Status and performance of the Advanced Virgo Detector during the LIGO-Virgo Observation Run 3

Amaldi 13, Valencia – July 10, 2019

Nicolas Arnaud (<u>narnaud@lal.in2p3.fr</u>)

Laboratoire de l'Accélérateur Linéaire (CNRS/IN2P3 & Université Paris-Sud) European Gravitational Observatory (Consortium, CNRS & INFN) On behalf of the Virgo Collaboration

VIR-0249A-19

I E G O BERVATORY

Outline

- Introduction
 - Virgo collaboration
 - Virgo detector
 - Global network of gravitational-wave detectors
- From O2 to O3
 - Status at the end of O2
 - Post-O2 commissioning period
 - O2-O3 upgrades
 - Noise hunting and pre-O3 commissioning
- O3
 - Performance 3 months onto the run
 - Plans
- Conclusion
 - Beyond O3: Advanced Virgo Plus

Introduction

The Virgo collaboration

- 8 European countries
 - France
 - Italy
 - The Netherlands
 - Poland
 - Hungary
 - Spain
 - Belgium
 - Germany
- → About 80 institutes
 About 400 members
- Project started more than 20 years ago

The Virgo detector

- Suspended, power-recycled Michelson interferometer with 3-km long Fabry-Perot cavities in the arms
 - No signal recycling yet
- Located at the European Gravitational Observatory (EGO) in Cascina – near Pisa, Italy

Global network of gravitational-wave detectors

- Currently: a 3-2nd generation detector network
 - Ligo Hanford (WA state) and LIGO Livingston (LA state)
 - Virgo
- KAGRA (Japan) should join the network before the end of O3
- 3rd LIGO interferometer planned in India for the next decade

• MoUs ruling the joint effort of the LIGO Scientific Collaboration and the Virgo Collaboration to detect and study gravitational-wave signals

From O2 to O3

LIGO-Virgo observation runs

- O1: September $2015 \rightarrow$ January 2016
 - Only LIGO Hanford and LIGO Livingston
 - Virgo still being upgraded
 - GW150914: first direct detection of gravitational waves
- O2: November 2016 \rightarrow August 2017
 - Virgo joined on August 1st, 2017
- O3: April 1st, $2019 \rightarrow ongoing$
 - Joint LIGO-Virgo data taking

Virgo O2 performance and results

• Virgo duty cycle

• Virgo BNS range ■ ~26 Mpc

duty cycle

Scientific highlights

- GW170814
 - First
 3-detector
 detection
- GW170817
 - First binary neutron star fusion

- Multi-messenger astronomy with gravitational waves
- O1 + O2 : 11 events total
- "GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs", The LIGO Virgo Collaboration, arXiv:1811.12907, accepted for publication in PRX

Post-O2 commissioning period

- 3 months between the end of O2 and the start of the hardware upgrades
 - Starting point: the good (best at the time) O2 sensitivity
- Goals
 - Improve the detector configuration
 - Frozen during the August data-taking period
 - Get ready for upgrades and post-upgrade commissioning
 - Example: thermal compensation system (TCS)
 - Mitigate known noise sources, more noise hunting
 - Example: scattering light, spectral lines (mains, etc.)
 - Increase input power (~12 W in O2)
- Sequential activities
 - 2017/09: commissioning
 - 2017/10: noise hunting activities
 - 2017/11: TCS work and input power increase
 - Input power lowered after successul test up to $\sim 22 \text{ W}$

- December $2017 \rightarrow March 2018$
- Fabry-Perot cavity test masses suspended again on fused silica fibers
 - In parallel: vacuum system improvement
- Installation of the AEI Hannover squeezer
 - Frequency-independent squeezing
- Injection system improvements
 - New amplifier allowing for the delivery of up to 60 W after input mode-cleaner
- Upgrades split into two periods
 - 3-week commissioning break in between
 - Control acquisition sequence
 - Calibration \leftrightarrow sensitivity
 - New noise sources
 - \rightarrow Successful: quick recovery, decent sensitivity restored in two weeks

