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Introduction 
The calculation of the Virgo sensitivity curve is usually performed by including just the thermal noise of the mirror 
pendulum with the assumption that the effect of the other masses like the marionette and the reaction mass is negligible 
in the bandwidth of interest. However, this assumption is valid if the marionette mass is higher than those ones of the 
mirror and the reaction mass because its recoil is negligible under these hypotheses. These conditions can be less valid 
in the case of the Virgo Advanced suspension in which the mirror suspension losses are very low and the masses of the 
marionette and the mirror are likely to be comparable. For this reason, we have computed the contribution to the 
pendulum thermal noise of the whole Virgo last stage suspensions, without any assumption on the masses amounts. 
This note is meant to give an overview of the calculations performed by the three authors on the mirror last stage 
suspension thermal noise.  So, in the following you’ll find the three different approaches that will lead to results which 
are in full agreement.   
The paper is divided into three main sections (1, 2, 3), each of them referring to a different approach. For this reason  
the notations used can be slightly different but consistent within the same section.  

1. Direct application of the Fluctuation-Dissipation theorem and matrix approach  
The computation is an extension of what made by M.Punturo and F.Travasso in the Virgo internal note (Punturo M. 
2003). 

1.1. Evaluation of the Lagrangian of the system 
 
In this section the following indices are used: 

1) Mirror 
2) Reference Mass 
3) Marionette 

 
The coordinates adopted are the Virgo 
standard: 

• Horizontal axis, orthogonal to the 
beam: x 

• Horizontal axis, parallel to the beam: 
z 

• Vertical axis: y 

 
 
 
 
 
 
It is well known that the equations of the motion of a mechanical system could be obtained through the Eulero-
Lagrange equations: 

(1) 0
j j

d
dt q q

 ∂ ∂
− =  ∂ ∂ 

 
 

where  is the Lagrangian of the system defined by: 
(2) T V= −  

being T the kinetic energy of the system and V the potential energy. 
In our case, the displacements of interest (on which we compute the thermal noises) are: 

θ1 θ2 

θ3 

m1 
M2 

m3 
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(3) 
1 1 1 3 3 1 1 1 3

2 2 2 3 3 2 2 2 3

3 3 3 3 3 3

z L L L z z
z L L L z z
z L L z

θ θ θ
θ θ θ
θ θ

= + = − 
 = + ⇒ = − 
 = = 

 

 
Hence, the velocity of the mirror is given by: 

(4) 
1 1 1 3 3

1 1 1 1 3 3 3

z

y

v z L L

v y L L

θ θ

θ θ θ θ

= = +

= = +

 



 



 

The second term is negligible since it introduces just 3rd order terms. The kinetic energy of the mirror is then: 

(5) ( )2

1 1 1 1 3 3
1
2

T m L Lθ θ= +   

The reference mass is perfectly symmetric, swapping the index 1⇔2. The Marionette kinetic energy is: 

(6) ( )2

3 3 3 3
1
2

T m L θ=   

Since we want to introduce the thermal noise, we cannot consider the forces conservatives and then we cannot introduce 
a simple gravitational potential energy. It can be demonstrated (see text books like (Goldstein s.d.)) that (1) is still valid 
if we replace the potential energy by a “generalized potential” ( , )

j j
U q q such as the generalized forces Fgj could be 

written: 

(7) gj
j j

U d UF
q dt q

 ∂ ∂
= − +   ∂ ∂ 

 

In the pendulum case this requirement is satisfied. In fact the restoring force is given mainly by the gravitation, and the 
conservative potential energy is simply

j j
m g y , and partially by the elastic reaction of the bended suspension wire. The 

gravitational contribution to the generalized potential is: 
 

 

 

(8) ( ) ( )
2 2

2 2 2 2 2 2 2 2 2 23 3
3 3 3 3 3 31,2

2 1
2 2 2 2 23 3

3 3 3 3 3 3 3 33

1 1
2 2 2 2

1 1
2 2 2

j j
g j j p j j j p j p j j pj

g g j
j

g p p

L LU m g m L L m z z
U U

LU m g m L m z

θ θ ω θ ω θ ω ω

θ ω θ ω

=

=

 
= + = + = +      ⇒ =


= = = 

∑
 

where /
p

g L   is the angular frequency of the pendulum.  
The elastic constant of the bended suspension wire is given by: 

(9) 

( )

( )

2

2
2

2

2
2

; 1, 2
2

2
; 3

2

j j j j j

j j j j j j
j

j
j j T j j

j

b n m g Y I
j

n b Y I L
k

L b n M g Y I
j

L


 =
Λ = = 


=

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Where nj is the number of suspension wires (usually, in Virgo and advanced Virgo, n1=n2=4, n3=1), bj is the number of 
flexural points (nj=2), Λ=mg/n is the tension of each suspension wire (MT=m1+m2+m3), Yj is the Young modulus of the 

suspension wires, 4
2 4

I r


 is the cross-section momentum (r=radius of the suspension wire, supposed cylindrical).  

To introduce the dissipation in the wire, according to the so-called structural model, it is enough to apply the 
substitution:  

(10) ( )1
jj j sk k iϕ⇒ +  

The generalized elastic potential, for each bended pendulum, is 

(11) 2 2 2 2 2 21 1 1
2 2 2e j j j w j j j w j j jj

U k z m z m Lω ω θ= = =  

where, neglecting for simplicity the index j: 

(12) 2 2 22 2
22 2w p p

n YI n YIk b g b D
m L mg L mg

ω ω ω⋅
= = = =  

Where D is called dilution factor and m = m1, m2, MT. 
Comparing (11) with (8), it is evident that, for each bended pendulum we should consider a gravitational and an elastic 
generalized potential that could be written in a more compact shape if we introduce the effective oscillation angular 
frequency: 

(13) ( )2 2 2 2 1j p j w j p j j j jD iDω ω ω ω ϕ = + = + +   

Since D is usually small (of the order of 10-2 – 10-3), the real part of the pendulum frequency is slightly affected by the 
elastic contribution, and the internal losses of the suspension wires are down-scaled by the pendulum dilution factor.  
Adopting equation (13), the generalized elastic and gravitational potential is: 

