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               Outline 
 See Tania Regimbau’s plenary talk this morning 
 
 Gravitational waves in a nutshell 
    Sources and properties 
 
 Gravitational wave interferometric detectors 
    Principle and main characteristics 
    Advanced detectors 
    A worldwide network of detectors 
 
 GW150914 
    The Advanced LIGO « Observation 1 » 
      Run: September 2015 – January 2016 
    First direct detection of gravitational waves 
      from a black hole binary merger 
    Physics results 
 
 Outlook 
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Gravitational waves: 
sources and properties 
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Gravitational waves (GW) 
 One of the first predictions of general relativity (1916) 
    Accelerated masses induce perturbations of the spacetime 
     which propagate at the speed of light 
    Linearization of the Einstein equations (gµν = ηµν + hµν, |hµν| << 1) 
      leads to a propagation equation far from the sources 
 
 Traceless and transverse (tensor) waves  
    2 polarizations: « + » and « × » 
      → See next slide for the interpretation of these names 
 
 Quadrupolar radiation 
    Need to deviate from axisymmetry to emit GW 
    No dipolar radiation – contrary to electromagnetism 
 
 GW amplitude h is dimensionless 
    Scales with the inverse of the distance from the source 
    GW detectors sensitive to amplitude (h∝1/d) and not intensity (h2∝1/d2) 
      → Important to define the Universe volume a given detector is sensitive to 

4 



Effect of gravitational waves on test masses 
 GW: propagating perturbation of the spacetime metric 
    Acts on distance measurement between test masses (free falling)  
 
 
 
 
 
 

 Effect of the two GW polarizations on a ring of free masses 
 
 

    « + » polarization 
 
 
    
 
    « × » polarization 
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A diversity of sources 
 Rough classification 
    Signal duration 
    Frequency range 
    Known/unknown waveform 
    Any counterpart (E.M., neutrinos, etc.) expected? 
 

 Compact binary coalescence 
    Last stages of the evolution of a system like PSRB 1913+16 
      → Compact stars get closer and closer while loosing energy through GW 
    Three phases: inspiral, merger and ringdown 
      → Modeled via analytical computation and numerical simulations 
    Example: two masses M in circular orbit (fGW = 2 fOrbital) 
 
 
 
 Transient sources (« bursts ») 
    Example: core collapses (supernovae) 
 

 Permanent sources 
    Pulsars, Stochastic backgrounds 6 
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Gravitational wave spectrum 
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LIGO, Virgo, etc. 



Gravitational wave 
interferometric 

detectors 
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1916-2016: a century of progress 
 1916: GW prediction (Einstein) 
 
 
 
 1963: rotating BH solution (Kerr)  
 
 
 
 
 
 
 
 
 1990’s: CBC PN expansion 
   (Blanchet, Damour, Deruelle, 
   Iyer, Will, Wiseman, etc.) 
 
 2000: BBH effective one-body 
   approach (Buonanno, Damour) 
 
 2006: BBH merger simulation 
   (Baker, Lousto, Pretorius, etc.) 
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1957 Chapel Hill Conference      (Bondi, Feynman, Pirani, etc.) 

 1960’s: first Weber bars 
 
 1970: first IFO prototype (Forward) 
 1972: IFO design studies (Weiss) 
 1974: PSRB 1913+16 (Hulse & Taylor) 
 
 1980’s: IFO prototypes (10m-long) 
   (Caltech, Garching, Glasgow, Orsay) 
 
 End of 1980’s: Virgo and LIGO proposals 
 
 1990’s: LIGO and Virgo funded 
 
 2005-2011: initial IFO « science » » runs 
 
 2007: LIGO-Virgo Memorandum 
             Of Understanding 
 
 2012 : Advanced detectors funded 
 
 2015: First Advanced LIGO science run 
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 Instructions to build a GW detector  Solution: a Michelson interferometer 
    Use free test masses      → Suspended mirrors 
    Locate them far apart      → Kilometer-long arms 
    Measure their relative displacement    → Get rid of common mode noise 
    Make sure their motion is not     → Design + active control 
      perturbated by any external source                               + noise mitigation/monitoring 
 
