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1 Introduction

We study in this paper the propagation of an optical beam inside the Output Mode Cleaner
(OMC) cavity in order to test the tolerancing of construction speci�cations. The main goal
of this problem is to check if the beam stay inside polished mirrors during the propagation
assuming random angular errors for mirror positions. The diameters of mirrors, assume to be
5mm, and the maximum allowed angular error, which we would determine, constitute the set of
two relevant parameters in this problem if we exclude con�guration parameters of the OMC. To
solve the problem we will progress in two steps, �rst we will establish the equations of the beam
propagation inside the cavity using the geometrical optics and second we will do the numerical
resolution with a C++ code of those equations and �nd the maximum allowed angular error.

2 Equations

2.1 Introduction to the mathematical problem

2.1.1 Con�guration of the cavity

We can �nd characteristics of the OMC in the Advanced Virgo Technical Design Report. We
put a number for each mirror following the �gure 1 and all variables in relation of a mirror will
take the same subscript number. Angles are oriented in the counterclockwise. The axis going
from the center O1 to the center O2 with the associated base vector ex will be the reference axis
for all of this study. The origin of frames will be O1. We will use unitary vectors ui parallel
to the mirror i (see Fig. 1 ). The pair of vectors (ex,ui) make a base which is not orthogonal.
Finally, mirrors 1 and 4 are plane and mirrors 2 and 3 are spherical.

Figure 1: Con�guration of the cavity

We will consider beams only inside the cavity, input and output beams are deduced from
corresponding inside beam with the refraction law.
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2.1.2 Position of mirrors and beams

The position of mirrors and beams is done in the following way (see �gure. 2):

• γi is the angle between ex and ui which represent the angular position of the mirror i
from the x axis.

• αi is the angle between an orthogonal axis to the mirror i and the incident beam.

• αir is the angle between an orthogonal axis to the mirror i and the re�ected beam.

• Li is the distance between the center of the mirror i and the impact point of the beam.

Figure 2: Variables of position for mirrors and beams

Coordinates of centersO1, O2, O3, O4 are respectively in their associated frame

(
(0, 0), (L, 0), (L+

l

tan(γ3)
,− l

sin(γ3)
), (

l

tan(γ4)
,− l

sin(γ4)
)

)
.

Figure 3: Positions of mirrors 3 and 4
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2.2 Beam propagation with plane mirrors

2.2.1 Angles of incident beam as a function of the re�ected beam

The angle αj of the incident beam on the mirror j is calculated as a function of the angle αir
by getting the angle θ. This angle represent the angular position of the beam from the x axis
as shown on the �gure 4.

Figure 4: Beam positions

The angle θ is:

θ = γi +
π

2
+ αir = γj +

π

2
+ αj (1)

Then we get:
αj = αir + γi − γj (2)

Comment : In our case of closed cavity, with the equation 2 we �nd the beam after
re�ections on the four mirrors has to respect the following equation:

α1 = −α1r + 2 (γ2 − γ4 + γ3 − γ1) (3)

We observe it exist a solution for the beam to come back with the same angular position
using plane mirrors only in the particular case of (γ2 − γ4 + γ3 − γ1) = 0

2.2.2 Beam position from center of mirrors

We will specify in this section the position of the incident beam on the mirror j from the center
Oj as a function of the re�ected beam characteristics on the mirror i. We will represent the
propagation of the beam from i to j with the vector vij. In order to obtain searched parameters
we will make projection of all quantities on base vectors (ex,uj).

First, we need to formulate ui in the chosen base as:

ui = a ex + buj (4)
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We know ui · ex = cos(γi), uj · ex = cos(γj) and ui ·uj = cos(γi− γj), from that scalar products
we obtain :

ui =
sin(γj − γi)

sin(γj)
ex +

sin(γi)

sin(γj)
uj (5)

Second, we formulate in the same way the vector vij as :

vij = a ex + buj (6)

We need following scalar products :

vij · ex = −µij cos(γi +
π

2
+ αir) = µij sin(γi + αir) and vij · uj = µij cos(

π

2
− αj) = µij sin(αj).