(14) 
( ) ( )2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 31,2

2 2 2 2 2 1
3 3 3 3 3 3 33

1 1
2 2
1 1
2 2

g e j j j j j j jj

ge ge j
j

ge

U m L L m z z
U U

U m L m z

ω θ ω θ ω ω

ω θ ω

=

=

= + = + ⇒ =
= =


∑  

The new Lagrangian, including the structural dissipation is, then: 

(15) 
( ) ( ) ( )

( ) ( )

2 2 2

1 1 1 3 3 2 2 2 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 3 3 3 2 2 2 2 3 3 3 3 3 3 3

1 1 1
2 2 2
1 1 1
2 2 2

geT U m L L m L L m L

m L L m L L m L

θ θ θ θ θ

ω θ ω θ ω θ ω θ ω θ

= − = + + + + +

− + − + −

    
 

The structural model is not appropriate to describe the frictional damping processes that could occur on the payload 
(like magnetic dissipation, residual gas damping, and excess losses in the mechanics, …). For this reason we need to 
introduce a viscous force given by F=-mγv, where v is the velocity of the body and γj=Re(ωj)/Qj (Q is the mechanical Q 
of the damping process). This viscous force could be derived by a dissipation Rayleigh potential function: 

(16) ( )
3 2

1

1
2 j j j j

j
m Lγ θ

=

Ψ = ∑   

Note that the (17) is appropriate to describe viscous dissipation processes related to the velocities of the bodies respect 
their own suspension point, but not to describe global viscous dumping, like the residual gas, where the composition of 
the velocities (i.e. v1+v3) should be considered. 
Introducing this potential function, the Lagrangian equations become: 

(17) 0
j j j

d
dt q q q

 ∂ ∂ ∂Ψ
− + =  ∂ ∂ ∂  

 
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Solving these equations we obtain the system of motion equation: 

(18) 

{ }
{ }

( ) ( ) ( ) ( ) ( ){ }

2
1 1 1 1 3 3 1 1 1 1 1 1

2
2 2 2 2 3 3 2 2 2 2 2 2

2
3 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3

0

0

0T

m L L L L L

m L L L L L

M L L L L L L

θ θ ω θ γ θ

θ θ ω θ γ θ

µ θ µ θ θ ω θ µ γ θ

 + + + =

 + + + =


+ + + + =

  

  

   

 

Where 

(19) 1 2 3 ; j
T j

T

m
M m m m

M
µ= + + =  

To evaluate the thermal noise If we consider the stochastic thermal noise forces Fj, that are applied at each pendulum 
body, the generalized stochastic thermal forces Fgj are: 

(20) 

( )

1 13

2 2
1

1 2 3 3

i
gj i

i j

F L
zF F F L
q

F F F L=

 ⋅
∂ ≡ ⋅ = ⋅∂  + + ⋅

∑  

and (17) becomes 

(21) gj
j j j

d F
dt q q q

 ∂ ∂ ∂Ψ
− + =  ∂ ∂ ∂ 

 

 

 

Considering the thermal driving force, the equations are then: 

(22) 

( ) ( ) ( ) ( ) ( )

2 1
1 1 3 3 1 1 1 1 1 1

1

2 2
2 2 3 3 2 2 2 2 2 2

2

2 1 2 3
1 1 2 2 2 3 3 3 3 3 3 3 3 31

T

FL L L L
m

FL L L L
m

F F FL L L L L
M

θ θ ω θ γ θ

θ θ ω θ γ θ

µ θ µ θ θ ω θ µ γ θ


+ + + =




+ + + =

 + +

+ + + + =


  

  

   

 

Let  sum at the third equation the first one multiplied by –µ1 and the second one by –µ2: 

(23) 

( )

2 1
1 1 3 3 1 1 1 1 1 1

1

2 2
2 2 3 3 2 2 2 2 2 2

2

2 2 2 31 2 1 2
3 3 1 1 1 2 2 2 3 3 3 3 3 3 1 1 1 2 2 2

3 3 3 3 3 3

1

FL L L L
m

FL L L L
m

FL L L L L L L
m

θ θ ω θ γ θ

θ θ ω θ γ θ

µ µ µ µθ ω θ ω θ ω θ γ θ γ θ γ θ
µ µ µ µ µ


+ + + =




+ + + =



− − + + − − =


  

  

   

 

Or in displacement: 

(24)

2 2 1
1 1 1 1 3 1 1 1 3

1

2 2 2
2 2 2 2 3 2 2 2 3

2
2 2 2

2 2 3 1 1 2 2 1 1 2 2 3 3 31 2 1 2
3 1 1 2 2 3 1 1 2 2 3

3 3 3 3 3 3 3

Fz z z z z
m

Fz z z z z
m

Fz z z z z z z
m

ω ω γ γ

ω ω γ γ

ω µ ω µ ω µ γ µ γ µ γµ µ µ µω ω γ γ
µ µ µ µ µ µ


+ − + − =


 + − + − =

 + + + +
 − − + − − + =


  

  

   
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1.2. Using matrix formalism 
The equation  (24) can be expressed in matrix formalism: 

(25) 
2

1
2

d dI X X X M F
dt dt

−+ Γ + Ω⋅ =  

Where I is the identity matrix: 

(26) 

1 0 0
0 1 0
0 0 1

I
 
 =  
 
 

 

Γ is the matrix of the damping coefficients: 

(27) 
1 1

2 2

1 1 2 2 3 31 2
1 2

3 3 3

0
0
γ γ

γ γ
µ γ µ γ µ γµ µγ γ

µ µ µ

 
 − 
 Γ = −
 + + − − 
 

 

Ω is the matrix of the pendulum frequencies 

(28) 

2 2
1 1

2 2
2 2

2 2 2
2 2 1 1 2 2 31 2
1 2

3 3 3

0
0

ω ω
ω ω

µ ω µ ω ωµ µω ω
µ µ µ

 
 − 
 Ω = −
 

+ + − − 
 

 

M is the masses matrix: 

(29) 
1

2

3

0 0
0 0
0 0

m
M m

m

 
 =  
 
 

 

X is the column vector of the displacements zj, F is the column vector of the thermal stochastic forces Fj. and d/dt are 
the derivative operators. 
In the Fourier transform, (25) becomes: 

(30) 
( )

( ) ( )

