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Signals characterization - 1
• We classify as “continuous” a GW signal with duration longer 
than the typical observation time of a detector 

• CW signals are expected to be emitted by various sources 
containing neutron stars: tri-axial, wobbling, accreting, in binary 
systems,…

• We KNOW that potential sources of CW exist: ~2,000 NS 
are observed in EM (mostly pulsar), 1 billion expected to exist in 
the Galaxy 

• A fraction of these emit in the sensitivity band of ITF

• We DO NOT KNOW the amplitude of the emitted signals



3

A GW signal can be described through its polarization ellipse.

The polarization ellipse is characterized by the ratio          
between its axis (-1≤η≤1) and the polarization angle ψ
(direction of the axis a of the ellipse).

Then, the GW is:
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Signals characterization - 2

By specifying a particular source model we can express          
and     as a function of the source physical parameters.        
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Signals characterization - 2
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For instance, considering an isolated neutron star rotating 
around a principal axis of inertia we can recover the ‘classical’
expression of the plus and cross wave components:
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Signals characterization - 3
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The expected signal maximum frequency is below 2kHz.

The source we are searching for are in the Galaxy, d<O(10kpc), 
(farther sources are not detectable).
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Signals characterization - 4
The rotation frequency, and then the emitted signal frequency, 
slowly decreases due to the energy loss of the source (EM, GW 
hopefully…): spin-down
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Signals characterization - 5
Assuming that the measured spin-down of a source is totally due 
to the emission of GW, we obtain an upper limit to the signal 
amplitude:

In a search of GW from known NS, we start to enter into a regime
of astrophysical interest when the spin-down limit is beaten (for 
just one object so far: Crab in LIGO S5)

For some pulsars a more stringent limit to the maximum possible 
amplitude can be computed considering both the EM and GW 
contribution to the spin-down (Crab, Vela,...). 
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Signals characterization - 6
The received signal is affected by the Doppler effect associated 
to the relative source-detector motion.

The signal phase evolution respect to the solar system 
barycenter (SSB), which is approximately an inertial reference 
frame, is: 

( )000 2)( TTfT −⋅+= πφφ

T
0φ : signal phase at the time T0 

: SSB time (we neglect source proper motion)

Due to the detector motion and to some relativistic effects, the
time at the detector t is not equal to the SSB time T:
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Signals characterization - 7

corr.  rel. 
ˆ

2

)()()(

0

0

+
⋅

⋅⋅=Δ

Δ+=

c
nrf

ttt

Doppler

Doppler

πφ

φφφ

The signal phase at the detector can then be written as
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Signals characterization - 8
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The total velocity vector makes small ~0.8 deg oscillations 
around the ecliptic.

(at 45 deg latitude; tilted by ~23.4 deg respect 
to the orbital plane; P=1 sidereal day)

(directed along the ecliptic; P=1 sidereal year)

For sources in binary systems there are further terms in the 
Doppler formula due to the orbital motion.

Hence, the Doppler shift formula for the frequency is:
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Signals characterization - 9

The maximum Doppler shift is 0
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Signals characterization - 10

A common mistake: “Over short times the Doppler effect is 
small”.

Why is this sentence wrong?
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Signals characterization - 11
The received signal is amplitude modulated due to the non-
uniform antenna sensitivity pattern of the detector. 
Signal at the detector : ( ) ( )( )0 0( ) exph t h A H A H j tω γ+ + × ×= ⋅ ⋅ + ⋅ ⋅ +
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Signals characterization - 12
The time-dependent antenna pattern  is described by the two 
functions:

The modulation has period of one sidereal day and does not 
depends on the signal frequency.
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(α,δ) source coordinates, λ and a the latitude and azimuth of the antenna; 
Ω∙t = α‐Θ,   where Θ is the sidereal time.
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Signals characterization - 13
Looking at the frequency domain, the amplitude modulation 
produces a spread of the signal power into five bands at 
frequencies rotearthrotearth fffff ,0,00 2,, ±±
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Signals characterization - 14

