
GPU version of the Polgraw all-sky time-domain
F-statistic pipeline

Michał Bejger (Polgraw/Copernicus Center)

VDAS, 26.04.16

1 / 9

All-sky pipeline https://github.com/mbejger/polgraw-allsky.git

Time domain frame data
(Frame library)

Short Fourier Transform
Data Base (SFDB)
(pss sfdb code)

Narrow-band time
domain sequences
(ExtractBand &
gen2day codes)

Ephemeris data
(JPL, LAL
library)

Grid generation
(gridopt/gg code)

Search for candidates
(search code)

Search for coincidences
(coincidences code)

Followup of promising
coincidences

(followup code)

? Input data generation (Raw time domain data
∼ PB)

? Pre-processing→∼ TB (input time series,
detector ephemerids and grid of parameters),

? Stage 1: F-statistic search for candidate GW
signals (the most time-consuming part of the
pipeline)

→ 1010 candidates/detector, 100 TB of output.

? Stage 2: Coincidences among candidate
signals from different time segments,

? Stage 3: Followup of interesting coincidences -
evaluation of F-statistic along the whole data
span.

2 / 9

Methods of data analysis

Computing power ∝ T 5
0 log(T0). Coherent search of T0 ' 1 yr of data would

require zettaFLOPS (1021 FLOPS)→ currently impossible _̈

Solution: divide data into shorter
length time frames (T0 ' 2 days)

? narrow frequency bands -
sampling time δt = 1/2B,
number of data points
N = T0/δt → N = 2T0B

→ feasible on a ”normal”
supercomputer.

 Virgo VSR1 Data (May 18 − Oct 1, 2007)

F
re

q
u
e
n
c
y
 [
H

z
]

Time frame number

 5 10 15 20 25 30 35 40 45 50 55 60 65
100

200

300

400

500

600

700

800

900

Example search space (Virgo Science Run 1).
Red: no data, yellow: bad data, green: good
data.

3 / 9

Calculation of the F-statistic

To estimate how well the model matches with the data x(t), we calculate F ,

F =
2

S0T0

(
|Fa|2

〈a2〉 +
|Fb|2

〈b2〉

)
where S0 is the spectral density, T0 is the observation time, and

Fa =

∫ T0

0
x(t)a(t) exp(−iφ(t))dt,Fb = . . .

and a(t), b(t) are amplitude modulation functions (depend on the detector
location and sky position of the source),

h1(t) = a(t) cosφ(t), h2(t) = b(t) cosφ(t),

h3(t) = a(t) sinφ(t), h4(t) = b(t) sinφ(t),

related to the model of the signal (hi , i = 1, . . . , 4)

h(t) =
4∑

i=1

Ai hi(t).

For triaxial ellipsoid model: dependence on extrinsic (h0, ψ, ι, φ0) and intrinsic
(f , ḟ , α, δ) parameters.

4 / 9

F-stat all-sky search description

Main parameters in coherent search for
continuous wave signals:

? bandwidth 0.25 Hz

? sampling time 2 s

? data length N = 86164 (two sideral days)

? 4D grid: α, δ, f , ḟ - sky positions, frequency
and spindown

? Uses the F-statistic defined in
Jaranowski, Królak & Schutz (1998), algorithm
described and tested in Astone et al. (2010)

? No. of F-statistic evaluations ∝ f 3

(no. of sky positions ∝ f 2, spindown ∝ f)

5 / 9

F-stat all-sky search description

Basically the whole loop over sky (α, δ) can
be computed in parallel since the sky
positions are independent of each other

The majority of computing is spent on

? calculating the phase (trigonometric
functions, ' 20%)

? FFT (' 70%)

Efficient FFT requires 2N data points
(Ndata = 86164 < 217)→ padding with zeros to
N = 217

FFT: resampling

? Resampling to barycentric time - FFT and
inverse:

? nearest-neighbour (' 5% error),
? splines (' 0.1% error)

The only part that has to be done in
double-precision.

6 / 9

F-stat: parallelization strategy

? How to do FFT with GPU:

? use CUDA cuFFT library:
¨̂ well-optimized (Cooley-Tukey,

Bluestein), 1D/2D/3D double precision
complex/real transforms, multiple
transforms, in- and out-of-place
transforms,

_̈ cannot launch many instances at the
same time (at least not with every
card/CUDA version).

? write custom kernel for FFT, launch
concurrently.

? cuSPARSE (sparse matrix routines)

7 / 9

Results of implementation on GPUs

? Input data loaded to device once. For each detector (V1, L1 & H1),
? time-series (N × sizeof (double) = 674 KB)
? ephemerids (3N × sizeof (double) = 2 MB)

+ a grid-generating matrix (388 B).

? Sequence of kernels launched in a loop from CPU,

? Time resampling done using double precision, everything else (main
spindown loop) using single precision,

? Asynchronous output transfer to host.

Current GPU results: ∼ ×10 speedup with respect to the optimized CPU code

Estimated time τ to match one template:

? CPU (Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz) ' 5× 10−3 s

? GPU (GeForce GTX Titan) ' 3× 10−4 s

Performance scaling - favorably for high frequencies (no. of spindowns ∝ f).

8 / 9

Summary/references

We have two search codes for candidate signals for a network of detectors:

? a well-optimized CPU code,

? and a working GPU version that still needs some optimization (improve
kernel concurency).

I P. Astone, K. M. Borkowski, P. Jaranowski, M. Piętka and A. Królak, PRD, 82, 022005
(2010)

I https://developer.nvidia.com/cuFFT

I P. Jaranowski, A. Królak, and B. F. Schutz, PRD 58, 063001 (1998).

I Polgraw-allsky github repository:
https://github.com/mbejger/polgraw-allsky.git

9 / 9