2 1

112 1 2

I i X M F

X I i M F M I i F

ω ω

ω ω ω ω

−

−− −

Ω − + ⋅Γ ⋅ = ⇒

 = Ω − + ⋅Γ = ⋅ Ω − + ⋅Γ ⋅ 

 

  

 

By definition, the transfer function H is: 

(31) ( ) 12X H F H M I iω ω
−

 ≡ ⋅ ⇒ = ⋅ Ω − + ⋅Γ 
   

The mechanical impedance of the system is  

(32) ( )1 21 1F Z X Z H M I i
i i

ω ω
ω ω

−  ≡ ⋅ ⇒ = = ⋅ Ω − + ⋅Γ 


   
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1.3. Pendulum thermal noise 
Finally, thanks to the Fluctuation-Dissipation Theorem (FDT), the power spectrum of the thermal noise displacement of 
the mirror (index j=1) is given by: 

(33) ( ){ } ( )
1

2 1 2
1 2 211

11

4 4 1B Bk T k Tx Z M I i
i

ω ω
ω ω ω

−
−

    = ℜ = ℜ ⋅ ⋅ Ω − + ⋅Γ   
     

 

1.4. Thermoelastic dissipation 
For sake of completeness, we should report that an important dissipation in the suspension wires is the thermo-elastic 
dissipation: 

(34) ( )
( )

2

21
th E

V

Y T
Y S C

ωτϕ ω α β
ωτ

Λ ⋅ = − ⋅  +
 

 
Usually this dissipation is inserted in the loss angle definition: 

(35) 

( ) ( )

/

mat surf th

s
surf mat

d
V S

ϕ ω ϕ ϕ ϕ ω

ϕ ϕ ξ

= + +

 =  
 

 

where φmat is the material intrinsic loss angle and φsurf is the excess loss due to the wire surface. The thermoelastic 
dissipation depends by the velocity of the oscillation (ω) and then the previous mathematical description is still valid 
since we can introduce a “generalized potential” ( , )

j j
U q q . 

1.5. Vertical mode 
The vertical oscillation of the payload can be computed applying equation (21) to the vertical Lagrangian and to the 
vertical viscous damping forces. The generalized coordinates are the vertical quotes of the three bodies; hence: 

(36)
( ) ( )

( ) ( )

2 22 2 2 2
1 1 2 2 3 3 1 1 3 2 2 3 3 3

2 22 2 2 2 2 2 2
1 1 2 2 3 3 1 1 1 3 2 2 2 3 3 3

1 1 1 1 1 1
2 2 2 2 2 2
1 1 1 1 1 1
2 2 2 2 2 2

v v ve

v v T v

T U m y m y m y k y y k y y k y

m y m y m y m y y m y y M yω ω ω

= − = + + − − − − −

= + + − − − − −

  

  


 

 
Where  

(37) 
2

2

2

; 1, 2

(2 0.4) ; 3

j
j

jvj j j j
j

k
j r

m k n Y
L

j

π
ω

π


== =

 ⋅ =

 

 
The vertical frequency of the marionette is dominated by the softness of the magnetic anti-spring suspension system 
(0.4 Hz of vertical frequency).  
Considering only viscous terms generated by the reciprocal motion of the masses, the Rayleigh potential is: 

(38) ( ) ( )2 2 2
1 1 1 3 2 2 2 3 3 3 3

1 1 1
2 2 2v m y y m y y m yγ γ γΨ = − + − +      

 
where the γi could be numerically different from the horizontal ones.  
The system of motion equation is: 
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(39)

2 2 1
1 1 1 1 3 1 1 1 3

1

2 2 2
2 2 2 2 3 2 2 2 3

2
2 2 2

2 2 1 1 2 2 3 3 3 1 1 2 2 31 2 1 2
3 1 1 2 2 3 1 1 2 2 3

3 3 3 3 3 3 3

v v

v v

v v T v
v v

Fy y y y y
m

Fy y y y y
m

m m M m m m Fm m m my y y y y y y
m m m m m m m

ω ω γ γ

ω ω γ γ

ω ω ω γ γ γω ω γ γ


+ − + − =


 + − + − =

 + + − −
 − − + + + + =


  

  

   

 

The matrix formalism introduced in (25) is fully valid and then the vertical thermal noise is still described by the(33), 
where the matrices are: 

(40)
2 2

1 1 1 1
2 2

2 2 2 2
2 2 2

3 3 1 1 2 21 2 2 2 1 1 2 2 31 2
1 2 1 2

3 3 3 3 3 3

0 0
0 ; 0

v v

v v v v

v v v v

γ γ ω ω
γ γ ω ω

µ γ µ γ µ γµ µ µ ω µ ω ωµ µγ γ ω ω
µ µ µ µ µ µ

  
  − −  
  Γ = − Ω = −
  − − + +   − −      

 

Inserting the matrices, reported in equation (40), inside the equation (33) the contribution of the vertical fluctuation to 
the thermal noise seen by the interferometer could be computed, using the appropriate vertical-to-horizontal coupling 
angle.  
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2. Thermal noise calculation including the elastic stiffness for the mirror suspension fibres. 
The elastic constant of the suspension wire is negligible compared to the gravitational one, in the low frequency range.  
But approaching the violin modes frequencies, the elastic energy increases so that the elastic behaviour of the bended 
fibre must be taken into account. To do this, it is necessary to solve the elastic equation for a slightly deflected rod 
stretched by a tension T: 
(41) ( ) ( ) ( )( )iv iiEIx y Tx y Sx yρ− + =   

For harmonic excitation, the Fourier transform leads to: 
(42) ( ) ( ) ( )( ) 2 0iv iiEIX y TX y S X yρ ω− − =  

where E is the Young modulus, I the moment of inertia, ρ the density, S the cross section and X the deflection. The 
derivatives are calculated with respect to the y coordinates along the rod axis. For cylindrical fibres an analytical 
solution can be found: 
(43) ( ) ( ) ( )( ) cos siny L yX y Ae Be C py D pyλ λ− − −= + + +  

where: 

(44) 
2 24
2

T T EI S
EI

ρ ω
λ

+ +
=  

 

(45) 
2 24
2

T T EI Sp
EI

ρ ω− + +
=  

Boundary conditions fix the values of the constants A,B,C,D: 
(46) ( ) ( ) ( ) ( )0 0;    0 0;    ;    0i iX X X L X Lδ= = = =  