The frequency of the side bands is fixed (respect to the central
one). The amount of power in the side bands depends on the 
source and detector parameters
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Signals characterization - 15
There are two further complications that can affect the GW signal 
from real sources: glitches and timing noise 

Glitches: sudden abrupt variations of rotational period and period 
derivative (star-quakes or interaction between crust and 
superfluid,…)

One every few years for the most prolific known pulsars (Vela, 
Crab,…)
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Signals characterization - 16
Timing noise: random fluctuations of the star rotation frequency 
or EM signal                                                    
phase (or both).  

Not clear if it affects also the GW signal

Pellizzoni et al, ApJ 691 
(2009)
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Detection theory - 1
Tipically, GW signals are buried into the detector noise. Then, 
the data at the output of a detector form a stochastic process

The detection of a signal into the data, and the estimation of its 
parameters, are a statistical problem.

The key idea behind signal detection is that the presence of 
a signal changes the probability distribution of the data.

Given our data, we compute a test statistics              , a properly 
chosen function of the data. This means suitably filtering the data.

Then, we check if its value is compatible with the pure noise 
distribution (hypothesis H0) or not (alternative hypothesis H1).

)(exp xΛ

)()()( thtntx +=
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Detection theory - 2
We choose a threshold       and compare it with          :

If                      we conclude that no signal is present in the data  

If                      we reject H0 and conclude that a signal is present   

∗Λ )(exp xΛ
∗Λ<Λ )(exp x
∗Λ>Λ )(exp x

∗Λ
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Detection theory - 3
Being the detection, or non detection, claimed on statistical basis, 
two kinds of error can be done:

Error of type 1: we claim detection when no signal is present 
in the data (false alarm)

Error of type 2: we claim non detection when a signal is 
present in the data (false dismissal)
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Detection theory - 4
Clearly, by decreasing the f.a.p. the f.d.p. increases (i.e. the
detection probability decreases). We need some kind of trade-off.  

The Neyman-Pearson lemma says that when we search for a 
known signal an optimal test exists, such that the detection 
probability is maximized for a chosen value of the false 
alarm probability (maximum power test).

This is a likelihood ratio test:

The threshold        is computed for a chosen value of

We will see later that this test corresponds to the matched filter, 
which maximizes the signal-to-noise ratio (SNR) over all linear 
filters (independently of the probability distribution of the noise). 

We will also see that it is not always possible to use the matched 
filter. 
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Detection theory - 5
If there is a statistical evidence for the presence of a signal, we 
can increase its significance by analyzing a longer set of data: if it 
was really a signal it will be detected with higher and higher SNR 
(but see the caveat at slides 47-49).

If the output of the analysis is compatible with noise only, we 
can put an upper limit on the signal strength.

This can be done in different ways. For instance, in a frequentist
approach, we can  compute the amplitude        of the signal that, 
if really present into the data, would produce an analysis output 
that in say 95% of the cases would be larger than the value 
actually found. 

This requires the knowledge of the filtered data distribution in
presence of a signal. 

min,0h
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Detection theory - 6
The latter can be computed directly or estimated through the 
injection in the data of simulated signals.

The blue curve is the expected distribution in absence of 
signals.        is the value found in the actual analysis. 

It corresponds to a FAP of ~40%, then we conclude it is 
compatible with pure noise.

outx
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Then, we search the signal amplitude        such that if a 
signal with that amplitude were really present into the data it 
would produce an output of the analysis larger than         with
a probability of 95%.       

In this example   

outx

min,0h

8.1~min,0h

Detection theory - 7



26

Detection theory - 8
Let us assume that the noise is a stationary, gaussian and 
zero-mean random process.

The logarithm of the likelihood ratio is

where we have introduced the scalar product 
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Detection theory - 9
I.e. the likelihood ratio test consist in computing the cross-

correlation between the data and the signal and comparing it 
to a threshold: this is the matched filter (see slides 33-34). 

