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PREFACE

Over the past 100 years, physicists have come to realize and appreciate the special
role of gravity as one of the fundamental actors in nature. Although much weaker
than the other known fundamental interactions, gravity conquers the large scales
and determines the evolution of the Universe. But apart from the quantitative
differences, there is something much deeper about gravity that has been fascinat-
ing generations of physicists. The key lies in what is known as the equivalence
principle, a postulate that has taken different forms throughout the last four cen-
turies and has been verified so far by a number of precision measurements. In
simple words it states that all bodies fall freely in exactly the same way under the
effect of gravity. Taking this statement further, while trying to reconcile gravity
with the special theory of relativity, Einstein concluded that the trajectories of
freely falling bodies are in fact attributes of spacetime itself, having nothing to
do with the body in question. With the formulation of Einstein’s general theory
of relativity in 1915 (followed by decades of dispute), it became clear that gravity
is a purely geometric effect: it is the manifestation of the non-trivial geometry of
spacetime, which curves in the presence of energy and matter.

Einstein’s equations defined the dynamics of spacetime geometry, and since the
geometry was now a dynamical entity, it only took him a few months to demon-
strate that his equations admitted wave solutions, e.g. in the form of perturba-
tions around an empty spacetime. These gravitational waves propagate at the
speed of light and are generated by accelerating distributions of matter. Strong
evidence in favour of their existence was provided many decades later by the
observation of the Hulse-Taylor binary pulsar and the accurate measurement of
the decay of its orbital period over the course of many years. The binary seemed
to be losing energy at exactly the same rate as the power of the emitted grav-
itational waves that general relativity had predicted. Experimental observation
and detailed analysis of gravitational wave signals from a variety of sources of
astrophysical and cosmological origin would provide useful insights on e.g. the
nature of gravity, the physics of black holes and neutron stars, the populations
and life cycle of such objects and the evolution of the Universe as a whole, and
will probe regimes that were so far inaccessible to us by means of electromagnetic
observations. Alas, the weakness of the gravitational coupling had not allowed

vii



for a direct observation of gravitational waves emitted by such strong natural
sources (as for instance binary pulsars) that can be found across the Universe.
Until now.

I remember being only a few months into my doctoral studies when the first-
generation network of ground-based gravitational wave interferometers (Virgo in
Italy and two LIGO detectors in the USA) was shut down for decommissioning,
before undergoing a major upgrade to their “Advanced” configuration. In more
than a decade of operation they had detected no sign of gravitational waves,
despite their impressive sensitivity. The upgrade would extend the horizon of the
detectors by roughly one order of magnitude, increasing the accessible volume of
space, and hence the number of potential sources, by a factor of 1000. Four years
later, while this dissertation was close to completion, the two upgraded LIGO
detectors were undergoing their last preparatory engineering runs and officially
ushering gravitational physics into a new era. Indeed (and quite unexpectedly),
within a few days of operation, on September 14, 2015, the two detectors were
almost simultaneously perturbed by a gravitational wave that was generated
during the coalescence of two stellar-mass black holes, about 1.3 billion years
ago. It was a loud, beautiful signal that left no room for doubting the reality of
its nature.

We have now unlocked a great new sense to the exploration of the Universe, we
can feel the fabric of spacetime itself vibrating, and the purpose of my doctoral
work has been to study ways in which we, as physicists, can make useful sense
of this unprecedented kind of information that will keep streaming through the
output of our detectors. Two main themes can be distinguished in this disser-
tation, both related to the physics output of gravitational wave detections from
coalescing compact binaries: i) testing the dynamics of general relativity in its
strong, fully relativistic regime and ii) inferring the neutron star equation of state
by analyzing signals from neutron star binaries. The Virgo group at Nikhef has
had a leading role in investigating both of the aforementioned topics, in the con-
text of gravitational wave data analysis. Our work in the case of i) has already
come to fruition with the analysis of data from the first detection, while binary
neutron star coalescences are expected to be detected in the coming years and
will provide rich information for ii).

This dissertation is structured in three parts, with a substructure that is out-
lined below. The main body of my work can be found in Part II and Part III.
Part I serves as the introductory part of the dissertation, in which most of the
underlying theory and methodology are covered, in a way that the reader has a
comprehensive overview of the main analytical and computational tools used in
gravitational wave data analysis. First, a brief introduction to general relativity
and gravitational wave physics is given in Chapter 1. Next, Chapter 2 covers the
basics of post-Newtonian theory of coalescing compact binaries, which will be the
main objects of interest in this work. Finally, an introduction to Bayesian infer-
ence and computational methods for data analysis in gravitational wave physics
is given in Chapter 3.
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The subject of Part II is the formulation, development and study of data analysis
methodologies for the purpose of testing Einstein’s general theory of relativity
with data obtained from gravitational wave detections. Chapter 4 gives an in-
troduction and overview of earlier and contemporary tests of general relativity,
and provides the motivation for the tests with gravitational waves, that will be
developed in the rest of Part II. In Chapter 5, we formulate a generic Bayesian
framework for testing general relativity using gravitational waves from compact
binaries, under the acronym TIGER (Test Infrastructure for GEneral Relativ-
ity). In Chapter 6 we provide a proof-of-principle test for TIGER applied on
gravitational wave signals emitted by non-spinning binary neutron star inspirals,
whereas in Chapter 7 we give a more detailed study of the methods used in a
more realistic setting, and take on a series of robustness tests. Next, trial runs
using signals from realistic simulated sources injected into real detector noise are
explored in Chapter 8 and finally, an outlook on the future of testing GR using
gravitational waves from neutron star and black hole binaries concludes Part II
in Chapter 9.

In Part III we study the prospects of inferring the internal structure and physical
properties (encoded in the equation of state) of neutron stars by analyzing grav-
itational wave signals from neutron star binaries. An overview of neutron star
physics and existing methods for constraining their equation of state is given in
Chapter 10, The main part of our work comprises Chapter 11 and Appendix C,
where our Bayesian data analysis methods are formulated, developed and tested
under a variety of scenarios and increasingly realistic assumptions. Finally, our
conclusions and outlook are discussed in Chapter 12.

The work in this dissertation has produced several scientific papers co-authored
by myself and other colleagues. The foundations for testing general relativity
in Part II were set in [245] and [246] and also featured in the dissertation of
T.G.F. Li (2013), while further studies in this direction were published in [32]
and [33]. During the course of writing this dissertation, an unexpected discov-
ery took place, namely the first direct detection of gravitational waves by the
LIGO-Virgo Collaboration, on September 14, 2015. The first historical results
from real gravitational wave signals, constraining violations of general relativity
to unprecedented levels, are discussed in Chapter 4 (giving the most stringent
constraints on post-Newtonian coefficients) and Chapter 9 (giving the most strin-
gent constraints on a massive graviton dispersion relation); these results feature
in [24], a Phys. Rev. D “highlight” published in May 2016. Next, a method for
testing the no-hair theorem was studied in [259] and is only briefly summarized
in the concluding remarks of Part II. The original work of Part III is published
in the exploratory studies of [152] and the more detailed investigations of [35],
whereas the novel method presented in Appendix C is currently unpublished, in
preparation.

Michalis, August 2016
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Notation and conventions

In the formulas and calculations that follow, the following choices have been made
with regards to the corresponding ambiguities in sign conventions, units, etc.

The Lorentzian signature is taken to be (−,+,+,+), i.e. timelike norms are nega-
tive and spacelike are positive. Both in component calculations and whenever the
abstract index notation is used, greek lowercase letters denote spacetime indices,
whereas latin lowercase letters (i, j, k, . . .) denote spacelike indices in the corre-
sponding subspace; the Einstein summation convention will be used throughout
unless stated otherwise. The definition of the Riemann tensor follows the sign
convention of Wald [374], according to Eq. (1.6). Any covariant derivative that
enters the calculations is understood to be compatible with the corresponding
metric (and decorated accordingly). The spacetime coordinates are given by

xµ = (ct, ~x) wave 4-vector by kµ = (ω/c,~k).

Whenever possible, we shall keep track of dimensionful factors such as powers of
G and c. However, there will be cases where, for the benefit of clarity, geometrical
units are used by setting G = c = 1. For instance, conversions of mass values from
SI units of mass [kg] to units of length [m] and time [s] are given by a factor of
G/c2 and G/c3 respectively, so that one solar mass 1M� = 1.989×1030kg equals
to 1.477×103m or 4.9255×10−6s. Similarly, the dimensionful tidal deformability
λ can be converted from the units of g cm2 s2 used e.g. in [200] to units of s5 by
multiplying with 10−7 ×G/c5. In the Bayesian calculations, a capital P is used
to denote probabilities, while a lowercase p denotes probability densities and π
is reserved for prior probability densities. Finally, for the benefit of the curious
reader, whenever an observed stellar object is mentioned in the text, its exact
sky coordinates are given explicitly as a footnote.

Useful constants

Constant Symbol Value Unit
Newton’s constant G 6.67384× 10−11 m3 kg−1 s−2

Speed of light c 2.99792458× 108 m s−1

Planck constant h 6.62606957× 10−34 J s
4.135668× 10−15 eV s

Solar mass M� 1.98892× 1030 kg
Earth mass M⊕ 5.9721986× 1024 kg

Earth’s radius (equatorial) R⊕ 6378.137 km
Parsec pc 3.0856775807× 1016 m

Boltzmann constant k 1.380658× 10−23 J K−1

Electron mass me 9.1093897× 10−31 kg
Proton mass mp 1.67262158× 10−27 kg

Neutron mass mn 1.6749286× 10−27 kg
Nuclear saturation density n0 0.1620 fm−3

ρnucl 2.8× 1014 g cm−3

Neutron drip density ρdrip 4× 1011 g cm−3

x



Part I

Introduction

1





1

-�� -�� -� � � �� ��
-��

-��

-�

�

�

��

��

�

�

Chapter 1

Gravitational Wave
Physics

Gravity’s holding us together but don’t
get too close or it’ll tear us apart

Gravity Blues (Unpublished)

In the beginning of the 20th century, Einstein’s Special Theory of Relativity rad-
ically changed our understanding of the notions of space and time. In 1915,
Einstein arrived at the formulation of General Relativity (GR), a theory that
explained gravity as a manifestation of the curvature of spacetime, by using the
mathematical framework of differential geometry.

In the first section of this Chapter we will briefly recall the basics of GR. For a
proper introduction to GR, we direct the reader to any of the numerous textbooks
on GR, most notably [374, 265, 326, 377, 120]. We will then proceed to the
derivations related to the production, propagation and detection of gravitational
waves.

1.1 General Relativity

In GR, spacetime is defined as a mathematical entity (M, g), a real 4-dimensional
differentiable manifold M equipped with a pseudo-Riemannian metric gµν , a
symmetric rank-2 tensor field of Lorentzian signature (−,+,+,+) that endows
M with a geometric structure. Locally the manifold is isomorphic to R4, so
locally spacetime can be approximated by the flat Minkowski metric ηµν =
diag(−1, 1, 1, 1) within a small enough neighborhood of any point. The metric de-
fines at each point x ∈M an inner product between vectors g : TxM×TxM→ R,
where TxM denotes the tangent space over x, and thus it also defines what vec-
tors or tangent curves are timelike, null or spacelike, depending on whether their
norm ‖v‖ = g(v, v) = gµνv

µvν is negative, zero or positive respectively.

The metric also uniquely defines a connection, or covariant derivative ∇ (a
first order derivative operator on tensor fields) by the compatibility requirement
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∇µgνλ = 0. The covariant derivative is also required to reduce to the differential
d when acting on scalars, i.e. ∇f = df or in an arbitrary coordinate system
∇µf = ∂µf . It is easy to show that in a given coordinate system xµ, the relation
of ∇µ with the coordinate derivative ∂µ operator is defined by their action on
vector fields as

∇µvν = ∂µv
ν + Γνµλ t

λ, (1.1)

where Γλµν are known as the Christoffel symbols and are given by

Γλµν =
1

2
gλρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (1.2)

For a general tensor field Tµ1···µp
ν1···νq of rank (p, q), the action of the covariant

derivative can be expressed as

∇ρTµ1···µp
ν1···νq = ∂ρT

µ1···µp
ν1···νq +

p∑
i=1

ΓµiρλT
µ1···λ···µp

ν1···νq

−
q∑
j=1

ΓλρνiT
µ1···µp

ν1···λ···νq . (1.3)

Parallel transport A crucial non-trivial process on (pseudo-)Riemannian ma-
nifolds which is trivial for flat space is the parallel transport of vectors and tensor
fields in general. Having a metric-induced differential operator on M, parallel
transport arises as a natural operation that maps the isomorphic but distinct
tangent vector spaces TxM, TyM over different points x, y ∈M onto each other.
This enables us to compare vectors and tensors at different points. Given a curve
c : [0, 1] → M with tangent vector tµ, we say that a vector vµ defined on each
point of the curve is parallel-transported along c if tµ∇µvν = 0 at each point
along the curve. More generally, the same operator tµ∇µ acting on tensors defines
parallel transport of tensors of any kind as

tµ∇µTµ1···µp
ν1···νq = 0 . (1.4)

.

Geodesics Parallel transport defines the set of geodesic curves that generalize
the notion of “straight lines” for generic manifolds with a non-flat metric. In flat
space we usually conceive those as a grid of coordinate lines, but since coordinates
are merely an artificial construction, geodesics in curved geometries will have to
be defined in a geometric, coordinate independent way. The property that defines
a geodesic curve on M is that it parallel-transports its own tangent vector tµ,
i.e.

tµ∇µ tν = 0 (1.5)

along the entire curve. The representation of Eq. (1.5) for a coordinate system xµ

with the path of c given by xµ(c(τ)), yields a first order ODE and admits a unique
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solution, given an initial tangent vector at a point on the curve. A different,
non-local property that characterizes geodesic curves is the extremization of the
proper length for curves that connect two given points. Timelike geodesics play
a special role in GR; they are the word-lines of inertial observers and any freely
falling test body follows a timelike geodesic curve. Acceleration is induced by
non-gravitational forces with respect to inertial frames and is measured by a
non-zero vector on the right hand side of Eq. (1.5). Moreover, geodesic deviation,
the relative acceleration between two originally parallel curves, is an indication
of the presence of curvature.

Curvature Curvature manifests itself as the failure of parallel transport of a
vector along a closed curve. It is defined infinitesimally as the non-commutativity
of the covariant derivative with itself,

(∇µ∇ν −∇ν∇µ)ωρ = Rµνρ
σ ωσ, (1.6)

where Rµνρ
σ is a tensor known as the Riemann tensor. In terms of the Christoffel

symbols, the Riemann tensor can be expressed in its coordinate form as

Rµνρ
σ = ∂µΓσνρ − ∂νΓσµρ + Γσµλ Γλνρ − Γσνλ Γλµρ (1.7)

This is a (1,3)-tensor from which one gets a (0,4)-tensor Rµνρσ = gσλRµνρ
λ

with the following symmetries in its indices: (i) Rµνρσ = −Rνµρσ, (ii) Rµνρσ =
Rρσµν , (iii) the first Bianchi identity R[µνρ]σ = 0 and (iv) the Bianchi identity
∇[λRµν]ρσ = 0. Using these symmetries, one can derive the number of indepen-
dent components of the Riemann tensor in n dimensions to be n2(n2 − 1)/12.
The Ricci tensor Rµν is defined by performing contraction on two of the Riemann
tensor indices and the Ricci scalar R is obtained by contracting the remaining
two,

Rµν = Rµρν
ρ , R = Rµµ . (1.8)

Geodesic deviation Consider a one-parameter family of timelike geodesics
cs(λ) indexed by s, tangent to a smooth vector field tµ and parametrized in such
a way that tµ t

µ = −1 everywhere. Let us also define the v.f. Xµ = (∂/∂s)
µ

as the deviation vector that takes us from one geodesic to its neighbor. Its Lie
bracket with tµ is zero, implying

tν∇ν Xµ = Xν∇ν tµ . (1.9)

Now, the deviation velocity can be defined as vµ = tν∇νXµ and the corresponding
acceleration as

aµ = tλ∇λ (tν∇ν Xµ) . (1.10)

Using the geodesic equation (1.5) for tµ, together with the Leibnitz rule and
Eq. (1.9), one can easily show that

aµ = −Rλνρµ Xν tλ tρ , (1.11)
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which implies that in the presence of curvature, and only then, geodesics that are
initially parallel to each other deviate from or converge to each other. In more
physical terms, test bodies that are initially at rest with each other undergo a
relative acceleration which can be interpreted as a tidal force of the gravitational
field.

The Einstein field equations For years Einstein was working on what should
be the field equations connecting gravity or geometry to matter and energy in
GR. The crucial property that matter should satisfy is conservation of energy
and momentum, expressed by means of the continuity equation for the matter
stress-energy tensor Tµν , which in a curved spacetime reads:

∇µ Tµν = 0 . (1.12)

The only purely geometric tensor of second order in derivatives of the metric that
is automatically divergenceless as a consequence of the second Bianchi identity,
is the Einstein tensor :

Gµν = Rµν −
1

2
gµν R . (1.13)

The Einstein field equations (EFE) are a system of quasilinear coupled second
order PDEs, expressed as a tensorial equation which directly relates the geometry
of spacetime (via Gµν) to its matter content (via Tµν) as:

Gµν = −8πG

c4
Tµν . (1.14)

The main implication here is that curvature is induced by the presence of matter
or, in the famous words of John Archibald Wheeler,

Matter tells spacetime how to curve; spacetime tells matter how to
move.

Exact solutions The infamous complexity and non-linearity of the EFE does
not leave much hope for a general solution for the metric to be obtained. However,
there are a few example spacetimes which, usually due to certain assumed sym-
metries, simplify the EFE and can be solved exactly. A first non-trivial example
is the Schwarzschild spacetime [327], characterized by spherical symmetry, that
describes spacetime around a spherically symmetric body, e.g. a non-spinning
black hole (BH). Other well studied solutions are the Kerr (spinning BH) [221],
Reissner-Nordstrom (charged BH) [311, 274], Kerr-Newman (spinning charged
BH) [270, 271, 27] and the Friedman-Lemaitre-Robertson-Walker (homogeneous
isotropic universe) [173, 244, 315, 316, 317, 375] metric, to mention a few. For
the purposes of this dissertation we shall not deal with exact solutions, but will
examine more closely how a perturbative solution around an exact background
can be derived.
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The prediction of gravitational waves (GW) as a direct consequence of general
relativity dates as far back as Einstein’s 1916 paper [161], in an attempt to solve a
linearized version of the differential equations of GR. In contrast with Newtonian
gravity, where the gravitational force acts instantaneously at any distance, in
GR one obtains that the solutions of small perturbations on the geometry of
spacetime propagate like waves at the speed of light.

1.2 The Linearized Einstein Equations

Gravity is known to be the weakest among the four fundamental interactions in
nature, a property that can be attributed to the “smallness” of the gravitational
constant in SI units, G ' 6.67 × 10−11m3 kg−1 s−2. In GR, through Eq. (1.14)
this means that the geometry of spacetime is weakly coupled to matter or, in
other words, spacetime is a hard thing to bend. In the absence of extremely
dense matter that would induce strong gravity, which is almost always the case
throughout the universe, GR can be treated perturbatively by expanding the
metric tensor gµν around a fixed background metric ḡµν , which in the simplest
case is the Minkowski metric ηµν of flat spacetime. One may thus decompose

gµν(x) = ḡµν(x) + hµν(x) , x ∈M (1.15)

which defines the small metric perturbation hµν with the requirement ‖h‖ � 1.

One may then proceed with expanding all geometrical quantities of interest1 to
leading order in h and its derivatives,

Γλµν =
1

2

[
ḡλρ − hλρ

]
[∂µḡρν + ∂µhρν + ∂ν ḡρµ + ∂νhρµ − ∂ρḡµν − ∂ρhµν ]

= Γ̄ρµν +
1

2
ḡλρ

(
∇̄µhρν + ∇̄νhρµ − ∇̄ρhµν

)
︸ ︷︷ ︸

δΓλµν

+O(h2) , (1.16)

where all barred quantities like Γ̄ are obtained by using only the background
metric. Note how even though the Christoffel symbols for the full and background
metric are not tensors, their difference δΓ which is exactly first order in h is a
(1,2)-tensor; this is true for the difference of any two connections on a manifold.
In Minkowski space we get Γ̄ = 0 and ∇ → ∂ , which simplifies (1.16). We

1Starting with gµν = ḡµν − hµν +O(h2) and by using ḡµν to raise and lower indices.
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continue with the Riemann, Ricci and Einstein tensors,

Rµνρ
σ =

[
∂(Γ̄ + δΓ)

]
+
[
Γ̄ Γ̄
]

+
[
Γ̄ δΓ

]
+

h2︷ ︸︸ ︷
[δΓ δΓ] +O(h2)

= R̄µνρ
σ +

(
∂µδΓ

σ
νρ + Γ̄σµλδΓ

λ
νρ − δΓσνλΓ̄λµρ − ν ↔ µ

)
+O(h2)

= R̄µνρ
σ + ∇̄µδΓσνρ − ∇̄νδΓσµρ +O(h2) (1.17)

Rµν = R̄µν + ∇̄µδΓρρν − ∇̄ρδΓρµν +O(h2) (1.18)

R = R̄− hµνR̄µν + ∇̄µδΓρρν − ∇̄ρδΓρ +O(h2) (1.19)

Gµν = Ḡµν +

(
δλµδ

ρ
ν −

1

2
ḡµν ḡ

λρ

)(
∇̄λδΓσσρ − ∇̄σδΓσλρ

)
(1.20)

+
R̄ρσ

2
(ḡµνh

ρσ − hµν ḡρσ) +O(h2) , (1.21)

where in the Ricci scalar we denote δΓρ = ḡµνδΓρµν .

We will now specialize the discussion to perturbations around a flat spacetime,
i.e. we assume that there exists a coordinate system in which we can write
gµν(x) = ηµν + hµν(x) with ‖h‖ � 1. By substituting in Eq. (1.14) we then
obtain the linearized Einstein tensor for the metric perturbation, which reads

G(1)
µν =

1

2

(
∂µ∂νh− 2∂(µ∂

λhν)λ +�hµν − ηµν�h+ ηµν∂ρ∂σh
ρσ
)
, (1.22)

where the superscript “(1)” denotes the order in h and its derivatives. It is now
convenient to define the trace-reversed perturbation, h̄µν = hµν − 1

2ηµνh, with
h̄ = −h justifying its name. By substituting for h̄µν we get

G(1)
µν =

1

2

(
�h̄µν − 2∂(µ∂

λh̄ν)λ + ηµν∂ρ∂σh̄
ρσ
)
. (1.23)

As we shall see below, we can always find a coordinate transformation such that

∂µh̄µν = 0 , (1.24)

thus fixing the gauge freedom related to infinitesimal diffeomorphism invariance
to what is known as the de Donder gauge2. In this gauge only the first term
survives and the Einstein equation (1.14) simplifies to

�h̄µν ' −
16πG

c4
Tµν . (1.25)

We recall that � = ∂µ∂
µ = − 1

c2 ∂
2
t + ∇2 is the d’Alembertian, a second order

elliptical differential operator.

It is clear that Eq. (1.25) is a wave equation sourced by the matter stress energy
tensor. The general solution for h̄µν given an arbitrary matter distribution Tµν

2For a generic background the de Donder gauge is defined as ∂µ (
√−ggµν) = 0.
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is given by integrating the Green’s function of the d’Alembertian operator

�G(x;x′) = δ(4)(x− x′) ⇒ G(x;x′) = −
δ
(
t′ −

[
t− |~x−~x

′|
c

])
4π|~x− ~x′| (1.26)

throughout the entire space (or at least the support of Tµν) in retarded time

h̄µν(t, ~x) =
4G

c4

∫
d3~x′

Tµν

(
t− |~x−~x

′|
c , ~x′

)
|~x− ~x′| . (1.27)

In vacuum, where Tµν = 0, the metric perturbation can be decomposed into
waves that propagate at the speed of light.

