Virgo detector characterization activities during the O3 run from latency to gravitational-wave event validation

Amaldi 13, Valencia – July 07, 2019

Nicolas Arnaud (<u>narnaud@lal.in2p3.fr</u>)

Laboratoire de l'Accélérateur Linéaire (CNRS/IN2P3 & Université Paris-Sud) European Gravitational Observatory (Consortium, CNRS & INFN) On behalf of the Virgo Collaboration

VIR-0250A-19

I E G O BERVATORY

Outline

- Introduction
- Highlights and challenges
- DetChar in the O3 run
- Conclusions

M DMS						ITF N	Mode: Science	0 e (0d 3h 19m 50s)	ITF Sta	ate: LOV	V_NOISE	_3_SQZ (0d	3h 21m 39s)		
	SIB1_IP	SIE	B1_BENCH		SIB1_BR		SIB1	_Vert		SIB1_TE		SIB1	_Guard		SIB1_Electr
Injustion	MC_IP				MC_BR		MC_Vert			MC_TE					MC_Electr
Injection	Laser	La	LaserAmpli		LaserChille		SL_TempController		RFC					PC	
	MC_Power		PSTAB		IMC_AA		IMC_AA_GALVO		MC_F0_z		B	BPC		BPC_Electr	
		C	QPD_B1p QPD_B2			QPI	QPD_B5 C			OMC PicoDisable			Shutter		
Detection	SDB1_IP	9	DB1_LC	SDB1_BR		٤.	SDB1_Vert		9	SDB1_TE		SDB1	SDB1_Guard		SDB1_Electr
100	B2_8MHz_DPHI	B4_56MH	z_DPHI	DARM_UC	βF	UN	ILOCK	SSFS_I	JGF		FmodErr		GIPC		EQ_Mode
ISC	B1p_DC	B4_112MH	Iz_MAG		B7_DC		B8_DC		LSC_rms					F	ViolinModes
	BS_IP	BS_F	7	BS_PAY	<i>0</i>	B	5_BR	BS_V	ert		BS_TE		BS_Gua	d	BS_Electr
	NI_IP	NI_F	7	NI_PAY			I_BR	NI_V						d	NI_Electr
		NE_I	NE_F7		N		E_BR	NE_V	ert NE_TE				rd	NE_Electr	
Suspensions	PR_IP	PR_F	PR_F7		PR_PAY		PR_BR PR_Ve			t PR_TE			PR_Guard		PR_Electr
	SR_IP	SR_F	SR_F7				R_BR	_BR SR_Vert		SR_TE			SR_Guard		SR_Electr
	WI_IP	WI_F	WI_F7		WI_PAY		WI_BR WI_V			t WI_TE			WI_Guard		WI_Electr
	WE_IP	WE_	WE_F7		WE_PAY		WE_BR		Vert WE		WE_TE	TE WE_Gua		rd	WE_Electr
Fruizonment	CB_Hall	MC_H	Iall	TCS_zone	es	NE	:_Hall	WE_H	Iall	w	indActivity		Seismo	n	BRMSMon
Environment	INJ_Area			EE_Room	DAC	_Room	Exte	ernal	DeadCha			ihts	SeaA		WAB
T. 6	ACS_CB_Hall ACS	5_TCS_CHILRC	ACS	TB ACS_	_DAQ_Ro	om ACS	6_EE_Room	ACS_MC	:	ACS_IN	ט	ACS_DET		ACS_NE	ACS_WAB
Intrastructures	UPS_TB	UPS_CB	UPS	_мс и	JPS_NE	ų	UPS_WE	FlatChann	iel E	xistChar	nel	ACS_WE	AC	S_CB_CR	ACS_COB
SBE	EIB_SBE	SDB2_SBE		SDB2_LC	SNE	EB_SBE	SNE	B_LC	SWEB_	SBE	SWE	B_LC	SPR	3_SBE	SPRB_LC
TCS	NE_RH			WE_RH			NI_CO2_Laser		WI_CO2_Laser		aser		(Chillers	
sqz	PLL	s	queezer		SQZ_AA		sqz_s	Shutter	C	ohe_CTF	L	SQ	Z_Inj		Rack_TE
	LargeValves	Clean	_Air	TubeStatio	ons	Tube	Pumps	MiniTowers		TurboLinks			RemDryPMP		VAC_SERVOS
vacuum	Pressure	Compres	sedAir	TowerServ	ers	Towe	erPumps	CryoTrap		02	O2_Sensors		Tank		HLS
	DetectorSEnvironme	ControlRoor	n I	Minitowers		ISC	Inje	ction	TCS		Susp	ension	Vac	uum	Metatron
VPM	DetectorMonitor	ing	DataCo	ollection		Storag	ie	Dat	DataAccess		Auton		nation		DetChar
DAG Compating	Latency	Disl	¢	Timing		Timir	ng_rtpc	Timing_dsp		Fast_DAC			ADCs_T	E	Daq_Boxes_TE
DAQ-Computing	DMS_machines	DetOp_ma	achines	olserver	s	h	tpcs	CoilSwitchBoxes		INF_devices			ENV_devices		VAC_devices
Calib_Hrec	CalNE	CalWE	Cal	INJ	CalBS		CalPR	PCalNE		PCalW		HOFT		NCAL	NoiseInjection
ITFOnCall	SoftwareAl		Tempera	aturesAl		Injectio	nAl	,	UpsAl			GeneratorA			TcsAl
DetChar-Ex.Trigger	Hrec_RANGE_B	٩S	GraceD	B_Alert		GRB_Ale	_Alert KAML		AND_Alert s		SNEWS_Alert		S	TATE_VECTOR	