If there are unknown parameters    , a common approach 
(called Generalized Likelihood Ratio Test) consists in:

a. estimate them by solving the maximum likelihood equation 

b. Compute the likelihood ratio for          and compare the 
resulting value to a threshold to establish if a signal is 
present (with parameters equal to the estimated ones). 

θ
θ

θ ˆ0);(ln
⇒=

∂
Λ∂ x

θ

θθ ˆ=

For continuous signals this brings to the so-called “F-statistics”
invented by Jaranowski, Krolak, Schutz.
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Detection theory - 10
The GLRT does not satisfy any optimality criterium. I.e. it is 
possible, at least in principle, to find a more powerful statistics, 
that is with a higher detection probability for a fixed FAP. 

Indeed, later we will discuss at length a different detection 
statistics slides 54 and following
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Differences respect to other kind of 
signals

1. The signal is always present: we can confirm or reject a 
candidate looking at longer and longer data sets -> the false 
alarm probability can reduced to negligible values 

2. The expected signal amplitude is very low, but we can 
observe it for a long time thus increasing the SNR

3. Coincidences, or joint analysis, with other detectors are 
desirable but not mandatory 

4. Source parameter estimation can be done with extremely 
high precision
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Basic tools - 1
Let us consider a continuous signal buried into noise with bi-
lateral power spectrum: )( fSn

)()()( thtntx +=

Let us start from the simplest model for a continuous signal, a 
sinusoid, and then add the various complications to make it 
‘compliant’ with a realistic continuous GW signal.

Let us make the following simplifying assumptions:

-The signal adds linearly to the noise:

- The noise is gaussian;

- The noise spectrum is flat (in the interested band):

- The noise is stationary;

- The data are contiguous (no ‘holes’)

constfSn =)(
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Basic tools - 2
The analysis methods can be divided among ‘coherent’, i.e. that 
take into account the signal phase (e.g. matched filter and 
correlator) and incoherent, where the signal phase is discarded 
(e.g. the periodogram, Radon transform, Hough transform). 

Typically, incoherent methods are more robust and less 
computationally demanding but also less sensitive.

What method (or combination of methods) to use depends 
critically on the information we have on the signal we are 
searching and on the available computing power.

In this lecture we will focus the attention on coherent methods.
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Basic tools - 3
Case 1: the signal is a sinusoid

)sin()( 000 ϕω += thth

Let us see how the detection can be done under various 
hypothesis about what we know of the signal we are searching 
for.
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Basic tools - 4
frequency and phase known matched filter 

Compute

This is equivalent to pass the data through a filter with impulse 
response

The signal output is

The variance of the output noise is

The output SNR is 

)( th −

2
)( 0

obs
obss

thty ⋅=

obs
n

n tfS
⋅=

2
)( 02σ

)(2
)(

0
0 fS

thtySNR
n

obs

n

obss ==
σ

∫ +⋅=
obst

obs dtttxty
0

00 )sin()()( ϕω



34

Basic tools - 5
which corresponds to a ‘nominal sensitivity’ (amplitude of the 

signal detectable with SNR=1) 

The output noise has still a Gaussian distribution with         
and standard deviation      (linear combination of gaussians).

We can compare the filter output with the noise only distribution 
and establish (statistically) if a signal is present in the data.

E.g. the threshold corresponding to a FAP of 1% is 
If the output is compatible with noise (for the given threshold) we 
can set an upper limit.

The distribution of the noise+signal at the output is also a 
gaussian shifted by the signal amplitude, i.e with mean value       

and standard deviation      .                           
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n
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Basic tools - 6
We can also compute the minimum detectable signal with, say, 
1% FAP and 5% FDP, by solving the equation (for Gaussian 
noise)      

from which 

nσμϑ ⋅−=− 64.1

obs

n

t
fSh )(297.3 0

min,0 ⋅=

This corresponds to SNR=3.97.