Fixing the gauge degrees of freedom On first inspection, Eq. (1.25) due
to the symmetry in its indices seems to comprise 10 independent component
equations.

Two metric perturbations hµν and h′µν represent the same physical perturba-
tion over the same background metric if and only if they are related by the Lie
derivative of an infinitesimal diffeomorphism ϕ.

Diffeomorphism invariance is the fundamental symmetry of GR, which states
that physical laws are invariant under general coordinate transformations. This
is manifest in the EFE through its purely tensorial form; if a tensorial equation
is true in one coordinate system then it is true in any coordinate system. It
also implies that solutions of the EFE that are related to each other via a dif-
feomorphism represent physically identical spacetimes. One needs to lift such
ambiguities when counting degrees of freedom.

An arbitrary v.f. ξµ onM generates through its integral curves a one-parameter
family of diffeomorphisms ϕε : M → M. Under a coordinate transformation
xµ → x′µ = xµ + εξµ where ε is small enough that it varies weakly (ε∂ξ . ‖h‖),
the metric perturbation remains small and to linear order transforms as

h′µν = hµν − ∂µξν − ∂νξµ , h′ = h− 2 ε ∂µξ
µ (1.28)

The divergence ∂µh̄µν that we wish to set to zero transforms as

∂µh̄′µν = ∂µh̄µν − ε�ξν (1.29)

which means that going to the de Donder gauge is equivalent to solving the
differential equation

� ξµ(x) = fµ , (1.30)

which is always solvable. By fixing the gauge in this way we take away four
degrees of freedom from the EFE. The solution however is not unique; any v.f.
that satisfies �ζµ = 0 can be added to a solution for ξµ and still preserve the de
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Donder gauge condition. This means that even within the de Donder gauge, we
have not restricted hµν to its purely physical degrees of freedom; we can impose
further conditions in order to use up this freedom.

We will do this by imposing the radiation gauge:

h = 0 , h0i = 0 . (1.31)

This can be achieved through an initial data problem, solved e.g. in [374], and
is similar to what is done with the gauge freedom of the vector potential Aµ in
electromagnetism. Note that since h = 0, we have h̄µν = hµν . Furthermore,
by Eq. (1.31) and (1.24) we get

∂h00

∂t
= 0 , (1.32)

which turns h00 into a non-dynamical variable. This gauge is also known as the
transverse traceless gauge (TT), in which the EFE reads

� hTTµν = −16πG

c4
Tµν . (1.33)

Gravitational wave solutions Let us see how the linearized EFE (1.25) give
what can be described as gravitational wave solutions. We first consider the
linearized EFE in vacuum, i.e. � hµν = 0, in which case we can also set h00 = 0.
Now, the obvious thing to do is to decompose our field into plane waves of wave
vector kµ = (ω/c,~k) as

hTTµν (x; k) = Cµν(k) ei kρ x
ρ

, (1.34)

where Cµν is a traceless symmetric tensor.

The linearized EFE gives the dispersion relation kµkµ = 0⇒ ω = ±|~k|/c, which
means that the wave vectors are null or, in other words, the waves propagate at
the speed of light. The de Donder gauge translates to Cµν k

µ = 0 which implies
transversality of the wave tensor with the direction of propagation. Without loss
of generality, we can set ~k ‖ ẑ so that the wave propagates along the z-axis; this
would imply kµ = 1

c (ω, 0, 0, ω) and Cµz = 0. Moreover, based on the above gauge-
fixing discussion we also know that C0µ = 0 so the only surviving components
are Cij , i, j = x, y. Now, symmetry implies Cxy = Cyx and tracelessness implies
Cxx = −Cyy, so the remaining physical degrees of freedom after all the gauge
freedom is fixed are only two. We will refer to the two gravitational wave degrees
of freedom as the plus polarization h+ and the cross polarization h×, and the
plane wave takes the form

hTTµν (x; k) =

0 0 0 0
0 h+ h× 0

0 h× −h+ 0

0 0 0 0




Cij

× ei ω(t−z/c) . (1.35)
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We introduce the standard decomposition often used for the 3× 3 spatial part of
the tensor Cij(k) = h+(k)ε+ij(

~k) + h×(k)ε×ij(
~k) , where for û and v̂ a chosen basis

normal to k̂ we define

ε+ij(k̂) = ûiûj − v̂iv̂j k̂=ẑ−→

1 0 0
0 −1 0
0 0 0

 , (1.36)

ε×ij(k̂) = ûiv̂j + v̂iûj
k̂=ẑ−→

0 1 0
1 0 0
0 0 0

 . (1.37)

Plane waves propagating in vacuum are good approximations of gravitational
waves coming from far away sources. Within this context, it is useful to define
the spatial TT-projection operator Λij

kl(n̂) with respect to a unit vector n̂, that
projects an arbitrary (0,2)-tensor onto the transverse-traceless subspace. First,
the projection operator Pµ

ν = δνµ − nµnν projects (dual) vectors onto the hyper-
plane of co-dimension 1, normal to n. Then the transverse traceless projection
operator can be defined as

Λij
kl = Pi

kPj
l − 1

2
PijP

kl (1.38)

and one can readily check that
(i) it is indeed a projection operator, i.e. Λij

mnΛmn
kl = Λij

kl,
(ii) it eliminates longitudinal components Λij

klnl = Λij
klnk = 0 and

(iii) it eliminates traces Λii
kl = Λij

k
k = 0.

Note that in this form it is only applicable to spatial unit vectors, and to the
spatial part of tensors.

Gravitational wave energy-momentum As soon as we separate hµν as an
entity in its own right, and we distinguish it from the background geometry, we
effectively assign to it physical properties (energy, momentum, etc.) that are
defined by its interaction with matter and the background geometry. In order to
better understand the energy-momentum content of a gravitational wave, we need
to see beyond the linearized theory. The splitting of the metric into background
plus perturbation is usually done based on a clear classification of spatial and
temporal modes. That is, background is the “smooth, slowly varying” part of the
metric, on top of which high frequencies at short scales define the perturbation.
Following [377] or [253] we can split the exact EFE to low- and high-frequency
parts. The low-frequency part to second order in h

R̄µν = −[R(2)
µν ]Low +

8πG

c4

[
Tµν −

1

2
gµνT

]Low

(1.39)

will tell us how the macroscopic background experiences the effect of the micro-
scopic hµν (found in the first term on the RHS) through its blurry glasses. Here,
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a superscript “Low” refers to a low-frequency part of the quantity in brackets,
which can be obtained by cutting off its Fourier decomposition beyond a certain
frequency. Note that second order terms of high frequency modes, e.g. at f1 and
f2, have a non-zero “Low” part at their frequency difference f = f1−f2. We now
introduce an operator 〈·〉 that takes a spatial average of quantities, over a scale
that is small compared to the background variation scales but much larger than
the typical wavelengths found in the spectrum of hµν . Applying this to Eq. (1.39),
we arrive at the effective Einstein equation

Ḡµν =
8πG

c4
(
T̄µν + tµν

)
, (1.40)

where we have defined the effective stress-energy tensor of matter T̄µν through

T̄µν −
1

2
ḡµν T̄ =

〈
Tµν −

1

2
gµνT

〉
, T̄ = ḡµν T̄

µν , (1.41)

and the gravitational wave stress-energy tensor tµν as

tµν = − c4

8πG

〈
R(2)
µν −

1

2
ḡµνR

(2)

〉
, R(2) = ḡµνR(2)

µν . (1.42)

The essence of Eq. (1.40) is that from a macroscopic perspective, the metric
perturbation acts on the background spacetime as an additional matter field,
described by a stress-energy tensor tµν that we can calculate. A better under-
standing of this scale-dependent discrimination and definition can be achieved
through the study of effective actions and renormalization group transforma-
tions [397, 84].

One can then try to isolate the physical content of tµν and ignore the spurious
degrees of freedom (d.o.f.) related to gauge freedom. A consistent expansion
of Eq. (1.8) in the flat background limit (away from the source) and to second
order in hµν , with subsequent use of the transverse traceless gauge ∂µhµν = 0 ,
h = 0 and the vacuum wave equation �hµν = 0 gives

R(2)
µν = −1

4
∂µhρσ∂νh

ρσ , (1.43)

and thus we get

tµν =
c4

32πG
〈∂µhρσ∂νhρσ〉 . (1.44)

One can indeed show that the above expression is invariant to leading order under
the residual gauge transformations generated by an arbitrary vector field ξµ and
thus one concludes that tµν has no dependence on gauge d.o.f. .
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1.3 Emission of Gravitational Waves

Figure 1.1: Green’s function
is integrated over the source of
size R, far from the observer.

In this section we will see what are the neces-
sary ingredients for the production of significant
amounts of gravitational radiation. Consider a
distribution of matter described by the stress-
energy tensor Tµν , whose support is a compact
region of space of size O(R). We want to eval-
uate the perturbation tensor at an arbitrary point
x = (t, ~x) outside the source. Using the general
solution (1.27) for the Green’s function (1.26) and
the TT projection (1.38), we obtain the TT gauge
solution outside the source for the spatial part as

hTTij (t, ~x) =
4G

c4
Λij

kl(n̂)

∫
d3~x′

Tkl

(
t− |~x−~x

′|
c , ~x′

)
|~x− ~x′| .

(1.45)

It is useful to study the Fourier decomposition of
this solution, where the TT part of the stress en-
ergy tensor,

Tµν(tret, ~x) =

∫ ∞
−∞

dnk

(2π)n/2
e
i
(
−ωt+ω |~x−~x

′|
c −~k·~x

)
T̃µν

(
ω,~k

)
, (1.46)

sources plane wave solutions in the TT gauge. If the internal motion in the
source is non-relativistic, the Fourier modes will only contribute up to an angular
velocity ωs � c/R. For far away observers, for which r/R� 1, we may perform
the expansion

|~x− ~x′| = r
√

1− 2~x′ · n̂/r + (~x′/r)2 ' r − ~x′ · n̂ , (1.47)

through which the solution integral (1.45) can be expanded as

1

r

∫
d3~x′

∫
d4k e−iωtret

[
1− iω

c
~x′ · n̂− 1

2

(
ω ~x′ · n̂

c

)2

+ . . .

]
T̃kl

(
ω,~k

)
=

1

r

∫
d3~x′

[
1 +

~x′ · n̂
c

∂0 +
(~x′ · n̂)2

2c2
∂2

0 + . . .

]
Tkl(tret, ~x

′) . (1.48)

Here we used the slow-moving expansion parameter ω
c ~x
′ · n̂. Moreover, if we

expand the 1/|~x− ~x′| factor in e.g. Legendre polynomials

1

|~x− ~x′| =
∞∑
l=0

|~x′|l
rl+1

Pl(x̂
′ · n̂) , (1.49)

it is clear that for our purposes we only need to keep the 1/r term.
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Multipolar expansion In the far-zone and non-relativistic expansion of the
linear theory, we thus obtain

hTTij =
4G

r c4
Λij,kl(n̂)

[
Skl(tret) +

1

c
nmṠ

kl,m(tret) +
1

2c2
nmnnS̈

kl,mn(tret) + . . .

]
.

(1.50)
This can be interpreted as an expansion in the source’s multipole moments of the
stress energy tensor, defined as3

Sij,k···l(t) =

∫
d3x T ij(t, ~x) xk · · ·xl . (1.51)

It is also useful to define the mass multipole moments as moments of ρ(x) =
T 00(x)/c2,

Mk···l(t) =
1

c2

∫
d3x T 00(t, ~x) xk · · ·xl , (1.52)

and the momentum multipole moments as moments of T 0i(x)/c,

P i,k···l(t) =
1

c

∫
d3x T 0i(t, ~x) xk · · ·xl . (1.53)

All the above quantities will be evaluated at the retarded time tret = t− r/c. By
making use of (i) the symmetry Tµν = T νµ and conservation ∂µT

µν of the stress-
energy tensor, (ii) integration by parts (and the compactness of the source) and
(iii) coordinate derivatives ∂µx

ν = δνµ and their commutativity, one can establish
identities between moments of the above three types and their derivatives. For
instance, one easily finds

Sij =
1

2
M̈ ij . (1.54)

These can be used in order to re-express Eq. (1.50) in source-related quantities
that are intuitive and easier to calculate,

hTTij (t) =
4G

r c4
Λij,kl(n̂)

{
1

2
M̈kl(tret) (1.55)

+
1

c
nm

[
1

6

...
M

klm
(tret) +

1

3

(
P̈ k,lm + P̈ l,km − 2P̈m,kl

)]
+O

(
1

c2

)}
.

The quadrupole formula The leading order expression in the multipole ex-
pansion (1.55) is known as the quadrupole formula [162, 236]

hTTij (t, ~x) =
4G

r c4
M̈TT
ij

(
t− r

c

)
=

4G

r c4
Q̈TTij

(
t− r

c

)
, (1.56)

where

Qij(t) =

∫
d3x ρ(t, ~x)(xixj − r2δij/3) (1.57)

3In all definitions below, the absense of the k · · · l indices denotes the zeroth moment, i.e.
the integral with no xk factors present. For instance, M is simply the total mass-energy.
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is the familiar quadrupole tensor of classical mechanics.

It becomes clear that the emission of gravitational waves requires a source with
a strong accelerating quadrupole moment. On the good side, the GW amplitude
only falls off as 1/r due to its tensorial nature, but again the small pre-factor
G
c4 ∼ 8.26×10−44s2 kg−1 m−1 predicts that even a dense asymmetric distribution
of matter will produce a relatively weak signal. As we shall see in Chapter 2,
binary systems of compact astrophysical objects are perfect candidates as sources
with a strong oscillating quadrupole moment. These will be the main object of
investigation in this dissertation.

Radiated energy Let us point out some basic leading order effects that are
derived using the quadrupole formula. First, we can calculate the energy density
contained in a GW far away from a non-relativistic source, according to the 00
component of Eq. (1.42),

t00 =
c2

16πG

〈
ḣTTij ḣ

TT
ij

〉
=

c2

16πG

〈
ḣ2

+ + ḣ2
×

〉
, (1.58)

where in the last equation we used the explicit decomposition in the + and ×
polarizations. The energy flux, i.e. the time derivative of the energy in a sphere
that encloses the source, ĖS = −c

∫
∂S

dAt00 gives the power of the source. Then
the GW differential power emitted per solid angle, by a non-relativistic source in
the quadrupole approximation gives

dPgw

dΩ
' G

8πc5
Λij,kl(n̂)

〈...
Qij

...
Qkl
〉
, (1.59)

where now the averaging process occurs in the (retarded) time dependence of
Q for a few GW periods. We see that the radiation is anisotropic, depending
on the orientation of the quadrupole moment. The total radiated GW power is
the integral of Eq. (1.59) across a sphere that surrounds the source (the angular
dependence lies in Λij,kl(n̂)),

Pgw '
G

5c5
〈...
Qij

...
Qij
〉
. (1.60)

Radiated angular momentum If one treats the linear theory as a field theory
of the spin-2 tensor field hij living on the background spacetime, then one finds
the kinematic Lagrangian density in the TT gauge

Lgw = − c4

64πG
∂µh

TT
ij ∂

µhTTij . (1.61)

Under spatial rotations, one then obtains the Noether conserved quantity

J igw =
c2

32πG

∫
d3~x εijk

[
ḣTTlm xj∂kh

TT
lm︸ ︷︷ ︸

Ljk

− 2ḣTTlj ḣTTlk

]
︸ ︷︷ ︸

Sjk

= Ligw + Sigw , (1.62)
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which is interpreted as the total angular momentum carried by the gravitational
wave. A system that radiates GWs will lose angular momentum based on the

above expression. The loss rate ~̇J is calculated as the outflow of GW angular
momentum through a surface that encloses the source and in the quadrupole
approximation one gets

dLigw

dt
=

2G

15c5
εijk

〈
Q̈jl

...
Qkl

〉
,

dSigw

dt
=

4G

15c5
εijk

〈
Q̈jl

...
Qkl

〉
. (1.63)

One thus gets a total flux of angular momentum

dJ igw

dt
=

dLigw

dt
+

dSigw

dt
=

2G

5c5
εijk

〈
Q̈jl

...
Qkl

〉
. (1.64)

1.4 The post-Newtonian formalism

So far we have seen how gravitational wave production can be approximated in a
slow-moving expansion within the context of the linear theory. However, in self-
gravitating systems, such as compact binaries, an expansion in v/c also implies
one in the strength of the gravitational field, or the compactness GM/Rc2 of the
source (the ratio between the Schwarzschild radius and the size of the system).
This is a direct consequence of the virial theorem for bound orbits, that relates
(v/c)2 ∼ GM/Rc2 ∼ ε, which in the case of quasi-circular orbits is an exact
equality. Thus, one should not ignore deviations from a flat metric close to
the source, when performing a systematic expansion to obtain the equations of
motion and, eventually the gravitational waveform. Instead, one needs to employ
a post-Minkowskian (PM) or weak-field expansion of the metric in powers of G,

√−ggµν = ηµν + εh(1)
µν + ε2h(2)

µν + . . . , (1.65)

based on which one will look for a perturbative solution to an order-by-order
expansion of the EFE, with the appropriate source on the RHS.

An iterative perturbation method for the non-linear theory, known as the post-
Newtonian formalism [92, 87, 353] has been developed by Blanchet and Damour,
in order to treat non-solvable problems in GR, such as the two body problem
of a coalescing compact binary [88, 176]. This will be valid assuming post-
Newtonian sources, i.e. sources that are weakly gravitating, slowly moving and
weakly stressed. For distances much smaller than a typical wavelength r � λ/2π,
the metric can be treated as a static field that evolves slowly, together with the
source. This regime exists for post-Newtonian sources, since R ∼ (v/c)λ/2π, and
defines the region of validity for the post-Newtonian (PN) expansion. The outside
of the source can be conveniently expressed by a post-Minkowskian expansion in
vacuum and far away from the source, a multipolar expansion like Eq. (1.50) gives
the solution for the linear theory [118, 353]. For finite-sized sources, spacetime is
thus separated into four (overlapping) regions:
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Source interior: the region of spacetime where the source’s stress-energy tensor
is non-zero, that extends to a world tube of radius R. Here PN is valid but
(vacuum) PM is not; formally the latter diverges at r → 0.

Source exterior: the complement of the source interior. PM is valid through-
out.

Near zone: the region encompassing the source, where the gravitational field
varies “in phase” with the source. This extends out to distances much
smaller than the shortest wavelength. PN is valid throughout, while PM
only in the exterior part.

Far zone: the region where the gravitational field is weak enough to be treated
in the linear theory. It is part of the exterior, so PM is valid, and the
multipolar expansion is convenient here, while PN diverges.

In a sense the PN expansion in the near zone and the PM expansion outside
the source are complementary, not only because their domain of validity fills up
the entire space, but also because the latter can provide the correct boundary
conditions to the former (no incoming radiation from null infinity), which in
turn provides the source multipoles. The theorems stated below [88], together
with a set of matching conditions in the overlapping regions, will eventually yield
the solution that covers the entire spacetime. A different approach that gives
consistent results was pioneered by Will and Wiseman [383, 387] and is based on
the direct integration of the relaxed Einstein equations (DIRE).

To solve the EFE perturbatively in the near zone, one needs to expand the metric
gµν (as in Eq. (1.65)) and the stress-energy tensor Tµν in powers of ε, keeping
in mind that the time derivatives of the metric are of an additional O(ε) order
smaller than the spatial derivatives. The following theorem gives the form of its
general solution to arbitrary order.

Theorem 1 (near-zone PN). The expression of the post-Newtonian field4 in the
near zone of a post-Newtonian source, satisfying no-incoming-radiation boundary
conditions at infinity reads

h̄µν =
16πG

c4

[
FP�−1

ret [τ̄µν ] +
∞∑
l=0

(−1)l

l!
∂L

{RµνL (tret)−RµνL (tadv)

2r

}]
. (1.66)

The first term represents a particular solution of the hierarchy of post-Newtonian
equations, while the second one is a homogeneous multipolar solution of the wave
equation, of the “anti-symmetric” type that is regular at the origin r = 0 located
in the source.

The inverse d’ Alembertian �−1
ret is simply the Green’s function of the d’Alem-

bertian evaluated at retarded time tret = t− r/c and FP denotes the finite part

4Here h̄µν =
√−ggµνηµν .
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operator that removes its singular behavior for point-like sources [92]. The index
L is a multi-index of rank l.

The PN expansion is developed at two levels: first at the conservative level, where
radiation emission is not taken into account and the source’s equations of motion
are calculated; then at the dissipative level where GW emission back-reacts on
the dynamics of the system. The latter does not enter until the next-to-next-
to-leading order (1.5PN), so in an order-by-order perturbative treatment of the
EFE, one can gradually introduce dissipative effects that are calculated from
lower-order solutions of the equations of motion.

Theorem 2 (near-zone PM). The general structure of the expansion of the post-
Minkowskian exterior metric in the near-zone is of the type

h(n)
µν (t, ~x) =

∑
n̂Lr

m(ln r)p FL,m,p,n(t) + o
(
rN
)
, (1.67)

where m ∈ Z, with m0 ≤ m ≤ N , p ∈ N, p ≤ n− 1. The functions FL,m,p,n are
multilinear functionals of the source multipole moments IL, . . . , ZL.

This theorem establishes a structure with which one can match the near-zone PM
expansion which is singular at r → 0, with the source multipoles derived in the
PN expansion that are regular. Details of the explicit derivations can be found for
example in [88, 176] and references therein. A matching condition is thus applied
in the overlapping region of the near-zone where both PN and PM are valid.
Some explicit expressions for the source multipoles and radiation multipoles are
given in [88] both in their general form and in particular for point-mass binaries.
Finally, the PM solution can be re-expanded in the far-zone expansion.

Theorem 3 (far-zone PM). The most general multipolar-post-Minkowskian so-
lution, stationary in the past, admits some radiative coordinates (t, ~x), for which
the expansion at future null infinity, r → ∞, with tret ≡ t − r/c = const, takes
the form

H(n)
µν (t, ~x) =

∑ N̂L
rk

KL,k,n(tret) +O

(
1

rN

)
. (1.68)

The functions KL,k,n are computable functionals of the source multipole moments.
In radiative coordinates the retarded time tret is a null coordinate in the asymp-
totic limit. The metric is asymptotically simple [290, 291], perturbatively to ar-
bitrary order.

The actual calculations in the PN formalism are technically difficult and ex-
tremely laborious, so derivations beyond next-to-leading order are not easy to
obtain. However, the necessity for a high-PN-order modeling of compact binaries
becomes clear when one calculates the phase of the waveform, to be used by the
data analysis algorithms (for searches, etc.). During the time that the waveform
spends in-band, the modeled phase needs to match the true signal up to a fraction
of a cycle, in order to make the matched filtering algorithms efficient enough. It
appears that the template waveforms need to be modeled with post-Newtonian
effects up to at least 2.5PN.
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1.5 Detection of Gravitational Waves

In order to fully understand the operational principles of gravitational wave de-
tection we will first look into the leading order effects of their interaction with
matter. The most instructive way to study such effects is in terms of the geodesic
deviation of nearby test particles, since only the relative motion of freely falling
particles can give away a time varying perturbation in the metric. For simplicity,
let us assume a monochromatic plane wave as in Eq. (1.35) with wave vector
kµ = (ω, 0, 0, ω).