- In the following I will focus on the Virgo Detector Characterization, but the equivalent group exists in LIGO and is extremely active
 - We are working together: common calls, joint projects, visitors, etc.
 - We are also working with KAGRA to help them setting up their DetChar group 2

Detector Characterization (**DetChar**) in a nutshell

Detector Characterization: DetChar

- Detector monitoring
- Detector noise characterization
 - Transient and spectral
 - Noise evolution: it is not stationary!
- Several partners
 - \rightarrow Commissioning & noise hunting
 - Data quality analysis
 - \rightarrow Search groups
 - Data quality information
 - Vetoes: time and frequency domains
 - \rightarrow DAQ / computing
 - Access to flags and vetoes for online and offline analysis
 - \rightarrow Physics groups
 - Vet gravitational-wave (GW) candidates
- Virgo DetChar group
 - About 5 FTE spread among O(20) people
 - Weekly meeting attendance: 15-20 participants on average

Spectrogram of V1:spectro_LSC_DARM_300_100_0_0 : start=1228933569.000000 (Sat Dec 15 18:25:51 2018 UTC)

Highlights and challenges

GW150914

- GW150914: first direct detection of gravitational waves
 - Data recorded: September 15th, 2015
 - Announcement: February 11th, 2016
 - → 5 month-work to acquire enough confidence that this event was a real binary black merger of astrophysical origin
- DetChar companion paper to go along the announcement
 - DetChar strategy: identifying and mitigating noise sources
 - Pipeline background studies
 - Extensive studies of the data around GW150914

Class. Quantum Grav. 33 (2016) 134001

Global 3-detector running

• Individual detector duty cycle: example of Virgo

Global 3-detector running

• Network duty cycle

plot_HLV_science_segments: Number of detectors online 2019-04-01 15:00:00+00:00 UTC -> 2019-07-02 02:07:03+00:00 UTC -- segments: DMT-ANALYSIS_READY (H1-L1), SCIENCE (V1)

Schumann resonances

- Global electromagnetic resonances of the Earth-ionosphere 'waveguide'
 - Extremely low-frequency
 - Generated and excited by lightning
 - Magnetic fields coherent over global distances
- → Potential issue for stochastic background searches
- Use data from a network of magnetometers
 - At GW detector locations
 - At other sites (magnetically quiet)
 - \rightarrow Compute correlations
 - \rightarrow Remove them using Wiener filtering techniques
- References: <u>Class. Quantum Grav. 33 (2016) 224003</u> <u>Class. Quantum Grav. 34 (2017) 074002</u> Phys. Rev. D 97, 102007 (2018)

[arXiv:1802.00885]

Observation run 3

- April 1st 2019: start of Observation run 3
 - One year of global network data taking
 - Three detectors initially: LIGO Hanford, LIGO Livingston, Virgo
 - KAGRA should join the network during O3
 - \rightarrow 4-detector configuration for the first time!