The matched filter gives the maximum SNR among all 
linear filters and this why it is called the ‘optimum’ filter. 

It also maximizes the detection probability for a given 
value of the FAP (see slide 22). 
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Basic tools - 7
The frequency is known cross-correlation 

Compute

and take the maximum over    . 
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Basic tools - 8
In practice, the cross-correlation is computed over a discrete grid 
of values of 

The finer is the grid, the better we can estimate the unknown 
parameter (and, obviously, the higher is the computational time).

If we use a ‘mismatched’ filter, i.e. use a template slightly 
different from the signal present into the data, the sensitivity loss 
can be estimated as                                             

where        is the phase difference between the signal and the 
template.  

The cross-correlation method can be generalized, in principle, to 
a signal with a whatever number of unknown parameters but can 
be computationally very heavy.                      
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Basic tools - 9
Unknown frequency  power spectrum

The power spectrum is the Fourier Transform of the 
autocorrelation of the data.

It can be estimated in several ways. A useful method is the 
periodogram, i.e. the square modulus of the Fourier Transform 
of the data:

The periodogram can be efficiently computed by the FFT 
algorithm.

2
1

0
∑

−

=

⋅

=
N

i

N
ikj

ik exX



39

Basic tools - 10

The spectral resolution is

The power spectrum does not allow to recover the signal 
phase.   

obstf /1=δ
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Basic tools - 11
The signal power is           

The noise contribution is

The noise probability distribution for each frequency bin is 
exponential with variance         

The probability to have in a given frequency bin a power bigger 
than a threshold        is                     

The probability to have a power bigger than         in any of   
frequency bin is                                    from which the value of the 
threshold        corresponding to, e.g.,                 can be computed.  
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Basic tools - 12

Here we assume that the noise average power has been 
normalized to unity.

is the modified Bessel function of the first kind of order 0.

E.g., assume we have                    and to search for a 
monochromatic signal over a band of 1000Hz, being the noise 
spectrum flat (                        ) for simplicity:

The threshold for a FAP=1% is found to be                       .

)(0 xI

yr 1=obst

constfSn =)( 101015.3 ⋅≈N

( )2236.5 nthrP σ⋅=

In presence of a signal of power     , the power spectrum 
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Basic tools - 13
The ‘naked’ periodogram has some problems:

a. If the frequency of a monochromatic signal is not exactly at the
centre of a frequency bin, there will be a leakage in the 
adjacent bins

b. Its variance does not decrease with the length of data

c. Often, we cannot do FFT of arbitrarily long pieces of data 
because of the limited accuracy with which source parameters 
are known (see later)
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Basic tools - 14
An example of a.:

The leakage is an effect of the finite size of the piece of data
from which the periodogram is built (it is as the data have been 
multiplied by a rectangular window).

It can be cured by properly windowing the data, i.e. multiplying 
the data by a smooth function that behaves better in frequency. 
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Basic tools - 15

Points b. and c. can be cured by dividing the observation time in 
M intervals, computing the periodogram of each piece and making 
the average.

The SNR decreases by a factor           but the distribution 
becomes a        with         degrees of freedom.

4 M
2χ M2

The average 
has a lighter tail



45

Basic tools - 16

The Doppler effect can be removed multiplying the data by       
)(tj Dopplere φΔ−

Case 2: Doppler effect 
Let us consider a sinusoid with a frequency modulated by the 
Doppler effect.                      

This requires:

1. a very precise knowledge of the detector position in the SSB 
(the vector     in slide 8) as a function of time. This information 
is produced by various public softwares, like NOVAS.

2. A very precise knowledge of the source position (the vector   
in slide 9) and frequency: this condition is typically met for 
pulsars observed in the EM (if      is not too large, see slide 
71).                              

r
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obsT
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Basic tools - 17
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Case 3: Spin-down
Let us consider a sinusoidal signal with a steadily decreasing 
frequency.