The first and the second conditions come from the clamping of the fibre at one end, the third says that the other end is 
shifted horizontally by a length δ and the last is due to the 4 fibres mirror holding configuration that depresses the θx tilt.   
The force at the end of the fibre can be obtained by: 
(47) ( )iiiF EIX L= −  

The force results proportional to the shift δ, thus it is possible to define an effective frequency dependent stiffness 

constant 
Fk
δ

= .  The complete expression for k is: 

(48) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )

3 2 2 3

2 2

4 cos sin cos sin

sin 2 cos

EI p pL p pL p pL p pL
k

p pL p pL

λ λ λ λ
ω

λ λ

+ + +
=

− −
 

This stiffness constant is used to calculate the angular frequency 
1 1

( ) /k m  and replaces the corresponding 
quantity defined in the equations (13). The internal damping can be considered adding an imaginary part to the Young 
modulus ( )0 int1E E iφ= + where 

0
E is the Young modulus of the material and intφ  is the sum of bulk,  surface and 

thermoelastic contributions. 
Up to now this more accurate calculation of the stiffness was only performed for mirror suspension fibres. But in the 
next future same approach should be extended to the RM and Marionette wires and a more realistic lagrangian must be 
written taking into account in particular the marionette tilts. 

 

2.1. Optimized fibres 
Equation (34) shows that a complete cancellation of the thermoelastic contribution is possible choosing the fibre 
diameter according to the load tension.  For a mirror mass of 40 kg the resulting diameter is about 820µm. 
From complete computation results that thermal noise is minimized with a diameter of about 800µm.  
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On the other hand, for a 40kg mass mirror, the safe working stress is reached using four 400µm diameter suspension 
fibres. Thinner fibres push down vertical mode frequency and shift the violin modes at higher frequencies.  
In principle is possible to join the benefits of thinner and thicker fibres.  
The so called “optimized fibres” have two heads at the ends, with a length of a few cm’s and a 800µm diameter, and a 

central part with a 400µm diameter.    
At low energy, if thicker heads are longer than the bending length (1/λ equation (45))  the whole elastic energy is stored 
in these regions.  Hence dissipations are confined in the 800µm diameter region and the thermal noise is minimized. On 
the other hand the bouncing and the first violin modes will be dominated by the thinner region of the fibre and the 
frequencies for these modes will be very similar to those of cylindrical fibres with 400µm in diameter.  
If sharp diameter transitions are considered, an analytic solution of the elastic equation can be found also for optimized 
fibres.  
The elastic equation (42) becomes: 
(49) ( ) ( ) ( )( ) 2 0iv ii

j jEI X y TX y S X yρ ω− − =  

where j=1,2,3 respectively for the first head, the central part and the last head.   
One solution can be written for each part of the fibre: 

(50) 
( ) ( )( ) cos sin

1,2,3

j j jy L y
j j j j j j jX A e B e C p y D p y

j

λ λ− − −= + + +

=
 

The twelve constants (Aj ,B j,C j,D j) can be found from the 4 boundary conditions (46) and from the joining conditions 
for the function X and the derivative X’ in the diameter discontinuity points. 
Thus it is possible to find the stiffness constants k (as explained in the previous section) and the elastic energy 
distribution: 

(51) 

( ) ( )

( )

2

0

1
2

ii
elastic

L

elastic elastic

u y EI X

U u y dy

=

= ∫
 

Each diameter dependent loss angle (surface and thermoelastic contributions) can be weighted with the 
distribution energy: 

(52) 
( ) ( )

0

L

elastic

elastic

y u y dy

U

φ
φ =

∫
 

 
Bulk contribution, that is obviously diameter independent, can be added to obtain the internal total loss angle. No 
viscous dissipation is considered for the mirror suspension fibres. So it is possible to write the Young modulus as in 
equation (45), and the thermal noise can be computed by replacing the stiffness constant k1 in the lagrangian of the 
system with the value obtained from the expression  
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(53) 
( )3 3 3

iiiEI X L
k

δ
= −
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3.  The normal modes study 
The last stage suspension system is schematized as a branched combination of three harmonic oscillators (see Figure  
 
3-1) where m1, m2 and m3 are the masses of the marionette, the mirror and the reaction mass respectively. So the 
following indices are used: 

1) Marionette 
2) Mirror 
3) Reaction Mass 

The mechanical study of such a system was already presented in the paper (A. 
Bernardini 1999), where their frequencies were calculated. 
 
 
 
3-1 Branched System 
The Lagrangian and the dissipative function of the system are: 

 (54)
2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 1 1 1 2 2 1 2 3 3 1 3
1 1 1 1 1 1( ) ( )
2 2 2 2 2 2

m x m x m x m x m x x m x xω ω ω= + + − − − − −    

(55) 2 2 231 2
1 1 2 1 2 3 1 3

1 2 3

1 1 1( ) ( )
2 2 2d x xE m m m

Q Q Q
x x xωω ω

= − − − −      

Where , 1, , 3
i

Q i    are the mechanical quality factors of the uncoupled harmonic oscillators. 

The equation of motion can be  obtained by the Lagrange equations: 

(56) d

i i i

Ed
dt x x x

∂∂ ∂
= −

∂ ∂ ∂ 

 
 

(57) 

21 2
1 1 21 1 2 1 1

1 2

2 23
21 2 1 2 31 1 3 31 3 1 3 1

3

22
2 1 2 2 1 2 2

2

23
3 1 3 3 1 3 3

3

( )

( ) ( ) ( ) /

( ) ( ) /

( ) ( ) /

thI

thII

thIII

x x x x x
Q Q

x x x x x x f m
Q

x x x x x f m
Q

x x x x x f m
Q

ω ωµ ω

ωµ ω µ µ ω

ω ω

ω ω

 + + − + +



+ − + − + − =


 + − + − =


 + − + − =


   

 

  

  

 

where 21 2 1 31 3 1/ ; /m m m mµ µ= = are mass ratios. The stochastic thermal generalized forces in the right side can 
be consistently related to the uncoupled term as: 
(58) 

1 2 3 2 3
; ;

I II IIIth th th th th th th thf f f f f f f f= − − = =  

If we take the Fourier transform of this system we get: 