UID	Labels	t_start	t_0	t_end	FAR (Hz)	UTC ~ Created
<u>5190701ah</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1246048403.576563	1246048404.577637	1246048405.814941	1.916e-08	2019-07-01 20:33:24 UTC
<u>5190630ag</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1245955942.175325	1245955943.179550	1245955944.183184	1.435e-13	2019-06-30 18:52:28 UTC
<u>5190602aq</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1243533584.081266	1243533585.089355	1243533586.346191	1.901e-09	2019-06-02 17:59:51 UTC
<u>\$190524q</u>	ADVNO SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242708743.678669	1242708744.678669	1242708746.133301	6.971e-09	2019-05-24 04:52:30 UTC
<u>5190521r</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242459856.453418	1242459857.460739	1242459858.642090	3.168e-10	2019-05-21 07:44:22 UTC
<u>\$190521g</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242442966.447266	1242442967.606934	1242442968.888184	3.801e-09	2019-05-21 03:02:49 UTC
<u>5190519bj</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242315361.378873	1242315362.655762	1242315363.676270	5.702e-09	2019-05-19 15:36:04 UTC
<u>\$190518bb</u>	ADVNO SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242242376.474609	1242242377.474609	1242242380.922655	1.004e-08	2019-05-18 19:19:39 UTC
<u>5190517h</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242107478.819517	1242107479.994141	1242107480.994141	2.373e-09	2019-05-17 05:51:23 UTC
<u>\$190513bm</u>	ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1241816085.736106	1241816086.869141	1241816087.869141	3.734e-13	2019-05-13 20:54:48 UTC
<u>\$190512at</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1241719651.411441	1241719652.416286	1241719653.518066	1.901e-09	2019-05-12 18:07:42 UTC
<u>\$190510g</u>	ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1241492396.291636	1241492397.291636	1241492398.293185	8.834e-09	2019-05-10 03:00:03 UTC
<u>5190503bf</u>	ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1240944861.288574	1240944862.412598	1240944863.422852	1.636e-09	2019-05-03 18:54:26 UTC
<u>5190426c</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1240327332.331668	1240327333.348145	1240327334.353516	1.947e-08	2019-04-26 15:22:15 UTC
<u>5190425z</u>	ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK	1240215502.011549	1240215503.011549	1240215504.018242	4.538e-13	2019-04-25 08:18:26 UTC
<u>5190421ar</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1239917953.250977	1239917954.409180	1239917955.409180	1.489e-08	2019-04-21 21:39:16 UTC
<u>5190412m</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1239082261.146717	1239082262.222168	1239082263.229492	1.683e-27	2019-04-12 05:31:03 UTC
<u>\$190408an</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1238782699.268296	1238782700.287958	1238782701.359863	2.811e-18	2019-04-08 18:18:27 UTC
<u>5190405ar</u>	ADVNO SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK	1238515307.863646	1238515308.863646	1238515309.863646	2.141e-04	2019-04-05 16:01:56 UTC

- Open public alerts
 - Lowest possible latency
 - Preceed vetting in most cases
 - \rightarrow Possible retractions at a later stage
 - Automate tasks as much as possible
 - \rightarrow More events: compact binary coalescences (black holes, neutron stars), etc.

Open data releases

- <u>Gravitational Wave Open Science Center</u>
- Data public around each event when published
- Current policy: given dataset published 18 months after data taking is over
 - \rightarrow Tough schedule for the LIGO and Virgo collaborations
 - (Re)processings, analysis, validation, publication
 - O2 data to be released in a couple of weeks
- Tens of projects already based on LIGO-Virgo open data
 - At all scientific levels, art & science, etc.
- Goal: users should be able to reproduce LIGO-Virgo results
 - \rightarrow Document everything
 - For scientific consistency and with future open data releases in mind

Virgo DetChar in the O3 era

Dataflow

• From the detectors, to the offline validation of online events

State Vector

- Live interferometer status
 - I Hz channel
 - Bit structure
- Bits 0-1: science data taking
- Bit 10: online data quality assessment
 - 1 ↔ Data OK
 - $0 \leftrightarrow$ Data is bad
 - Inputs: saturation flags
 - Output port photodiodes
 - Suspension coil drivers
 - DARM (differential Fabry-Perot arm length) glitch rate
- Constant monitoring of the SCIENCE segments
 - State Vector should match information from the Virgo automated control system
- Bit 10 is only flagging a very small fraction of the data

- 0: h(t) was successfully computed
- 1: science mode button is pushed
- 2: observation ready
- 3: h(t) was produced by the calibration pipeline
- 4: calibration filters settled in
- 5: No stochastic HW injections
- 6: No CBC HW injection
- 7: No burst HW injection
- 8: No HW injections for detector characterization
- 9: No continuous wave HW injection
- 10: good data quality (CAT1 type)
- 11: interferometer is locked

Glitches

- Omicron tool
 - 400 channels processed online
 - 3,000 channels reprocessed offline
 - Based on the Q-transform: overcomplete basis of sinusoidal Gaussian functions
 - Glitches defined by {time, frequency, SNR}
- → Reference: <u>public Virgo note</u>
- Two main channels
 - h(t)
 - DARM
- Analysis window
 - Gating + windowing applied on both ends
 - Only central part used to produce triggers
 - Overlap between analysis windows