By expanding the frequency in a Taylor series around the 
initial value, the signal phase can be written as

Like in the previous case, if the spin-down parameters of a 
source are known with high accuracy we can correct by 
multiplying the data by

Basic tools - 18
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Basic tools - 19
Case 4: Amplitude modulation

Let us consider a sinusoid modulated in amplitude, as 
described in slides 13-16: tjetAth 0)()( ω⋅=

The signal shape depends on the detector location and source 
parameters.
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Basic tools - 20
We can try to detect this signal using different methods.       
E.g. we could apply a bank of templates for the unknown source 
parameters but this would be extremely heavy (there are 3 
parameters which should be taken into account see slides 36-
37).

A better choice would be to use the F-statistics.

A good alternative is to apply the matched filter on the Fourier
transform of the signal: in this case each template consists of just 
five complex numbers (the complex amplitudes of the five 
spectral lines). 

This is the method we will use in the exercise and will be 
described soon.
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Putting all this stuff together…
Let us try to see how all the stuff we have seen up to now can be 

used in the search of GW signals.

We make a distinction between two cases:

1. The source parameters                       are known. We call this 
targeted search. The nuisance parameters               are 
generally unknown. E.g. the search for GW signals from 
pulsars observed in the EM belongs to this category.

2. The source parameters are unknown. We call this blind 
search.

,...),,,( 00 ffδα
),,( 0φιψ
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Targeted search -1 
The received GW signal is not monochromatic and covers a small 
frequency band around the known emission frequency:

Hzf
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totobsSD

Doppler
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max,
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⋅≈Δ

Δ⇒⋅≈Δ

≈Δ

is a fraction of Hz

We can extract the small band of interest and work just on it.

This is the starting point of your exercises.

The calibrated data produced by an ITF are sampled, e.g., at 
4096Hz. 

We can simplify our life by down-sampling the data at a much 
lower rate. This is possible because kHzff Nyquisttot 2≈<<Δ
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Targeted search -2 
Then, we correct for Doppler and spin-down effects (as a 
matter of fact the procedure actually used, based on the 
construction of the so-called analytical signal, allows to down-
sample and correct the data at the same time see slides 77-81 
for more details).

At this point we have just noise plus (if we are lucky) a 
monochromatic signal with a modulated amplitude .

We remove residual periods which are particularly noisy.
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The antenna response (slide 13) can be written as 

( )( )0 0( ) exph t h j tω γ= ⋅ ⋅ ⋅ ⋅ +A W

H H+ ×
+ ×= +A A A

jk t
kW e Ω= with ‐2 ≤ k ≤2 

Targeted search -3 

where we have introduced the “generator” 5-vector  

and the signal 5-vector (which completely defines the signal 
in the antenna)  

We also reduce the effects of noise non-stationarity by 
weighting the data with the inverse of local variance (Wiener 
filtering).

Finally, we apply the last filtering stage which takes into 
account amplitude modulation and estimate the parameters 
of the GW signal.
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Targeted search -4 
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The two polarization signals 5-vectors A+ and Ax have 
components:
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Given the data         the corresponding 5-vector is given by its 
Fourier components at the five frequencies.

The two signal 5-vectors can, in principle, be computed using 
eqs. in slide 54. In practice, however, we must build it using the 
same procedure applied to the data, i.e. by imposing the same 
cuts, vetoes, Wiener weights.

Once the 5-vectors of the data and of the two signal 
components have been computed we use them in the matched 
filtering procedure.

Targeted search - 5 
)(tx
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and       are, respectively, the estimation of       and  

Targeted search - 6 
The detection is done by applying a matched filter to each of 
the two signal components: 

2 2h h
+ ×

+ ×
+ ×

⋅ ⋅
=              =

X A X A 

A A 

(we use the orthogonality relation                   ).