(59) 
1 1

2 2

3 3

/
ˆ /

/

thI

thII

thIII

F m
F m
F m

X
D X

X

   
   =   
   
   

 

Where the matrix D̂   can be written as: 
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(60)

2 2 2 2 2 23 31 2 2
1 21 2 31 2 21 31 21 2 21 31 3 31

1 2 3 2 3

2 2 22 2
2 2

2 2

2 2 23 3
3 3

3 3

ˆ 0

0

   

  

  

i i i
Q Q Q Q Q

D i i
Q Q

i i
Q Q

ω ωω ω ωω ω µ ω µ ω ω µ µ µ ω ω µ µ ω ω µ

ω ωω ω ω ω ω

ω ωω ω ω ω ω

     
− + + + + + + − − − −     

     
     = − − − + +       
 

   
− − − + +   

    




 

or , in therms of the impedance matrix: 

(61) 
1

2

3

ˆ
thI

thII

thIII

F
F
F

Z
X
X
X

   
   =   
   
   

 

where 

(62) 
1 11 1 12 1 13

2 21 2 22 2 23

3 31 3 32 3 33

1ˆ
m D m D m D
m D m D m D

 
m D m D m D

Z
i ω

 
 =  
 
 

 

 

3.1. Add-on to the FDT approach 
As already described in the section 1.3 once these matrices are found one can calculate the thermal noise of the ith  
oscillator by applying the FDT [Callen] yielding, for the oscillator 2,  to the equation  

 (63) 2 1
2 222

4 ˆ( ) {( ( ) ) }b
th

k TX Zω ω
ω

−= ℜ  

On the other hand, the generalized force correlation terms are related to the impedance matrix by the relations: 

(64) 

2 2 2
11 12 13

2 2 2 2 2
21 22 23

2 2 2
31 32 33

ˆ ˆ4 { } 
g g g

th gik i k b ik g g g

g g g

F F F
F F F F k T Re Z F F F

F F F

 
 

= = = =  
 
 

 

From the system (7) we can work out the explicit calculation of the displacement  spectrum of the physical coordinate xi 
in terms of the generalized force fluctuations. For the coordinate x2 we get: 

(65) 1 1 1
2 21 22 23

1 2 3

thI thII thIIIF F FX D D D
m m m

− − −= + +  

And the computation of the displacement spectrum gives: 

(66) 

2
1

2 1 2
2

2
3

( )
( )
( )

ˆ ˆ
th

th th

th

D
X
X
X

F
ω
ω
ω

−

 
 

= 
 
 

 

Then for the displacement spectrum of the coordinate 
2

X  is: 

(67) 2 1 1 1
2 21 22 23

1 2 3

( ) thI thII thIII
th

F F FX D D D
m m m

ω − − −= + +  

Where 
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(68) 

( ) ( )

( ) ( )

( ) ( )

1
21 23 31 21 33

1
22 11 33 13 31

1
23 13 21 11 23

1 ;
det

1 ;
det

1 ;
det

D D D D D
D

D D D D D
D

D D D D D
D

−

−

−

= −

= −

= −

 

And the computation of the displacement spectrum gives: 

(69)     

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 1 1 1

1 21 22 23
1 2 3

2 2 2
* * *11 22 331 1 1 1 1 1

21 21 22 22 23 232 2 2
1 2 3
2 2 2

* * * *12 13 231 1 1 1 1 1 1 1
21 22 22 21 21 23 23 21 22

1 2 1 3 2 3

thI thII thIII
th

g g g

g g g

F F FX D D D
m m m

F F F
D D D D D D

m m m

F F F
D D D D D D D D D

m m m m m m

ω − − −

− − − − − −

− − − − − − − − −

= + + =

= + +

   + + + + +      

+

( ) ( )* *1 1 1 1
23 23 22D D D− − − +  

  

The predictions (69) and (63) are coincindent, and this is due to the internal consistency of the FDT.  
From the equation (69) we can learn the presence of a mixing term taking into account the effect of the correlation 
among the various generalized stochastic forces which suggests that in presence of two or more oscillators, the thermal 
noise cannot be calculated by a simple sum of the Brownian noises of the single oscillators. 
This first conclusion can be better understood by studying the thermal noise with the normal mode approach. 

3.2. The Normal Mode treatment 
This kind of approach were already applied to the double oscillator system in the papers (Y. O. E. Majorana 1997) and 
(Rapagnani 1982). 
The Lagrangian in (54) can be expressed as a sum of independent quadratic terms through the substitution of the new 
coordinates of the normal modes ( ), ,oy y y+ − related to ( )1 2 3, ,x x x as follows: 

(70) 
1

1
0 2

3

ˆ
Y X
Y X
Y X

−
−

+

   
   = Λ   
   
   

 

where 

(71)

2 2
03 0

2
03

11 12 13 2 2 2 2 2 2 2 2
02 31 03 01 21 02 31 03 0 0 02

21 22 23 2 2 2 2 2 2 2
02 21 02 21 02 03 02

31 32 33 2 2
03 03

2 2 2 2
03 03

1 1

ˆ 1

1

ω ω
ω

λ λ λ
ω µ ω ω µ ω µ ω ω ω ωλ λ λ

ω ω µ ω µ ω ω ω ω
λ λ λ

ω ω
ω ω ω ω

− +

− +

 −
 
     + + −   Λ = = − + −   − −   

   
 
 − − 

 

Hence we have: 

(72) 2 2 2 2 2 2 2 2 2
0 0 0 0 0

1 1 1 1 1 1
2 2 2 2 2 2

m y m y m y m y m y m yω ω ω− − + + − − − + + += + + − − −    

while the dissipation function of the system is: 

(73) 0 0 0
2 2 20

0
0

1 1 1
2 2 2

( , , , , , )i in id y y yE m m Cross m Q y y y y
Q

ym
Q Q

yωω ωω
+ − + −

+ −
+ + − −

+ −

= − − +        
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for some values of , , ; 1...3i i im Q iω = the term 0 0( , , , , , )i i iCross m Q y y y y y yω + − + −       can be null and the 

diagonalization of the dissipative system is properly performed. It can be shown that the cross-term can be reduced to 
zero if : 

(74) 

( )( )
( )

( )( )
( )( )