 
 
 
 
 
 
 
 

 

 Incident GW     Best sensitivity around the dark fringe 
   ⇒ Optical path changes     
   ⇒ Output power variation 

Gravitational wave interferometric detectors 
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Interferometer sensitivity 
 Output power:   
 
 Shot noise  
    A fundamental quantum noise 
    Fluctuation of the number of photons 
      detected during a duration ∆t 
 
 Minimum detectable GW amplitude such that   
 
→ 
 
 

 Improving the sensitivity 
    Increase incident power on the beamsplitter 
    Increase length of the interferometer arms 
 
 Reaching hmin~10-22 or below requires 
    Kilowatts of laser power and 
    Arms about a hundred kilometer long 11 
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Improving the interferometer sensitivity 
 Reminder: Interferometer (IFO) sensitivity  
 
→ Use high power laser, power- and frequency-stabilized 
      Tens to hundreds of watts 
 

→ Kilometric arms (Virgo: 3km; LIGO: 4km) 
→ Add Fabry-Perot cavities in the kilometric arms  
      Light path length increased: L → L × GFP 

                            GFP~300 for Advanced Virgo 
      Low-pass filter on the IFO frequency response: 
        processes faster than the light storage time are filtered 
 

→ Add recycling mirror between the input laser and the beamsplitter 
      IFO set to the dark fringe 
        + highly reflecting mirrors 
        Pin → Pin × Grec, Grec~40 for Advanced Virgo 
 

→ Minimize transmission and losses for all mirrors 
      Set the gains of the interferometer cavities    
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Improving the interferometer sensitivity 
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Noise & sensitivity 
 Noise: any kind of disturbance which pollutes the dark fringe output signal 
 

 Detecting a GW of frequency f ↔ amplitude h « larger » than noise at that frequency 
 

 Interferometers are wide-band detectors 
    GW can span a wide frequency range 
    Frequency evolution with time is a key feature of some GW signals 
      → Compact binary coalescences for instance  
 

 Numerous sources of noise 
    Fundamental 
      → Cannot be avoided; optimize design to minimize these contributions 
    Instrumental 
      → For each noise, identify the source; then fix or mitigate 
      → Then move to the next dominant noise; iterate… 
    Environmental 
      → Isolate the instrument as much as possible; monitor external noises 
 

 IFO sensitivity characterized by its power spectrum density (PSD, unit: 1/√Hz) 
 

    Noise RMS in the frequency band [fmin;fmax] = 14 ∫
fmax

min

f

f
2 df (f)PSD



Main interferometer noises 
Thermal noise  

(coating + suspension) 

Radiation 
pressure  

fluctuation 

Residual gas 
(phase noise) 

 Seismic vibration 
 Newtonian noise 

Stray-light 

Shot noise 

Residual 
laser noise 
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From initial to advanced detectors 
 Goal: to improve the sensitivity by one order of magnitude 
    Volume of observable Universe multiplied by a factor 1,000 
    Rate should scale accordingly 
      → Assuming uniform distribution of sources (true at large scale) 
 
 A wide range of improvements  
    Increase the input laser power 
    Mirrors twice heavier 
    Increase the beamspot size on the end mirrors 
    Fused silica bonding to suspend the mirrors 
    Improve vacuum in the km-long pipes 
    Cryotraps at the Fabry-Perot ends 
    Instrumentation & optical benches 
      under vacuum 
 
 Advanced LIGO (aLIGO) funded a year or so before Advanced Virgo (AdV) 
    Financial crisis in 2008-2010… 
   → aLIGO ready for its first « observation run » in September 2015 
    AdV upgrade still in progress 16 



A worldwide network 
of gravitational wave 

interferometric detectors 
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Interferometer angular response 
 An interferometer is not directional: it probes most of the sky at any time 
    More a microphone than a telescope! 
 