From here we build a detection statistic                        

and optimize over the two coefficients.                         
The “best ROC” statistics is obtained with the choice 

0=⋅ ×+ AA
+ĥ ×ĥ +H ×H

2 2
S c h c h+ ×+ ×= ⋅ + ⋅

4 4
c c+ ×

+ ×=              =A A
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Targeted search - 7 
The square modulus of the two basic observables        ,        
in case of noise only has an exponential distribution:

2|ˆ| +h 2|ˆ| ×h

( )
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Xσ : variance of the data     

5-vector

In case a signal of amplitude       is present in the data, the 
distribution becomes 
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Modified Bessel 
function of the 1st kind, 
order 0
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Targeted search - 8 
Then, we can derive the distribution functions for our detection
statistics (slide 57)

2424 ˆˆ
×

×
+

+ ⋅+⋅= hAhAS

1. Check if the actual value of      obtained in the analysis is 
compatible with the noise only distribution;

2. If not claim detection, otherwise set an upper limit using the 
distribution in presence of a signal (theoretical or built 
through software injections). see discussion slides 24-26

S



59

Targeted search - 8 
If a signal is detected, we can use the two basic observables 
to estimate signal parameters.

2 2
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Estimation of the amplitude

Invariants

Estimation of η

Estimation of ψ

Estimation of the 
absolute phase

(these are independent on the absolute phase γ )
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Blind search - 1
The analysis methods we have seen so far are particularly 
suitable when (most of the) source parameters are known.

Let us see what happens if we want to use them in a blind 
search.

A plausible minimal range for the source parameters is the 
following: ( )

yr 000,10
||

 ]2000,20[
sky  wholeover the   ,

0

0

0

>=

∈

f
f

Hzf

τ

δα

While we do not expect CW signals with                  , we would 
like to search for signals with      as small as possible:    

kHzf 20 >
τ
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Blind search - 2
Smaller    means higher      . On its turn, this possibly means a 
younger source, then likely more deformed (higher ellipticity, see 
slide 4) higher GW emission.   

In order to apply whatever filtering method we need to build a grid 
in the parameter space.                                         
The dimensionality of the parameter space is 3+s where s is the 
number of spin-down parameters (we are neglecting the 
nuisance parameters, which number may depend on the 
particular analysis method used). 

τ 0f
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Blind search - 3
tΔLet us indicate with       the sampling time.

We can write the following relations: 
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Blind search - 4
With observation times O(months) we need to take into account 
also the second order spin-down parameter and we can write:

3
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Let us assume we want to make the analysis by searching for 
significant peaks in the periodogram. This implies to compute an 
FFT of length                      (for 4 months of data) for each source 
position and spin-down value.                                                            
The computation of an FFT requires                              FLOPS.

Then, to make the analysis we would require a computing power  

10102 ⋅≈FFTN

)(log5 2 FFTFFT NN ⋅⋅≈

TFLOPSCP  107.3 21⋅≈

A different approach is necessary!!
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Blind search - 5
We would like that an alternative approach satisfies two 
requirements:

- drastically reduce the computing power needed;

- not loose too much in sensitivity

Both can be satisfied in the so-called hierarchical search.

The key idea is that of alternating incoherent and coherent steps.

In the incoherent step a rough exploration of the parameter space 
is done and some candidates are selected.

In the coherent step each candidate is followed with a more 
refined search.  

Hierarchical searches of different ‘flavours’ exist but we will not 
discuss them here.
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Practical issues with real data - 1
Non-linearity

A. Non linear interaction between signal ans noise                 
This is not a problem due to the smallness of expected signal: 
the linear approximation will always work well

B. Non-linear dynamics of the noise                                    
The optimum filtering theorem says that the optimum filter is 
linear in the case of additive gaussian noise. Then, an 
enhancement by using a non-linear filter is expected only if the 
noise is not gaussian 
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Practical issues with real data - 2

Non-gaussianity

A. Statical non-linearities, like saturations, distortions introduced 
by amplifiers,...

B. Non-linear dymanic of the noise

This should be corrected at the level of h-reconstruction. 
However, a not heavy non-gaussianity is not a big problem for 
the analysis: according to the central limit theorem the ouput 
of a linear filter is more gaussian than the input  
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Practical issues with real data - 3
Non-flatness of the noise spectrum

This can be due to the presence of spectral peaks produced by 
the instrument.