Going back to the geodesic deviation equation (1.11), for freely falling particles
uµ = tµ = (1, 0, 0, 0) at rest in the TT frame, we find the Riemann tensor
components

Rµνρσ =
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) . (1.69)

It is important to note that the linear expression for the Riemann tensor (1.69)
is invariant under the infinitesimal diffeomorphisms of Eq. (1.28); we choose to
calculate it in the TT gauge once and for all

R0µ0σ = − 1

2 c2
∂2

∂t2
hTTµσ (1.70)

which, given that t = τ , induces a local relative acceleration δ̈x
i

of neighboring
geodesics and a local apparent (tidal) force F i on a test mass m given by

c2 ai = δ̈x
i

= −1

2
ḧTTij δxj , F i =

m

2
ḧTTij δxj . (1.71)

In terms of the two polarizations {+,×} of a plane wave, the corresponding
deviations vary according to(

δ̈x

δ̈y

)
+

'
(
−δx0

δy0

)
ω2 h+

2
sin(ω t) ⇒

(
δx
δy

)
+

=
h+

2

(
δx0

−δy0

)
sin(ω t) ,

(1.72)

(
δ̈x

δ̈y

)
×
'
(
δy0

δx0

)
ω2 h×

2
sin(ω t) ⇒

(
δx
δy

)
×

=
h×
2

(
δy0

δx0

)
sin(ω t) . (1.73)

The force fields, together with the apparent motion of test masses in a circular
arrangement on the x-y plane around the origin, are drawn in Fig. 1.2, at different
times within a wave period, that correspond to phases φ = 0, π/2, π, 3π/2. In a
ground-based detector frame however, the reference points of the apparatus are
neither in a TT frame nor in free fall. The first point is taken care of by means of
the detector’s antenna pattern function described below, while the second point
is shown to introduce a negligible effect [253].
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Figure 1.2: Motion of test masses in a circular arrangement on a plane around the
origin, under the influence of a passing GW that propagates in a direction perpendicular
to the plane. The arrow lines represent the force vector field. The left (right) plots show
the effect of a pure + (×) polarization.

A generic gravitational waveform from a far away source, can then be expressed
as a superposition of plane waves that propagate along a given direction n̂ as

hij(t, ~x) =
∑

P=+,×
εPij(n̂)

∫ ∞
−∞

df h̃P (f) e−2πif(t−n̂·~x)/c. (1.74)

Antenna pattern for GW interferometers In order to translate a passing
gravitational wave into detector output, one needs to transform from the TT
frame defined by the source, to the proper detector frame, where the effect on
the apparatus is best described, and subsequently apply a mapping from the
perturbation tensor to the gravitational wave strain scalar. Since hµν transforms
as a tensor under Lorentz transformations, its spatial part hij transforms as a
regular (0,2)-tensor under rotations R ∈ SO(3), which can be represented as 3x3
matrices parametrized by three angles (e.g. Euler angles). The mapping from
the new hµν to the strain h(t) is given by a (2,0)-tensor known as the detector
tensor Dij , which can be decomposed into the plus and cross detector pattern
functions, the projections of the detector tensor on the polarization basis tensors,

h(t) = F+(n̂) h+(t) + F×(n̂) h×(t) , (1.75)

FP (n̂) = Dij εPij(n̂) , P = +,× . (1.76)

More specifically, here we are only interested in interferometric GW detectors,
whose geometric properties are determined by the two unit vectors x̂ and ŷ that
define the detector’s arms. In particular, we will consider L-shaped detectors,
whose arms are perpendicular to each other. We will also assume that length L of
the detector is much smaller than the typical wavelengths of the signal, ωgwL/c�
1, so that the perturbation applies uniformly across the entire detector. Let θ
and φ be the spherical angles between the proper detector frame and the TT
frame, i.e. the direction of propagation is expressed as n̂ = (θ, φ) in spherical
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coordinates in the detector frame x̂, ŷ, ẑ and let ψ be the polarization angle, the
angle that defines the orientation of the source with respect to the detector plane.

As a gravitational wave passes through the interferometer, it stretches and squeez-
es the spatial dimensions perpendicular to its direction of propagation in an
oscillatory fashion. As a result, the paths that light travels along the two arms
change relative to each other, creating an oscillating bright pattern on the dark
fringe. The action of an interferometric detector’s tensor Dij returns a scalar
that measures the integrated path difference between the light rays that travel
along the two arms in x̂ and ŷ, and so

Dij =
1

2
(x̂ix̂j − ŷiŷj) . (1.77)

The spatial perturbation matrix hij of Eq. (1.35) transforms under a general
rotational transformation

R(n̂) = Rz(φ)Ry(θ)Rz(ψ) , (1.78)

here in the z − y′ − z′′ sequence, as

h′ij = (R h RT )ij = Rik Rjl hkl . (1.79)

Originally, the TT gauge choice restricts h to the 2 × 2 subspace x-y which is
invariant under Rz rotations. This implies that the two polarizations will mix
with each other but the form of Eq. (1.35) will be preserved. Now, if we substitute
R with the rotation matrix that transforms (X̂, Ŷ , Ẑ) to (x̂, ŷ, ẑ) we find

F+(n̂) =
(1 + cos2 θ)

2
cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ , (1.80)

F×(n̂) =
(1 + cos2 θ)

2
cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ . (1.81)

The L-shaped detectors’ antenna pattern functions are shown in the parameter-
ized surface plots of Fig. 1.3, in which the functions are encoded in the radial
coordinate r−2, as functions of (θ, φ), so that their range [−1, 1] is fully mapped
in the space between the spheres r = 1 and r = 3. A large absolute value (closer
to the red end of the color bar) indicates high sensitivity to GWs coming from
the given direction and vice versa.

1.6 Second generation ground-based interferom-
eters

The Virgo (Cascina, Italy) and two LIGO (Hanford, WA and Livingston, LA) in-
terferometric GW detectors started operating in 2007, 2002 and 2002 respectively.
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� ��� ��� ��� ��� ���

Figure 1.3: F+ (left) and F× (center) antenna pattern functions for a GW interfer-
ometer for ψ = 0, plotted as the radial coordinate of the surface, with the zero section
being mapped on the sphere of r = 2 (purple intersection). Color represents the absolute

value. Detector arms are shown in black for reference. The right plot shows
√
F 2
+ + F 2

×.

Overall, an L-shaped interferometer is more sensitive to GWs coming from right above
or below the detector’s plane. For waves coming from the side, the sensitivity maximizes
when the direction is aligned with either of the detector’s axes.

These are laser interferometers of 3 km (Virgo) and 4 km (LIGO) arm-length, in
a 90◦ (L-shaped) configuration.

The detectors’ sensitivity is described by the spectrum of noise present in the
output (the photo-diode readout on the dark fringe), to which sources of noise
of different nature contribute (seismic noise, radiation pressure noise, thermal
noise, shot noise, Newtonian noise, etc.). As a stochastic process, the noise can
be modeled by measuring its auto-corellation function in time

R(τ) ≡ 〈n(t+ τ) n(t)〉 ≡ 1

2

∫ ∞
−∞

df Sn(f)e−i2πfτ , (1.82)

where the Fourier decomposition in the second equation defines the function
Sn(f), that has units of 1/

√
Hz and is called the noise power spectral density

(PSD). Assuming that the process is Gaussian (and that it averages to zero), the
auto-correlation completely characterizes the noise; furthermore, if it does not
change in time we say that the noise is stationary. Equivalently, in the frequency
domain, Gaussian stationary noise will be uncorrelated in frequency space and
characterized by its root mean square on each frequency bin. The autocorrelation
function for ñ reads

〈ñ∗(f)ñ(f ′)〉 =
1

2
δ(f − f ′) Sn(f) . (1.83)

Of course, it is not always the case that noise satisfies the assumptions of being
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Figure 1.4: Initial LIGO and Virgo sensitivities plotted from analytical estimates (dark
blue, purple) and real data measurements (blue, red) and compared against the design
sensitivities in their advanced configuration (black and green).

Gaussian and stationary, and this may become important in our analysis, as we
shall see in Chapter 8.

The VSR3 science run of Virgo and S6 of LIGO ended in 2011, with a maximum
sensitivity that reached

√
Sn(f) ∼ 7 × 10−23Hz−1/2 and ∼ 4 × 10−23Hz−1/2

respectively and an absolute horizon for binary neutron star (BNS) signals for
the network of three detectors at∼ 40 Mpc. After the network of initial LIGO and
Virgo detectors shut down, the instruments were disassembled and started being
upgraded to bring the interferometers to their advanced configuration, towards
a sensitivity improvement of roughly an order of magnitude. Given the 1/r
behaviour of the GW amplitude, this implies an order of magnitude improvement
in horizon distance, which means a factor of 1000 more accessible volume, or
about an equally large improvement in detection rates. Results of measurements
of the noise PSDs in the initial Virgo and LIGO detectors are shown in Fig. 1.4,
together with idealized curves that model the expected PSDs of AdVirgo and
aLIGO at design sensitivity. Notice the uniform improvement by roughly an
order of magnitude on top of an already impressive

√
Sn(f) ∼ 10−22Hz−1/2

across almost 2 decades of frequency. The wide high sensitivity band (commonly
known as “the bucket”), within which one has the most chances of detecting
a GW signal, ranges between a few 10s and a few 100 Hz, making coalescing
neutron-star or black-hole binaries ideal candidates for detection. The evolution
of AdVirgo and aLIGO sensitivity during the first few years of operation is shown
in Fig. 1.5.
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Figure 1: aLIGO (left) and AdV (right) target strain sensitivity as a function of frequency. The
average distance to which binary neutron star (BNS) signals could be seen is given in Mpc. Current
notions of the progression of sensitivity are given for early, middle, and late commissioning phases,
as well as the final design sensitivity target and the BNS-optimized sensitivity. While both dates
and sensitivity curves are subject to change, the overall progression represents our best current
estimates.

BNS ranges for the various stages of aLIGO and AdV expected evolution are also provided in Fig. 1.
The installation of aLIGO is well underway. The plan calls for three identical 4 km interfer-

ometers, referred to as H1, H2, and L1. In 2011, the LIGO Lab and IndIGO consortium in India
proposed installing one of the aLIGO Hanford detectors, H2, at a new observatory in India (LIGO-
India). As of early 2013 LIGO Laboratory has begun preparing the H2 interferometer for shipment
to India. Funding for the Indian portion of LIGO-India is in the final stages of consideration by
the Indian government.

The first aLIGO science run is expected in 2015. It will be of order three months in duration,
and will involve the H1 and L1 detectors (assuming H2 is placed in storage for LIGO-India). The
detectors will not be at full design sensitivity; we anticipate a possible BNS range of 40 – 80 Mpc.
Subsequent science runs will have increasing duration and sensitivity. We aim for a BNS range of
80 – 170 Mpc over 2016–18, with science runs of several months. Assuming that no unexpected
obstacles are encountered, the aLIGO detectors are expected to achieve a 200Mpc BNS range circa
2019. After the first observing runs, circa 2020, it might be desirable to optimize the detector
sensitivity for a specific class of astrophysical signals, such as BNSs. The BNS range may then
become 215 Mpc. The sensitivity for each of these stages is shown in Fig. 1.

Because of the planning for the installation of one of the LIGO detectors in India, the installation
of the H2 detector has been deferred. This detector will be reconfigured to be identical to H1 and
L1 and will be installed in India once the LIGO-India Observatory is complete. The final schedule
will be adopted once final funding approvals are granted. It is expected that the site development
would start in 2014, with installation of the detector beginning in 2018. Assuming no unexpected
problems, first runs are anticipated circa 2020 and design sensitivity at the same level as the H1
and L1 detectors is anticipated for no earlier than 2022.

The commissioning timeline for AdV [3] is still being defined, but it is anticipated that in

8

Figure 1.5: Scheduled sensitivity for aLIGO (left) and AdVirgo (right) detectors for
different commissioning phases during their first five years of operation. The angle-
averaged horizon distance for binary neutron star signals is quoted in the legend in Mpc.
Taken from [5].

1.7 The first direct detection of gravitational waves

During the writing of this dissertation, the first science run of aLIGO, O1 was
succesfully completed, with the two aLIGO detectors at Hanford and Livingston
reaching a BNS horizon distance of ∼ 80 Mpc. On the 14th of September, 2015,
at 09:50:45 UTC, a loud event triggered both aLIGO detectors almost simulta-
neously with a relative delay of 7 ms, and a duration of ∼ 0.2 s, yielding a signal-
to-noise ratio of 24, with a peak gravitational wave strain at 1.0 × 10−21 [21].
Subsequent on-line (low-latency) and off-line analyses on the event, later to be
named GW150914, indicated and eventually verified that what perturbed the de-
tectors was in fact a real gravitational wave, that originated from the coalescence
of a stellar-mass black hole binary; the first to be detected by man kind, on the
centenary of Einstein’s theory of general relativity. The component black hole
masses were estimated at m1 = 36+5

−4 M�, m2 = 29+4
−4 M� (uncertainties define

90% confidence intervals), while the location of the binary was in the general di-
rection of the southern hemisphere at a luminosity distance of DL = 410+160

−180Mpc.
All relevant properties of the binary coalescence were estimated and presented in
detail in [23], while futher information on the analyses performed can be found
in [24, 16, 12, 22, 25, 17, 14, 15, 18, 20, 30]. A couple of weeks before the official
end of O1, on the 26th of December, 2015 at 03:38:53 UTC, a second significant
event, GW151226 was registered and verified as a GW detection [19], with a
signal-to-noise ratio of 13. Its duration as a signal within the frequency band of
aLIGO detectors was ∼ 1 s, much longer than GW150914, since it was emitted
by a black hole binary of lower mass, m1 = 14.2+8.3

−3.7 M�, m2 = 7.5+2.3
−2.3 M�.

Part of the author’s work related to these discoveries will be discussed in Sec. 4.5
and 9.2 and can also be found in [24, 13].
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A pair of black holes orbiting each other will create gravitational 

waves, ripples in space and time. As these waves are emitted, the or-

bit will shrink. The black holes get closer together and move faster 

and faster about each other. Eventually they merge together and 

form a bigger black hole. This emits gravitational waves as it settles 

down to its final shape.

The signal:

Date: 14 September 2015

Time: 09:50:45 UTC

Peak strain: ~10 -21

Peak frequency: ~150 Hz

Arrival time difference between Hanford and Livingston: ~7 ms

Where:

Distance: ~1 billion light years

Redshift: ~0.09

Location on sky resolved to ~600 square degrees (most likely 

southern hemisphere)

Orientation: face-on/off

A billion years ago, such an event happened. On September 14, the 

gravitational waves reached Earth and the final fraction of a second 

was detected by LIGO. Gravitational waves are a stretch and squash 

of space, and by the time the signals reached Earth they are tiny. We 

measure a minuscule change in the distance between the mirrors in 

a LIGO instrument. Below we show what such a signal from this event 

should look like.

The source:

Primary black hole

mass: ~36 solar masses

spin: <0.7

Secondary black hole

mass: ~29 solar masses

spin: <0.9

Gravitational wave energy output equivalent to ~3 solar masses

Final black hole:

mass: ~62 solar masses

spin: ~0.7

Christopher Berry

A signal from two merging black holes 

Information extracted from the signal GW150914 
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Chapter 2

Coalescing Compact
Binaries

Nothing happens until something
moves.

Albert Einstein

2.1 Generalities

In this chapter we will particularize the discussion to the main subject of this
dissertation, which is the study of GW signals from compact binary coalescence
(CBC). Among the possible candidate sources for ground-based GW interferome-
ters, the coalescence of neutron star (NS) or black hole (BH) binaries is the most
promising type. Indeed, the first direct GW detection came with the observa-
tion of a binary black hole (BBH) coalescence. These systems have evolved over
the course of millions of years, during which their orbits gradually circularize
and shrink, due to the emission of gravitational waves. The three features that
characterize the final stage of this process are all key ingredients that raise the
expectations for detection with Advanced Virgo and LIGO:

Compact: a high compactness of the component bodies is necessary for the
binary to achieve coherent gravitational wave emission, all the way up to
the last stable orbit, where the radiated energy flux is the highest. Binaries
including less compact objects like white dwarfs (WD) merge into a single
object in a much earlier stage, when the GW signal is still too weak to be
detected and the GW frequency is far below the high sensitivity band of
ground-based interferometers.

Binary: gravitational wave generation requires a strong oscillating/accelerating
quadrupolar moment, an ingredient that cannot easily be obtained by single
astrophysical objects with a spherical mass distribution. A binary system
is an ideal setup for this requirement and yields a characteristic chirp GW
signal.

Image credits: Nutsinee Kijbunchoo, LIGO.
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Coalescence: as the binary orbit shrinks towards the innermost stable circular
orbit (ISCO), a prodigious amount of GWs is emitted with an increasing
amplitude. For NS and stellar-mass BH systems the frequency band where
most of the GW power is released largely overlaps with the high-sensitivity
band of ground-based interferometers.

Intrinsic parameters Assuming for a moment that the two component bodies
can be treated as point masses, the system is defined by the following intrinsic
parameters:

• Two mass parameters: these can simply be the component masses1 mA,
A = 1, 2, or equivalently any pair of independent combinations of those,
such as the total mass M = m1+m2, the mass difference δm = m1−m2 and

fractional mass difference δ = m1−m2

m1+m2
, the chirp mass Mc = (m1 m2)3/5

(m1+m2)1/5 ,

the reduced mass µ = m1 m2

m1+m2
and one of the symmetric or asymmetric mass

ratios η = m1 m2

(m1+m2)2 or q = m1/m2. Note that the dimensionless variables

q, η are linearly dependent through the relation η = q
(1+q)2 (this is also

true for any other dimensionless combination). Another useful relation is
Mc = M η3/5 .

• Two spin vectors: ~SA , A = 1, 2 or their dimensionless counterparts ~χA =
~SA
m2
A

; these define the internal angular momentum of each component body,

due to rotation in the case of a NS, or Kerr spin parameter in the case of a
BH. Depending on the problem at hand, these can also be re-parametrized
into convenient combinations (effective spin parameters, effective precessing
spin, etc. [220, 191, 304]), among which we shall only deal with the symmet-
ric and anti-symmetric spins ~χs = ~χ1+~χ2

2 and ~χa = ~χ1−~χ2

2 . The component
spin vectors are often parametrized in spherical coordinates with respect to
a preferred frame, that is, in terms of their norm χA, a polar angle κA and
azimuth angle γA.

As two simplified cases, we consider systems where (i) both spins are zero, (ii)

both spin vectors are aligned with the orbital angular momentum ~L = ~r × ~p. In
the latter case, the spins will remain aligned throughout the entire evolution of the
binary. The total angular momentum of the binary is denoted as ~J = ~L+ ~S1 + ~S2.
Note that the spins ~SA, as well as the orbital ~L and total ~J angular momentum of
the binary, are instantaneous quantities, i.e. they are not conserved but actually
evolve with time.2 We shall return to this in Sec. 2.4.2. In particular, this means
that in order to define the system, one also needs to define the instance at which
the spins take a given value.

1We will adopt the convention that m1 > m2.
2The reason why ~J is not conserved in principle is that the outgoing GWs also carry angular

momentum (see Eq. (1.64)), however the quantity ~Jtot = ~J + ~Jgw is indeed conserved.
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The orbital evolution can be qualitatively split into three stages: (i) the inspiral,
during which the component bodies are far enough from each other that the
binary can be described as a post-Newtonian source that loses energy through
copious emission of GWs; (ii) the merger, which comes roughly when the orbital
separation becomes smaller than the last stable orbit (LSO) and briefly extends
up to the point when the two objects have merged into a single excited spinning
BH; (iii) the ringdown, during which the final BH radiates away its excessive
moments by means of GW emission, until it finally settles into a quiescent state as
a Kerr BH. The evolution of a binary system driven predominantly by gravitation
is the infamous two-body problem in general relativity, which admits no known
analytical solution. However, a number of perturbative techniques have been
developed in order to derive approximate solutions to this problem. During
the inspiral, the PN formalism, allows for a systematic expansion of the orbital
quantities of interest, in terms of the small parameter (v/c)2, where v = |~v1 −
~v2| is the instantaneous orbital velocity of the system. In second generation
interferometers the inspiral enters the sensitivity band at roughly 10 Hz and
lasts up to LSO or, for circularized orbits, the ISCO frequency which is inversely
proportional to the mass,

fISCO '
1

π

√
M

(6M)3
=

1

63/2πM
, (2.1)

and for a typical (1.4 − 1.4)M� BNS system is at ∼ 1600 Hz. For BNS systems
however and depending on the component masses and the NS equation of state
(EoS), the inspiral orbit may be terminated earlier due to tidal disruption or
physical contact between the two finite-sized neutron stars. Both of the above
will spoil the coherence of the GW emission and introduce sudden changes in
the waveform. A short overview of PN methods applied to compact binaries and
their results will be discussed in Sec. 2.3. The late inspiral and merger stage
cannot be accurately treated perturbatively, and have been the objects of studies
using numerical relativity (NR) simulations where the entire spacetime geometry
in the vicinity of the binary is being evolved [63, 334, 164]. Finally, the ringdown
stage can be modeled in terms of the perturbation equations around a Kerr
spacetime [352, 301, 242]. The ringdown GW signal is modeled as a superposition
of damped sinusoids, that correspond to the different eigen-frequencies of the BH’s
quasi-normal modes, and in practice lasts a small fraction of a second. The main
focus of this dissertation is on the study of the inspiral stage.

Extrinsic parameters The intrinsic parameters of a compact binary com-
pletely define the evolution of spacetime, and the gravitational waves that are
emitted by it. However, for the purposes of GW data analysis one needs to
also be concerned with the source’s extrinsic parameters relative to the observer.
These will introduce additional transformations on the waveform and will give
the GW signal its final form with which it will appear in the detector output.
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We define the following extrinsic parameters of the source with respect to an
observer/detector frame on Earth:

• Distance to the source: the luminosity distance D = DL is most commonly
used, since this is the quantity that appears in the inverse distance law of the
waveform. Since detectable sources may reach distances out to cosmological
scales (close to 1Gpc), a careful treatment of the different types of distances
may be required, depending on the calculation one wishes to perform. Also,
at cosmological scales, the waveform undergoes the standard cosmological
redshift, which induces a rescaling of the observed masses relative to the
intrinsic masses.

• Sky location of the source: is defined in terms of the polar ϑ and azimuth ϕ
angles of the source with respect to the detector frame (X̂, Ŷ , Ẑ) (which for
L-shaped interferometers is defined by its X-arm, Y-arm and the vertical).
In practice, the right-ascension α and declination δ angles on the celestial
sphere are used instead, which can be directly translated into (ϕ, ϑ), given
the location of the detector on the Earth and the Earth’s orientation during
the time of coalescence.

• Orientation of the source: is described by the inclination angle ι and polar-
ization angle ψ. ι is defined as the angle between the orbital axis and the
line of sight, while ψ is the angle between the major axis of the apparent
orbital ellipse and the detector plane.

• Time of coalescence: tc is defined as the time when the gravitational wave
front of peak amplitude arrived at the detector. When a network of detec-
tors is considered, one often uses the time of arrival (TOA) at the center
of the Earth, which can then be translated to the TOAs at each individual
detector.

• Phase at coalescence: ϕc is the phase of the GW at peak amplitude.

To conclude, a typical CBC gravitational wave signal is characterized by 15 in-
dependent parameters, a choice of which is

~θCBC =
(
m1,m2, ~S1, ~S2, D, α, δ, ι, ψ, tc, ϕc

)
. (2.2)

Detection rates Apart from the aforementioned attractive physical features
of compact binaries, one also needs to take into account the abundance of such
systems in the universe. If the rate of coalescing compact binaries within our
detectors’ reach were too low, then one would not be guaranteed to make a
detection within a reasonable amount of time. We can safely assume that the
density of compact binaries throughout the universe is roughly uniform. Since
systems of different masses radiate up to different frequencies and with different
amplitudes, the horizon of a given detector can only be defined per type of source
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population. Binary neutron star (BNS) systems, in which both components are
neutron stars, are known to be of low mass [314, 226, 356, 227], with a typical
total mass M ∼ 2.7M�, thus radiating up to 1600 Hz before crossing their
ISCO. A typical BNS system will spend a few minutes within the LIGO/Virgo
sensitivity band. On the other hand, higher-mass NS-BH or BH-BH binaries will
emit stronger gravitational radiation (as we will see in Sec. 2.2, GW amplitude at
a given frequency scales as M5/6), but will sweep the in-band frequencies much
faster and will terminate at a lower ISCO frequency (see Eq. (2.1)).