Checks

12

- Pre-O3 commissioning started mid-March 2018
 - O3 start planning at the time: Fall 2018
 - \rightarrow 6-7 months of commissioning foreseen
 - Then O3 start postponed to end of Winter 2018-2019
- Record sensibility end of June
 - \rightarrow BNS range ~35 Mpc
 - 12 W input power
 - Low frequency range quite good
 - Despite some delays / difficulties
- Next in the plan: increase laser power up to 25 W
 - Similar power increase successfully tested the previous fall
- Yet: many problems
 - Clearly a different detector: longer recovery / tuning periods
 - Hardware issues: scattering light needed mitigation, laser amplifier power failure, burning of the surface of the first output mode-cleaner, etc.
 - \rightarrow 2 months needed to partially recover low-noise operation

- Significant sensitivity degradation at low frequency
 - Complete mystery at first
 → Collaboration-wide rallying
- Explanation found after ~1.5 month
 - Test masses are charged
 - Modified suspension coil drivers introduced common mode noise

 → Electrostatic actuation on top of expected coil-magnet driving
- → New electronics board design fixed the problem
 - Low-frequency sensitivity back
- Activities in progress
 - To understand the origin of the charges
 - Ion pumps!? First contact peeling off the mirror!?
 - To mitigate or discharge test masses
 - Ion gun studies in progress

- Significant progress of the sensitivity over the next few months
 - Record BNS range [in Mpc] vs. time

• Best sensitivity achieved in early February

- Time for final tuning before start of data taking
 - Engineering Run 14: 1 month-long
 - Start of O3 on April 1st [!] 2019 @ 15:00 UTC

Squeezing

- Quantum noise due to vacuum state entering through the dark port
- Vacuum fluctuations follow Heisenberg uncertainty principle
 - Squeezed state of light currently used in Virgo: smaller uncertainty in phase w.r.t. amplitude, compared to coherent state of light
 - Generated by non-linear optics
- → Quantum noise limit beaten at high frequency
 Shot noise
- AEI squeezer installed at EGO delivers about 3dB of squeezing
 - 2-3 Mpc gain for the BNS range
 - \rightarrow Laser power ~doubled
 - No impact at low-frequency
 - Other noises are dominant

See Marco Vardaro's poster <u>"Frequency Independent Squeezing in Adv-Virgo"</u>

O3 sensitivity

- Gravitational-wave channel h(t) computed in frequency domain by subtracting calibrated correction signals from output port photodiode
 - Calibration: optical transfert function measurements
 - Laser wavelength used as benchmark
 - Gain evolution measured using calibration lines
 - Online subtraction of clearly identified noise sources for which witness channels exist

\rightarrow Uncertainties for O3 online reconstruction

- $\pm 5\%$ in amplitude
- \pm 35 mrad $\oplus \pm$ 10 μ s in phase
- Over a wide frequency band: 20 Hz \rightarrow 2 kHz

See Dimitri Estevez's talk <u>"Intercalibration Of Advanced Ligo</u> <u>And Advanced Virgo For</u> <u>The Third Observing Run O3"</u> in the C2 parallel session

O3 sensitivity

- A complementary approach: the noise budget
 - Quadrature sum of modelled individual noise contributions
 - Transfer function measurements to get couplings

 \rightarrow BNS range: ~30 Mpc difference between noise budget and actual sensitivity

- High frequency range: good match between prediction and measurements
- Low frequency range: commissioning stopped when reaching O3 goals
 - Thermal noise may be higher due to damaged mirror anchors
- Medium frequency range: empirical "flat" noise contribution added
 - Origin unknown in spite of several hypothesis / tests
 - → Mandatory to address and fix before switching to Advanced Virgo Plus

Locking Virgo

- Control acquisition ('locking') and conservation ('lock') over long periods
 - Photodiodes: sensing
 - Filtering
 - Actuation
- 4 Longitudinal degrees of freedom
- Angular control
 - Key to stability and duty cycle