They must be identified (we must be sure they are not due to a 
GW!) and removed from the data
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Practical issues with real data - 4
Non-stationarity

A. Slow variation of the noise statistics                       
This means that the detector sensitivity changes with time and 
we should use methods to take this into account

E.g. we can apply a filter to weight less more disturbed periods

VSR1 data
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Practical issues with real data - 5
B. Burst disturbances 

These are typically short duration spikes that can affect the 
noise level. 

They must be identified and removed. 
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Practical issues with real data - 6
Holes in the data

Holes are produced, e.g. when the detector is out of lock. The 
presence of holes has two negative effects.

A. It reduces the energy of the signal that goes into the 
detector: in the formulae for the SNR we must use the 
‘effective’ observation times.

B. Power leakage: each contiguous set of data is multiplied by 
a rectangular window.
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Targeted searches rely on an accurate knowledge of the source 
parameters: position, frequency, spin-down.

Even for sources observed in the EM, however, these 
parameters are known with finite accuracy and this can lead to a
loss of sensitivity, especially for very long observation times.

An uncertainty on the frequency and spin-down,                       
produce a phase error               

Other possible causes of errors are the uncertainty on the source 
position and the source intrinsic velocity.

00  , ff ΔΔ

... 
2
1 2

00 +⋅Δ+⋅Δ=Δ obsobs tftfψ

Practical issues with real data - 7
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Also the presence of NS glitches and timing noise (slides 13-14) 
can affect the analysis and must be properly taken into account.

A glitch will likely produce a discontinuity in the GW signal phase, 
other than a jump in frequency and spin-down values. 
Astronomical observation can provide information on the 
occurrence of glitches in known pulsars.

Timing noise, if it affects also the GW signal, will produce a 
gradual shift of the signal phase respect to the model.         
It can be taken into account by building the correction factor  
using frequently updated ephemeris, which can be provided by 
astronomical observations.  

Interaction with astronomers is very important!

)(tje φ−

Practical issues with real data - 8
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Virgo groups working on DA for CW

Nikhef:  Henk Jan Bulten   henkjan@nikhef.nl

Pisa:           Stefano Braccini   stefano.braccini@pi.infn.it

POLGRAW: Andrzej Krolak  krolak@impan.pl

Roma:        Sergio Frasca  sergio.frasca@roma1.infn.it
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Exercises for the hands-on session
• See file vesf_da_exercises_CW.pdf under 
/data/vesf_school/users/CW

• Two sets of exercises: 1. and 2. allow you to run analysis 
programs on C7 and simulated data. Exercises 3.-6. are 
problems to be solved on paper.

• The data files you need for Exercises 1. and 2. are under 
/data/vesf_school/users/CW

• Each folder contains 4 files: 
- sim6_p1s.sbl: contains the data in a .25Hz band 

around the frequency of interest; 
- s0_p1s.sbl: the signal + component (same band)             
- s45_p1s.sbl: the signal x component (same band)      
- pulsar_1s.m: Matlab file with the pulsar parameters
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• Folders p1s-p5s refers to C7 data (each with a pulsar 
injected)

• Folder p6s has been produced from simulated data (with a 
pulsar injected)

• Folder psr_j1 is from C7 but with no pulsar injected: the data 
have been prepared to allow the search GW signals from a 
real pulsar (Exercise 2). The program filter_dist_mc (under ) 
can be used to setup an UL. 
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Backup slides
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The procedure to extract sub-
bands-I