 The GW signal is a linear combination of its two polarisations  
                           h(t) = F+(t) × h+(t) + F×(t) × h×(t) 
    F+ and F× are antenna pattern functions which depend on 
      the source direction in the sky w.r.t. the interferometer plane 
      → Maximal when perpendicular to this plane 
      → Blind spots along the arm bisector (and at 90 degres from it) 
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A network of interferometric detectors 
 A single interferometer is not 
   enough to detect GW 
    Difficult to separate a signal 
      from noise confidently 
    There have been unconfirmed 
      claims of GW detection 
 
→ Need to use a 
     network of interferometers 
 

 Agreements (MOUs) between the 
   different projects – Virgo/LIGO: 2007 
    Share data, common analysis, 
      publish together 
 

 IFO: non-directional detectors; 
   non-uniform response in the sky 
 

 Threefold detection: reconstruct 
    source location in the sky 19 
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Exploiting multi-messenger information 
Transient GW events are energetic 
    Only (a small) part of the released energy is converted into GW 
      → Other types of radiation released: electromagnetic waves and neutrinos  
 

 Astrophysical alerts ⇒ tailored GW searches 
    Time and source location known ; possibly the waveform  
      → Examples: gamma-ray burst, type-II supernova 
    

 GW detectors are also releasing alerts to a worldwide network of telescopes 
    Agreements signed with ~75 groups – 150 instruments, 10 space observatories 
 
 
 
 
 
 
 
 
 Low latency h-reconstruction and data transfer between sites 
    Online GW searches for burst and compact binary coalescences 20 



The Advanced LIGO 
«Observation 1» Run 
(2015/09 – 2016/01) 
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aLIGO O1 Run: Observing time 
 September 2015 – January 2016 
    GW150914 showed up a few days before the official start of O1, 
      during the « Engineering Run 8 » 
   → Both interferometers were already working nominally 
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aLIGO O1 Run: Sensitivity 
 Sensitiviy much improved with respect to the initial detectors 
    Factor 3-4 in strain 
      → Factor 30-60 in volume probed 
 

 Gain impressive at low frequency – where the signal GW150914 is located  
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aLIGO O1 Run: GW150914-like horizon 
 Sky-averaged distance up to which a given signal can be detected 
    In this case a binary black hole system with the measured GW150914 parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Only depends on the actual sensitivity of the interferometer 
    Online monitoring tool used during data taking 
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GW 150914   
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Compact binary coalescence search 
 Well-predicted waveform 
    → Matched-filtering technique (optimal) 
          Noise-weighted cross-correlation of 
            data with a template (expected signal) 
 

 Parameter space covered by a 
    template bank 
    Analytical for NS-NS, BH-NS 
    Analytical + numerical for BH-BH 
    Parameters: mass and spin 
      of the initial black holes 
      → ~250,000 templates in total 
 

 Look for triggers from the two IFOs 
   using the same template and coincident in time 
    Check matching between signal and template 
   

 Offline search 
    Part of the parameter space searched online 
    Two independent offline pipelines 26 

FT of the data Signal template 

Noise power spectral density 



GW150914 signal strong enough to be immediately identified on spectrograms 

Hanford Livingston 

Burst search 
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 Search for clusters of excess power (above detector noise) in time-frequency plane 
    Wavelets 
 
 
 
 
 
 
 
 
 
 

 Chirp-like shape: frequency and amplitude increasing with time 
 
 Coherent excess in the two interferometers 
    Reconstructed signals required to be similar 
 
 Efficiency similar to (optimal) matched filtering for binary black hole – short signal 
    Online last September for O1 



 Detector configuration frozen to integrate enough data for background studies 
    ~40 days (until end of October) corresponding to 16 days of coincidence data 
   → Steady performances over that period 
 

 Tens of thousands of probes monitor the  
   interferometer status and the environment 
    Virgo:    h(t) ~ 100 kB/s 
                 DAQ ~ 30 MB/s 
 

 Help identifying couplings 
   with GW channel  
    Quantify how big a disturbance should 
      be to produce such a large signal 
    Not to mention the distinctive shape 
      of the GW150914 signal 
 

 Extensive studies performed 
    Uncorrelated and correlated noises 
    Bad data quality periods identified and vetoed 
   → Clear conclusions:  nominal running, no significant environmental disturbance 

Data quality 
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 Studies show that GW150914 is not due to issues with the interferometer running, 
   nor the reflection of environmental disturbances (correlated or not) 
   → How likely is it to be due to « expected » noise fluctuations? 
         Assess signal significance! 
 