2 2 2 2
3 31

1 3 4 4
2 31 3 21 2

2 2 2 2
2 22

2 3 2 2 2 2
3 3 3

Q Q

Q Q

ω ω ω ωω
ω µ ω µ ω

ω ω ω ωω
ω ω ω ω ω

+ −

− +

− +

− −
=

−

− −
=

− −

 

in this case the diagonalization of the dissipative system can be performed and the  modes ( ), ,oy y y+ − can be properly 
called normal modes.  
But, in general this is not true and ( ), ,oy y y+ −  are called quasi-normal modes. In this approximation the normal 

modes treatment holds if the term 0 0( , , , , , )i i iCross m Q y y y y y yω + − + −       remains negligible in the normal dissipation 
function (73). 
Let us  assume that the equations of the modes can be decoupled: 

(75) 

2

20 0
0 0 0

0 0

2

th

th

th

FY Y
Q m

FY Y
Q m

FY Y
Q m

ω ω

ω ω

ω ω

−−
− − −

− −

++
+ + +

+ +


+ + =




+ + =



+ + =


 

 

 

 

The quantities 0, ,ω ω ω− + are the normal modes pulsations that can be calculated by the positive zeros of the real part 

of the matrix D̂ determinant, defined in equation (60)  giving the equation: 

(76) 

6 4 2
4 2 0

2 2 2
4 01 21 02 31 03

2 2 2 2 2
2 01 02 03 21 31 02 03

2 2 2
0 01 02 03

0

( (1 ) (1 ) )

( ) (1 )

a a a

a

a

a

ω ω ω

ω µ ω µ ω

ω ω ω µ µ ω ω

ω ω ω

+ + + =

= − + + + +

= + + + +

= −

 

The normal masses , 0,m m m− + are calculated by imposing the equivalence  between the kinetic energy of the whole 
system in the espressions (54) and (72). We find: 
 

(77) 

2 2 2
11 12 13 1 1

2 2 2 2
0 21 22 23 2 2

2 2 2
31 32 33 3 3

ˆ
m m m
m m m
m m m

λ λ λ
λ λ λ
λ λ λ

−

+

      
      = = Λ      

            

 

The coupled quality factors can be found by imposing the equivalence between the dissipation function (73) in which 
we have replace the relations (70) and the normal dissipation function (73). We notice that in general,  there is a cross-
term in the dissipative   We find: 
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(78)

1222 2
3 31 1 2 2

2 2 2 2
1 2 2 3 3

1222
3 31 1 2 2

2 2 2 2
1 2 2 3 3

2 2 2 42 4
1 3 00 3 3 01 1 2 2

0 0 0 2 4
1 3 3 3 2

1

mm mQ m
Q Q Q

mm mQ m
Q Q Q

mm mQ m
Q Q Q

ωω ω ω ωω
ω ω ω ω

ωω ω ω ωω
ω ω ω ω

ω ω ωω ω ωω ωω
ω ω

−

− −
− − −

− −

−

+
+ + +

+ +

   
 = + +   − −     

    + = + +   − −     

+ − 
= − + − 

 

( )( )
1

2 2 2
0 1 31 3

2 2
21 2 3

1ω ω µ ω

µ ω ω

−
  + +
  

    

 

The expressions of (78) are completely equivalent to those ones found in the reference (P. E. Majorana 1993).  
The normal forces are related to the generalized forces by the relations:   

(79) 

1

1 1 10
0

0 2

3

ˆ ˆ ˆ ˆ ˆ ˆ;

th thI

th thI
th thII

th thII n

th thIII
thIIIth

F F
m M

F F
F F F N F N M M
m M

F F
FF
Mm

−

−
−

− − −

+
+

+

   
   
              = Λ ⇒ = = Λ       
       

      
      
   

 

 

Applying the Langevin equation on the coordinate 2x we find: 

(80) 

22
2 21 22 0 23

2 2 22 2 2
21 22 0 23

* *
21 22 0 0

* *
21 23

* *
22 23 0 0

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

thX Y Y Y

Y Y Y

Y Y Y Y

Y Y Y Y

Y Y Y Y

ω λ ω λ ω λ ω

λ ω λ ω λ ω

λ λ ω ω ω ω

λ λ ω ω ω ω

λ λ ω ω ω ω

− +

− +

− −

− + + −

+ +

= + + =

= + + +

+ + +

+ + +

+ +

 

 
taking into account the expressions (58) and the uncorrelation between the stochastic forces, we find: 

(81) 2 2 22 2 2 2
2 1 1 2 2 3 3( ) ( ) ( ) ( )th th n th n th nX f T f T f Tω ω ω ω= + +  

where: 

(82) ( ) ( ) ( )
( ) ( )

1 11 21 21 22 0 31 23

2 12 11 21 22 21 22 0 32 31 23

3 13 11 21 23 21 22 0 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

n

n

n

T N T N T N T
T N N T N N T N N T

T N N T N N T N

ω ω λ ω ω ω λ ω ω ω λ ω ω

ω ω ω λ ω ω ω ω λ ω ω ω ω λ ω ω

ω ω ω λ ω ω ω ω λ ω ω

− +

− +

−

= + +

= − + − + −

= − + − + ( )3 31 23( ) ( ) ( ) ( )N Tω ω λ ω ω+




 −

and  

(83) 
2 2

1 1( ) ; ,0, ;i
i

i
i

T i
m

i
ω

ωω ω
τ

= = − +
 

− + 
 
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(84) 2

0

; 1, 2,3b i
thi

i

k T mf i
τ

= =  

the relation (81) differs considerably by the naïve treatment of the thermal noise in which the calculation is performed 
by a simple quadratic sum of the thermal terms of the normal modes  

(85) 2 2 22 2 2 2 2 2 2
2 21 22 0 0 23( ) ( ) ( ) ( )naive

th th th thX T F T F T Fω λ ω λ ω λ ω− − + += + +  

The main difference is the presence is the equations (80)-(81) of the cross-term due to the correlation between the 
normal forces that in the equation (85) are erroneously neglected. In the condition in which the modes are orthogonal 
(the conditions (74) are satisfied) the cross-term is null and all the curves coincide. The stochastic cross-coupling is in 
this case indentically zero.  In the Figure 3-2 the general difference between  naïve and the modal curves is shown. 

