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1 Introduction

We study in this paper the propagation of an optical beam inside the Output Mode Cleaner
(OMC) cavity in order to test the tolerancing of construction specifications. The main goal
of this problem is to check if the beam stay inside polished mirrors during the propagation
assuming random angular errors for mirror positions. The diameters of mirrors, assume to
be bmm, and the maximum allowed angular error, which we would determine, constitute the
set of two relevant parameters in this problem if we exclude configuration parameters of the
OMC. To solve the problem we will progress in two stpng, first we will establish the equations
of the beam propagation inside the cavity using the geometrical optics and second we will do
the numerical resolution with a C++ code of those equations and find the maximum allowed
angular error.

2 Equations

2.1 Introduction to the mathematical problem
2.1.1 Configuration of the cavity

We can find characteristics of the OMC in the Advanced Virgo Technical Design Report. We
put a number for each mirror following the figure [I] and all variables in relation of a mirror will
take the same subscript number. Angles are oriented in the counterclockwise. The axis going
from the center O to the center O, with the associated base vector ex will be the reference axis
for all of this study. The origin of frames will be O;. We will use unitary vectors u; parallel
to the mirror ¢ (see Fig. [1]). The pair of vectors (ey, u;) make a base which is not orthogonal.
Finally, mirrors 1 and 4 are plane and mirrors 2 and 3 are spherical.
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Figure 1: Configuration of the cavity

We will consider beams only inside the cavity, input and output beams are deduced from
corresponding inside beam with the refraction law.

VIR-0266B-12 - October 17, 2012



3,13 2 EQUATIONS

2.1.2 Position of mirrors and beams

The position of mirrors and beams is done in the following way (see figure. :

e ~; is the angle between e, and u; which represent the angular position of the mirror ¢
from the z axis.

e «; is the angle between an orthogonal axis to the mirror ¢ and the incident beam.
e (. is the angle between an orthogonal axis to the mirror 7 and the reflected beam.

e [,; is the distance between the center of the mirror ¢ and the impact point of the beam.

Mirror ©

Beam

Figure 2: Variables of position for mirrors and beams

Coordinates of centers Oy, O, O3, O, are respectively in their associated frame

(<0,0>7<L,0>,<L+ L l >).
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Figure 3: Positions of mirrors 8 and 4

VIR-0266B-12 - October 17, 2012



2.2 Beam propagation with plane mirrors 4/IE|

2.2 Beam propagation with plane mirrors
2.2.1 Angles of incident beam as a function of the reflected beam

The angle «; of the incident beam on the mirror j is calculated as a function of the angle a;,
by getting the angle #. This angle represent the angular position of the beam from the x axis
as shown on the figure

€x

Figure 4: Beam positions

The angle 6 is:
v T
0:%—1——+Oéir=’7j+§

5 + a; (1)

Then we get:

’C(j:air—l—%—%" (2)

Comment : In our case of closed cavity, with the equation [2| we find the beam after
reflections on the four mirrors has to respect the following equation:

a;=—o, +2(v2—v+7— ) (3)

We observe it exist a solution for the beam to come back with the same angular position
using plane mirrors only in the particular case of (9 —v4+ 73 —71) =0

2.2.2 Beam position from center of mirrors

We will specify in this section the position of the incident beam on the mirror j from the center
O; as a function of the reflected beam characteristics on the mirror .. We will represent the
propagation of the beam from ¢ to j with the vector vi;. In order to obtain searched parameters
we will make projection of all quantities on base vectors (ex, u;).