 Input: (only) 16 days of coincidence data  
   → Time shift method to generate a 
         much larger background dataset 
 
 Reminder: real GW events are shifted 
   by 10 ms at most between IFOs 
    Light travel time over 3,000 km 
 
 By shifting one IFO datastream by a 
   (much) larger time, one gets new 
   datastreams in which « time » coincidence 
   are necessarily due to noise 
    16 days of coincident data → tens of thousands years of background « data »  

Background estimation 
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Signal significance – CBC analysis 
 x-axis: detection 
   statistic used to 
   rank events 
   (the « SNR ») 
    GW150914: 
      strongest 
      event (true in 
      both IFOs) 
 

 Observed 
   (zero-lag) 
   events 
  

 Solid lines: 
   2 background 
   estimations 
   (from time-lag) 
 

 SNR ~ 23.6; false alarm rate < 1 event / 203,000 years  
   false alarm probability  < 2×10−7 (> 5.1 σ) 30 



Why two black holes? 
 Result of matched filtering! 
    Excellent match between 
      the best template and the 
      measured signal 
 

 Two massive compact objects 
   orbiting around each other at 
   75 Hz (half the GW frequency), 
   hence at relativistic speed, 
   and getting very close before 
   the merging: only a few RS away! 
     

→ Black holes are the only 
     known objects which can 
     fit this picture  
   

 About 3 MSun radiated in GW 
 

 The « brighest » event ever seen 
    More powerful than any gamma-ray burst detected so far 
    Peak power larger than 10 times the power emitted by the visible Universe 31 



 15 parameters total 
    Initial masses, initial spins, final mass, final spin, 
     distance, inclination angle + precession angle (if exists) 
 

 Bayesian inference 
    Probability density function for each parameter: mean value + statistical errors 
 
 
 
 

 θ: Parameters 
 d: Data 
 H: Model 
 
 Compare results 
   from two models 
   → Systematic errors  

θJN 

m1 

m2 dL 

S1 

S2 

Parameter estimation 
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Parameter estimation 
 Impact of the black hole parameters on the waveform 
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Skymap 
 Sky at the time of the event 
 
 Skymap contoured in 
   deciles of probability 
 
 90% contour : 
   ~ 590 degres2 
    Full Moon: 0.5 degres2 

 
 View is from the South 
    Atlantic Ocean, North at 
    the top, with the Sun rising 
    and the Milky Way 
    diagonally from NW to SE 
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Looking for 
GW150914 

counterparts  Sky coverage 
 
 
 
 
 
 
 
 
 

 Observation timeline: no counterpart found – none expected for a binary black hole  

36 



Conclusions 
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Outlook 
 The network of advanced gravitational wave interferometers is taking shape 
    The two aLIGO detectors started taking data last September and detected 
      the first direct gravitational wave signal (GW150914) 
    Virgo is completing its upgrade and is fully committed to joining LIGO asap 
       → The right time for new groups to join the collaboration… 
    KAGRA should then join the network in 2018 
    And possibly a third LIGO detector (LIGO-India) some years later 
 
 Sensitivity already good enough to detect gravitational waves  
    Improvements expected in the coming years 
    R&D activities already ongoing for 3rd generation instruments 
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Outlook 
 The network of advanced gravitational wave interferometers is taking shape 
    The two aLIGO detectors started taking data last September and detected 
      the first direct gravitational wave signal (GW150914) 
    Virgo is completing its upgrade and is fully committed to joining LIGO asap 
       → The right time for new groups to join the collaboration… 
    KAGRA should then join the network in 2018 
    And possibly a third LIGO detector (LIGO-India) some years later 
 
 Sensitivity already good enough to detect gravitational waves  
    Improvements expected in the coming years 
    R&D activities already ongoing for 3rd generation instruments 
 
 
 LIGO and Virgo will release results from the full 
   « Observation 1 » run analysis tomorrow night 
    Stay tuned… 
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GW detector peak sensitivity evolution vs. time 
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