For a given detector of a certain sensitivity and a given population of sources
of a certain lifetime and density, one can estimate the rate at which binaries
of this population will coalesce and the rate at which their GW signals will
reach us with signal-to-noise ratios (SNR) above a certain threshold (usually
set to the “detectability threshold” of SNR = 8). Since no direct observation
of a BH was available before the first science run of aLIGO (O1), the density
estimates for BH binaries were subject to large uncertainties [219, 67, 280, 83],
with no definite lower bound. There are however direct observations of a few BNS

IFO Source Ṅlow (yr−1) Ṅre (yr−1) Ṅhigh (yr−1)

NS-NS 2× 10−4 0.02 0.2
Initial NS-BH 7× 10−5 0.004 0.1

BH-BH 2× 10−4 0.007 0.5

NS-NS 0.4 40 400
Advanced NS-BH 0.2 10 300

BH-BH 0.4 20 1000

Table 2.1: Expected detection rates for the network of initial Virgo–LIGO and
AdVirgo–aLIGO detectors at design sensitivity, based on pessimistic (low), realistic (re)
and optimistic (high) estimates for binary populations and merger rates, according to
a variety of astrophysical models on the population of compact binaries. Table adapted
from [9]. In the light of the recent GW detections during O1, the detection rate was also
estimated as a probability distribution on the sensitive time-volume 〈V T 〉 in [25].

systems [280, 226, 282, 227, 157], for which the coalescence rate estimates range
between 10−6 and 10−3 per Gyr per Milky Way Equivalent Galaxy (MWEG) [9].
These can be directly translated into detection rate estimates, given the observed
density of galaxies and the 1/r scaling in the GW amplitude. A conservative but
realistic estimate for the detection rate gives around 40 BNS signal detections
per year, with a network of 3 second generation detectors at design sensitivity.
A summary of the expected detection rates for BNS, NS-BH and BBH systems
with AdVirgo and aLIGO is given in [9] and shown in Table 2.1, in comparison
with the initial LIGO–Virgo network. After the completion of O1, and with
the detection of two GW signals at high significance, the BBH merger rate was
estimated to lie in the range 6− 400 Gpc−3yr−1. Based on these merger rates, it
is expected that a few more BBH signals will be detected within the upcoming
science run O2 and more than 10 in O3 [25]. Table 2.2 shows the expectations for
BNS detections in particular, during the science runs scheduled with advanced
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detectors.

Scheduled Run BNS Range (Mpc) Number of % BNS localized in
Epoch Duration aLIGO AdVirgo BNS Detections 5 deg2 20 deg2

2015 3 months 40–80 – 0.0004–3 – –
2016–17 6 months 80–120 20–60 0.006–20 2 5–12
2017–18 9 months 120–170 60–85 0.04–100 1–2 10–12
2019 + (per year) 200 65–130 0.2–200 3–8 8–28
2022+ (per year) 200 130 0.4–400 17 48

Table 2.2: Expected BNS range, detection rates and localisation resolution, with the
network of aLIGO and AdVirgo detectors during the first few years of operation. LIGO
India (IndIGO) is added to the network from 2022 onwards (bottom row); KAGRA is
not considered in this study but it is expected to improve the quoted figures from 2017
onwards. The corresponding sensitivity curves are given earlier, in Fig. 1.5.

2.2 The quadrupole formula

Before diving into the complexity of the PN formulation for the two-body prob-
lem, let us first derive the leading order expressions for the generation of GWs
from a compact binary in a quasi-circular orbit. The Newtonian or zeroth order
conservative equation is simply Kepler’s law

ω2 =
GM

R3
. (2.3)

The quadrupole formula Eq. (1.56), whose key ingredient is the time-varying
quadrupole mass moment Q̈, can be used directly. First, we model the mass-
energy density T 00(t, ~x) = ρ(t, ~x)c2 as a sum of delta functions centred on the lo-
cations of the two component masses ~x1 and ~x2, whose orbit in the non-relativistic
limit obeys Kepler’s laws,

ρ(t, ~x) = m1 δ
(3)(~x− ~x1(t)) +m2 δ

(3)(~x− ~x2(t)) , ~xA(t) = ± µ

mA
R(t)ê(t) ,

(2.4)

ê(t) =

(
cos

Φ(t)

2
, cos ι sin

Φ(t)

2
, sin ι sin

Φ(t)

2

)
, (2.5)

in a frame where the orbit has an inclination angle ι with respect to the z-axis,
and intersects the x− y plane along the y-axis. For simplicity let us first assume
that the energy loss affects the orbit at a timescale much larger than its period,
so that practically Φ(t) = ωt. The TT projection for an observer sitting along
the z-axis (i.e. n̂ = ẑ), will only preserve the x − y components of the mass
moments, which we can calculate from Eq. (2.4) and (1.52) as

Mij(t) =
1

c2

∫
d3~x ρ(t, ~x) xixj =

(
µ2R

m1
+
µ2R

m2

)
êiêj . (2.6)
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Performing the TT projection M̈TT
ij = ΛklijM̈kl we find

M̈TT
xx = −M̈TT

yy =
1

2

(
M̈xx − M̈yy

)
= 2

(
1

m1
+

1

m2

)
µR2ω2 cos 2ωt ,(2.7)

M̈TT
xy = M̈TT

yx = M̈xy = 2

(
1

m1
+

1

m2

)
µR2ω2 sin 2ωt , (2.8)

with which we get the waveform to leading order

h+(t) =
4

r

(
GMc

c2

)5/3 (ω
c

)2/3
(

1 + cos2 ι

2

)
cos(2ωtret + ϕ0) , (2.9)

h×(t) =
4

r

(
GMc

c2

)5/3 (ω
c

)2/3

cos ι sin(2ωtret + ϕ0) . (2.10)

Here we used Kepler’s law and the definition of the chirp mass Mc = Mη3/5.

2.3 Compact binaries in the post-Newtonian ex-
pansion

We briefly outline the results of applying the post-Newtonian formulation on the
problem of modeling the evolution of compact binaries [88, 176], up to the late
inspiral. In the derivation of the quadrupole formula above, we saw how the
conservative equation (Kepler’s law) gave the leading order equations of motion,
according to which the multipoles that source the emitted GWs are calculated.
Kepler’s law Eq. (2.3) is valid only as a leading-order equation and needs to be
corrected for relativistic effects, based on PN calculations. Each iteration in the
PN expansion will give an additional correction to the equations of motion (the
acceleration vectors in terms of the position and velocity vectors). The equations
of motion in the center-of-mass frame, calculated based on the metric expanded
up to 3.5PN [215, 97, 272] take the form

d~v

dt
= −GM‖~x‖2 [ (1 +A)x̂+B ~v ] +O

(
1

c8

)
, (2.11)

where x̂ = ~x/‖~x‖ ~v = d~x/dt = ~v1 − ~v2 (~x = ~x1 − ~x2 being the separation vector
between the two bodies) and where the quantities A and B are explicitly written
out in Appendix A. One may then distinguish between corrections of odd and
even order in v/c; the even order terms (Newtonian or 0PN, 1PN, 2PN, 3PN)
give rise to time-reversible equations, and thus make up the conservative sector
of the PN expansion, whereas the odd terms (2.5PN, 3.5PN), starting at (v/c)5,
act as non-reversible contributions that make up the dissipative sector.
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Conservative sector If one keeps the conservative terms alone, the equations
of motion admit a conserved energy E per total mass, which for circular binaries
in the center-of-mass frame reads

E =− µc2ε

2

{
1 +

[
−7

4
+

1

4
η

]
ε+

[
−−7

8
+

49

8
η +

1

8
η2

]
ε2 (2.12)

+

[
−235

64
+

(
46031

2240
− 123

64
π2 +

22

3
ln

r

r′0

)
η +

27

32
η2 +

5

64
η3

]
ε3
}

+O(ε4) ,

where η is the symmetric mass ratio and ε is the expansion parameter introduced
in Section 1.4. Once the dissipative effects enter, this quantity is no more con-
served and one gets its time derivative dE/dt purely from the dissipative sector.

Dissipative effects The “driving force” in the inspiral evolution of the binary
is the outward flux of energy in the form of gravitational radiation. We can make
use of Eq. (2.12) in order to obtain the GW energy flux to 3.5PN order and then
apply the energy balance equation

dv

dt
=
Ė
E ′(v)

= − F(v)

M E′(v)
(2.13)

in order to obtain the orbital evolution using dissipative GW effects to leading
order. Here, E is the energy per total mass, while E is the total energy. In
Eq. (2.18) we directly give the expression for the GW energy flux expanded in
terms of the orbital parameter x (or equivalently v).

Orbit circularization Radiation of gravitational waves is known to remove
angular momentum from the system in a way that, in the long term, circularizes
the orbit [293]. The majority of astrophysical binary systems that are close to
coalescence have most likely undergone a long evolution process since their birth,
during which they have lost their orbital eccentricity. We can safely assume that
the systems to be observed with aLIGO and AdVirgo will have practically circular
orbits.

2.3.1 3.5PN evolution of quasi-circular orbits

The PN orbital evolution can be better understood in a Newtonian-like picture,
where we make use of the variable

x ≡
(
GM ω

c3

)2/3

∼ O
(
v2

c2

)
∼ O(ε) , (2.14)

which is a dimensionless version of the instantaneous orbital angular velocity and
defines the PN order in the expansions. When considering circularized orbits, i.e.

32



2

2.3. Compact binaries in the post-Newtonian expansion

ṙ = n̂ ·~v = 0 up to 2.5PN when radiation reaction terms come in, the expressions
of Eq. (A.2) and (A.3) greatly simplify. Now, the equivalent of Kepler’s law is
the PN expansion of the orbital angular velocity ω in the center-of-mass frame,3

which reads

ω2 =
GM

r3

{
1 + (−3 + η)ε+

(
6 +

41

4
η + η2

)
ε2 (2.16)

+

[
−10 +

(
−75707

840
+

41

64
π2 + 22 ln

r

r′0

)
η +

19

2
η2 + η3

]
ε3
}

+O(ε4) .

After inverting this equation to obtain ε in powers of x, one finds the energy per
total mass E up to 3.5PN order [141, 148, 140, 93, 97, 213]4

E(x) = −Mηx

2

{
1 +

[
−3

4
− 1

12
η

]
x+

[
−27

8
+

19

8
η − 1

24
η2

]
x2 (2.17)

+

[
−675

64
+

(
34445

576
− 205

96
π2

)
η − 155

96
η2 − 35

5184
η3

]
x3

}
+O

(
1

c8

)
.

Furthermore, the energy flux F(x) has been calculated to 3.5PN [99, 96, 94, 98,
95]

F3.5(x) =
32

5
η2 x5

{
1−

(
1247

336
+

35

12
η

)
x+ 4πx3/2 −

(
44711

9072
− 9271

504
η − 65

18
η2

)
x2

−
(

8191

672
+

583

24
η

)
π x5/2 +

[
6643739519

69854400
+

16

3
π2 − 1712

105
γE

+

(
41

48
π2 − 134543

7776

)
η − 94403

3024
η2 − 775

324
η3 − 856

105
log (16x)

]
x3

−
(

16285

504
− 214745

1728
η − 193385

3024
η2

)
π x7/2

}
, (2.18)

where γE = 0.577216 . . . is the Euler–Mascheroni constant.

Using the energy balance equation (2.13) in the adiabatic approximation, one gets
the PN expressions for the orbital phase φ(x) and time t(x) from the integrals

ω =
dφ

dv

dv

dt
=
v3

M
⇔ φ(v) = φ0 +

∫ v0

v

dv v3E
′(v)

F(v)
(2.19)

3Technically speaking, ω is the coefficient of the conservative part in the PN-expansion of
the relative acceleration

~a = −ω2~x−
[

32G

5c5
M3η

r4
+O

(
1

c7

)]
~v (2.15)

.
4Note that from here onwards, we drop the G and c factors and express quantities in geo-

metric units (G = c = 1). If we were to reinstate the constants, then E would get a pre-factor

c2 and F would get a c5

G
.
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and
dv

dt
= − F(v)

ME′(v)
⇔ t(v) = t0 +

∫ v0

v

dv
E′(v)

F(v)
. (2.20)

Depending on the exact way one chooses to perform the expansion in the above
expressions, one obtains slightly different results, which will diverge from each
other as the small parameter x, or v/c, approaches unity. This in particular
means that the different models which will be outlined below, will exhibit slightly
inconsistent behaviour towards the end of the inspiral.

2.4 Post-Newtonian waveform approximants

2.4.1 Non-spinning point-particle waveforms

In this section we will go through the different PN-based waveform models that
are most often used in GW data analysis, focusing on the two that we shall use the
most (TaylorF2, TaylorT4) in the following chapters. For simplicity, in this sec-
tion we assume waveforms from quasi-circular binaries with zero-spin, point-mass
components. In general, waveform models can be divided into ones that are gen-
erated in the time domain and ones that are directly generated in the frequency
domain. As will become clear, for the purposes of GW data analysis the signal is
treated in the frequency domain, which means that the time-domain waveforms
need to undergo a Fourier transform (FT). Even though there exist efficient FT
algorithms [110, 300, 174, 192], the additional step may actually contribute a
significant part of the computational cost, so frequency-domain waveforms (if
accurate enough) are always preferred.

TaylorT1 This approximant preserves the original form of the differential equa-
tions (2.19), (2.20) with rational functions on the RHS and solves them numer-
ically. The initial conditions are defined at a reference GW frequency f0 (or
equivalently v0 = (πMf0)1/3) at which we can choose t0 = 0, while the phase at
that frequency can also take an arbitrary value. These initial values eventually
determine the time and phase at coalescence parameters tc and ϕc. The 3.5PN
model waveform is obtained by using the expansion of E to 3PN and F to 3.5PN.

TaylorT2 The TaylorT2 waveforms are generated by first expanding the ra-
tional fractions that appear as the integrands of Eq. (2.19), (2.20). Then, the
integration is performed analytically, to consistent PN order in the resulting poly-
nomials. The resulting functions take the parametric form

φ3.5(v) = φ0 −
1

32ηv5

7∑
k=0

φ̂vkv
k , t3.5(v) = t0 −

5M

256ηv8

7∑
k=0

t̂vkv
k . (2.21)
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This is a set of algebraic equations that can be solved numerically to give the
time domain waveform φ(t). First, Eq. (2.21) is inverted and solved for discrete
values of t, to obtain v(t), which is then substituted in (2.21) to obtain φ(t).

TaylorT3 In the TaylorT3 approximants the equations (2.21) of TaylorT2 are
further worked out. After inverting the latter to solve for the GW frequency
F (t) = v3(t)/(πM) as an expansion

F3.5(t) =
Θ3(t)

8πM

7∑
k=0

F̂ tkΘk(t) , Θ(t) =

[
η(t0 − t)

5M

]−1/8

, (2.22)

we can substitute into the former to get the waveform phase φ(t) at 3.5PN

φ3.5(t) = φ0 −
1

ηΘ5(t)

7∑
k=0

φ̂tkΘk(t) . (2.23)

Integration constants are determined by requiring that at t = 0, F takes a given
value F0 and solving for t0.

TaylorT4 This is the time-domain waveform approximant that we will use in
our investigations and it is known to have the best matching with NR simulated
waveforms, among all PN approximants. The TaylorT4 waveform is generated
by means of numerical integration of ω̇ (ω = v3/M) in Eq. (2.20), in which the

rational function F(ω)
ME′(ω) to be integrated is first expanded to consistent PN order,

ω̇ =
dω

dv

dv

dt
=

96Mc
5/3

5
ω11/3

7∑
k=0

[
ξk + ξ

(l)
k log (Mω)

1
3

]
(Mω)k/3 , (2.24)

where the coefficients ξi and ξ
(l)
i depend on the intrinsic parameters5. For non-

spinning point-particle binaries these read

ξ0 = 1 , ξ1 = 0 , ξ2 =
(

743
336 + 11

4 η
)
, ξ3 = 4π ,

ξ4 = 34103
18144 + 13661

2016 η + 59
18η

2 , ξ5 = −
(

4159
672 + 189

8 η
)
π ,

ξ6 = 16447322263
139708800 + 16

3 π
2 − 1712

105 γE +
(

451
48 π

2 − 56198689
217728 η + 541

896η
2 − 5605

2592η
3
)

ξ
(l)
7 = − 1712

105 , ξ7 = −
(

4415
4032 − 358675

6048 η − 91495
1512 η

2
)
π . (2.25)

A second numerical integration of ω(t) = φ̇(t) then gives the phase evolution φ(t)
to 3.5PN order.

5Note that there is only one non-zero logarithmic coefficient that appears at 3PN.
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TaylorF2 The stationary phase approximation (SPA) is a common method
in complex integration, which in this case allows us to approximate a Fourier
transform (FT) analytically and calculate the gravitational waveform directly in
the frequency domain. Based on the fact that the integration takes place over
a fast oscillating complex function like ei[g(t)x] over t, the FT gets its dominant
contribution from the values around which the phase is stationary, i.e. dg/dt = 0.
When performing the FT of a waveform h(t) = A(t)eiΦ(t) the SPA may be used
to derive an analytical approximation of the frequency domain waveform h̃(f).
Now, the main contribution at each value of the Fourier variable f comes from
the saddle point time ts(f), defined implicitly by the stationary phase condition
Φ̇ (ts(f)) − 2πf = 0, or F (ts(f)) = f , i.e. the time when the GW frequency
F = ω/π coincides with the value of the Fourier variable. Intuitively this makes
sense, since it matches the rationale of an adiabatic quasi-circular orbit, during
which the GW signal can be considered as “instantaneously monochromatic”. In
TaylorF2, and by using only the quadrupole formula for the amplitude, one can
then Taylor expand the exponent 2πf − Φ(t) around ts(f) and arrive at

h̃(f) '
√
π

2

A(ts(f))√
Φ̈(ts(f))

eiΨ(f) , Ψ(f) = 2πfts(f)− Φ (ts(f))− π

4
, (2.26)

where the proportionality constant has an explicit dependence on the extrinsic
anglular parameters (θ, φ, ι, ψ), as described in Sec. 1.5. After performing the
expansion t(v(f)) as in Eq. (2.21) of TaylorT2 and substituting everything in
Eq. (2.26), the (mass quadrupole) amplitude reads

|h̃(f)| = A(θ, φ, ι, ψ)

r

√
5π

96
Mc

5/6(πf)−7/6 , A =
√
F 2

+[1 + cos2 ι]2 + F 2
+4 cos2 ι

(2.27)
and the phase takes the form

Ψ3.5(f) = 2πftc−ϕc−
π

4
+

3

128η v5

7∑
k=0

[
ψk + ψ

(l)
k log v

]
vk , v(f) = (πMf)

1/3
,

(2.28)
where the reference time t0 = tc is taken at coalescence and the TaylorF2 PN
phase coefficients depend on the masses and are calculated up to 3.5PN

ψ0 = 1 , ψ1 = 0 , ψ2 = 20
9

(
743
336 + 11

4 η
)
, (2.29)

ψ3 = −16π , ψ4 = 10
(

3058673
1016064 + 5429

1008η + 617
144η

2
)
,

ψ5 = π
(

38645
756 − 65

9 η
)

(1− 3 log(vLSO)) , ψ
(l)
5 = π

(
38645
252 − 65

3 η
)
,

ψ6 = 11583231236531
4694215680 − 640

3 π2 − 6848
21 [γE − log(4)]

+
(
− 15335597827

3048192 + 2255
12 π2

)
η + 76055

1728 η
2 − 127825

1296 η3 , ψ
(l)
6 = − 6848

21 ,

ψ7 = π
(

77096675
254016 + 378515

1512 η − 74045
756 η2

)
. (2.30)

These are the expressions for the restricted GW signal from a non-spinning point-
particle circularized binary. The phase coefficients defined above will eventually
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have additional spin contributions, as we shall see in Sec. 2.4.2, as well as contri-
butions from finite-size effects that will be studied in Sec. 2.6.

Number of GW cycles Once the explicit expression for the orbital or GW
phase is known, it is interesting to estimate the total number of cycles that the
waveform spends in band. Moreover, a good figure of merit for assessing the
impact of a particular effect on a waveform is the induced modification of the
phase, and more specifically, the number of additional cycles that are due to that
effect alone. We thus define

Ntot =

∫ f2

f1

df
dN

df
=

∫ f2

f1

df
1

2π

dΨ

df
, (2.31)

where dN = dΨ/2π, Ψ is the GW phase (or the contribution of a particular
effect), and f1, f2 define the frequency range (usually the detector’s low frequency
cutoff and ISCO respectively). For a compact binary whose ISCO frequency falls
within the detector’s sensitivity band, the total number of cycles is given by

Ntot =
(πMfs)

−5/3

32πη
. (2.32)

However, this does not fully exploit one’s knowledge of the importance of a phase
modification at different frequencies, pertaining to the detector’s noise spectrum.
The natural way to incorporate this information is by performing the integration
by using a different measure, weighted by the ratio of signal and noise amplitudes.
Thus, we will also define the number of useful cycles as the integral

Nuse =

∫ f2

f1

df w(f)
dN

df
, w(f) =

a2(f)

f2Sn(f)
, (2.33)

where a(f) is the “bare” amplitude in the frequency domain (without the 1/
√
Ḟ

factor). Occasionally, one only needs to estimate the effect that the shape of a
noise curve has on the measurability of a certain waveform or effect, in which
case one needs to quote the normalized number of useful cycles, introduced by
Damour, Iyer and Sathyaprakash [139] as

Nuse =

∫ f2

f1
df w(f)dN

df∫ f2

f1
df w(f)

. (2.34)

2.4.2 Spin effects

So far we have considered particles with no intrinsic angular momentum. The
inclusion of spins in the point-particle CBC waveforms introduces additional
terms that affect the evolution of the system [224, 223, 182, 178, 183, 180,
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262, 384, 344, 281, 166, 89, 90, 91], based on the theory of spinning particles
in GR [287, 133, 61, 62]. The spins themselves are dynamical variables which
also evolve and undergo precession via the differential equation

d~SA
dt

= ~ΩA × ~SA , A = 1, 2 , (2.35)

where at 1.5PN we define

~ΩA = ω
5/3
orb

[
3

4
+
η

2
+ (−1)A

3

4
δ

]
L̂N +O

(
1

c4

)
, (2.36)

and by L̂N we denote the unit vector of the (instantaneous) orbital angular
momentum. In turn, the orbital angular momentum also precesses in a way that
compensates for the precession of the component spin vectors, and to leading
order

dL̂N
dt

= −v
η

d(~S1 + ~S2)

dt
. (2.37)

This effect causes the inclination angle ι to change throughout the inspiral which
will be seen as an amplitude modulation in the polarizations of the signal. A
characteristic illustration of this behaviour is given in Fig. 2.1, where we plot
waveforms from i) a BBH system with zero spins (top) and ii) the same sys-
tem where the two BHs have misaligned spins that induce precession (bottom).
Finally, the orbital frequency evolution is modified by effects that come from:

• Spin-Orbit (S-O): The coupling of each spin with the orbital angular mo-
mentum, entering at 1.5PN, linear in spins and known up to 3.5PN [182,
384, 344, 281, 166, 90, 91, 256].

• S1-S2: The coupling between the two component spins, entering at 2PN,
quadratic in spins [224, 223, 103].

• SSelf: The self-interaction coupling for each component spin, also entering
at 2PN and quadratic in spins [180, 262].

