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Content

e Quasinormal modes (a few words)

e Status report about progress on identification by
neural network (mock data challenge, KAGRA)

[current stage: successfully reproduced mock data challenge results for
machine learning approach]



Quasinormal Modes

General context: of spacetime
(notably, BHs, but also cosmological, astrophysical,...)
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Quasinormal modes

Decomposition of perturbations in modes (scalar, vector, tensor)

Master equation

DIFFERENTIAL_OPERATOR(mode) =0
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Quasi normal mode frequencies
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Quasinormal modes

Decomposition of perturbations in modes (scalar, vector, tensor)

Master equation

DIFFERENTIAL_OPERATOR(mode) =0

Black Hole Spacetimes approximation
schemes
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ONE MOTIVATION

Test alternative GR theories in the strong field regime

Test that the spacetime is correctly predicted by
general relativity as close as possible to the event
horizon!

T. Nakamura, H. Nakano, Progr. Theor. Phys, 2016 041E01
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Letter

How close can we approach the event horizon
of the Kerr black hole from the detection of
gravitational quasinormal modes?

Takashi Nakamura and Hiroyuki Nakano®

Department of Physics, Kvoto University, Kvoto 606-8502, Japan
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Using the Wentzel-Kramers—Brillouin method, we show that the peak location (rp..) of the
potential, which determines the guasinormal mode frequency of the Kerr black hole, obeys an
accurate empirical relation as a function of the specific angular momentum a and the gravitational
mass M. If the quasinormal mode with a/M ~ 1 15 observed by gravitahional wave detectors,
we can confirm the black-hole space-time around the event horizon, rpeq = r- + O(4/T—g),
where r 1s the event honzon radius. However, if the quasinormal mode 15 different from that
of general relatrvity, we are forced to seek the true theory of gravity and/or face the existence of
the naked singulanty.

Subject Index EO1, ED2, E31, E38




Test alternative GR theories in the strong regime

Test that the spacetime is correctly predicted by
general relativity as close as possible to the event
horizon!

T. Nakamura, H. Nakano, Progr. Theor. Phys. (2016) 041E01

“Then if, e.g., the QNM with a/M = 0.9999 is observed by
GW detectors, we can confirm the space-time around r =
1.014 45M covering 99.9996% of the ergoregion.”



Quasinormal modes

Inspiral Merger Ring-
down

{ i sge

Strong field regime tests of gravity



Detection of quasinormal modes in
gravitational waveforms and comparison
with theoretical predictions

Some Challenges

Calculation of quasi normal modes is affected
by theoretical uncertainties

The signal is the waveform is weak

Other technical aspects (beginning of the ringdown
phase?)



Detection of quasinormal modes in
gravitational waveforms and comparison
with theoretical predictions

Pioneering work

H. Nakano, T. Narikawa, K. Oohara, K. Sakai, H. Shinkai, H. Takahashi, T. Tanaka, N. Uchikata, S.
Yamamoto, T. S. Yamamoto, Phys. Rev. D 99, 124032 (2019)

Goal
To identify the quasinormal modes frequencies by using only the
ringdown part of the gravitational wave signal
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from gravitational wave data
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The ringdown part of gravitational waves in the final stage of the merger of compact objects tells us the
nature of strong gravity and hence can be used for testing theories of gravity. The ringdown waveform,
however, fades outin a very short time with a few cycles, and hence itis challenging to extract the ringdown
frequency and its damping timescale. We here propose to build up a suite of mock data of gravitational
waves to compare the performance of various approaches developed to detect the dominant quasinormal
mode from an excited black hole after merger. In this paper, we present our initial results of comparisons of
the following five methods: (1) plain matched filtering with ringdown part method, (2) matched filtering
with both merger and ningdown parts method, (3) Hilbert-Huang transformation method, (4) autoregressive
modeling method, and (5) neural network method. After comparing the performances of these methods, we
discuss our future projects.

DOI: 10.1103/PhysRevD.99.124032



Taking the challenge: mock data

Set A

Only the ringdown phase
was modified

Set B

The entire template was
modified

252 files for each set + 90 from the Kagra group study

3 SNR realizations:

60 -30- 20




Mock data construction specifications

Random total mass in the range 50M, — 7T0M
fr modified in range +30%

f; modified in range £50%

We produce a mock strain of the form

M

Rmod(x) = A(x)cos (Mw(x) x) , With x =

where A(x) and w(x) are obtained by fitting the original
template with two suitable functions, and by knowing the
theoretical QNM™.

1Physical Review D, 99(12), Jun 2019



Fitting functions for Set A
for x>0
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Fitting functions for Set B
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QNM estimation method(s)

CNN

1D convolutional neural network developed with Keras with
Tensorflow as back-end.”3

Matched filtering-RD

A simple matched filtering algorithm to compare with the
performance of our CNN and that of the original study.’

"https://keras.io/
8https://www.tensorflow.org/
9Physical Review D, 68(10), Nov 2003



CNN architecture

Input Output
512 points time series of QNM frequency (fz, f;)
the mock data

Structured with multiple layers®

Input Conv  Pool Conv Pool FC Output

101, J. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press, 2016



Convolutional layer

L filters cross-correlate the input applying a linear transformation on their
receptive field. The coefficients and biases of the transformations are learnt

via the training process.

Activation layer

Applies a rectifying function on each point of the output of a convolutional
layer. Introduces non-linearity in the network.
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Pooling layer

Reduces the spacial resolution of the input layer by merging together clusters
of points.

12 120 | 30 | O

8 (12 2 (O 2 x 2 Max-Pool 20 | 30

34 [ 70 | 37| 4 112 | 37

112 1100 | 25 | 12

Flatten layer

Unrolls the input layer in a 1D vector to be processed by a dense layer.

Dense layer

Connects each point of the input layer to each point of the output, acting as a
multi-layer perceptron.



Matched Filtering-ringdown?

We convolve the mock data time series s(Z) with templates of the

form 1

h(t) = ﬁe“”f(t_t‘)) cos [wr(t —to) — o]

The freauencies wg, w; are selected in order to maximize the
integral (slh), where

(alb) = f a* (b df

—00

We can find the best initial phase ¢ analytically, but the initial
time ty of the QNM had to be approximated by averaging the set
[wr (), w;(ty)] over the interval tg = (£p,2, + 20A2), where ©p
is the time of the maximum of the mock data.

Physical Review D, 68(10), Nov 2003



CNN Training

CNNs learns to perform tasks through an algorithm called
backpropagation, in which the network parameters are
optimized by training the CNN with examples of the task
(supervised training)

e CNN - Trained with examples from both set A and B
e CCNB - Trained with examples from set B only

e CNNH - Trained with higher SNR examples from both set A and B

Total of 120960 training examples



CNN
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Summary

e Quasinormal Modes are messengers of the strong gravity
regime

* An independent detection of quasinormal modes from the
ringdown phase only, while challenging, allows us to extract
substantial physical information without relying on the "'weak
gravity regime’ inspiral phase

* Neural networks are competitive with other approaches in the
identifcation of quasinormal mode frequencies (mock data
challenge), and can potentially soften some open issues, like the
dependence from the determination of the merger time



Possible improvements

Focus on challenges related to future applications on
“real life” data

Better estimation of uncertainties in the final results

Further experiments with a variety of mock data
building techniques (higher computational time, so
move the implementation to a better infrastructure)
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