on/off
~600 sq. deg.

CPU hours consumed

# researchers

papers on Feb 11, 2016

~ 50 million (=20,000
PCs run for 100 days)

13

~1000, 80 institutions

in 15 countries

Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds.
9 P

Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 x 10'? km; Mpe=mega
parsec=3.2 million lightyear, Gpc=10%* Mpc, fm=femtometer=10-""* m, Mo=1 solar mass=2 x 10*°kg
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 Sky at the time of the event

e Skymap contoured in
deciles of probability

* 90% contour :
~ 590 degres?
= Full Moon: 0.5 degres?

* View is from the South
Atlantic Ocean, North at
the top, with the Sun rising
and the Milky Way
diagonally from NW to SE

Skymap

Procyon '

g Orion
.+ < Nebula

A
Rigel

- =< Canopus

- LMC R gty

~ Achernar
v




Looking for
GW150914
counterparts

» SKy coverage

Gw 3

radio

optical/lIR 1
X-ray

20h +-ray (all-sky)

» Observation timeline: no counterpart found — none expected for a binary black hole

Initial GW Initial Updated GCN Circular Final
Burst Recovery GCN Circular (identified as BBH candidate) sky map
[ n [ | [ ]
Fermi GBM, LAT, MAXI, Swift Swift Fermi LAT,
IPN, INTEGRAL (archival) XRT XRT MAXI (ongoing)
! [
Swift UVOT, SkyMapper, MASTER. TOROS, TAROT, VST, iPTF, Keck, Pan-STARRSI
BOOTES-3 MASTER b, 'STARRS I, KWEC. QUEST, DECam, LT, P200, Pi of the Sky, PESSTO. UH vst  TOROS
1 I 15 1 111 11l [ 1]
VISTA
ASKAP. ASKAP, VLA, VLA,
MWA LOFAR  MWA LOFAR LOFAR YA
C ) L . ) LU LI 1
10° 10! 107

I — Imerger (days) 36



Conclusions
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Outlook

* The network of advanced gravitational wave interferometers is taking shape
» The two aL1GO detectors started taking data last September and detected
the first direct gravitational wave signal (G\W150914)
= Virgo is completing its upgrade and is fully committed to joining LIGO asap
— The right time for new groups to join the collaboration...
» KAGRA should then join the network in 2018
= And possibly a third LIGO detector (LIGO-India) some years later

e Sensitivity already good enough to detect gravitational waves
» Improvements expected in the coming years
= R&D activities already ongoing for 3" generation instruments

S ed sge@
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e Ser
m |

e LIGO and Virgo will release results from the full Q O 0 -

« Observation 1 » run analysis tomorrow night

Outlook

https://aas.org/meetings/aas228

[1 Wednesday, 15 June, 10:15 am PDT

Latest News from the LIGO Scientific Collaboration

Gabriela Gonzalez

LIGO Scientific Collaboration Spokesperson
(Louisiana State University)

[305.01]

Fulvio Ricci
Virgo Spokesperson
(University of Rome Sapienza & INFN Rome)

Dave Reitze
Executive Director of LIGO
(Caltech)

https://aas.org/aas-briefing-webcast

= Stay tuned...

arferometers is taking shape
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GW detector peak sensitivity evolution vs. time
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