We specify the direction of propagation by using the constant µij which is µ12 = µ43 = 1 and
µ24 = µ31 = −1

After few trigonometrical calculus, we obtain:

vij = µij
cos(αj)

sin(γj)
ex − µij

cos(αir + γi)

sin(γj)
uj (7)

Now, we will express the coordinates (xOj
, Lj) in the frame (ex,uj) as a function of the

coordinates (xOi
, Li). For this, we will write the equation of the line describing the propagation

of the beam with the vector vij, the origin (xOi
, Li) and the path parameter r:

(xOi
ex + Liui) + rvij (8)

The arriving impact point T on the mirror j correspond to the intersection between this line
and the line representing the mirror j which has the coordinate xOj

along the x axis. This
intersection correspond to the following relation :

xOi
ex + Liui + rijvij = xOj

ex + Ljuj (9)

Since the vectors ex and uj form a base, the previous equation is veri�ed when we have :

xOi
+ Li

sin(γj − γi)
sin(γj)

+ rijµij
cos(αj)

sin(γj)
= xOj

(10)

With the equation 10 we get rij :

rij = µij

[
xOj
− xOi

− Li
sin(γj − γi)

sin(γj)

]
sin(γj)

cos(αj)
(11)

Then we get the other coordinate Lj from rij :

Lj = Li
sin(γi)

sin(γj)
− µij

[
xOj
− xOi

− Li
sin(γj − γi)

sin(γj)

]
sin(γj)

cos(αj)
µij

cos(αir + γi)

sin(γj)
(12)
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Let rewrite this expression as :

Lj = Li
sin(γi)

sin(γj)
−
[
xOj
− xOi

− Li
sin(γj − γi)

sin(γj)

]
cos(αir + γi)

cos(αj)
(13)

With equations 2 and 13 we can compute all re�exions inside the cavity taking care to put this
additional equation for the re�ection law:

αir = −αi (14)

2.3 Curved mirrors

2.3.1 Characterization of spherical mirrors

At this point, we will take into account the curvature radius of mirrors 2 and 3. First, we need
to determine the coordinate position (xK2 , LK2) and (xK3 , LK3) of respective sphere centers K2

and K3 in the corresponding vector basis.

Figure 5: Center position of the spherical mirror 2

As shown on the �gure 5 we get:

(xK2 , LK2) =

L− R

cos(γ2 −
π

2
)
,−R tan(γ2 −

π

2
)

 =

(
L− R

sin(γ2)
,

R

tan(γ2)

)
(15)

With the �gure 6 we get:

(xK3 , LK3) =

(
L+

l

tan(γ3)
− R

sin(γ3)
,− l

sin(γ3)
+

R

tan(γ3)

)
(16)
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Figure 6: Center position of the spherical mirror 3

2.3.2 Incident beam position on spherical mirrors

We will determine the intersection points T ′2 and T ′3 of incident beams with circle associated to
the curved mirror 2 and 3.

The equation of such circles is:[
(x′Oj

− xKj
)ex + (L′j − LKj

)uj)
]2

= R2 (17)

This give:

(x′Oj
− xKj

)2 + (L′j − LKj
)2 + 2(x′Oj

− xKj
)((L′j − LKj

)uj · ex = R2 (18)

We get �nally:

(x′Oj
− xKj

)2 + (L′j − LKj
)2 + 2(x′Oj

− xKj
)(L′j − LKj

) cos(γj) = R2 (19)

We formulate the line equation corresponding to the beam propagation using vector basis
(ex,uj) :

xOi
ex + Li ui + r vij = xOi

ex + Li

[
sin(γj − γi)

sin(γj)
ex +

sin(γi)

sin(γj)
uj

]
+ rµij

[
cos(αj)

sin(γj)
ex −

cos(αir + γi)

sin(γj)
uj

]
(20)
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Including equation 20 in the equation 19 we get the equation giving the parameter r′ij for
the intersection points T ′j :

R2 =

[
xOi

+ Li
sin(γj − γi)

sin(γj)
+ r′ijµij

cos(αj)

sin(γj)
− xKj

]2
+

[
Li

sin(γi)

sin(γj)
− r′ijµij

cos(αir + γi)

sin(γj)
− LKj

]2
+ 2

[
xOi

+ Li
sin(γj − γi)

sin(γj)
+ r′ijµij

cos(αj)

sin(γj)
− xKj

]
×

[
Li

sin(γi)

sin(γj)
− r′ijµij

cos(αir + γi)

sin(γj)
− LKj

]
cos(γj) (21)

We rewrite this equation using quantities a, b, c, d in order to simplify the equation:

(a+ b r′ij)
2 + (c+ d r′ij)

2 + 2(a+ b r′ij)(c+ d r′ij) cos(γj) = R2 (22)

Then we obtain:

r′ij
2
(b2+d2+2bd cos(γj))+r

′
ij (2ab+2cd+2(ad+bc) cos(γj))+(a2+c2+2ac cos(γj))−R2 = 0 (23)

It is a quadratic equation with the form Ar′ij
2 + Br′ij + C = 0. The solution which we are

seeking, is at the "right" side of the circle:

r′ij =
−B +

√
B2 − 4AC

2A
(24)

2.3.3 Re�ection on spherical mirrors

The radius joining the center Kj with the point T ′j represent the orthogonal to the tangent of
the spherical mirror at this point. With the coordinates of these points we get unit vector u′⊥j
associated to this orthogonal direction as following:

u′⊥j =

−−→
KT ′

‖
−−→
KT ′‖

=

−−→
KT ′

R
(25)

From the �gure 7 we calculate the angular correction γ′j to make transition from plane
mirror to spherical mirror.

u′⊥j · uj = cos(
π

2
− γ′j) = sin(γ′j) (26)

(a+ b r′ij) cos(γj) + (c+ d r′ij)

R
= sin(γ′j) (27)
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Figure 7: Re�ections on the spherical mirror j

We deduce from the �gure 7 the equation for re�ection law including angular correction due
to sphericity:

αjr = −αj + 2γ′j (28)

2.3.4 Variables in an equivalent system of mirror parallel to a reference plane

mirror

The position along x axis of the equivalent mirror j = 2, 3 which pass at the point T ′j is:

x′Oj
= xOi

+ Li
sin(γj − γi)

sin(γj)
+ r′ij µij

cos(αj)

sin(γj)
(29)

In the same way we �nd the position of the incident beam on the equivalent mirror along
the uj axis

L′j = Li
sin(γi)

sin(γj)
− r′ij µij

cos(αir + γi)

sin(γj)
(30)
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3 Numerical resolution

3.1 The method and the code

The cavity is assumed to be at the resonance when the propagating beam comes back with the
same position and the same incident angle. For the ideal con�guration of OMC, the position
L1reso and the angle α1reso, which make resonant the beam inside the cavity, are obvious, i. e.

L1reso = 0 and α1reso = −γ1. But in the case of random errors for the angular position of
mirrors there are no obvious solutions. Since analytical solutions for the beam propagation
inside the cavity with four mirrors are too complicated and not relevant for our problem, we
will proceed by using an algorithm to �nd the solution (L1reso, α1reso). To help us, previous
equations had been established in order to be used iteratively and therefore easily implementable
in any codes. Initialization of the algorithm is done by taking the value (L1, α1) assuming the
position of mirrors 1 would be the ideal con�guration for the beam, i. e. (L1 = 0, α1 = −γ1± ε)
where ε is the angular error. The procedure of the algorithm consist to �nd roots of the two
functions δL1(L1, α1) and δα1(L1, α1) which are the di�erences of value L1 and α1 before and
after a round trip of the beam inside the cavity. Then at each iteration we correct the couple
of parameters (L1, α1) to have null di�erences δL1 and δα1. The algorithm has been optimized
by using the "good Broyden's method" for �nding the two roots of two variables functions.

The program works with an input �le of parameters and create an output �le with results.
Below is shown an example of input �le, "par_cavite.dat", with a set of parameters , all of
them are commented. For simplicity of input �le the sign of angular error implemented for each
mirror is hard written in the code but can be changed easily before compiling the code again.
The compilation is done by writing in a command terminal " make version11" after going in
the corresponding �le, such as "version11_recherche_resonnance_optimisee_fonction_erreur_angulaire/".