With all the above effects taken into account, the conservative energy of Eq. (2.17)
is modified by the additional S-O, S1S2 and SSelf terms,

δESO(x) =− Mη

2
x

[(
14

3
Sl + 2δ Σl

)
x3/2 +

(
99− 61η

9
Sl +

9− 10η

3
δ Σl

)
x5/2

+

(
405− 1101η + 29η2

12
Sl +

27− 156η + 5η2

4
δ Σl

)
x7/2 +O

(
1

c8

)]
,

(2.38)

δES1S2(x) = −Mη

2
x η
[
~χ1 · ~χ2 − 3

(
~χ1 · L̂

)(
~χ2 · L̂

)]
x2 , (2.39)

δESSelf(x) = −Mη

2
x

1

4

∑
A=1,2

[
1− 2η + (−1)Aδ

] [
χ2
A − 3

(
~χA · L̂

)2
]
x2 , (2.40)
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the dissipative energy flux( 2.18) is modified by the additional terms

δFSO =
32 η2

5
x5

{
−
[
4Sl +

5

4
δ Σl

]
x3/2 +

[−81 + 544 η

18
Sl −

13− 172 η

16
δΣl

]
x5/2

−
[
16πSl +

31π

6
δ Σl

]
x3 +

[(
476645

6804
+

6172

189
η − 2810

27
η2

)
Sl

+

(
9535

336
+

1849

126
η − 1501

36
η2

)
δ Σl

]
x7/2 +

[(
−3485

96
+

13879

72
η

)
π Sl

+

(
−7163

672
+

130583

2016
η

)
π δ Σl

]
x7/2 +O

(
1

c8

)}
, (2.41)

δFS1S2(x) =
32 η2

5
x5η

[
−103

24
~χ1 · ~χ2 +

289

24

(
~χ1 · L̂

)(
~χ2 · L̂

)]
x2 ,

δFSSelf(x) =
32 η2

5
x5 x

2

192

∑
A=1,2

[
1− 2η + (−1)Aδ

] [
89χ2

A + 287(~χA · L̂)
]
, (2.42)

and finally, the expansions of the differential equations (2.19) and (2.20) for the
orbital evolution will get modified accordingly. The spin quantities Sl and Σl are
defined as

Sl =
1

M2

(
~S1 + ~S2

)
· L̂ , Σl =

1

M2

(
M

m2

~S2 −
M

m1

~S1

)
· L̂ , (2.43)

and will need to be calculated at each step in the evolution, since they vary with
time as the system precesses. The spin-orbit and spin-spin interactions will also
affect the evolution of the orbital and total angular momentum vector and the spin
vectors, by contributing to the differential equations (2.35), (2.37). The explicit
expressions for the corresponding 2PN terms are given in [179]. Furthermore,
an additional spin-related effect enters at 2PN, caused by a quadrupole moment
of each component body, induced by its spin. This quadrupole is known for
BHs [353], but varies for finite-sized stars, depending on the mass and the matter
EoS. Thus it will be treated as a matter effect in Sec. 2.6.2.

SpinTaylorT4 For example, in the time domain we will use the TaylorT4
approximant, whose phase coefficients ξi of Eq. (2.25) take the additional spin
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terms

ξ3 → ξ3 −
47

3
Sl −

25

4
δ Σl ,

ξ5 → ξ5 +

(
−5861

144
+

1001

12
η

)
Sl +

(
−809

84
+

281

8
η

)
δ Σl ,

ξ6 → ξ6 −
188

3
πSl −

151

6
πδ Σl ,

ξ7 → ξ7 +

(
−4323559

18144
+

436705

672
η − 5575

27
η2

)
Sl

+

(
−1195759

18144
+

257023

1008
η − 2903

32
η2

)
δ Σl . (2.44)

This generic spin extension of TaylorT4 is commonly referred to as SpinTaylorT4.

SpinTaylorF2 The same effects cannot be directly encoded into the SPA ap-
proximant TaylorF2, which we shall use in the frequency domain, due to the
additional differential evolution equations (2.35) and (2.37). If however, one re-
stricts to the aligned-spin case, there is no precession, since all cross products
vanish. Thus, we are able to extend TaylorF2 in order to accommodate aligned
spins and we find that the corresponding PN phase coefficients of Eq. (2.29) are
modified by

ψ3 →ψ3 + 4βs , ψ4 → ψ4 − 10σs , ψ5 → ψ5 − γs , (2.45)

ψ
(l)
5 →ψ

(l)
5 − 3γs , ψ6 → ψ6 +

π

3
(3760Sl + 1490δ Σl) ,

ψ7 → ψ7 −
(

8980424995

762048
− 6586595

756
η +

305

36
η2

)
Sl

− (
170978035

48384
− 2876425

672
η − 4735

144
η2)δ Σl ,

where we “overloaded” the notation with ψk = ψk(m1,m2, ~S1, ~S2) to depend on
both masses and spins. The spin-related coefficients βs, σs, γs, are calculated as

βs =

(
113

12
− 192268

3
η

)
~χs · ~LN +

113

12
δ ~χa · ~LN , (2.46)

σs =η

{
721

48

[(
~χs · ~LN

)2

−
(
~χa · ~LN

)2
]
− 247

48

(
χ2
s − χ2

a

)}
+ (1− 2η)

{
719

96

[(
~χs · ~LN

)2

+
(
~χa · ~LN

)2
]
− 233

96

(
χ2
s + χ2

a

)}
+ δ

[
719

48

(
~χs · ~LN

)(
~χa · ~LN

)
− 233

48
~χs · ~χa

]
, (2.47)

γs =

(
681145

2268
− 138140

567
η − 260

21
η2

)
~χs · ~LN +

(
681145

2268
+

3860

63
η

)
δ ~χa · ~LN .

(2.48)
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Figure 2.1: Example of a time-domain inspiral waveform without (top) and with (bot-
tom) amplitude modulation due to strong spin-induced precession.

Note that the above expressions for TaylorF2 hold for (anti-)aligned spins only,
where no precession takes place. Recently, there have been investigations on how
to incorporate precession effects in frequency-domain waveforms and in particular
a single-spin precessing version of TaylorF2 has been derived in closed form by
Lundgren and O’Shaughnessy [250].

2.5 The Effective-One-Body formalism

In Newtonian gravity, the two-body problem admits a simple solution when re-
expressed as the problem of a single mass (reduced mass) µ moving in an effective
potential Veff . In GR this is not directly applicable due to the complexity of the
field equations. It is however reasonable to seek a solution in such a framework; in
fact, during the last decade, this kind of effective-one-body (EOB) approach has
shown to be rather successful in modeling the dynamics of binary evolution [115,
142, 143, 116, 392, 60, 57, 59, 146, 349, 284, 58], especially during the late inspiral
towards and beyond the LSO, where perturbative PN approaches fail.

In the EOB framework [113], the binary evolution is mapped to the motion of a
single body under the influence of an effective metric

gµν = diag(−A(r), D(r)/A(r), r2, r2 sin2 θ) , (2.49)

41



2

Chapter 2. Coalescing Compact Binaries

(which to leading order agrees with a Schwarzschild metric), with an EOB Hamil-
tonian Hreal on the phase space (r, φ, pr, pφ) based on the test particle action
under the EOB metric

Hreal(r, pr, pφ) = µĤreal = M

√
1 + 2η

(
Heff − µ

µ

)
, (2.50)

Heff(r, pr, pφ) = µĤeff = µ

√√√√A(r)

[
1 +

A(r)

D(r)
p2
r +

p2
φ

r2
+ 2(4− 3η)η

p4
r

r2

]
. (2.51)

The effective potentials A(r) and D(r) defining the asymmetric-mass-ratio depen-
dent deformations of the Schwarzschild metric are expanded in 1/r as Ak(r) =∑k+1
j=0

aj(η)
rj and Dk(r) =

∑k+1
j=0

dj(η)
rj ; their expansion coefficients have been cal-

culated up to 3.5PN. The equations of motion are given by Hamilton’s equations

dr

dt̂
=
∂Ĥreal

∂pr
,

dpr

dt̂
= −∂Ĥ

real

∂r
,

dφ

dt̂
=
∂Ĥreal

∂pφ
,

dpφ

dt̂
= −∂Ĥ

real

∂φ
= F̂φ , (2.52)

where t̂ = t/M is the reduced (dimensionless) time. Higher order “pseudo”-PN
terms in the potentials can be artificially introduced, by matching them with
accurate numerical relativity simulated spacetimes. The gravitational waveform
that is produced, and is reliable up to merger, is then smoothly attached to
a appropriate ringdown signal that can be generated analytically based on the
system’s parameters.

The EOB framework is also convenient for studying finite-size effects and in
particular effects of tidal deformations which we will elaborate on in Sec. 2.6.1.

2.6 Neutron Star Binaries and Matter Effects

2.6.1 Tidal deformations

Towards the end of the evolution of a BNS system, and as the two neutron stars
get closer to each other, the tidal tensor of one star’s gravitational field gets
strong enough to induce a significant tidal deformation on the other. Vines et
al. [369] have shown that, to leading order within an adiabatic approximation,
where the tidal deformation instantaneously follows the gravitational field’s tidal
tensor,

Qij = −λEij , (2.53)

the effect on the gravitational waveform enters at 5PN in the phase. When
calculated in the SPA (TaylorF2) the next-to-leading order, as shown in [368],
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comes at a fractional 1PN order, that is at 6PN in the phase. Damour, Nagar
and Villain [147], by using the effective-one-body (EOB) formalism [145, 144],
calculated the tidal corrections up to a fractional 2.5PN order; in Eq. (2.56) we
explicitly show the corresponding terms in the GW phase of TaylorF2, at 5PN,
6PN, 6.5PN, 7PN and 7.5PN order, as a function of the orbital velocity v.

The proportionality parameter λ in Eq. (2.53), known as the tidal deformability
parameter, is a function of the NS mass, determined by the EoS, i.e. λA =
λEOS(mA). More explicitly, λ can be expressed in terms of the second Love
number k2 and the NS radius R as λ = (2/3)k2R

5 [170, 199, 85]. With this in
mind, one should point out that, even though in Eq. (2.56) tidal deformation
appears as a high-order effect in the phase, its overall contribution is expected
to be significant, due to the large pre-factor that is of the order (Ri/mi)

5
. The

ratio R/m (i.e. the diameter measured in Schwarzschild radii) for a typical NS of
m = 1.4M� and R = 10km is as high as ∼ 4.8, which gives a factor of ' 2.65×103

to the pre-factor of the tidal terms.

In the EOB approach of [147], the EOB Hamiltonian of Eq. (2.50), valid up to
merger, is augmented with tidal corrections (e.g. for l = 2)

A
(2)
tidal(r) = −3

3

r5

∑
A=1,2

λA

(
1 +

ᾱ
(2)
1

r
+
ᾱ

(2)
2

r2
+ . . .

)
, (2.54)

on the radial potential A(r) = A0(r)+Atidal(r). Here A0(r) is a Padé-resummed

quantity for the point-particle calculated in [145] and α
A(l)
n are polynomial func-

tions of η or equivalently XA. The new Hamiltonian is used in order to derive, in
the adiabatic approximation, the tidal part of the orbital function Qω(ω) = ω2/ω̇,
which may then be recast in a PN-expanded form (see Eq.(B1-B7) in [147]). Fi-
nally, the tidal contribution to the waveform Ψtidal(f) is calculated in the sta-
tionary phase approximation

d2Ψtidal(ω)

dω2
=
Qtidalω

ω2
. (2.55)

The leading and next to leading order terms in the phase agree with [368], and
together with the next three terms up to fractional 2.5PN order, the tidal part
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of the SPA phase reads

Ψ2.5PN
tidal (v) = +

3

128 η

(v
c

)−5 ∑
A=1,2

λA
M5XA

[
−24 (12− 11XA)

(v
c

)10

− 5

28

(
3179− 919XA − 2286X2

A + 260X3
A

) (v
c

)12

+ 24 π (12− 11XA)
(v
c

)13

− 24

(
39927845

508032
− 480043345
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where XA = mA/M . At this point, we should point out that the above calcula-
tions ignore i) contributions from higher order multipoles as these are estimated
to give small corrections (see discussion in Appendix A2 of [147]) and ii) a number
of yet uncalculated functions, β22

2 , β21
1 , β31

1 , β33
1 that appear in the 7PN phase

term (fractional 2PN order in Qtidalω ). In the majority of recent studies, only
the 5PN and 6PN tidal terms were taken into account. The overall contribution
of the three new higher-order corrections to the phase is of opposite sign with
respect to the two leading terms and will thus slightly weaken the effect of tidal
deformations on the waveform. However, in the presence of the full 7PN term
which is so far unknown, this may no longer be the case.

2.6.2 Spin-induced quadrupoles

Another finite-size effect that takes place during the inspiral is the contribution of
the spin-induced mass quadrupole moments of each NS to the GW emission and
binary evolution. If a NS is spinning, its equilibrium is achieved under an oblate
matter distribution, rather than a spherical one. Assuming an axisymmetric mass
distribution with respect to the axis of rotation, the deformation can be expressed
to leading order by means of a dimensionless quadrupole moment parameter q,6

defined in the context of GR as [232]

q = −5

2
lim
r→∞

( r

M

)3
∫ 1

−1

ν(r, θ)P2(cos θ)d cos θ, (2.57)

where P2(x) = (3x2−1)/2 is the second Legendre polynomial, and ν is a potential
related to the metric of a stationary axially symmetric body; more specifically,
the line element in the form introduced by Komatsu-Eriguchi-Hachisu [230] reads

ds2 = −e−2νdt2 + r2 sin2 θ e2β (dφ− ωdt)
2

+ e2α
(
dr2 + r2dθ2

)
, (2.58)

6Not to be confused with the asymmetric mass ratio.

44



2

2.6. Neutron Star Binaries and Matter Effects

where the undetermined α, β, ν are all functions of (r, θ). The quadrupole moment
q is the leading-order (1/r3) coefficient of the second multipole in the asymptotic
expansion of ν(r, θ) and can be calculated numerically. This quantity is the
general-relativistic equivalent of the Newtonian mass quadrupole moment.

Since a stiffer EoS implies a larger NS radius for a given mass, the quadrupole
moment increases in absolute value with the stiffness of the EoS. Examples of
q estimates for different EOS were calculated numerically in [232] based on the
expressions of Ryan [320, 321]. These demonstrated the dependence on the di-
mensionless spin χ, which for a fixed NS mass can be fit very well up to the
maximum spin value χmax ' 0.65 (also dependent on the EOS) by a quadratic
rule

q ' −aχ2 , (2.59)

where a = aEOS(m) is a mass-dependent parameter. The corresponding be-
haviour in the limiting case of a spinning black hole is shown to be exactly
aBH = 1 [353]. Further evidence to support the quadratic relation (2.59) is
given in [289, 288]. The authors of [289, 172] also point out a spin correction
in the identification of multipole moments that was previously overlooked; this
correction preserves the quadratic spin behaviour of Eq. (2.59), and vanishes in
the slow-rotation limit. Assuming that this relation will hold for any EOS, we
will only be concerned with the spin-independent parameter a which, similarly to
the tidal deformability parameter λ, has a functional dependence on the neutron
mass that is determined by the EOS. More details will follow in Chapter 11.

The effect of such a quadrupole moment on the gravitational waveform emitted
by a binary system was analytically derived in [294]. To Newtonian order, this
introduces an additional coupling in the effective gravitational potential, between
the mass quadrupole of each spinning NS and the mass of its companion, leading
to a modification of the energy flux

ĖQM =
32

5
η2v14

∑
A=1,2

pA

[
3
(
ŜA · Ĵ

)
− 1
]
, (2.60)

where, following the standard notation, we introduced the variables

pA =
qAm

2
A

M2
. (2.61)

In particular, if we only consider NS with spin aligned with the orbital angular
momentum, we obtain ŜA · Ĵ = 1, and

ḟ =
96η

5πM2
v11

· · · − 5

2
v4
∑
A=1,2

pA

(
3
(
ŜA · Ĵ

)2

− 1

) , (2.62)

in which case, the phase evolution of the binary (denoted by the dots) will be
modified by an additional term. We define the quadrupole-monopole (QM) related
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2PN parameter σQM as

σQM = −5

2

∑
A=1,2

pA

[
3
(
ŜA · Ĵ

)2

− 1

]
. (2.63)

In the SPA waveform TaylorF2, the additional contribution to the GW phase due
to the QM interaction reads

ΨQM (v) = − 30

128η
σQM

(v
c

)−1

. (2.64)

Overall, the QM effect has the potential to introduce a few additional cycles to
the GW phase in the very early part of the inspiral (where the detector sensitivity
is relatively low), but only in the case of fast-spinning NSs characterized by a
stiff EoS. Typically, the number of useful cycles introduced by the QM term will
be negligible and therefore for much of the analysis that follows in Part II, this
EoS-dependent correction will not be taken into account.

2.6.3 Magnetic effects

Decades of observations of neutron stars in the electromagnetic (EM) spectrum
have shown that NSs often exhibit strong EM activity, most prominently in their
outer layers, which is what makes them visible to us as pulsars. Especially during
the early stages after their birth, the surface of newborn NSs hosts powerful
magnetic fields, whose strength can reach up to 1015 G; these highly active NSs
are also known as magnetars.

Huge amounts of energy may be stored in the form of an EM field around a
NS and therefore it makes sense to pose the following questions: Are the EM
properties of each NS important parameters of the two-body problem? What
effect may the EM interaction between the two components of the binary have
on the orbital evolution, the emitted GW and the final product of the merger?
These questions have been the subject of a number of studies (both analytical
and numerical in nature), but for the purposes of the current dissertation it is
sufficient to quote the analytical leading-order result in the PN approximation of
the GW emission, originating from [206].

Treating each NS as a magnetic dipole is a realistic approximation to the mor-
phology of the fields away from the NS surface. Similar to the QM effect of
Sec. 2.6.2, the interaction between the magnetic dipoles of the two NSs, denoted
by ~dA, A = 1, 2 introduces a 2PN term in the GW phase evolution

ΨDD(v) = − 30

128η
σDD

(v
c

)−1

, (2.65)

which is proportional to d1 and d2

σDD = − 5

ηµ4
d1d2

[
3
(
L̂ · d̂1

)(
L̂ · d̂2

)
− d̂1 · d̂2

]
. (2.66)

46



2

2.7. Numerical Relativity

The last factor depends on the relative orientation of the two magnetic dipoles
(see [362] for the detailed calculation). It is now easy to show that the effect
can only contribute a phase difference in the order of a GW cycle only when the
magnetic fields take values in the order of 1016G. Although not theoretically
impossible, in practice one does not expect newly born NSs with so strong mag-
netic fields to be taking part in binary NS coalescence. We thus consider EM
interaction effects to be negligible in practically all BNS sources.

2.7 Numerical Relativity

In this chapter we introduced and presented a series of results in the analytical
post-Newtonian approximation of the two-body problem in GR. These results
came about after decades of tedious work by some of the brightest relativists of
our time. Numerical relativity (NR) comprises a completely different approach to
the problem, by means of numerical evolution of the spacetime geometry under
the Einstein equations of GR. The evolution of spacetime in general relativity
can be formulated as an initial-value problem in a “3 + 1” decomposition of GR,
as was first done by Arnowitt, Deser and Misner [47] (in what is known as the
ADM formalism), whereby one defines the metric and extrinsic curvature on an
initial spacelike slice (Cauchy hypersurface) and then lets the geometry evolve in
a timelike direction, as dictated by the full Einstein equations. This process can
be cast in a discretized form and applied to a 4-dimensional grid of spacetime
points so that the Einstein equations can be solved numerically on a computer,
to a precision that is in principle only restricted by our computational resources.

Numerical relativity is an entire field in its own right, which has seen radical
development in the last decade [63, 37, 333]. The critical milestone that exploded
the field was the first simulation in which Pretorius [302] successfully evolved a
circular BBH system for a few orbital cycles. Since then, various numerical
methods were developed in order to make the process faster, more stable and
more accurate.

The main advantage of NR simulations is the fact that the full Einstein equations
are solved, without being truncated to any finite order. This provides an ideal
setting to test the predictions of the PN theory against gravitational waveforms
that are generated by NR simulations. Indeed, for the regime where PN theory
is expected to be reliable, namely the binary inspiral up to a few cycles before
merger (beyond which the different PN approximants even disagree with each
other), an excellent agreement with NR waveforms has been verified. Apart from
the verification of PN results, NR allows us to explore territory that was previ-
ously unaccessible by perturbative methods, most notoriously, binary evolution
close to and during the merger of the binary. Finally, NR simulations of CBC
systems in the final ringdown stage are in good agreement with the predictions
of black-hole perturbation theory [352, 301, 242].
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There is however a major cost to this approach: numerical evolution of a dy-
namical (3 + 1)-dimensional spacetime is a technically challenging computational
task. It requires a combination of advanced numerical methods and cutting-edge
hardware technology, in order to produce a single waveform within a reasonable
amount of time (currently in the order of weeks when running on a modern su-
percomputer). But even though NR cannot be used directly for the analysis of
GW signals due to computational constraints, the information contained in the
set of available NR waveforms has been incorporated in hybrid waveform mod-
els, where it fine-tunes and complements the analytical formulas of PN theory
and EOB models. As soon as the intrinsic parameter space of compact binaries
is populated sufficiently densely by NR-generated gravitational waveforms, one
may then obtain waveform families that are both close to the accurate NR wave-
forms (thus arguably close to the true GR solution), and at the same time as fast
to generate as PN waveforms. This is an ongoing effort, especially in the regime
of spinning BBH systems, for which the merger and ringdown fall within the sen-
sitive band of AdVirgo/aLIGO. In the case of NS binaries, NR simulations have
also given us a more accurate picture of how NS matter (given a pre-defined EoS)
behaves in a finite-size two-body setting, where tidal fields may deform or even
disrupt the two bodies, and where the interaction of strong magnetic fields may
lead to rich EM radiation output. Since the primary focus of this dissertation is
on BNS systems, and since no assumption can be made on the EoS of NS matter,
NR-tuned hybrid waveform models will not be employed throughout most of the
exploratory studies presented here.
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Chapter 3

Data Analysis
Methods

Science is not about what’s true. It’s
about what people with originally
diverse viewpoints can be forced to
believe by way of public evidence.

Lee Smolin

The biggest challenge in experimental gravitational wave physics is reaching a
sensitivity that is high enough for detecting a GW signal. The second generation
ground-based GW interferometers are expected to reach those levels of sensitivity
within the next few years. Even so, the amplitude of even the loudest events is
expected to be much smaller than the amplitude of the noise. Gravitational wave
data analysis is an interesting case of signal processing where the signal of interest
is weak compared to the noise. However, since the data are in the form of a time
sequence d(t), the presence of a signal that lasts sufficiently long will statistically
manifest itself as a deviation from pure-noise behaviour. Furthermore, assuming
that both the signal space and the noise spectrum are well modeled, one can
make use of sophisticated statistical data analysis methods, in order to extract
as much information out of the data as possible.

3.1 Introduction to Gravitational Wave Data A-
nalysis

The data output of a detector is represented as a time series d(t), which can
be decomposed into a random noise part n(t) with the characteristic properties
defined in Sec. 1.6, plus a potential GW signal h(t), that comes from applying the
transfer function of the instrument onto the GW strain. Since the properties of
the noise as a stochastic process are better defined in frequency space, we prefer
to work with the Fourier transformed data and by using that the FT is a linear
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operation, we can write

d̃(f) = ñ(f) + h̃(f) . (3.1)

Given a known noise PSD Sn(f), the noise frequency series ñ can be treated
as a random variable with the underlying distribution for each f (or for each
frequency bin fi in the discrete case) modeled as a Gaussian distribution with
standard deviation σ2

f = 1
2Sn(f),

p(ñ(f)) = N (0, σf ) =
1√

πSn(f)
e−
|ñ(f)|2
Sn(f) . (3.2)

To determine the apparent strength of a signal, also taking into account the noise
PSD, a norm can be constructed, where the signal amplitude scaled by the PSD
is integrated across the frequency space. This is equivalent to defining (the real
part of) an inner product (·|·) in the space of signals; for two (time series) signals
a and b with FTs ã and b̃ their inner product is defined as

(a|b) ≡ <
{∫ ∞
−∞

df
ã∗(f)b̃(f)

1
2Sn(f)

}
. (3.3)

Matched filtering One of the most commonly used techniques in signal pro-
cessing to dig out a weak signal buried in noise, is by correlating a model signal
or template against the data. When the form of the signal is more or less known
one can optimize the signal analysis process by constructing what is known as a
Wiener filter. A functional of the data d̂ =

∫∞
−∞ dtd(t)K(t) can be constructed by

choosing a trial filter K to be the kernel. Then, the signal-to-noise ratio (SNR)
ρK for that filter K is defined as

ρK =
S

N
≡ 〈d̂〉√

〈d̂2〉 − 〈d̂〉2
=

∫∞
−∞ df d̃(f)K̃∗(f)√∫∞

−∞ df 1
2Sn(f)K̃(f)K̃∗(f)

= (d|K̂) , (3.4)

where K̂ is the filter given by K̄(f) = 1
2Sn(f)K̃(f), normalized with respect

to the inner product. In the penultimate equation, we used Parseval’s theorem
and the stochastic properties of n discussed in Sec. 1.6. Thus, if one wants to
maximize the SNR, then one finds that, up to a normalizing constant, this is

done by the filter K̃(f) = h̃(f)
Sn(f) . Now, given that the CBC parameter space is

at least 9-dimensional, the form of the signal is highly uncertain, so one needs to
use many trial waveforms and look for the one that yields the highest SNR; this

defines a filter space K̃(~θ) = h̃(f ;~θ)
Sn(f) related to a parametrized template family
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h(t; ~θ) and also defines the optimal SNR 1

ρopt = max
~θ

(
d|K(~θ)

)
√(

K(~θ)|K(~θ)
) . (3.5)

Naturally, if the real signal is exactly described by one of the members of the
template family h(t; ~θ), for some of its parameters ~θ0, then it can be shown that

the filter given by normalizing h̃(f ;~θ0)
Sn(f) yields the optimal filter. By using such

filtering methods, when the noise colouring and signal form are known, one can
recover signals that are orders of magnitude weaker than the noise.