  
Figure 3-2 Thermal noise prediction of for the Virgo Branched pendulum calculated with the Normal Mode 
method, compared with the naïve calculation. We notice that the off-resonance zone at high frequencies is quite 
different, and in some cases, like ours, the cross-term give rise to a helpful cancellation, which reduces the 
thermal noise in the zone of the sensitivy. 

3.3. The pendulum and the vertical modes. 
The presented model can be used to calculate the thermal noise of the pendulum or the vertical modes by properly 
defining the elastic constants in the system. The following table will resumes the used definitions already introduced in 
equations (12), (13) and (37). 

2 2 2

2

2

2 2
22

( )

/ 4
;

42

pi gi wi

i
el wi i

gi wi
i i i

i vi
i i i ii i i

el wi

i

Horizontal Modes Pendulum

Vertical Modes

kg r Y
L m L

n f Y I m
k I r

L

  

 




 

        


 

 

where , ,
i wi i

Y r L are the Young modulus, the radius and the length of the suspension wires, while ,
i i

n f the number of 
flexural points and the number of suspension wires of the ith mass.  

3.4. The structural and the viscous losses 
In the model the losses of the system are defined by the mechanical quality factors of the oscillators. This is the most 
classical approach which comes  from a very general treatise of the problem, and that can be found on classical texts 
like (Landau L.D. 1975) and in the papers like those of Callen and Greene (Greene F. 1952)(Callen H.B. 1952), in 
which the quality factor is related to the decay times of the uncoupled oscillators. The mechanical quality factors 
include both the structural and the viscous dissipation mechanisms that could be present on the suspension system by 
the relationships: 

(86)    1 1 ; 1,..., 3i
i i vi

Q Q i


 


 
        
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where 
vi

Q  are the viscous quality factors and  i
  are the losses angles describing the structural losses of the 

suspension wires, and described in section 1.4. 
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4. Numerical Estimations  
In the following several plots of the thermal noise estimations by using the three different models are shown. You’ll 
find in the table below the parameters used for the computations. 

Suspension wires 
Suspended element 

Fused silica fibres 
Mirror 

C85 wires 
Reference mass 

Maraging wires 
Marionette  

Suspended Mass 40 kg 40 kg 100 kg 
N (number of wires) 4 4 1 

Wire length 0.7m 0.7m 1.125m 
Wire diameter 0.8mm 0.6mm 1.85mm 

Young modulus 72GPa 200GPa 195GPa 
Density 2200 kg/m3 7900 kg/m3 8000 kg/m3 

Specific heat 682 J/(kgK) 502 J/(kgK) 460 J/(kgK) 
Thermal conductance 1.38 50 25 
Thermal expansion 5.4 10-7 K-1 1.4 10-7 K-1 1.1 10-5 K-1 
β= 1/E dE/dTemp 2 10-4 K-1 -2.782 10-4 K-1 0 

Internal φ 10-9  10-3 10-4 
Horizontal viscous Q - 104 103 

Vertical viscous Q - 104 103 

θH-V Vert.-Hor. coupling 10-3 

Temp 290 K 
g 9.8 m/s2 

Table 1: AdV parameters 
 

4.1. Using with the FDT model

 
Figure 3- Thermal noise of the payload, compared with the simple pendulum if Qmario=102 
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 Payload: r1=400um, Q1=10^20, Q2=10^4, Q3=10^2
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t(H

z)
]

Frequency [Hz]

 Simple Pendulum: r1=400um
 Payload: r1=400um, Q1=10^20, Q2=10^4, Q3=10^2
 Payload: r1=400um, Q1=10^20, Q2=10^4, Q3=10^2 (Coupling 0.001)
 r1=400um, Q1=10^20, Q2=10^4, Q3=10^2, (Coupling 0.001)
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Figure 4 Thermal noise of the payload, compared with the simple pendulum if Qmario=103 

 
 

4.2. Thermal noise calculation including the elastic stiffness for the mirror suspension fibres. 
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 Payload: r1=400um, Q1=10^20, Q2=10^4, Q3=10^3 (Coupling 0.001)
 Payload: r1=400um, Q1=10^20, Q2=10^4, Q3=10^3 (Coupling 0.001)
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4.3. Using the normal modes treatment.  
We have computed the thermal noise curves with the parameters of Virgo Advanced detector. We consider either the 
case in which the internal losses  are  dominant on the mirror losses, then the case in which the viscous damping is 
dominant. The parameters used are the same as in table Table 1. 

4.3.1. Internal friction dominant 
@10Hz 2

2 ( ) [ / ]thX m Hzω   2( ) [ / ]pendX m Hzω  Ratio 

Qmario=100 1.98×10-18 5.7×10-20 34.8 
Qmario=1000 6.30×10-19 5.7×10-20 11 
 

 
4-5 Pendulum Thermal noise in the case the viscous damping is negligible. The two cases correspond to the two 
different marionette quality factor (102-103) 
 
 
 
 
 
 
 
 
 
 
 

4.3.2. Viscous Damping dominant 
@10Hz 2

2 ( ) [ / ]thX m Hzω   2( ) [ / ]pendX m Hzω  Ratio 

Qmario=100 2.21×10-18 9.9×10-19 2.25 
Qmario=1000 1.17×10-18 9.9×10-19 1.19 
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4-6 Pendulum Thermal noise in the case the viscous damping is comparable with the internal losses. The two cases 
correspond to the two different marionette quality factor (102-103) 

 
4-7 Pendulum Thermal noise with vertical noise contribution in the case the viscous damping is negligible. The two 
cases correspond to the two different marionette quality factor (102-103) 
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4-8 Pendulum Thermal noise in the case the viscous damping is comparable with internal losses. The two cases 
correspond to the two different marionette quality factor (102-103) 
The overall curve gives quantitative results similar to what it has been illustrated in the previous paragraphs, but with 
the presence of the vertical thermal peeks. 
In figure 4-9 is shown a comparison between the overall thermal noise in the case the viscous losses on the mirror are 
negligible, and the case in which there is still viscous damping giving a quality facto of 108 on the mirror. The 
difference is evident in the off-resonance high frequency range by giving a change in the slope after 10 Hz related to the 
different frequency behavior in of the mirror quality factor as it is shown in figure 4-10.  
The quality factors of the normal modes (at the resonances), for these two case are: 
 Qmario=102-103,Qmirror=1020,Qrm=10000  Qmario=102-103,Qmirror=108,Qrm=10000 
Q- (ν-=0.322 Hz) 530-1773 178-1773 
Q0(ν0=0.597 Hz) 130000 130000 
Q+(ν+=0.871 Hz) 900-2900 300-2900 
Q- vertical (ν-=0.298 Hz) 130-1300 130-1300 
Q0 vertical (ν0=12.3  Hz) 4800-5200 4800-5200 
Q+ vertical (ν+=17.9 Hz) 1100-1200 1100-1200 
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4-9 Comparison between the case in which an overall viscous damping is dominant (red curve) and the case in 
which the viscous damping on the suspension in negligible (black curve). The slope above 10 Hz is considerably 
different for the red curve. 
 