***************** Cavity parameters ************************

60 Length of cavity in mm

19.209 Distance between two adjacent optical centers in mm

8.876 Angle position of mirror in degree

1499 Radius of curvature for spherical mirrors in mm

0.03 Angular error for mirror positioning in degree

0.0002 First iteration angular step in degree

0.001 First iteration position step in mm

1.E-6 Precision for finding roots (for angles in degree and position in mm)

The code is started by typing in a command terminal " ./version11 ", then we obtain this
output �le "donnees_sortie_v11.dat":

1 -8.906 0 -0.3776254233884 0.003930800733225

2 -8.9058 0.001 -0.37871115559 0.003932149038560

3 -9.173909486653 -0.347783936083 0.7576565219381 0.004552065445260

4 -9.232287059091 -0.1151910791433 0.9057057214617 0.005441365775734
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5 -8.875212713339 -1.5381011266109 8.339724963990e-05 -2.195989549286e-06

6 -8.875025350805 -1.538231933402 -0.00058988184932 -3.547156279981e-06

7 -8.875054119088 -1.538117252958 -0.00051692015003 -3.108150088859e-06

8 -8.875258058830 -1.537304763700 4.650376093096e-07 2.794956321938e-09

Mirror_Nb alpha gamma L

1 -8.87525789869126 81.094 -1.53730429866302

2 -8.93674194116955 98.906 -1.57015133633375

3 8.81527897825156 81.154 -1.5693452250757

4 8.87672102174845 98.846 -1.53704663888607

The upper part show the di�erent iteration of the program with the iteration numbers in the
�rst column, the angle α1 in the second one, the position L1 for the third, and di�erences δL1

and δα1 for the two last column. The lower part give results for each mirrors respect to the
commented column.

3.2 Results

The main idea is to test the tolerancing of construction speci�cations for the OMC, thus it is
essential to take the worst case of angular error con�guration. We can �nd this condition by
doing several tests and we get the following sign con�guration for the angular error εγ:

γ1 = γ10 − εγ or + εγ

γ2 = γ20 + εγ or − εγ
γ3 = γ30 + εγ or − εγ
γ4 = γ40 − εγ or + εγ (31)

where γi0 = 90± 8.876 ◦ correspond to the ideal con�guration of OMC. The two possibility of
sign con�gurations are equivalent and give identical results.

The set of parameters taken in the Advanced VIRGO TDR are:

γi0 = 90± 8.876 ◦

L = 60mm (32)

l = 19.20mm (33)

RoC = 1499mm (34)

The precision chosen for �nding roots is a di�erence of δL1 and δα1 less than 10−6. Within this
con�guration we can plot position o�set L1reso and tilt α1reso in comparison to the ideal OMC.
The �rst observation of the curve in �gure 8 is the o�set on each mirror is quite close and
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Figure 8: O�set position Lireso as a function of angle error εγ.

strongly linear dependent on the angle error. Assuming the equation L1reso = a εγ the slope for
the two lines are a = 52.3mm · (◦)−1 for the upper one and a = 51.2mm · (◦)−1 for the lower
one. This linear behaviour is not so surprising since we are dealing with very small angles εγ
and this has the consequence to make this problem mainly dependent to the �rst order of εγ.

With εγ = 0.03 ◦, which was the speci�cation to be checked, we �nd an o�set L1reso =
1.57mm. Then, it is usual to take 2.5 r for calculate the edge of mirrors. Assuming the beam
has a radius around r = 0.3mm (the beam waist is 0.256 mm), this constraint corresponds to
1.57 + 2.5 r = 2.32mm, which is less than the radius of the polished surface mirror (2.5 mm).
These results con�rm that an error of 0.03 ◦ is acceptable for the actual con�guration of OMC
even in the worst case. Similar results had been obtain by Romain Gouaty with a naive model
of cavity which con�rm the coherence of such results with the code.

In the same idea we can check the angle o�set (αireso − γi0) as a function of angle error
εγ. We observe in �gure 9 that the angular o�set is also enough small to does not have any
consequence on the surrounding optical set-up.

VIR-0266A-12 - July 11, 2012



13/13 4 CONCLUSION

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.01  0.02  0.03  0.04  0.05

A
ng

ul
ar

 o
ff

se
t o

f 
th

e 
re

so
na

nt
 b

ea
m

 (
 °

)

  Angular error ( °) 

mirror 1
mirror 2
mirror 3
mirror 4

Figure 9: Angle o�set (αireso − γi0) as a function of angle error εγ.

4 Conclusion

The tolerancing εγ = ±0.03 ◦ con�rm to us that the resonant beam does not exit from polished
surfaces and does not have any impact on the optical set-up.

The code can be used for other con�gurations and can be easily modi�ed to adapt it to
other kind of cavity such as one spherical mirror for example.

The equations developed in the �rst part can be used in other contexts and other program-
ming languages.
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