BRMSMoniSM	TFMoni	Non StatMoni	SpectroMoni	BRMSMon	BRMSMonHrec		
SegOnline							
FdOmRaw1		Om_paramet	ers_1024_00	1 Om_param	Om_parameters_1024_01		
• Om_parameter	rs_1024_02	Om_paramet	ers_1024_03	Om_parameters_1024_04			
Om_parameter	rs_2048_00	Om_paramet	ers_2048_01	Om_parameters_2048_02			
Om_parameter	rs_2048_03	Om_paramet	ers_2048_04	1 Om_param	Om_parameters_2048_05		
• Om_parameter	rs_2048_06	Om_paramet	ers_2048_07	1 Om_param	eters_2048_08		
Om_parameter	rs_2048_09	Om_paramet	ers_2048_10	1 Om_param	eters_2048_11		
Om_parameter	rs_2048_12	Om_paramet	ers_2048_13	1 Om_param	Om_parameters_2048_14		
Om_parameter	rs_2048_15	Om_paramet	ers_2048_16	Om_parameters_2048_17			
Om_parameter	rs_2048_18		Om_parame	ters_2048_19			
FdOmRaw2	OmRawBroa	dCast ① Om_r	parameters_2048	_20 🕕 Om_pa	rameters_2048_21		
Om_parameter	rs_2048_22	Om_paramet	ers_2048_23	1 Om_param	eters_2048_24		
Om_parameter	rs_2048_25	Om_paramet	ers_2048_26	1 Om_param	eters_2048_27		
Om_parameter	rs_2048_28	Om_paramet	ers_2048_29	1 Om_param	eters_2048_30		
Om_parameter	rs_2048_31	Om_paramet	ers_2048_32	1 Om_param	eters_2048_33		
Om_parameter	rs_2048_34	Om_paramet	ers_2048_35	1 Om_param	eters_2048_36		
Om_parameter	rs_2048_37	Om_paramet	ers_2048_38	1 Om_param	eters_2048_39		
Om_parameter	rs_2048_40	Om_paramet	ers_2048_41	1 Om_param	eters_2048_42		
▲ Om_parameter	rs_512_00	▲ Om_paramet	ers_main_00	A Om_param	eters_main_01		
A Om_parameter	rs_main_02						
▲ Om_parameter	rs_hoft						
VetoThr		Om_veto_00		A VetoMerger			
lvalert virgo							

Veto streams

- Goal: reject online triggers likely due to glitches
 - 50 Hz channels
 - Veto flags: $1 \Leftrightarrow$ veto $0 \leftrightarrow \text{pass}$

- Inputs: all data quality flags available online
- One stream per pipeline
 - Pipeline-specific configurations

. . .

V1:DQ VETO CWB Burst '1:DQ_VETO_GSTLAL CBC -

Gated h(t)

- Goal: getting round of extremely loud glitches, while keeping the pipelines running
 - Glitches pollute PSD estimation
 - Gate out data instead of interrupting the data analysis
- In Virgo, based on MBTA internal gating
 - Triggered by significant downwards excursions of the BNS range

→ Promising to help identifying hopefully short but quite pathological data segments

Data quality reports

- Data Quality Report (DQR)
 - Triggered by each (online) GW trigger
 - Runs various analysis on the available data: from basic to complex
 - Detector status, environment status, noise analysis, more expert plots, etc.
 - Each task reports a status
 - \rightarrow Helps final decision: keep or reject event
 - Runs independently on data from all three detectors
 - \rightarrow Virgo flavour of the DQR
 - Results gathered and linked back to the event that triggered the DQR
- Fully automated
 - 4,000+ DQRs since O3 began
 - Actual response now depends on significance
 - Extremely reliable framework

DQR workflow example: S190630ag

- One of the recent LIGO-Virgo triggers
 - Public information: <u>https://gracedb.ligo.org/superevents/S190630ag/view</u>
- Timeline (EGO local time)

\rightarrow LIGO-Virgo internal monitoring of that task

Log Entry Created	Submitter	Comment
Jun 30, 2019 19:50:24 UTC	Virgo Detchar	Condor DAG is done: monitoring has ended.
Jun 30, 2019 18:58:03 UTC	Virgo Detchar	Condor DAG is running.
Jun 30, 2019 18:57:59 UTC	Virgo Detchar	Virgo DQR being initialized.
Jun 30, 2019 18:57:58 UTC	Virgo Detchar	Condor DAG successfully generated.