• Take an FFT, from the SFDB. Let Δν be the frequency resolution, 2N the number of 
samples and B the bandwidth of the detector;
• take the data from n0 bins in the frequency band  of the actual search; n0 = N(Δν/B);
• build a complex vector that has the following structure:

the first datum equal to zero
the next n0data equal to those from the selected bins of the FFT
zeroes from bins n0 + 1 up to the nearest subsequent bin numbered with a 
power of two. Let us say that this way we have n bins.

zeroes in the next n bins
So, we end up with a vector that is 2n long.
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The procedure to extract sub-
bands -II

• Take the inverse FFT of the vector. 
This is a complex time series that is the “analytical signal” representation of the signal 

in the band . 
It is shifted towards lower frequencies and it is sampled at a sampling rate lower by a 
factor N/n compared to the original time data.
• Repeat the steps outlined above for all the M FFTs. If they all come from contiguous 
time stretches simply append one after the other in chronological order. If they are
not all contiguous set to zero those stretches where data are missing.

This is a the standard procedure of low‐pass filtering for a process.
The analytic signal is zero on the left frequency plane, avoiding aliasing effects
in the low‐pass operation. The time of the first sample is exactly the same as
the first datum used for the data base and the total duration is also that of the
original time stretch. There are fewer data because the sampling time is longer.
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The procedure to extract sub-
bands-III

• The previous are the general features of the 
procedure

• There are important practical issues of the 
algorithm implementation, which take into 
account various aspects, such as the computing 
time.

• The choice of 1 Hz for the total selected band, 
having chosen a smaller band for the signal to 
look for, is reasonable and fast enough for our 
purposes.
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Doppler removal -I
To correct for the Doppler effect a from a given source, we multiply 

each sample of the time sequence by  exp(‐j ϕ(ti ) )

Δω(t)  is the Doppler correction, in angular frequency, at the time of the i‐th
sample;
Δω(t) = ω(t) − ω0
is the difference of the observed frequency and the source frequency.

The frequency correction is performed on the sub‐sampled data set, thus it is 
not computing relevant 

(ti )  are the times of the samples

( ) ( )it t dtϕ ω= Δ∫
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Doppler removal -II

•Another method is based on a resampling technique
•During its orbit the Earth  approaches to or recedes from 
the source.
•When  the  distance of the Earth to the source  changes 
by  ± C∙(1 sample) we add or remove 1 sample to the time 
sequence

Both the methods can be generalized to include also the 
spin‐down and the Einstein effect
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Dither effect -1
Whatever GW signal is present at the input of the interferometer, 
it is converted to a discrete signal at the output.

Typical ADC have 16 bits and a dynamic of 20V.

The quantization step size,          , corresponds to

Then, the expected amplitude of typical CW signals is 100 times 
or more less than the minimum amplitude the ADC can detect.

This means that if we had only signal, the output of the itf
would be zero

How can we hope to detect CW signals? 

Thanks to the dither effect due to the instrument noise!

12
20

−nbit
2110~ −h
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Dither effect -2
Try the following Matlab routine:
>> N=2^21;

>> x=(1:N)*0.1;

>> y=0.01*sin(x);    %create a sinusoid with amplitude 0.01

>> n=randn(1,N); %create gaussian noise 

>> yy=round(y+n); %discretize the sum assuming quantum step =1

>> sp=abs(ffy(yy)).^2; %compute the power spectrum

>> figure;plot(sp(1:N/2));

If n=0 (no noise): yy=0!



85

Dither effect -3

In some cases noise is our friend!

The problems arise because the noise is too much!
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Astrophysics  - 1
Let us see what we can do with current and next generation ITF.

The spin-down limit is assumed for the sources.
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Astrophysics  - 2

The spin-down limit is beatable for many known pulsars.
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Astrophysics  - 3

With advanced ITF we can reach the galactic centre at high 
frequency. 