 
4-10 Mirror pendulum quality factor vs frequency. Comparison between the cases  with negligible viscous damping 
(black curve) and presence of a viscous damping (red curve). The change of slope in the red curve, explains the 
behavior of the thermal noise in the red curve of the figure 4-9. 

4.3.3. The Normal condition. 
In the following it is shown an example of the thermal noise in the normal case in which the uncoupled quality factors 
fully satisfy the conditions (74). 



 

 
Measurement of the pendulum Q for the 

PR suspension 

VIR-NOT-ROM-1390-239 
 
Issue: 3r63 
Date: November 29, 2001 
 

 

 24 

 
4-11 Thermal noise of the pendulum branched system compared with the simple pendulum , thermal noise in the 
normal mode condition (with vertical modes). The thermal noise of the branched suspension is identical to that one 
of the simple pendulum in the off-resonance high frequency zone. 
This the ideal case in which all the quality factors are quite equal and in the off-resonance high frequency zone the 
thermal noise of the branched suspension observed by the mirror coordinate, is identical to that one of the mirror one. 
This is consistent with the normal mode definition. 

5. Conclusions I 
In this paper we have calculated the thermal noise of the mirror last stage suspension which includes the marionette and 
the reaction mass. We have used three different approaches which lead all to the same results. 
In the off-resonance high frequency region, the mechanical losses of the reaction mass and mainly of the marionette 
suspension can give non negligible contributions which induce the overall thermal noise curve to be different from the 
simple mirror curve even in the sensitivity bandwidth of the interferometer.  This effect become more evident as soon as 
the mass  of the mirror is more similar to that one of the marionette, and as soon as the mirror pendulum losses are 
further reduced. For these reasons the use of the overall thermal noise curve is crucial to give the correct evaluation of 
the design sensitivity of the Virgo+ and Virgo Advanced detectors  in the low frequency regions of their bandwidth. 
Moreover this estimation  can be helpful for the optimization of the last stage suspension design.  
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6. On the quality factor of the marionette of the last stage suspension for the monolithic payload 
From the results of the new calculation on the thermal noise of the last stage suspension, it turns out that the effect of 
the losses of the first oscillator in the branched chain can spoil the sensitivity of the interferometer.  
As a consequence the evaluation of the losses of such an element, the marionette, is crucial for the correct evaluation of 
sensitivity curve. 
The measurements we can deal with so far, come from a set of data taken on the payload hung to the SA. However 
these kind of measurements can be helpful to set a lower limit of the losses of the marionette, as it is influenced by the 
upper part of the SA chain. 
Another set of measurement is performed on the last suspension system of the monolithic payload which are presently 
suspended in air, in the laboratory at 1500W. 

6.1. The measurements 
All these measurements give informations on the quality factors of the payload  normal modes. Then, from these data 
we can yield the quality factors of the uncoupled oscillators by using the relationships calculated from the normal mode 
treatment.  

6.1.1. On the SA chain 
 
Set up    
Mmirror = 21 kg Lmir = 0.7 m φmir = 0.2 mm Steel C85 
Mrm = 59 kg Lrm  = 0.7 m φrm  = 0.6 mm Steel C85 
Mmario = 110 kg Lmario = 1.125 m φmario = 1.85 mm Maraging Steel 
 
 Meas Data  Freq. (Hz)  Calculated  Calculated 
Q- 50 ν− 0.446  Qmario 30 Q- 52 
Q0 105-2 106 ν0 0.6  Qmirror 105-107 Q0 105-1.8 106 
Q+ 80 ν+ 0.979  Qrm >107 Q+ 90 
Q- vert  ν− vert 0.3    Qmario 30-50 Q- vert  
Q0 vert  ν0 vert 4.17  Qmirror >107 Q0 vert  
Q+ vert 2000-3000 ν+ vert 14.5  Qrm >107 Q+ vert 1936-3000 
 
 
 

6.1.2. On the Virgo+ monolithic payload 
Set up    
Mmirror = 21 kg Lmir = 0.695 m φmir = 0.285 mm FS 
Mrm = 33 kg Lrm  = 0.695 m φrm  = 0.6 mm Steel C85 
Mmario = 115 kg Lmario = 1.130 m φmario = 1.85 mm Maraging Steel 
 
 Meas 

Data 
 Frequencies  Calculated  Calculated 

Q- 600 ν− 0.421 Hz Qmario 1000 Q- 622 
Q0 160 ν0 0.598 Hz Qmirror 200 Q0 200 
Q+ 220 ν+ 0.842  Hz Qrm 220 Q+ 200 
Q- vert 950 ν− vert 5.316   Hz Qmario 900 Q- vert 960 
Q0 vert 900 ν0 vert 8.746 Hz Qmirror 1300 Q0 vert 947 
Q+ vert 950 ν+ vert 19.95 Hz Qrm 1500 Q+ vert 924 
 
Virgo+ thermal noise evaluation: 
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Figure 12 Virgo+ thermal  noise with Qmario=1000, Qrm>106, Qrm>106 (red) compared with Qmario=300, Qrm>106, 
Qrm>106 (blue) and without viscous losses (green) 
 

6.2. Conclusions II 
From the measurements of the normal modes quality factors we can preliminarily set a lower limit to the marionette 
quality factor which is 1000. This factor, is measured on the monolithic suspension setup, in air and without the 
presence of the filter 7. The result suggests that it is possible to increase the quality factor of the marionette when it is 
mounted on the SA chain, by trying to improve the its coupling to the filter 7. Further investigations are needed for 
better understand this aspect.   
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