First, we need to formulate u; in the chosen base as:

u; =aex + by (4)
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We know u; - ex = cos(7;), uj-ex = cos(7;) and u; - uy = cos(y; —7;), from that scalar products
we obtain :

e = S = %) sin(y;)
sin(v;) eX+sin(7j) ] Q

Second, we formulate in the same way the vector vy; as :
Vij :&ex+ij (6)

We need following scalar products :
T . T .
Vij - €x = —fiij cos(7y; + 5 + ip) = i sin(y; + i) and vi; - w5 = p; cos(§ — ;) = py;sin(ay).
We specify the direction of propagation by using the constant p;; which is p19 = pus = 1 and

Poa = pz1 = —1
After few trigonometrical calculus, we obtain:

cos(a;)

cos(a + i)
Y sin(y;)

infyy) g

Vij = x ij

Now, we will express the coordinates (zo,, L;) in the frame (ex,u;) as a function of the
coordinates (xo,, L;). For this, we will write the equation of the line describing the propagation
of the beam with the vector vy, the origin (ze,, L;) and the path parameter r:

(o,8x + Liui) + rvy; (8)

The arriving impact point 7 on the mirror j correspond to the intersection between this line

and the line representing the mirror j which has the coordinate rp, along the z axis. This
intersection correspond to the following relation :

To,ex + L,u; + TijVij = To,;€x + lelj (9)

Since the vectors ex and u; form a base, the previous equation is verified when we have :

sin(y; — ) cos(a)
ro, + Li———— + rijij =5 = To, (10)
sin(7;) 77 sin(v;) ’

With the equation [10] we get r;; :

sin(y; — %) | sin(y;)
o= i — o, — L S 11
o = s [, =20, ~ L) S -
Then we get the other coordinate L; from 7;; :
sin(y; sin(v; — ;) | sin(vy; cos( i + Vi
%Zh.()—MJMJ%Q—M gj q (Dij(. ) (12)
sin(y;) sin(v;) cos(a;) sin(v;)

VIR-0266B-12 - October 17, 2012
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Let rewrite this expression as :

' sin(y; — i) | cos(aur + i) (13)
sin(7;) ’ Z sin(7;) cos(a;)

With equations 2| and [L3]| we can compute all reflexions inside the cavity taking care to put this
additional equation for the reflection law:

Qi = — 0O (14)

2.3 Curved mirrors
2.3.1 Characterization of spherical mirrors

At this point, we will take into account the curvature radius of mirrors 2 and 3. First, we need
to determine the coordinate position (zr,, Li,) and (xx,, Li,) of respective sphere centers Ky
and /C3 in the corresponding vector basis.

e

Figure 5: Center position of the spherical mirror 2

As shown on the figure |5 we get:

R T R R
(Trys Lic,) = | L — W_g)> —Rtan(y, — 5) = (L ~ sn(m)’ taan)) (15)

With the figure [6] we get:

l R l R )

L =1L — —
(xlC3> /Cg) ( +tan ;

(v3)  sin(ys) sin(fy3)+tan(73) (16)
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713 2 EQUATIONS

Figure 6: Center position of the spherical mirror 3

2.3.2 Incident beam position on spherical mirrors

We will determine the intersection points 7 and 73 of incident beams with circle associated to
the curved mirror 2 and 3.
The equation of such circles is:

[(xfoj — 2k, )ex + (L, — Ly, ;)| = R? (17)
This give:
(1, — i,V + (I = Ly} + 20y, — (I — Ly - e = B (19
We get finally:
(2o, = ax,)* + (L) — Li,)* + 2w, — xx,)(L; — Lx;) cos(y;) = R? (19)

We formulate the line equation corresponding to the beam propagation using vector basis
(ex,uy) :
sin(vy; — A sin i
O =), sin() j}
sin(;) sin(;)
cos(a; cos(ayr + i
sin(;) sin(y;)

ro,ex + Liui+1rvy = zo,ex+ L; {

+ T hj [
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2.3 Curved mirrors 8 Aﬁl

Including equation 20| in the equation (19| we get the equation giving the parameter r;; for
the intersection points 7"

R sm sin(y; — ) ,“lecos(aj) e 2
Sm(%) YT sin(y;) ’
{Lz sin (7 /J/m cos(avir + i) B L,C} 2
sin ’VJ sin(7;)
sin(y; — %) ,  cos(a;)
P L, 20 = ) Z -
+ [$O + sin(y;) i sin(y;) K
Sm(%) / COS(O‘W + %’)
2 v Sy e e 2y