3.2 Bayesian Inference

When interpreting the output of a set of experiments like Virgo and LIGO into
quantitative scientific results, performing a thorough statistical treatment of the
data is of the utmost importance. Two main schools of statistical inference are
commonly encountered in modern science: the orthodox or frequentist paradigm
and the Bayesian paradigm. The former gives simple rules for getting error-
analysis and confidence-level type of results, while the latter is in principle a
more fundamental and philosophically profound one, that answers precise prob-
abilistic questions with precise probabilistic statements, but may often entail
significant technical difficulties. Nevertheless, Bayesian inference has been gain-
ing much ground in many branches of science, especially with the development
of numerical algorithms and the proliferation of computational resources des-
ignated for scientific purposes. Some excellent textbooks where the interested
reader can find a more detailed introduction to probability theory and statis-
tical inference are [149, 216, 218, 136, 252, 335]; a more advanced reader will
enjoy [212, 137, 196, 228, 104, 109, 336].

A probability space for a random experiment is defined as a triple (Ω,F , P ), where

• Ω is the sample space, defined as the space of all possible outcomes;

• F is the space of eventualities, which has the structure of a σ-algebra2 on
the sample space Ω;

• P is a probability measure on the σ-algebra F : a measure that satisfies (i)
P (A) ∈ [0, 1], ∀A ∈ F , with P (Ω) = 1 and P (∅) = 0, and (ii) additivity for
countable unions P (

⋃
i

Ai) =
∑
i

P (Ai).

1It should be noted that for a network of detectors the combined SNR ρnet can be calculated
from the individual detectors’ SNRs added in quadrature.

2A σ-algebra can be roughly understood as a set of subsets of a given set X, that includes
X itself. The σ-algebra must be closed under the operations of complementation X\A and
countable unions A1 ∪A2 ∪ . . . defined on X.
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Bayes’ theorem Bayes’ theorem is one of the simplest, yet most powerful
laws of probability theory, whose importance becomes evident when interpreted
in the context of statistical inference. Given a probability space (Ω,F , P ) and two
eventualities A,B ∈ F we may re-express the joint probability P (A,B), which is
symmetric in A and B, in two ways:

P (A,B) = P (A|B) P (B) = P (B|A) P (A) , (3.6)

where P (A|B) denotes the conditional probability of A, given that B is true. The
last equality is Bayes’ theorem, which can be recast in its most common form as

P (A|B) =
P (B|A) P (A)

P (B)
. (3.7)

Data analysis interpretation In data analysis we want to perform statistical
inference on quantities and hypotheses, given a set d of measured data. In other
words, we wish to derive explicit probabilities (for discrete random variables or
hypotheses) and probability density functions (for continuous random variables).
The entire analysis is based on certain assumptions or background information
that we shall collectively denote by I, which is always a given. For instance, a
simple inference problem would be to determine the probability of an eventuality
A being true, in the light of some measured data d; this is expressed by the
quantity P (A|d, I). Now, it often is the case that one can calculate the probability
of obtaining a set of data, assuming that A is true; this is expressed by the
quantity P (d|A, I), which we will refer to as the likelihood of the data d given
A. When A is left undetermined, e.g. when it takes the form of a continuous
parameter, one may speak of the likelihood function of the data d. By applying
Bayes’ theorem (3.7), one obtains

P (A|d, I) =
P (d|A, I) P (A|I)

P (d|I)
, (3.8)

which contains the likelihood P (d|A, I), the prior probability P (A|I) of A, and
P (d|I). The prior probability of A can be directly interpreted as the probability
that we had assigned to A before the data d were observed. The quantity P (d|I)
is a likelihood of the data irrespective of any assumptions other than I; here, it
can be seen as a normalization constant, but we shall return to this soon. This
particular form of Eq. (3.7) is often referred to as Bayes’ rule.

Bayesian inference in GW data analysis We can now particularize the
general Bayesian inference problem to the specifics of GW data analysis. The
data will simply be a detector output like the one described by Eq. (3.1) and
the eventuality A will take the form of either a hypothesis H or a continuous
parameter ~θ. When treating discrete random variables or hypotheses we shall
denote the probability by using capital ‘P’, whereas for the probability densities
of continuous random variables we shall use lowercase ‘p’.
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An important quantity that we can explicitly define is the likelihood for some
data d(t) that we observed as the output of a detector with a known PSD. We
start with the following building block: For an arbitrary frequency bin fi, the
observed value of the data d(fi), assuming pure noise (no GW signal), is an
independent identically distributed random variable (i.i.d.) and its likelihood is
given according to Eq. (3.2)

p(d(fi)|Hnoise, I) =
1√

πSn(f)
e−
|d̃(f)|2
Sn(f) . (3.9)

This extends to defining the likelihood of an arbitrary noise realization n(t) as

p(d|Hnoise, I) = N exp

[
−
∫ ∞
−∞

df
|d̃(f)|2
Sn(f)

]
= N e−

(d|d)
2 , (3.10)

where N is a normalization constant and in the last step we have made use of
the inner product given in Eq. (3.3).

This is readily extended to more general cases that do not assume pure noise. For
instance, under the assumption Hh that a particular waveform h(t) is present in
the data as a signal, we can define the likelihood P (d|Hh, I). By observing that
the time series d(t) − h(t) by Eq. (3.1) is a realization of pure noise under the
current assumption, we find

p(d|Hh, I) = p(d− h|Hnoise, I) = N e−
(d−h|d−h)

2 . (3.11)

More generally, if we do not know the exact parameters of the source but we
do assume e.g. the presence of a CBC signal in the data, then we define the
likelihood function of d on the CBC parameter space ΣCBC as

L(d; ~θ) ≡ p(d|~θ, I) = p(d− h~θ|Hnoise, I) = N exp

[
−
∫ ∞
−∞

df
|d̃(f)− h̃(f ; ~θ)|2

Sn(f)

]
.

(3.12)
An interesting optimization problem that immediately arises is whether one can
get a maximum likelihood estimator, that is, whether one can implement an algo-
rithm that finds the parameter vector ~θmaxL that maximizes L(d; ~θ) for the given
data. Better yet, one should be able to obtain the entire posterior probability
distribution function on ΣCBC, that incorporates the new information encoded
in the data. Additionally, one can also calculate the evidence for the HCBC hy-
pothesis by marginalizing the likelihood function over the entire parameter space

p(d|HCBC, I) =

∫
ΣCBC

d~θ π(~θ) L(d; ~θ) , ~θ ∈ ΣCBC , (3.13)

where we denote the prior probability density function by π(~θ) = p(~θ|I). The
importance of knowing the evidence in any problem of Bayesian inference, is
stressed in [337].
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In the simulations results we will present in the following chapters, we will try to
recover a CBC signal that is simulated and artificially added into detector noise.
The numerical algorithms described in Sec. 3.3 will be used in order to sample the
parameter space ΣCBC and obtain the Likelihood function, evidence and posterior
p.d.f., by using the models described in Sec. 2.4 as template waveforms.

3.3 Numerical algorithms

3.3.1 Monte Carlo sampling

Bayesian analysis is performed numerically by dedicated algorithms that at-
tempt to explore the (high-dimensional) parameter space as efficiently as pos-
sible. Monte Carlo methods are designed to do exactly that. The requisites for
our analysis are: (i) a sampling method for exploring the parameter space, (ii) a
way to extract the posterior p.d.f., (iii) a way of calculating the integral of the
likelihood over the parameter space to get the evidence.

There are many different random walk methods for sampling from a target proba-
bility distribution. The one that we will be using, known as Markov Chain Monte
Carlo (MCMC) is based on the construction of a Markov chain whose equilibrium
distribution is the target distribution. A Markov chain is a stochastic process
Xt : t ∈ N described by a state space S, a transition function T : S × S → [0, 1]
and the property that its random variables satisfy the Markov property, i.e. the
transition probability to a new state only depends on the current state, or more
formally

P (Xn+1 = x|X1 = x1, . . . , Xn = xn) = P (Xn+1 = x|Xn = xn) , (3.14)

for any allowed chain up to n. This means that the stochastic process has no
memory; furthermore, we will assume time-homogeneity, that is, the transition
probabilities do not change with time. Such processes admit a measure (or proba-
bility distribution) π that is invariant under the action of the transition function3;
this is called the equilibrium distribution and is the one to which any chain will
converge. In our case, the state space S = Σ is (a discretized version of) the
parameter space to be sampled, and the equilibrium distribution will by con-
struction be the prior p.d.f. The process also needs to be ergodic, meaning that
any state can be accessible from any other state within a finite number of steps.

After a few MCMC steps, the chain samples the prior correctly, which does
not sound very interesting at this point; its usefulness will become clear in the
following section. A clever way of making use of a MCMC will allow us to retrieve

3The continuous version of this statement is invariance under the transition kernel∫
S

dxn T (xn;xn+1) π(Xn = xn) = π(Xn+1 = xn+1) . (3.15)
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the posterior p.d.f. Finally, the calculation of the evidence is the less trivial of
tasks, especially in high-dimensional spaces where standard integration methods
cannot sample densely enough; to this end we shall focus on a particular algorithm
called nested sampling.

3.3.2 Nested Sampling

Description Among the many sampling algorithms that currently exist, we
choose to work with a relatively recent one, developed by J. Skilling in 2006, under
the name nested sampling [337]. The reason behind this preference is that nested

sampling manages to produce both the posterior p.d.f. p(~θ|d, I) and the evidence
Z = p(d|I) in one go. The main idea is the following: The algorithm starts by
sprinkling a set of Nlive initial points, sampled from the given prior p.d.f. on Σ.

Figure 3.1: Mapping the likelihood function L(~θ)
(z-axis) on the parameter space (x-y plane) to the
prior mass X (side plot). The lowest L point is up-
dated to a new sample (arrow).

Then, step by step, the point
of the lowest likelihood is re-
placed by a new point, sam-
pled from the prior by a
MCMC, that is however re-
quired to yield a higher like-
lihood value than the origi-
nal point. This way, the set
of live points gradually climbs
up the likelihood function in
the parameter space as shown
schematically in Fig. 3.1. At
the same time, the MCMC
is restricted to sample only
an ever shrinking part of the
prior volume, where the like-
lihood is larger than a certain
value.

An intuitive way to formalize this is by defining the prior mass X as

X(L̄) =

∫
ΣL̄

π(θ) dθ , ΣL̄ = {θ ∈ Σ : L(θ) > L̄} , (3.16)

as a function of the likelihood; this represents the prior volume of the region whose
likelihood is greater than L̄. It will always be the case that X(L̄ = Lmin) = 1
and X(L̄max) = 0 and that the function is monotonic, as shown in the side plot
of Fig. 3.1. Now, dX represents the prior volume of an infinitesimal shell of
likelihood L̄ ≤ L < L̄+δL and gives us a 1-dimensional integral for the evidence,

Z =

∫ 1

0

L̃(X) dX , (3.17)
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where L̃ is the inverse of the monotonic function X(L̄)

L̃(X(L̄)) = L̄ . (3.18)

To get the integral (3.17) numerically (since we do not know a priori what is X(L̄)
or its inverse), all we need to do is find a way to sample from the prior mass and
calculate the area under the L̃(X) curve. Typically, the bulk of the posterior

mass dP (~θ) = p(~θ|I) d~θ that dominates the evidence lies within a narrow region,
whose size e−H as a fraction of the prior volume defines the information H of
the data as

H =

∫
log

(
dP

dX

)
dP . (3.19)

In practice, due to the highly peaked posterior, it is more convenient to sample
in logX.

Prior mass estimate In general, the form of the likelihood function can be
complex, especially in high-dimensional spaces, with many local extrema and
features in different scales. Thus, it is difficult to assign a prior mass to a given
likelihood value and vice versa; however, this can be done statistically. Sampling
the prior mass can be understood as asking the question “What fraction of prior
volume has likelihood larger than some L̄?”; this can be statistically determined
by sampling the prior π(~θ). The sampling is done by running the MCMC with
the restriction L > L̄. We need to do this for many different values of L̄ that
reach as close as possible to the peak Lmax. This is done by gradually increasing
the L̄ threshold as the algorithm progresses.

When drawing N samples ~θi, i = 1, . . . , N uniform in the prior and therefore in
X, the probability density of the highest Xi = X(L(~θi)) being equal to X∗ is

p

(
max

i=1,...,N
Xi = X∗

)
=
∂(X∗N )

∂X∗
= N X∗N−1 , X∗ ∈ [0, 1] . (3.20)

Thus, at each evolution step, the prior mass statistically shrinks by a factor t
following t ∼ Nlive t

Nlive−1, which we call the shrinkage ratio. To have a better
control over the statistical variance of the shrinking ratio, we can e.g. sample
this process 100 times at each step.

Implementation Here we give an explicit description of the nested sampling
algorithm in pseudo-code. The main body is a loop indexed by i, during which
a set of Nlive objects, indexed by k, moves around the parameter space.

Initialization: We start with an initial set of Nlive points θ1, . . . , θNlive

sampled from the prior. We initialize i = 0, Z = 0, X0 = 1 and

H = 0.
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Evolution: While the termination condition is not met, we increment

i + + and:

-record the parameter vector ~Θi = ~θki of the point ki with the

lowest likelihood value Li
-sample the shrinking ratio and estimate Xi

-estimate prior mass in the likelihood shell around Li with

trapezoidal rule wi = (Xi−1 −Xi+1)/2
-increment the evidence by dZ = Liwi and the information by

dH = log(L)Lwi
-run MCMC to sample the prior π(~θ) restricted by L(~θ) > Li and

move the ki point to the new location

Termination: Once our chosen termination condition is met, we stop

the evolution of the chain and increment the estimated

evidence by the residual dZ =
∑Nlive

k=1 L(~θk)Xi/Nlive.

We can chose the termination condition to be e.g. the completion of a fixed
number of steps (when the required number is more or less known and pre-defined
runtime is preferred), the evidence increment dZ from each step contributing less
than an absolute or relative amount to the total Z, a combination of the above
or other. The last dZ increment at termination adds the evidence corresponding
to the live points at the time of termination. Here we will use a threshold on this
dZ estimate as a termination condition, i.e. once the additional evidence of the
current live points gets lower than a certain value, the code will terminate.

Getting the evidence The evidence is being calculated at every step during
the evolution and its calculation concludes with the residual increment upon
termination, as described above.

Getting the posterior An additional by-product of nested sampling is the
possibility of producing a sampling of the posterior p.d.f. We have already stored
the chain ~Θi, i = 1, . . . , n, that is however not sampled uniformly in the posterior
but rather from a fraction of the prior with Xi ' e−i/Nlive Thus, the p.d.f. of

drawing ~Θi = ~θ on the i-th iteration is given by π(~θ)
Xi

. On the other hand, the
posterior p.d.f. by Bayes’ rule 3.8 reads

p(~θ|d, I) =
L(~θ)π(~θ)

Z
. (3.21)

Therefore, each point in the chain needs to be assigned a weight Li Xi
Z in order

to represent the posterior p.d.f. We can use this weight to resample and get
posterior points as a trivial post-processing step.
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3.4 Bayesian methods

Having the necessary toolkits for numerically calculating the posterior and evi-
dence, we now turn to the basic methods where the Bayesian framework is ap-
plied.

3.4.1 Bayesian model selection

One of the main applications of Bayesian statistics is a rigorous model selection
(MS) method for assigning posterior probabilities to competing hypotheses. Let
us consider two candidate models M1,M2, which compete in explaining the out-
come of a random experiment, and whose validity is postulated by two respective
hypotheses H1, H2. Each model/hypothesis may encompass its own parameter
space ΣH1 ,ΣH2 and the two do not even need to be of the same dimensionality.
Now, the posterior probability for hypothesis Hi being true, given the data d, is
given by

P (Hi|d, I) =
P (d|Hi, I) P (Hi|I)

P (d|I)
. (3.22)

When comparing hypotheses we are interested in their relative posterior proba-
bilities, given by the odds ratio

OH1

H2
(d) =

P (H1|d, I)

P (H2|d, I)
=
P (H1|I)

P (H2|I)

P (d|H1, I)

P (d|H2, I)
, (3.23)

where we see that the normalization factor P (d|I) conveniently cancels out. The
odds ratio then factors out as the ratio of the hypotheses’ prior probabilities
P (Hi|I) times the ratio of their evidences of the data P (d|Hi, I), also known as
the Bayes factor

BH1

H2
(d) =

P (d|H1, I)

P (d|H2, I)
. (3.24)

The hypotheses priors are probabilities assigned to each hypothesis based on the
scientist’s best knowledge before the experiment (or its analysis) takes place and
represent the degree of prior belief on each hypothesis. In the second fraction, the
evidence, or marginal likelihood of the data for a hypothesis Hi, is calculated as an
integral of the likelihood across the hypothesis’ parameter space, as in Eq. (3.13).

The likelihood integration usually requires numerical techniques such as the
Nested Sampling algorithm described in Sec. 3.3.2, that for CBC analysis may
take hours or even days to converge to a result with good accuracy. There are
ways to minimize the number of trials in such algorithms by e.g. using smart
jump proposals for evolving the chain of live points, that keep the acceptance
ratio as high as possible. Additionally, parallel computing makes use of multi-
ple computer cores at the same time to distribute the workload when possible,
and to minimize the computational time. There have been extensive studies
tailored to GW data analysis with CBC, and the corresponding computational
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algorithms are incorporated in the LALInference package, which is part of the
LIGO Algorithm Library (LAL). For a detailed description, see [364] and refer-
ences therein.

Being able to calculate all the ingredients on the RHS of (3.23), one may use
available stretches of data from GW interferometers to extract scientific results.
For instance, one may try to infer the probability for a CBC signal being present
in the data; in this case one compares the HCBC hypothesis against the Hnoise

hypothesis, where the data consists of pure noise. If a GW event is identified,
one can also test different hypotheses that model the nature of the GW sources;
e.g. whether the source is made of black holes or neutron stars, or whether the
detected properties of a population of CBC events are in best agreement with
one stellar evolution model or another [328]. An inquiry that is one of the main
subjects of this dissertation is testing GR itself; usually the hypothesis that GR is
the underlying theory of gravity is considered as given and is implicitly included
in the background information I. One may instead decide to separate it as HGR

and treat it as a testable hypothesis.

Of course some of the most interesting problems in GW data analysis have to
do with inferring the values of certain (continuous) parameters. These types of
problems are the subject of Bayesian parameter estimation (PE) which is covered
below.

3.4.2 Bayesian parameter estimation

The purpose of most statistical inference methods is to estimate the value and
the respective errors of one or more parameters introduced by the working model.
More importantly, given a prior p.d.f. p(~θ|I) = π(~θ) on the parameter space Σ,
and a set of measured data d, we would like to calculate the posterior probability
density function p(~θ|d, I) on the parameters ~θ of the working model. Again, using
Bayes’ rule (3.8) we can re-express the posterior p.d.f. as

p(~θ|d, I) =
p(d|~θ, I) p(~θ|I)

p(d|I)
. (3.25)

Often we are only interested in measurements in some p-dimensional subspace
ΣA of the q-dimensional Σ ' ΣA ⊕ ΣB , and wish to consistently calculate the
posterior p.d.f. on that subspace, without of course disregarding possible correla-
tions between the parameters of interest and the nuisance ones. This calculation
is given by the process of marginalization, which involves integrating out the nui-
sance components of ~θ = (θ1, . . . , θp︸ ︷︷ ︸

~ϑ∈ΣA

, θp+1, . . . , θq), using a measure defined by

the prior on Σ:

p(~ϑ|d, I) =

∫
ΣB

dθp+1 · · · dθq p(~θ|d, I) =

∫
ΣB

dθp+1 · · · dθq π(~θ) p(d|~θ, I)

p(d|I)
. (3.26)
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Here, our sample space is the parameter space of our working model Ω = Σ, and
one can actually calculate the evidence of the data p(d|I) by marginalizing the
likelihood across the entire parameter space

Z = p(d|I) =

∫
Σ

dθ1 · · · dθq π(~θ) p(d|~θ, I) , (3.27)

which comes from the requirement that the posterior p.d.f. always has to inte-
grate to unity. In particular, the marginalized posterior of a single component
parameter θi of ~θ is given by

p(θi|d, I) =

∫ q∏
i6=j=1

dθj π(~θ) p(d|~θ, I)∫
Σ

dθ1 · · · dθq π(~θ) p(d|~θ, I)
. (3.28)

Furthermore, any observable that one wishes to obtain can be estimated as an
expectation value of a function of ~θ with respect to the posterior p.d.f. For
example, the mean of a component parameter θi is defined as

〈θi〉 =

∫
Σ

dq~θ θi π(~θ) p(d|~θ, I)∫
Σ

dq~θ π(~θ) p(d|~θ, I)
, (3.29)

its variance as the expectation value of θ2
i − 〈θi〉2, etc.

More specifically for GW data analysis, given a prior p.d.f. π(~θ) on ΣCBC, and
a set of measured data d, one would be able to calculate the posterior p.d.f.
p(~θ|d, I) on the intrinsic and extrinsic parameters ~θCBC of the source binary
system. Applications of Bayesian PE for testing GR and inferring the neutron
star equation of state will be studied in Part II and Part III.

3.4.3 Combining information from independent data sets

An important feature of Bayesian inference methods is that information from
multiple independent sets of data can be combined in a straightforward way.
Thus, the calculated posterior probabilities are being successively updated as
more and more data becomes available (from one or more experiments). As we
shall see in Part II and Part III, this can significantly enhance the inference
power of a Bayesian method, whether that is model selection (MS), parameter
estimation (PE) or non-parametrics (NP). Given a set of data sets {di}i=1,...,n,
and assuming that the different data sets di are mutually independent, that is

p(di, dj |I) = p(di|I) p(dj |I) , ∀i 6= j ∈ {1, . . . , n} , (3.30)

we can make use of the multiplicative probability rule recursively on the likelihood
of the entire collection of data

p({di}i=1,...,n|I) =

n∏
i=1

p(di|I) . (3.31)
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In a sense, we already did this when going from the point-wise (by frequency bin)
likelihood to the one for an entire time series in Eq. (3.10) The above rule also
holds for likelihoods where more things are assumed at the “givens” side, as long
as these do not affect the independence of data sets.

In model selection Applying Eq. (3.31) to Bayesian model selection, we di-
rectly obtain by Eq. (3.24) the combined Bayes factor for n sources as

(n)BH1

H2
({di}i=1,...,n) =

P ({di}i=1,...,n|H1, I)

P ({di}i=1,...,n|H2, I)
=

n∏
i=1

P (di|H1, I)

P (di|H2, I)
, (3.32)

which gives the combined Odds ratio

(n)OH1

H2
=
P (H1|I)

P (H2|I)

n∏
i=1

P (di|H1, I)

P (di|H2, I)
. (3.33)

In most problems, the evidences take values that range up to large numbers; it
is therefore convenient to express results in terms of logarithmic Bayes factors
and odds ratios. From the above calculations we see that the combined logO is
expected to scale linearly with the number of available sources.