Offline data quality

- Goals
 - Final data quality assessment for the new detections
 - Final dataset for offline analysis
- → Basic container: time segments
 - SCIENCE segments
 - Primary data quality vetoes: segments during which the data are definitely bad
 - Using online-computed flags
 - Adding flags for offline-identified issues
 - Additional, optional, data quality flags
 - Available to optimize the cuts of each analysis
 - Flags keeping track of changes in the interferometer configuration with SCIENCE segments
 - \rightarrow Action not causing the loss of the detector control nor visible in the data
 - Example: switching on/off some correction
- Framework in its final stages
 - First segment lists available to analysts
 - Plan is to update them regularly, following the data taking progress

Spectral lines

- Noise Frequency Event Miner: NoEMi
 - Monitoring and identification of spectral noise lines
 - → Major rewriting for O3: "quicker, smaller, lighter, easier"

≡ Persistency lines	• Click on a frequency peak to track the line in tir	Download this list of lines	
Channel			
Channel	Frequency range		
V1:ENV_NEB_SEIS_V	13.449664422-13.48971873	13.46015485	0.85
V1:ENV NEB MIC	13.45631192-13.46584864	13.45988819	0.26
V1:LSC_DARM	14.998305498-15.001285728	15.000093636	54
= Critical ratio lines	Click on a fragmancy neak to track the line in time	D Download this list of lines	
	Crick on a frequency peak to track the line in time	Download this list of lines	
Channel	Frequency range	Frequency peak	
V1:LSC_DARM	10.141126644-10.156027794	10.14470292	0.09
	17 08980224-17 14702256	17 14583047	0.09
VITENV NER MIC		17.14000047	0.05
VI:ENV_NEB_MIC	11100500221 1111102250		
V1:ENV_NEB_MIC	17.16013555-17.18159317	17.17920899	0.04
V1:ENV_NEB_MIC	17.16013555-17.18159317	17.17920899	0.04
V1:ENV_NEB_MIC	17.16013555-17.18159317	17.17920899	0.04

Spectral lines

- Lines Database
 - Collect all information about lines found in the data
 - \rightarrow Many new functionalities added for O3

Lines DB											
10.4 53	34.3 1058.2	1582.1 2106	.0 2629.9 3153.8	3677.7 4201.6	4725.5 5249.4 Frequency (Hz)	5773.3 6297.2	6821.1 734	5.0 7868.9	8392.8 8916.	7 9440.6 9964.3	
Click on a li	ne frequency	to view addi	tional associated inf	ormation.							
Frequen (Hz)	cy Tags	Width (Hz)	Stationarity			Notes	;			Line source	
<u>10.53</u>	<u>02</u>	0.1	Stationary			CAL noise l Observed i	ine49 in O2			Calibration	
<u>12.5</u>	02	0.1	Stationary	CALnoise PR_MIR_perline0 Observed in O2						Calibration	
16.3	<u>02</u>	0.1	Stationary		Calibration						
ID	Туре		Locations		Recording	devices	b.	Added by		Date added	
66		Cer	ntral Building (CEB)		Magneto	ometer		hemming		02-08-2017	
18.6	02	0.1	Stationary			Observed i	in O2			Air conditioner	
<u>20</u>	<u>02</u>	1	Stationary	Mechanical mode of External Injection Bench Observed in O2						Mechanical mode	
<u>24.6</u>	<u>02</u>	0	Stationary		DAQ room air conditioner (elog 38709). Seen in O2.						
29.2	<u>02</u>	0.1	Stationary			Eliminated 2	5/7/17			Vacuum pump	
29.68	02	0.5	Stationary		Excited with	white z shaking	of SDB1 (eld	og 38625)		Mechanical	

DetChar shifts

- Supplement DetChar experts
 - Nominally 2 shifters / week, from a maintenance period to the next one
 - \rightarrow Collaboration-wide service task
 - Contribution proportional to the number of Virgo authors in a given group
- Main tasks
 - Data quality monitoring
 - Rapid Response Team for online triggers
- \rightarrow Effective since pre-O3 commissioning last Fall
 - Positive experience overall
 - Training and documentation are keys to the success of such initiatives

Virgo DQR documentation:	Introduction Checks FAQ	Instructions for shifters and RRT	For experts	LIGO DQR documentation:	Introduction

Conclusions

Outlook

- \rightarrow When writing that slide...
- 3 months into O3
- 74+ days of SCIENCE data
- 4,000+ DQRs processed
- 16 open public alerts
- 57 DetChar shifts
- ~20 people involved in regular DetChar activities
- \rightarrow Work (always) in progress!
 - Quarter of the expected data taking completed
 - Offline work
 - Next campaign of upgrades: Advanced Virgo Plus