We rewrite this equation using quantities a, b, ¢, d in order to simplify the equation:
(a+ b?“;j)2 + (c+ er’-j)Q +2(a+ brgj)(c + drzl-j) cos(v;) = R? (22)
Then we obtain:
r§j2 (b°+d*+2bd cos(v;))+71; (2ab+2cd+2(ad+be) cos(v;))+(a’+c*+2ac cos(v;))—R* = 0 (23)

It is a quadratic equation with the form Aréﬁ + Bri; + C = 0. The solution which we are
seeking, is at the "right" side of the circle:

o _ —B+VB—4AC
v 2A

(24)

2.3.3 Reflection on spherical mirrors

The radius joining the center K; with the point 7 represent the orthogonal to the tangent of
the spherical mirror at this point. With the Coordlnates of these points we get unit vector u’L
associated to this orthogonal direction as following:

- -
u/J_ ICT’ ICT/ (25)
Yook R

From the figure [7| we calculate the angular correction 7} to make transition from plane
mirror to spherical mirror.

T )
ugL ‘uy = COS(§ — 7;) = Sln(’y;-) (26)

(a—Fbrij)COS(’;j) + (C‘l‘d""ij) _ Sln(’)/é) (27)
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/uvjl

Figure 7: Reflections on the spherical mirror j

We deduce from the figure [7|the equation for reflection law including angular correction due
to sphericity:

jp = —Q; + 2'}/; (28)

2.3.4 Variables in an equivalent system of mirror parallel to a reference plane
mirror

The position along x axis of the equivalent mirror j = 2,3 which pass at the point 7/ is:

sin(y; — ;) cos(a;)
! — . Li—j L 17 Z 29
x(’)j To, + sin(vj) ij Mg sin(’yj) ( )

In the same way we find the position of the incident beam on the equivalent mirror along
the u; axis

P, sin(y) _ s cos(air + %) (30)
sin(y;) sin(;)

.
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3 Numerical resolution

3.1 The method and the code

The cavity is assumed to be at the resonance when the propagating beam comes back with the
same position and the same incident angle. For the ideal configuration of OMC, the position
L1eso and the angle aq,.c50, Wwhich make resonant the beam inside the cavity, are obvious, . e.
Liyeso = 0 and aqreso = —71. But in the case of random errors for the angular position of
mirrors there are no obvious solutions. Since analytical solutions for the beam propagation
inside the cavity with four mirrors are too complicated and not relevant for our problem, we
will proceed by using an algorithm to find the solution (Lieso, (1reso). 10 help us, previous
equations had been established in order to be used iteratively and therefore easily implementable
in any codes. Initialization of the algorithm is done by taking the value (L, 1) assuming the
position of mirrors 1 would be the ideal configuration for the beam, i.e. (L1 =0,y = —y1 £ ¢)
where ¢ is the angular error. The procedure of the algorithm consist to find roots of the two
functions L1 (L1, aq) and daq(Lq, 1) which are the differences of value Ly and «; before and
after a round trip of the beam inside the cavity. Then at each iteration we correct the couple
of parameters (L, ;) to have null differences 6L and dc;. The algorithm has been optimized
by using the "good Broyden’s method" for finding the two roots of two variables functions.
The program works with an input file of parameters and create an output file with results.
Below is shown an example of input file, "par_cavite.dat", with a set of parameters , all of
them are commented. For simplicity of input file the sign of angular error implemented for each
mirror is hard written in the code but can be changed easily before compiling the code again.
The compilation is done by writing in a command terminal " make versionil" after going in
the corresponding file, such as
"versionll_recherche_resonnance_optimisee_fonction_erreur_angulaire/".