In parameter estimation Similarly in Bayesian parameter estimation, one
can combine information from different data sets in order to infer the underly-
ing value of a parameter vector ~θ that is globally defined, i.e. whose value is
assumed to be universal in all of the available data. We shall refer to these as
global parameters; in our case of CBC signals, these will be source-independent
parameters such as the cosmological parameters, parameters that define the NS
EoS, parameters of population synthesis models, etc. The posterior p.d.f. for the
global parameter ~θ given a set of n data sets is given by

p(~θ|{di}i=1,...,n, I) =
p({di}i=1,...,n|~θ, I) p(~θ|I)

p({di}i=1,...,n|I)
= p(~θ|I)

n∏
i=1

p(di|~θ, I)

p(di|I)

=p(~θ|I)
n∏
i=1

p(~θ|di, I) p(di|I)

p(di|I) p(~θ|I)

=p(~θ|I)
n∏
i=1

p(~θ|di, I)

p(~θ|I)
, (3.34)

where in the second and third equation we used Bayes’ rule Eq. (3.8) forth and
back. This gives a straightforward way of obtaining the combined posterior p.d.f.
of a global parameter. An interesting “timeline” interpretation of this is that our
prior is in fact updated with each new set of data that comes to light. More specif-
ically, starting with our initial prior π(~θ), the posterior after the i-th experiment
becomes the prior of the (i+ 1)-th experiment.
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Chapter 4

Tests of General
Relativity

Here, on the edge of what we know, in
contact with the ocean of the unknown,
shines the mystery and beauty of the
world. And its breathtaking.

Carlo Rovelli

Formally born in 1915, the general theory of relativity has managed in its 100
years of existence, to establish itself as one of the most successful theories in
physics. The exceptional beauty of GR lies not only in the fact that it provided a
new elegant geometrical paradigm for fundamental physics, thus radically chang-
ing the notions of space and time, but that it would also survive experimental
testing for an entire century. Even though with very few exceptions, experimental
gravitational physics has been a dormant field for many decades in the mid-20th
century, the validity of its predictions has been tested in various different ways.
Sec. 4.3 provides a brief overview of the different types of experimental tests of
GR performed to date, the first three having been proposed by Einstein himself.
It is interesting however to realize how the many different tests are all restricted
to the regime of weak gravitational fields generated by non-relativistic sources.
Regarding the field strength, a good dimensionless figure of merit is the compact-
ness C = GM/Rc2 of the source, M being the total mass and R being the size of
the source, while its characteristic internal velocity v/c sets the relativistic scale.
As we shall see, the most stringent tests, coming from observations of pulsar
binaries, are characterized by C = O(10−6) and v/c = O(10−3). In comparison,
compact binaries that are close to coalescence and emit strong gravitational ra-
diation, will reach a compactness of C ∼ 0.2 and an orbital velocity v/c ∼ 0.4
during their last stable orbit. These systems are the ideal natural laboratories
for us to probe GR in its fully relativistic strong-field regime.

Putting quantitative details aside for a moment, one finds in the conceptual basis
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of GR the notion of the equivalence principle. This comes in three different
versions in a strict hierarchy that will be briefly outlined below, all of which are
satisfied by GR. Any alternative theory of gravity may not comply with one or
more of the three and its general structure can be characterized based on this
compliance.

4.1 Equivalence principles

Origins and the weak equivalence principle An early notion of an equiv-
alence principle between gravitational effects and non-inertial frames is already
present since the days of Galileo. Within the context of 16th century classical
mechanics this states that all bodies undergo the same acceleration under the
effect of a gravitational field. Later on, this was interpreted in the context of
Newtonian physics as the principle that the gravitational content of a body is
proportional to its inertial content, or that “gravitational mass is equivalent to
inertial mass”.

The weak equivalence principle (WEP) is essentially Newton’s equivalence prin-
ciple that identifies the property of inertial mass with the gravitational mass or
weight. More precisely it states that: “The inertial mass of an object is directly
proportional to its weight.” thus establishing gravity as a kinematic force. The
above statement directly implies through Newton’s 2nd law that all bodies will
follow the same trajectory when performing free fall, irrespective of their mass
or composition.

In 1907 Albert Einstein first formulated the equivalence principle with relation
to gravity, by establishing an equivalence between the presence of a gravitational
field and accelerated reference frames. Inertial observers were then identified as
observers in free fall.

Einstein’s and strong equivalence principle Einstein’s equivalence prin-
ciple is stronger than the WEP and consists of a set of three requirements: (i)
The WEP is true for test bodies. (ii) Positional invariance holds for all non-
gravitational experiments. (iii) Lorentz invariance holds for all non-gravitational
experiments.

The strong equivalence principle (SEP) is an even stronger one than the EEP, and
consists of the same three statements as the EEP, extended to self-gravitating
bodies (not only test bodies) and gravitational experiments.

Some of the experimental tests that will be described below do not challenge GR
per se, but rather one or more of the statements of the SEP. It is crucial to dis-
tinguish between the two cases, since the SEP may be a built-in principle of GR,
but is not an exclusive property of the theory. For instance, any geometric theory
of gravity, whose observables are constructed using the same metric structure as
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in GR, but whose dynamics are not necessarily driven by the Einstein-Hilbert
action, can still conform with the SEP.

4.2 Alternative theories of gravity

Since the formulation of GR and the verification of both its qualitative and quan-
titative differences from Newtonian gravity, a number of alternatives have been
put forward, many of which were designed so as not to violate the philosophy
that GR introduced. In this discussion we will restrict to such relativistic theo-
ries of gravity, which can be formulated by the definition of an action principle
in 4-dimensional spacetimes involving a symmetric metric tensor and possibly
other fields. One may classify the set of alternative theories of gravity in dif-
ferent ways, based on their structural characteristics, extra parameters or fields
they entail, their accordance with different principles, such as the EEP or SEP,
their phenomenological consequences or main motivation.

Let us proceed with a rather structural overview; we first recall the essence of GR

as an action principle, the Einstein-Hilbert action: SE−H = c4

16πG

∫
d4x
√−gR.

This is the gravitational part of the total action, which includes all matter fields
and takes the form

S[g,A(I)] = SE−H + Sm =

∫
d4x
√−g

[
c4

16πG
R− Lm

]
, (4.1)

where the metric gµν has a Lorentzian signature (−,+,+,+) and all matter fields
A(I) are described by the matter Lagrangian density Lm yielding the stress-energy

tensor Tµν = − 2 δ(
√
−gLm)√

−g δgµν . Most alternative theories are formulated in this con-

text, modifying the structural form of the action. They are subject to theoretical
restrictions such as causality constraints, the absence of ghost modes or other
instabilities, but also experimental bounds from solar system, astrophysical and
cosmological observations.

4.2.1 Metric theories

The class of metric theories of gravity includes those relativistic theories for which
the symmetric Lorentzian metric tensor field gµν is the only field that defines the
equations of motion for the matter fields. Some still conform with the EEP, but
have the freedom to introduce additional gravitational fields. This means that
matter and non-gravitational fields are restricted to evolve under the influence
of the metric tensor alone. The extra gravitational fields only participate in the
way non-gravitational fields and matter configure the metric tensor field.
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Tensor theories This class includes theories similar to GR but with e.g. higher
order curvature terms in the Lagrangian (f(R) theories) [112, 121, 340, 74] or a
function of the topological Gauss-Bonnet term (f(G) theories) which is non-trivial
at higher dimensions [273, 131]. Another set of higher-dimensional extension of
GR is provided by Lovelock gravity [249], where the most general form of an
action that yields second order tensorial equations and conserves the matter fields
in higher dimensions is preserved. Purely tensor theories may be consistent with
the SEP but still be distinguishable from GR in their quantitative predictions.
“New massive gravity” [71] is a version of gravity with massive modes (currently
in 2+1 dimensions), that is free from known pathologies like ghosts or the vDVZ
(van Dam-Veltman-Zakharov) discontinuity that often appears when trying to
recover the massles limit [359, 395].

Scalar-Tensor theories These theories are characterized by an additional
scalar field φ which apart from entering the matter Lagrangian with its kinetic
and potential terms, also has a scalar coupling with the Ricci scalar in the E-H
term (e.g. minimally coupled: φR) [52, 106, 373, 175, 184]. The matter equations
of motion (φ being part of it) are still governed by the variation w.r.t. the metric
tensor alone, in the usual way of Eq. (4.1). Scalar-Tensor (ST) theories have a
long history (since the days of Einstein himself); for example, Kaluza-Klein (in 5
dimensions) can be reduced to 4-dimensional gravity plus a scalar field [46] and
thus has a ST representation. Brans-Dicke theory [106, 40] is a representative
example, minimally coupled with gravity and with only a kinetic term of the form

−ω ∂µφ∂
µφ

φ . Here, ω is the extra free parameter of the theory, which is bounded to

ω ≥ 4.3× 104 by measurements of the PPN parameter γ = ω+1
ω+2 with the Cassini

spacecraft [82].

Vector-Tensor theories Similarly to ST theories, the Vector-Tensor (VT)
theories are described by the presence of an additional vector field which only
interacts with matter through the metric by its coupling in the gravitational
part of the action. This new dynamical quantity defines a preferred direction
throughout the entire spacetime and thus breaks Lorentz invariance. The main
motivation behind these theories was the exploration of relativistic theories that
predict violation of Lorentz invariance and closely connect to the development
of the PPN formalism by Will and Nordtvedt [386, 277]. After being marginal-
ized for a couple of decades these models recently attracted attention as natural
candidates for dark energy [68, 69, 70]. Another typical example of a VT the-
ory is Einstein-Aether theory, where the vector field is constrained to be of unit
norm [214].

Scalar-Vector-Tensor theories Naturally, a third class that includes all three
types of fields is conceivable and goes under the name Scalar-Vector-Tensor the-
ories (SVT). Here too, the presence of a preferred frame breaks Lorentz invari-
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ance and possibly local positional invariance. A characteristic case is TeVeS,
the relativistic formulation of Milgrom’s theory of modified Newtonian dynamics
(MOND), whose main motivation was to explain the anomalous galactic rotation
curves without the introduction of dark matter [263, 66]. TeVeS contains, apart
from a metric tensor, an additional vector field and two scalar fields, that partic-
ipate in the gravitational action. Another interesting case is MOdified Gravity
(MOG) developed by Moffat that introduces one vector field and three scalar
fields and that can explain various astrophysical and cosmological observations
without the need for dark matter [266].

4.2.2 Other alternative theories

Non-metric theories This is a different set of theories in which gravity is not
directly associated to a metric field. The two most popular members of this set
are Cartan gravity [195], in which gravity is interpreted as a Yang-Mills type
of theory with non-vanishing torsion, and Teleparallel gravity [38], in which the
fundamental structure is a tetrad field and gravity is interpreted as a torsion
effect, rather than curvature which in this case vanishes.

Quantum gravity inspired theories Apart from theories that are formu-
lated as field modifications in the standard GR action Eq. (4.1), others have
been devised motivated by arguments related to quantum gravity. The neces-
sity for such a theory stems directly from the well established fact that matter
(present in the EFE) behaves in a way dictated by quantum mechanics. A first
non-trivial requirement imposed upon candidate theories is that they recover GR
in their low-energy limit, and a fundamental obstacle that appears in the quan-
tization process of the latter is the appearance of ultraviolet (UV) divergences
when renormalizing the theory with higher order loop corrections [378]. A recent
candidate that attempts to overcome such issues is Hořava-Lifshitz gravity [201],
which provides a UV completion of GR, treating divergences in the quantum in-
tegrals via the introduction of scaling rules for space and time that differentiate
at high energies. This is an interesting case for studying parametrized effects
in GW signals [101]. On the other hand, Noncommutative Geometry (NCG)
introduces an entirely different mathematical framework, based on the spectral
algebraic properties of spacetime geometry. This generalized definition of a ge-
ometric space, where functions do not need to commute, has all the necessary
structure of quantum theory built-in. Observable modifications in gravitational
wave physics are investigated in [269], where the existence of additional mas-
sive graviton modes is predicted. Another promising example is Loop Quantum
Gravity (LQG) [319] which introduces a granular picture of quantum spacetime,
providing a non-perturbative theory whose spacetime solutions are superposition
of discrete “spin networks” (quantum foam). Causal Dynamical Triangulations
(CDT) [43, 42, 31] take a bottom-up approach and attempt to interpret spacetime
as the continuum limit of a regularized “geometrical path integral” of piecewise
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flat geometries. Higher dimensional gravity [268, 310], supergravity [380, 151],
string theory [296] and twistor theory [292, 205] can also be classified in this group
of quantum-inspired theories. These and other candidates for quantum gravity
have so far not developed to the point where they can give robust predictions for
GW phenomenology.

4.2.3 Exceptionally interesting cases

Many of the aforementioned alternative theories of gravity are highly constrained
by existing observations. Nevertheless, models exist, where the predicted modi-
fication to the GW signal does not manifest itself until the source becomes rela-
tivistic or gravity becomes strong enough, e.g. shortly before a binary merger. In
such cases, even the most stringent existing bounds, like binary pulsar observa-
tions, do not effectively constrain the strength of an observable GW effect in the
late inspiral. For instance, in some scalar-tensor models studied by Damour and
Esposito-Farese [138] and more recently by Pani et al. [286], a phase transition
of spontaneous scalarization takes place in the interior of the neutron star above
a critical density; in a different model, studied by Berti et al. [81, 40], featuring
a light scalar, a discontinuous modification in the binary evolution may enter at
high frequencies; finally, Hořava-Lifshitz gravity, with its running critical expo-
nent for the scaling of time, could in principle show a similar behaviour at high
energies.

4.2.4 The PPN formalism

There are infinitely many ways in which a theory like GR may be violated. A
wealth of theories of gravity have been proposed as alternatives or high-energy
completions to GR throughout the last few decades, among which only few sur-
vived theoretical and experimental scrutiny. As a consequence, the need of a
parametrised, sufficiently general and unified treatment of GR violations becomes
evident. The most successful attempt towards such a treatment is known as the
parametrized post-Newtonian (PPN) formalism [386].

The PPN formalism defines ten parameters

(γ, β, ξ, α1, α2, α3, ζ1, ζ1, ζ2, ζ3, ζ4) , (4.2)

each of which corresponds to a different physical quantity1. For example γ phys-
ically corresponds to the “curvature per unit rest mass”, with a normalization
such that in GR one gets γ = 1. Given an arbitrary alternative theory of gravity
one can calculate the new values for the PPN parameters, some of which may
deviate from their GR-predicted values. In GR γ = β = 1 and all the rest are
zero.

1See [381, 385] for a detailed overview.
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In the light of experimental data one may be able to measure a subset of the PPN
parameters and obtain bounds for the competing theories of gravity. Current
bounds for the PPN parameters, are summarised in Table 4 of [385]. These in-
clude limits derived from observations of pulsars, either solitary (PSR B1937+212)
or in binary systems (PSR 1913+16), which however should have been treated in
a strong-field formulation, since neutron stars are strongly self-gravitating bod-
ies. The reader should note that the standard version of the PPN formalism is
only appropriate for weakly gravitating sources. For the purposes of this disser-
tation, we shall introduce a simple parametrized formalism which is also based
on post-Newtonian theory, specifically tailored for coalescing binaries, but which
is however unrelated to what is known as PPN.

4.3 Overview of current tests and bounds

Gravitational redshift and time dilation Special relativity introduced for
the first time the notion of time being relative to the observer’s reference frame.
In general relativity, an explicit realisation of time dilation occurs as a direct
effect of the geometrical nature of gravity: observers at different locations where
the gravitational field is different will not measure the passing of time with the
same rate.

As an example, consider the Earth’s gravitational field, which we assume to be
spherically symmetric and thus is expressed by the Schwarzschild metric above
the Earth’s surface

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 , (4.3)

where the Earth’s mass M = M⊕ ' 4.43×10−3m sets the scale. In the Newtonian
limit, the gravitational field can be approximated by

φN ' −
1

2
(1 + g00) = −M

r
. (4.4)

Now the proper time dτA of an observer A whose world line follows the above
coordinate system at constant radius rA, neglecting angular coordinates, will be
proportional to

√
1 + 2φ dt, where from the same argument it follows that the

coordinate time dt coincides with the proper time of an observer at infinity. When
comparing the lapse in proper times τA and τB measured by the clocks of two
observers A and B located at different altitudes rA < rB , for a coordinate time
lapse dt, we see that

dτA
dτB

=

√
1 + 2φ(rA)

1 + 2φ(rB)
, (4.5)

2ra: 19h39m38s.560210(2), dec: 21o34′59′′.14166(6)
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which implies that time will run slower for observer A who sits at a lower altitude
(i.e. she will age faster than B for the same coordinate time). For instance, if
A is located on the surface of the Earth and B at an altitude equal to that of
the International Space Station (∼ 420 km), then the magnitude of time dilation
will be roughly 2 parts in 1011. Even though this kind of deviation is tiny –
it will take more than 700 years before the proper time difference reaches 1
second– experiments using accurate atomic clocks have managed to measure this
effect [125], even for meter-scale height differences! So far the magnitude of this
effect has been shown to be consistent with GR.

A direct consequence of gravitational time dilation is the effect of gravitational
redshift, according to which a light source in a gravitational potential seems to
be redshifted when viewed by an observer at a weaker (less negative) potential.
In 1959 this effect was observed by R. Pound and G. A. Rebka [297, 298]. In the
homonymous experiment, a moving source of excited nuclei generates blueshifted
light due to the relativistic Doppler effect, with respect to a receiver of the same
nature at a higher altitude (about 22.5 m higher). When the relative velocity
takes a value for which the Doppler blueshift exactly cancels the gravitational
redshift, a narrow absorption reasonance should be achieved. This was indeed
observed verifying the predictions, initially to within a 10% accuracy and later
on to 1%. More sophisticated tests using hydrogen maser clocks followed, that
brought the measurement accuracy down to 2× 10−4 [367].

Precession of the perihelion of Mercury Unlike Newtonian gravity, GR
does not predict closed elliptical orbits in an isolated 2-body system, even for one
of a test mass orbiting a much heavier object and without taking gravitational
radiation effects into account. For instance, within our solar system, one can
consider the orbit of Mercury around the Sun, with a mass-ratio of O(107).

The conservation of energy and angular momentum for the Schwarzschild metric
in GR, expressed as the first integrals of the Lagrangian L = gµν ẋ

µẋν = 1 read

ε = (1− 2M

r
)ṫ and J = r2φ̇, (4.6)

which lead to the differential equation(
du

dφ

)2

= 2Mu3 − u2 + αu+ β, (4.7)

where we used the transformation u = 1/r and defined the constants of motion

α = 2M
J2 , β = ε2−1

J2 . After observing that in a bound orbit there are two values u1

corresponding to the perihelion and u2 corresponding to the aphhelion, for which
du
dφ = 0, we obtain the general solution

φ− φ0 =

∫ u

u0

du′√
(u′ − u1)(u2 − u′)(1− 2M(u1 + u2 + u′))

. (4.8)
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In particular this implies that after a full equatorial orbit, the azimuthial angle
will advance to leading order by

∆φ ' 2π + 3πM(u1 + u2). (4.9)

For the orbit of Mercury around the Sun, this gives a perihelion advance of
∆φp ∼ 3× 10−6 radians per orbit.

The perihelion advance of Mercury was first observed in 1859 by Le Verrier [241].
Corrections due to the presence of other planets in the solar system were not
enough to accurately explain this discrepancy in the Newtonian theory. Two of
the first reactions to this apparent anomaly were to assume that there was either
a planet yet to be discovered on an even tighter orbit, or that the Sun may have
been much more oblate than expected, having a much higher quadrupole mo-
ment. As it turned out, the residual advance by ∼ 43 arcsec/century is exactly
consistent with the correction that GR predicts [160]. Further measurements
of increasing accuracy have been performed over the years, verifying the GR
prediction with half-arcsecond precision [130, 381]. Similar tests have been per-
formed using observations from other planets in the solar system [130, 86], as
well as periapsis advance measurements in pulsar binaries [379], all of which have
corroborated consistency with GR.

Light deflection and gravitational lensing As a geometric theory of grav-
ity, GR predicts the effect of light trajectories being bent in the vicinity of a
gravitating body. More accurately, light follows null geodesics which are defined
by the geometry of spacetime. As a result, light that is emitted by a distant
source may undergo deflection and lensing effects, if a massive body intervenes
between the source and an observer.

More explicitly, the unbound null geodesics of in a Schwarzschild spacetime now
satisfy the differential equation(

du

dφ

)2

= 2Mu3 − u2 + β, (4.10)

with a perihelion r1 = 1/u1 satisfying du
dφ = 0. The general solution now reads

φ− φ0 =

∫ u

u0

du′√
(u1 − u′)(u1 + u′ − 2M(u2

1 + u1u′ + u′2))
, (4.11)

and to leading order, the angular difference from end to end is

∆φ = π + 4Mu1, (4.12)

where π corresponds to the zero-deflection part. One then can numerically es-
timate that a light ray passing right off the surface of the Sun (r1 = R� =
6.955× 108 m) will undergo a deflection by an angle ∼ 8.51× 10−6 radians.3

3If on the other hand one considered a corpuscular theory of light travelling in a Newtonian
Universe, the corresponding leading order deflection angle would be smaller by exactly a factor
of 2.
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Measuring such an effect was the objective of the famous observation in 1919,
during which a total solar eclipse was photographed by Sir Arthur Eddington in
order to verify or invalidate the predictions of the freshly formulated theory of
gravity. The precise apparent locations of the stars surrounding the eclipse were
then compared against their true locations and the measured deflection angles
matched with what GR had predicted [159, 158]. This was enough to shift a
significant part of the scientific community towards favouring general relativity
over Newtonian gravity. Since then, various measurements of light deflection
have consistently shown agreement with GR [243, 332], with the most notable
ones made by the Cassini spacecraft, that measured light geodesics in the solar
system [82].

The Lense-Thirring effect An effect that can be observed in Kerr spacetimes
induced by rotating bodies, where the metric is only axisymmetric, is that of
frame-dragging. Kerr spacetimes are rather common in GR since, apart from
describing spinning black holes, they also feature as for example the exterior of
spherically symmetric matter distributions that rotate around a given axis. In
particular, rotational frame-dragging, also known as the Lense-Thirring effect,
is a manifestation of the dt-dφ mixing in the components of the metric, which
makes inertial frames get carried along with the rotation of the source. Spacetime
itself thus appears to be co-rotating with the source, an effect which is stronger
at smaller radii and at polar angles θ closer to the equator.

The gravitational field in the Earth’s exterior can be approximated by a Kerr
spacetime. Experimental tests of the Lense-Thirring effect involve measuring
nodal precession of test masses in orbit or gyroscopic. One expects the effect of
frame dragging on orbiting satellites to be very weak, since the orbital radius is
109 times the Earth’s Schwarzschild radius. In the latest experimental attempt,
Gravity Probe B [163] orbiting at an altitude of 642 km, measured a frame-
dragging drift of 37.2 ± 7.2 mas/yr, which is consistent with the GR prediction
of 39.2 mas/yr. During the same experiment the geodetic effect (the effect of
curvature on parallel transport of vectors) was also measured and was found to
be consistent with GR, with a drift rate of 6601.8± 18.3 mas/yr to be compared
against the theoretical prediction of 6606.1 mas/yr.

