Federica Mezzani Oniversità degli Studi di Roma "Sapienza" INFN Sezione di Roma

On behalf of the Virgo collaboration

Vibration analysis of the Advanced Virgo payloads

Internationtal Conference on Advances in Vibrations FEUP, 31 March 2015

Talk outline

- Gravitational waves: nature and sources
- Gravitational waves detector: interferometer
- Structure and function of payloads
- Test sessions on payload
- Conclusions and proposals

Origin and nature of gravitational waves

GENERAL RELATIVITY THEORY Gravity is a property of the space-time

$\mu \kappa = 8\pi (G/c^4)T_{\mu\nu}$

 $G_{\mu\nu}$: Einstein's tensor $T_{\mu\nu}$: energy-momentum tensor G: gravitational constant C: speed of light

Phenomenon: big concentration of mass or energy deform the space-time

Gravitational waves are ripples in the curvature of the space-time propagating at the speed of light

Effect: GW produce tidal forces in such a way that the distance between two free masses will alternatively decrease and increase

5

NEW WINDOW ON THE UNIVERSE

Sources of gravitational

waves

Gravitational waves are produced by quadrupolar asymmetric accelerating bodies: - Big masses involved

- High speeds

Binary system

Black holes

Neutron stars

Even though the interstellar processes emitted energy is high what we can actually detect is just a small portion of it because of the long distances and the dispersion throughout the universe

The geometric effect on Earth: $h=10^{-21} m$

If distance between two free masses is 1 km the differential distance is 10⁻¹⁸ m

1000 times smaller than an electron classical radius

Gravitational wave detector Michelson Interferometer

Structure of a payload

HEART OF THE INTERFEROMETER

Location: lower part of the tower in a Ultra-High Vacuum (UHV) chamber

 Configuration: double stage system with the so called marionette as first pendulum and the mirror suspended from it

• Role: steering the optical components maintaining the relative position of the interferometer mirrors, suspend all the additional components

• **Issues**: limiting the overall weight, avoiding transversal modes in the control loop bandwidth

Test session on the Power Recycling payload

Virgo+ sensitivity curve Minimum detectable signal

An accurate frequency analysis in order to:

- Properly tell the effect of a gravitational wave
- Avoid resonances in the control loop bandwidth

COMPLETE ANALYSIS PROCEDURE

Numerical analysis to evaluate modal behaviour

Experimental test to validate the model

Effective mass evaluation in order to identify, among all, critical modes

Numerical analysis

Ansys workbench – Mesh Cage of the payload *Modal analysis*

- Free boundary conditions
 - (no constrains)
 - N° of elements: 497057
- Materials: Anticorodal 6082,
 - Aisi 316L steel
 - Overall weight: 109 kg

Ansys workbench - Modes

Ansys workbench – Mesh Cage of the payload *Harmonic analysis*

Experimental test

Cage of the payload Experimental analysis SETUP

Excitation: multiple impact hammer

Acquisition system: prosig

- 3D accelerometer

Simulated free conditions

23

Cage of the payload **Experimental analysis**

Simulated free conditions

Results comparison Preliminary analysis

Blue curve: Numerical results

Red curve: **Experimental** results

Modes identification and correspondence to the model of the cage structure

Experimental test with different types of excitation
 Modal identification methods:
 Non linear least square method
 Polyreference least square method
 Or

Circle fit method (decoupled modes)

Implementation of further components in the model

Pick Off Plate (POP)

Ring Heater

Actuators plate

Marionette

Test session on the complete structure

Numerical analysis to evaluate modes

- Geometry review
- Experimental analysis
- Effective mass evaluation

-

Effective mass evaluation

Effective mass defines the percentage of the total mass that contributes to a specific mode

It provides an estimation of the coupling between modes

Around a resonance frequency the behaviour of a structure is equivalent to the one of a 1D harmonic oscillator of M_{eff}

$$E_{strain} = \frac{1}{2} M_{eff} \omega_0^2 x_{eff}^2$$
Hyp: small dissipations

0.500 (m) 0.000 0.250

Geometry

3/23/2015 1:13 PM

Cage + actuators plate

Ansys workbench - Modes

Conclusions

- Design in accompliance with the target
- Towards a standardisation of the approach in order to extend the application for all the

payloads

Thank you for your attention!!