*oRkkkokkokkRkkkokkokk CAvIity parameters *kkkkkkkkkkkrkkkkkkkrkk
60 Length of cavity in mm

19.209 Distance between two adjacent optical centers in mm
8.876 Angle position of mirror in degree

1499 Radius of curvature for spherical mirrors in mm
0.03 Angular error for mirror positioning in degree
0.0002 First iteration angular step in degree

0.001 First iteration position step in mm

1.E-6 Precision for finding roots (for angles in degree and position in mm)

The code is started by typing in a command terminal " ./versionil ", then we obtain this
output file "donnees_sortie_vi1i.dat":

1 -8.906 0 -0.3776254233884 0.003930800733225
2 -8.9058 0.001 -0.37871115559 0.003932149038560
3 -9.173909486653 -0.347783936083 0.7576565219381 0.004552065445260
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4 -9.2322870569091 -0.1151910791433 0.9057057214617 0.005441365775734

5 -8.875212713339 -1.5381011266109 8.339724963990e-05 -2.195989549286¢-06
6 -8.875025350805 -1.538231933402 -0.00058988184932 -3.547156279981e-06

7 -8.875054119088 -1.538117252958 -0.00051692015003 -3.108150088859%¢-06

8 -8.875258058830 -1.537304763700 4.650376093096e-07 2.794956321938e-09

Mirror_Nb alpha gamma L

1 -8.87525789869126 81.094 -1.53730429866302
2 -8.93674194116955 98.906 -1.57015133633375
3 8.81527897825156 81.1564 -1.5693452250757

4 8.87672102174845 98.846 -1.53704663888607

The upper part show the different iteration of the program with the iteration numbers in the
first column, the angle a4 in the second one, the position L; for the third, and differences 6L,
and day for the two last column. The lower part give results for each mirrors respect to the
commented column.

3.2 Results

The main idea is to test the tolerancing of construction specifications for the OMC, thus it is
essential to take the worst case of angular error configuration. We can find this condition by
doing several tests and we get the following sign configuration for the angular error e.:

Y1 =710 — Ey O + &,
72:’720+€'y or —e&,
Y3 = Y30 + €y OF — &y

V4 = Va0 — €4 OF + &, (31)

where 7,0 = 90 £ 8.876 ° correspond to the ideal configuration of OMC. The two possibility of
sign configurations are equivalent and give identical results.
The set of parameters taken in the Advanced VIRGO TDR are:

~Yio = 90 £ 8.876°

L = 60 mm (32)
[ =19.20mm (33)
RoC' = 1499 mm (34)

The precision chosen for finding roots is a difference of §L; and dor; less than 1076, Within this
configuration we can plot position offset Lq,.s, and tilt oy, in comparison to the ideal OMC.
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Figure 8: Offset position Lireso as a function of angle error e,

The first observation of the curve in figure |§| is the offset on each mirror is quite close and
strongly linear dependent on the angle error. Assuming the equation Li,¢s, = a e, the slope for
the two lines are a = 52.3mm - (°)~! for the upper one and a = 51.2mm - (°)~! for the lower
one. This linear behaviour is not so surprising since we are dealing with very small angles ¢,
and this has the consequence to make this problem mainly dependent to the first order of e,.

With e, = 0.03°, which was the specification to be checked, we find an offset Li,eso =
1.57mm. Then, it is usual to take 2.5r for calculate the edge of mirrors. Assuming the beam
has a radius around r = 0.3 mm (the beam waist is 0.256 mm), this constraint corresponds to
1.57 4+ 2.57 = 2.32mm, which is less than the radius of the polished surface mirror (2.5 mm).
These results confirm that an error of 0.03° is acceptable for the actual configuration of OMC
even in the worst case. Similar results had been obtain by Romain Gouaty with a naive model
of cavity which confirm the coherence of such results with the code.

In the same idea we can check the angle offset (ayreso — Yi0) as a function of angle error
4. We observe in figure [J that the angular offset is also enough small to does not have any
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Figure 9: Angle offset (tireso — Yio) as a function of angle error e .

consequence on the surrounding optical set-up.

4 Conclusion

The tolerancing e, = £0.03 ° confirm to us that the resonant beam does not exit from polished
surfaces and does not have any impact on the optical set-up.

The code can be used for other configurations and can be easily modified to adapt it to
other kind of cavity such as one spherical mirror for example.

The equations developed in the first part can be used in other contexts and other program-
ming languages.
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