The O3 Scientific Run"

See Julia Casanueva's poster

"Longitudinal Control Of Marginally Stable Interferometers"

Locking Virgo

- Locking performance
 - ~20 minutes to acquire full control of the detector
 - 1-2 attempts to achieve that control
 - \rightarrow Rather quick and efficient

- Lock stability
 - Lock segments lasting several hours
 - Up to a couple days

Virgo performance, 3 months onto the O3 run

- Duty cycle
 - Based on data from the Virgo automation system
 - 'Metatron' based on LIGO's Guardian framework
 - Duty cycle averaged over 3+ months

Virgo performance, 3 months onto the O3 run

- Duty cycle evolution
 - Top histogram: daily duty cycle
 - Bottom plot: integrated duty cycles over the past N days

\rightarrow Slow but steady decrease over time

Restoring beginning of the run performance is a goal for the coming weeks
 25

Virgo performance, 3 months onto the O3 run

- Virgo: 'wrapped' duty cycle on a day or a calendar week
 - Top plot: calendar week
 - Botton plot: a day

• Averaged over the whole data taking period

- O3 duty cycles
 - Exclusive categories

H1-L1-V1 network: 2019-04-01 15:00:00+00:00 UTC -> 2019-07-02 02:07:03+00:00 UTC -- science segments

• Pie chart covering the whole O3 run – mutually exclusive categories

plot_HLV_science_segments: Number of detectors online 2019-04-01 15:00:00+00:00 UTC -> 2019-07-02 02:07:03+00:00 UTC -- segments: DMT-ANALYSIS_READY (H1-L1), SCIENCE (V1)

- BNS range comparison
 - Quite good long-term stability

H1-L1-V1 network: 2019-04-01 15:00:00+00:00 UTC -> 2019-07-02 02:07:03+00:00 UTC -- science segments

- Time difference does matter!
 - The two LIGOs and Virgo are all more efficient at (local) night

Comparing H1-L1 and V1, average duty cycles 1238166018 [2019-04-01 15:00:00+00:00 UTC] -> 1246039100 [2019-07-01 17:58:02+00:00 UTC]

Public alerts

• Reference: GraceDB – <u>https://gracedb.ligo.org/latest</u>

UID	Labels	t_start	t_0	t_end	FAR (Hz)	UTC ~ Created
<u>5190701ah</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1246048403.576563	1246048404.577637	1246048405.814941	1.916e-08	2019-07-01 20:33:24 UTC
<u>5190630ag</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1245955942.175325	1245955943.179550	1245955944.183184	1.435e-13	2019-06-30 18:52:28 UTC
<u>5190602aq</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1243533584.081266	1243533585.089355	1243533586.346191	1.901e-09	2019-06-02 17:59:51 UTC
<u>5190524q</u>	ADVNO SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242708743.678669	1242708744.678669	1242708746.133301	6.971e-09	2019-05-24 04:52:30 UTC
<u>S190521r</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242459856.453418	1242459857.460739	1242459858.642090	3.168e-10	2019-05-21 07:44:22 UTC
<u>5190521g</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242442966.447266	1242442967.606934	1242442968.888184	3.801e-09	2019-05-21 03:02:49 UTC
<u>5190519bj</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242315361.378873	1242315362.655762	1242315363.676270	5.702e-09	2019-05-19 15:36:04 UTC
<u>5190518bb</u>	ADVNO SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242242376.474609	1242242377.474609	1242242380.922655	1.004e-08	2019-05-18 19:19:39 UTC
<u>5190517h</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1242107478.819517	1242107479.994141	1242107480.994141	2.373e-09	2019-05-17 05:51:23 UTC
<u>5190513bm</u>	ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1241816085.736106	1241816086.869141	1241816087.869141	3.734e-13	2019-05-13 20:54:48 UTC
<u>5190512at</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1241719651.411441	1241719652.416286	1241719653.518066	1.901e-09	2019-05-12 18:07:42 UTC
<u>5190510g</u>	ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1241492396.291636	1241492397.291636	1241492398.293185	8.834e-09	2019-05-10 03:00:03 UTC
<u>5190503bf</u>	ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1240944861.288574	1240944862.412598	1240944863.422852	1.636e-09	2019-05-03 18:54:26 UTC
<u>5190426c</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1240327332.331668	1240327333.348145	1240327334.353516	1.947e-08	2019-04-26 15:22:15 UTC
<u>5190425z</u>	ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK	1240215502.011549	1240215503.011549	1240215504.018242	4.538e-13	2019-04-25 08:18:26 UTC
<u>5190421ar</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1239917953.250977	1239917954.409180	1239917955.409180	1.489e-08	2019-04-21 21:39:16 UTC
<u>5190412m</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1239082261.146717	1239082262.222168	1239082263.229492	1.683e-27	2019-04-12 05:31:03 UTC
<u>5190408an</u>	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT	1238782699.268296	1238782700.287958	1238782701.359863	2.811e-18	2019-04-08 18:18:27 UTC
<u>5190405ar</u>	ADVNO SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK	1238515307.863646	1238515308.863646	1238515309.863646	2.141e-04	2019-04-05 16:01:56 UTC

LIGO

((O))/VIRGD

- 19 public triggers as of July 4th, 2019
 - 3 retracted
- Mainly binary black hole merger candidates
 - Some may involve lighter components
- Offline analysis in progress

LSC

31

Data quality

- LIGO-Virgo dataflow
 - From the detectors to the validation of offline datasets and of individual events
 - Low-latency component significantly improved for O3 in order to deal with open public alerts

LI	GO	@ State [vectors @ 1 Hz @	iDQ @ 128 Hz DMT DQ vector @ 16 Hz				D	QR	
IFOs		Calibratio	$rac{n(t)}{rac{r}}$	Online 	GraceDB GW		Validation	Checks	
	data	a Reconstruct	tion Gated			orchestrator candidates	Vetting	Studies	
		State Veto vector streams @ 1 Hz @ 50 Hz			DQR				
V	irgo								
	Online			Real-time		Offline	>		
Li	atency	/	Seconds			Minut	es	Hours	Weeks
G	CN						Initial notices	Initial circulars	Updates

See NA's talk "Virgo Detector Characterization Activities During The O3 Run: From Latency To Gravitational-Wave Event Validation" in the C2 parallel session last Monday

O3 planning

- Initial plan: 12 months running
 - April 2019 \rightarrow March 2020
- Announcement at the last <u>LV-EM Open Forum</u> Telecon
 - Potential 1-month commissioning break
 - Starting late September early October
- \rightarrow Updated planning to be announced soon

Conclusion

Beyond O3: Advanced Virgo Plus

- Next major upgrades for Virgo
 - Goal: to increase the BNS range well above 100 Mpc
 - Long term: above 200 Mpc
- Two phase-project
 - Phase 1: in between O3 and O4 runs
 - Quantum noise reduction + preparation for phase 2
 - \rightarrow Signal recycling mirror installation
 - \rightarrow Frequency-dependent squeezing
 - \rightarrow Higher laser power
 - \rightarrow Newtonian noise cancellation
 - + Additional works
 - Phase 2: in between O4 and O5 runs
 - Switch to larger test masses with improved coating
 - + higher laser power
- 110+ FTEs, several M€ project
- International committee review well-advanced
 - Project ready to start upon approval

See Raffaele Flaminio's talk "Towards Advanced Virgo Plus"

35

Outlook

- O3 run well underway
 - Virgo taking data since day 1
 - Significant improvement of BNS range w.r.t. O2
 - High duty cycle

 \rightarrow Challenge: keep and even try to increase performance over a 1 year-long run

- Future already being prepared
 - Advanced Virgo Plus project
 - 2-phase upgrade
 - O4 & O5 data taking periods
 - Third-generation detector
 - Einstein telescope

 \rightarrow Ultimate goal: get the best sensitivity achievable on the EGO site