Eötvös-like experiments and the Nordtvedt effect The aim of the well
known torque balance experiments by Eötvös in the late 19th century was to test
whether two masses A and B of different type, behave differently under effects
that depend on their inertial mi or gravitational mg mass, essentially challeng-
ing the WEP [161, 102]. Experiments of this kind continued to evolve into high

precision measurements of the Eötvös parameter η(A,B) = 2
(mg/mi)A−(mg/mi)B
(mg/mi)A+(mg/mi)B

,

by Dicke [318], Braginsky [105] and the Eöt-Wash group [343, 29]; the current
bound is set in [55] to η(A,B) < 10−13. A similar idea was put forward by
Nordtvedt [275, 276], whose goal was to test whether the Earth and the Moon
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fall freely in the same way, in the Sun’s gravitational field, which, as a gravita-
tional experiment, constitutes a test of the SEP. Since the Earth and the Moon
have significantly different gravitational binding energies and compositions, their
relative accelerations in their binary orbits could be a direct measurement of the
Nordtvedt effect. The Earth-Moon distance has been traced to millimetre accu-
racy using lunar laser ranging (LLR), experiments where laser light from Earth-
bound labs is shone upon reflectors mounted on the Moon’s surface [388]. These
experiments have set upper bounds on the relative acceleration at 5−13 [388], and
on the Nordtvedt parameter ηN = 4β − γ − 3 of the order 3× 10−4.

Orbital motion of pulsar binaries The EM observation and study of pulsars
in binary systems, and most significantly the ones in tight relativistic orbits, can
yield valuable information on the orbital parameters and their consistency with
GR, through the outstanding precision of the pulses’ times of arrival (TOA). Most
of the observed systems are wide and slow enough to be accurately described
using Kepler’s laws; however a few of them are relativistic enough to exhibit
observable deviations from Kepler’s laws, which are measured in terms of the
so-called post-Keplerian (PK) parameters. Several different relativistic effects
modify the Keplerian prediction of a perfectly regular pulse (relative to the Solar
system barycentre), among which are

• the periastron advance (similar to what was described earlier for the peri-
helion of Mercury), which results in a non-zero PK parameter ω̇(Pb);

• the gravitational wave emission, and corresponding loss of binding energy
leading to a non-zero PK parameter Ṗb and a fixed relation Ṗb(Pb);

• the Einstein delay, accounting for the overall time delay (and redshift) that
the emitted light undergoes by escaping the gravitational potential of the
binary and entering that of the observer’s environment. This is expressed
by the PK parameter γ;

• the Shapiro delay, which is an additional time delay that can be observed
in edge-on systems and occurs when the companion passes close to the line
of sight that connects the pulsar and the observer. It is the companion’s
gravitational well that imposes a sharp time delay in the pulse, which can
be measured in terms of the PK parameters r ∝ mc (the companion’s mass)
and s, the Shapiro parameter.

More detailed information on the post-Keplerian formulation and data analysis
of pulsar binaries can be found e.g. in [54, 108, 248]. Each of the above effects
overlays a different signature on the observed TOA data and can potentially be
disentangled from other effects and estimated using Monte Carlo methods.

Binary pulsar observations have given some of the most stringent tests of GR to
date and, thanks to the compactness of these systems, have probed the most rel-
ativistic, strong-field regime that any gravitational experiment has ever reached.
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4 Weisberg & Taylor

Figure 1. Orbital decay of PSR B1913+16. The data points indicate
the observed change in the epoch of periastron with date while the
parabola illustrates the theoretically expected change in epoch for a
system emitting gravitational radiation, according to general relativity.

44 Duncan R. Lorimer

Figure 27: ‘Mass–mass’ diagram showing the observational constraints on the masses of the neutron stars
in the double pulsar system J0737�3039. Inset is an enlarged view of the small square encompassing the
intersection of the tightest constraints. Figure provided by René Breton [44].

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2008-8

Figure 4.1: Left: The observed data (black dots) showing the shift in the periastron time
for the Hulse Taylor binary pulsar until 2003, together with the curve predicted by GR
(taken from [379]). Right: The consistency plot for six measured post-Keplerian param-
eters of the double pulsar PSR J0737-3039A/B in the m1-m2 plane (taken from [108]).

Most notably, the first observation of a binary pulsar, namely the Hulse-Taylor
binary pulsar4 PSR B1913+16 in 1974, led to the first indirect evidence for the
existence of gravitational radiation. A more than a decade-long observation of the
orbital period decay was astonishingly consistent with the GR predictions for the
energy loss in gravitational waves and earned Hulse and Taylor the Nobel Prize
in 1993. The measured cumulative shifts in periastron time until 2003 are shown
in the left panel of Fig. 4.1, in a plot by Weisberg & Taylor with actual error
bars which are however too small to see. Notice how accurately the theoretical
Ṗb(Pb) prediction by GR (using the quadrupole approximation alone) matches
the observations.

A more recent and even more stringent test of GR comes from the observations
of the double pulsar5 PSR J0737-3039A/B, a binary neutron star system where
both components were visible as pulsars [117, 251, 108, 231, 107]. As can be seen
in the right panel of Fig. 4.1, seven different post-Keplerian parameters were
measured at the same time, each of which gave a confidence band in the m1-m2

parameter space. All seven bands (5 of which are redundant d.o.f.) overlap with
remarkable accuracy, giving consistency with GR, but also a precise measurement
of the component NS masses. Similar analyses have been also taken out for other
pulsar binaries. Most notably, the NS-WD binary PSR J1738+03336, thanks
to the large number (17376) and precision (< 5µs) of TOA measurements and

4ra: 19h13m12s.4655, dec: 16o01′08.189′′
5ra: 07h37m51s.247, dec: −30o39′40.74′′
6ra: 17h38m53s.9658386(7), dec: 03o33′10′′.86667(3)
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its high asymmetry, gave the most stringent bounds to date for a matter-scalar
coupling α0-β0 parameter space (α2

0 < 10−5) in ST theories (Jordan-Fierz-Brans-
Dicke) and SVT theories (TeVeS) [45, 171].

The equivalence principle tested with triple systems In late 2013 the first
millisecond pulsar in a triple system was observed7, with a mass of 1.4378(13)M�,
while the masses of the two white dwarf companions were estimated to 0.19751(15)
M� and 0.4101(3)M� [306]. The configuration of the triple system is hierarchi-
cal, with the NS and the lighter companion closely orbiting each other with a
period of 1.63 days. Together they orbit the heavier white dwarf at an outer orbit
with a period of 327.26 days.

This setup provides an ideal laboratory for testing the SEP, much the same way
as the Earth-Moon-Sun system for the Nordtvedt experiment [276]. A violation
thereof would cause the strongly self-gravitating NS to fall differently than its
less compact WD companion, under the gravitational field of the heavy WD.
Such an investigation with currently available data is under way by the authors
of [306], but a discussion can already be found in [190], whose authors claim a
constraint of the Nordtvelt parameter ηN = 4β−γ−3 < 10−4, beating the lunar
laser ranging bound by a factor of ∼ 4.

4.4 Future prospects of testing GR

Improvement on existing experiments Further investigations on the Lense-
Thirring effect are scheduled, with the expectation that ESA’s currently operating
satellite LARES [129, 128] will perform measurements of the effect to a 1% ac-
curacy.8 Improved accuracy is also expected in astrometry experiments such as
GAIA or the proposed GAME that (among other duties) will bring the accuracy
of measurements of the PPN γ parameter down to ∼ 10−7 or less [363, 177].

Observing the black hole horizon Based on evidence from astronomical
observations, a supermassive black hole known as Sagittarius A∗ (Sgr A∗)9 is
believed to reside in the center of the Milky Way [260]. The Event Horizon
Telescope is a proposed project to combine data from an array of large telescopes
around the globe, so that sufficient resolution is reached to observe EM radiation
emitted from close to the event horizon of Sgr A∗. This kind of observations will
directly probe the geometry of the Kerr metric that is expected to describe the
BH and may provide new tests for GR in the strong field of a SMBH [165, 156,
111, 41].

7ra: 03h37m43s.82589(13), dec: 17o1514.828(2)
8This has ignited a heated debate between physicists on the realistic expectations for LARES

that is still ongoing [207, 208, 312, 209]. First results from analysis on LARES data are shown
in [313]

9ra: 17h45m40s.0409, dec: −29o0′28′′.118
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Tests of cosmology with Euclid Euclid is ESA’s future M3 space mission,
whose objective will be to map the (dark) matter distribution and the geometry
of the Universe at cosmological scales. This will be done by means of high-
resolution imaging and spectroscopy, redshift measurements and analysis on weak
and strong gravitational lensing effects, in light coming from billions of distant
galaxies and quasars [240, 323]. The mapping is expected to be so detailed that
the data will allow reconstructing “snapshots” of the cosmological evolution of
our Universe and we will therefore be able to test the validity of the standard
model of FLRW cosmology. This will provide yet another indirect test of GR,
this time at large scales [257].

Testing the no-hair conjecture The no-hair conjecture states that BH space-
times are completely characterized by three parameters: a mass M , an angular
momentum a and a charge Q [210, 211, 122, 193, 194]; astrophysical BHs are
expected to have no charge and are therefore described by the 2-parameter Kerr
metric. Although the no-hair conjecture is yet to be proven for GR [127], no
counter-example that violates it has been constructed either. It is widely ac-
cepted that tests of the no-hair theorem can be considered as tests of GR itself.
Such tests can be devised by using observations of BH systems through detection
of either EM [111] or GW [186, 259] radiation.

Direct gravitational wave detection Prior to September 2015, gravitational
waves had been the only remaining missing block of our current model of funda-
mental physics, and their direct detection was rightfully considered as the holy
grail of modern experimental gravity for the last 100 years. It goes without say-
ing that the information that GW detections can yield on the nature of gravity is
invaluable and qualitatively unique. Again, one only needs to notice that most,
if not all, of the aforementioned experiments are performed in the weak-field
non-relativistic regime of GR, in order to realize how qualitatively exceptional it
would be to detect and analyze a GW signal from a coalescing compact binary.
In this part of the dissertation, I will formulate and demonstrate the performance
of tests of GR, based on data analysis of GW signals emitted by binary neutron
star systems and detected by the aLIGO and AdVirgo network of ground-based
interferometers. I will also show how much of an improvement these bring in
measuring violations of GR, in comparison with pulsar binary measurements.

4.5 Testing GR with direct gravitational wave
detection

The first step towards testing the dynamics of GR with gravitational waves is
the detection itself. Recently, the first detection came from a BBH coalescence
(and quite unexpectedly so), but GWs from systems including at least one NS
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are yet to be detected. Assuming the validity of the expected merger rates for
BNS and NSBH systems [9], a non-detection after a few years’ operation of the
network of second generation detectors at design sensitivity could indicate an
inconsistency in our GR-based model. A possible interpretation in such a case
would be that GR is so strongly violated in the presence of dense matter fields
that any GW signals that are emitted from coalescing NS binaries are too far
from the manifold of waveforms that we use as templates in our search pipelines.
It is true that such a scenario cannot be discarded, since the highly relativistic
regime of CBC signals is a completely experimentally uncharted territory, while
at the same time our search pipelines require rather accurate modelling in order
to be efficient.10

Since the waveform being in phase throughout the entire inspiral is so important
for achieving a high fitting factor, we expect the most sensitive measurements of
GR violations to come from effects in the GW phase evolution. Many interesting
alternative theories of gravity induce non-GR effects in the phase evolution by
modifying the conservative and/or dissipative sector. For example, to leading
order, the effect for Brans-Dicke theory shows as a −1PN term in the phase, for
Quadratic Curvature as a modification at 2PN, for Massive Gravity at 1PN, for
dynamical Chern-Simons at 4.5PN also with a modified amplitude, etc. Further
information of the leading-order effects of alternative theories of gravity can be
found in [134] and references therein.

Once the first few GW signals are detected, one then hopes to check for consis-
tency of the detected waveforms against the predictions of GR. Given the strong
contribution of the noise and the richness of the 15-dimensional space spanned by
CBC waveforms, the task of establishing the consistency of the detected signals
with GR, or a violation thereof, is a rather challenging one. One therefore needs
to make use of the most sophisticated, reliable and efficient data analysis tools
at one’s disposal.

4.5.1 Previous efforts

Over the last two decades, an increasing interest has grown in GW data analysis,
motivated by the good prospects for the first detection in the near future. This
has led to a number of studies proposing tests of GR with GW signals [51]. Com-
pact binary coalescence holds a prominent place among the studied sources, being
the best modelled type of source, with a high estimated chance for detection.

A Fisher matrix approach for testing the consistency of the phase of a CBC signal
with GR was studied in [49, 264]. Its basic idea, similarly to the PK-parametrized
test for binary pulsars [231], is to measure three or more of the PN coefficients ψi
in the waveform’s phase, and check the consistency of the measured values with

10Moreover, as argued e.g. in [79], a number of promising alternative theories of gravity may
manifest their GR-violating nature only in the presence of matter and still appear indistin-
guishable from GR in e.g. the pure-spacetime vicinity of a black hole.
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the GR predictions on the m1-m2 plane. An optimization of the above method
using singular-value decomposition in the CBC signal is performed in [283]. Other
Fisher matrix investigations, this time on performing BH spectroscopy with the
LISA space-based GW detector, can be found in [75, 76, 77, 78]. More recently,
a first Bayesian study, targeted to test GR against a simple massive graviton
theory, was performed in [154].

4.5.2 Towards a generic Bayesian method

Given the dominant role of noise in the data and the high dimensionality of the
signal parameter space, it is clear that a Bayesian approach is imperative for the
purpose of GW data analysis. Furthermore, a good candidate method for testing
GR with GW signals should feature a number of desiderata that are listed below.

Desiderata

• The method needs to be theory independent, in the sense that its assump-
tions should not be inspired by any particular alternative theory of gravity.

• The required formulation of a negation to the GR hypothesis needs to be
parametrizeable, but at the same time sufficiently generic, and should allow
for a computationally feasible analysis.

• Any methodologies and algorithms used should yield reliable results for
signals of low SNR (close to the detection threshold), as will be the case for
the majority of detections.

• It should be straightforward to combine information from multiple inde-
pendent detections.

• The method should be adaptable and not tied to a particular waveform
approximant.

• The method should be robust against uncontrollable sources of systematic
errors, such as waveform modelling inadequacies and instrumental calibra-
tion errors.

In 2011, a new Bayesian model selection method for testing GR using CBC
signals was put forward by Li et al. [245, 246], which seems to be satisfying all
of the above criteria. It is based on the formulation of a modGR hypothesis, that
exploits the sensitivity of the CBC signals in small changes in the evolution of
the phase accumulating over the entire in-band duration of the inspiral. As we
will show in Chapters 5, 6, 7 and 8, this has developed into a mature and robust
computational pipeline, that will be used in the science runs of the upcoming
GW experiments aLIGO and AdVirgo [32, 33, 34, 2].
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The expectations for such a Bayesian analysis are enormous, if one even naively
compares its sensitivity with bounds coming from the most stringent tests that
are currently available. If the double pulsar measurements [251, 231] for the

orbital period decay PK parameter Ṗb
Pb

are naively translated into the amplitude

and phase ppE parameters {α, a}, {β, b} (see [393]),

|α| ≤ δ

2ηc(πMcf)a
, |β| ≤ 5

48|b||b− 1|
δ

ηd(πMcf)b+5/3
(4.13)

then bounds on the latter can be derived, based on the uncertainty δ ' 0.017 of
the measurement. Setting η = 0.249703,Mc = 1.12525M� and f = 2.263842976
×10−4 Hz, which are the observed values for the double pulsar, and neglecting
eccentricity, one obtains the excluded region for the phase amplitude |β| as a
function of the phase exponent b to be the grey shaded region of Fig. 4.2. As
we shall see in the following chapters, the phase sensitivity of GW detections
is so high, that a similar bound for BNS will fall several orders of magnitude
below these double pulsar bounds. The coloured circles in Fig. 4.2 represent the
estimated single-source sensitivity of TIGER, the Bayesian pipeline that will be
described in Chapter 5, assuming a network of two aLIGO and one AdVirgo de-
tectors at design sensitivity. These bounds are estimated in Sec. 6.5 for violations
of GR in the 0.5PN, 1PN, 1.5PN, 2PN and 3PN level, and will get even tighter
as information from more than one detected sources is combined. The exact
meaning of the quoted δχi parameters will become clear in the next chapter. On
the lower left panel of Fig. 4.2 the same bounds are plotted directly in the δχ
parametrization. Results of our analysis on the first detection, the high-mass
BBH signal GW150914 [24], are also shown in a similar plot (bottom right) as
the orange squares and, for 0.5PN onwards, represent (by orders of magnitude)
the most stringent constraints on violations of GR to date.

Notice how this BBH event tends to outperform the expected single-source BNS
bound at high PN order, but can still be significantly improved at low PN order
with the detection of BNS signals (the Newtonian order bound is actually weaker
than the binary pulsar tests). Indisputably, this is due to the fact that BNS
systems are observeable since much earlier in their inspiral, and for a longer time
at low frequencies and slow orbital velocities; therefore these yield considerably
more information on the low-PN regime.
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Figure 4.2: Top: Parameterized violations of GR: shaded region is excluded based
on observations of the double pulsar (reconstructed from [393]). Black curves represent
bounds for different values of d in Eq. (4.13). Colored circles show estimated bounds from
a single BNS detection and analysis with TIGER, for GR-violations at 0.5PN (black),
1PN (purple), 1.5PN (blue), 2PN (red) and 3PN (green) order in the phase. Quoted
δχi values correspond to relative shifts in the PN phase terms, i = 3b + 5. Bottom:
(left) the same bounds in a parametrization based on the post-Newtonian inspiral phase
coefficients; (right) our recent analysis on GW150914 resulted in the bounds shown in
orange squares [24]. Due to the small number of inspiral cycles observed, we still cannot
beat the binary pulsar tests at Newtonian order, but already at 0.5PN our new bound is
a factor of 10 better than the existing bound, but the ones at higher orders are beating
pulsar binaries by many orders of magnitude (∼ 109 in the case of 3PN).
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Chapter 5

TIGER: Test
Infrastructure for
GEneral Relativity

What is especially striking and
remarkable is that in fundamental
physics a beautiful or elegant theory is
more likely to be right than a theory
that is inelegant.

Murray Gell-Mann

Given a set of GW signals from compact binary coalescence, one would like to
test the consistency of the observed data with GR. In the absence of a particular
preferred alternative theory, it is a challenging task to attempt to compare GR
against “anything else” in a realistic and computationally feasible way. It is how-
ever possible, given the knowledge of the family of signals considered, to devise
a test of the GR hypothesis, against a modGR hypothesis that is generic enough
to accommodate the important features of virtually any promising alternative.

In the post-Newtonian approximation discussed earlier, the dominant (22)-mode
of the gravitational waveform is given by an evolving amplitude and a PN-
expanded expression for the phase evolution. Here (22) refers to the l = 2,
m = 2 eigenfucntion, in the (−2)-spin-weighted spherical harmonic decomposi-
tion −2Y l,m of the GW tensor field [353]. Any alternative theory of gravity will
predict a modified expression for the evolution of the amplitude and/or phase.

Here one should note that the amplitude as an observable explicitly depends on
the extrinsic parameters of the system (distance, inclination, sky location, polar-
ization) with respect to the detectors. This introduces a number of degeneracies
within a common pre-factor, as can be seen in Eq. (2.9). In addition, during the
evolution of a binary with non-aligned spins, the observed inclination and polar-
ization angles may change due to precession, which will introduce modulations in
the amplitude (see e.g. Fig. 2.1). Further information that would un-correlate the
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different parameters that enter the GW amplitude could in principle be obtained
by measuring the higher order modes [360, 361, 279]. It is however unlikely that
such a measurement will be significant with second generation GW detectors, and
for stellar-mass coalescences, since the amplitude of the leading 0.5PN correction
due to a factor of v/c is roughly one order of magnitude smaller for most of the
visible inspiral.

The phase evolution on the other hand, gives a rich structure to the waveform,
and as an observable is a quantity that follows the rapid angular evolution of
the binary orbit (in fact, the 22 phase grows twice as fast as the orbital phase).
In terms of detection methods based on optimal filtering and Bayesian inference
methods for both model selection and parameter estimation, the accurate de-
scription of the phase evolution up to the highest available post-Newtonian order
is crucial, since the matching between waveforms is very sensitive to de-phasing.
It is important to keep the total number of GW cycles accurate to the level of
O(1) cycles.

We thus choose to build our modGR hypothesis on deviations from the GR-
predicted phase evolution. For PN waveforms, it is straightforward to devise a
parametrization of possible deviations, by modifying the GR-predicted values of
the phase PN-expansion coefficients {ψi}. We parametrize these deviations by
the relative shifts δχi

ψGRi → ψi = ψGRi (1 + δχi) (5.1)

in any of the i-th PN phase coefficients.

Alternatively, a different choice could be a phase-only version of the more general
ppE parametrization, where one or more additional terms of the form ψppE =
ψGR(1 + βηd(πMcf)b) are introduced in the phase, with arbitrary magnitude β
and frequency and η exponents b, a. This is a generic model which can in fact
accommodate a huge variety of alternative models, it is however too generic to
be used as a realistic model for data analysis, since each such term introduces 3
additional free parameters.

5.1 The ‘I’ of the TIGER

We now move to a more technical discussion regarding the details of the TIGER
method. Since this is essentially a Bayesian model selection method, it is neces-
sary to carefully

• define the competing hypotheses and express them in terms of well defined
model hypotheses,

• define the parameter manifold ΣH for each model hypothesis H,

• assign prior probability densities p(θ|H, I) on each parameter space,
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• define the likelihood function p(d|θ,H, I), for each model hypothesis,

• assign a prior probability P (H|I) to each hypothesis.

5.1.1 Definition of the hypotheses

Even though TIGER is not tied to a particular waveform model and can in
principle be formulated with any parametrized family, it will be instructive for
the purposes of the current work to quote the general class of inspiral post-
Newtonian waveforms as a working example.

Waveform model The model waveform for the GR hypothesis should ideally
be the best CBC template that is available to us. However, given the computa-
tional budget that a Bayesian analysis with expensive template waveforms would
require, one needs to settle for less accurate but sufficiently realistic waveforms.
In the current study the stationary phase approximation is employed and this is
shown to be good enough for BNS systems (cf. Sec. 2.4). It is a frequency-domain
template family, often referred to as TaylorF2 and falls within the general class
of PN inspiral templates. Regarding the spin parameters, TaylorF2 can only
accommodate aligned spins, as shown explicitly in Eq. (2.45) and thus does not
feature amplitude modulations or any other precession-related effects.

In terms of the order in the post-Newtonian framework, the GW amplitude will
be restricted to Newtonian order 1, while the phase will be expanded to the high-
est known order which is currently 3.5PN, unless stated otherwise. The former
truncation means in particular that higher harmonics will not be considered here
and the signal consists of the dominant (22) mode alone. For a discussion on
higher harmonics see e.g. [48] and references therein.

HGR

The GR hypothesis postulates that the data of each detector comprises noise ñ(f),
which is described by a random variable (independent identically distributed with
respect to time) in Rnbins following a p.d.f. that is defined by a given noise power
spectral density as explained in Sec. 1.6, plus a GW signal h̃GR(f) coming from
a CBC of undetermined parameters, which is described by a GR waveform. The
parameter space ΣHGR for HGR is the standard 15-dimensional space for CBC
(see p. 26), parametrized by

~θGR = {m1,m2, ~s1, ~s2, D, α, δ, ι, ψ, tc, φc} . (5.2)

The data are then modelled in the frequency domain for each detector as

d̃(f) = ñ(f) + h̃GR(f ; ~θGR), (5.3)

1This is also known as restricted TaylorF2.
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while it is understood that the noise ñ(f) is independent among non-co-located
detectors. Moreover, even though the intrinsic part of the signal is common in
all detectors, the final GW strain waveform h̃GR(f ; ~θGR) itself is derived through
a transformation according to the detector’s antenna pattern and the extrinsic
parameters of the source, as in Eq. (1.75), (1.80).

Considering for example SPA waveforms, h̃GR(f) takes the form of Eq. (2.28)
where all post-Newtonian phase coefficients have the GR-predicted functional
dependence on the intrinsic parameters of the system, as in Eq. (2.29) and (2.45).
2

HmodGR

The modGR hypothesis postulates that the data of each detector comprise noise
ñ(f), which is described in the same way as in HGR, plus a GW signal com-
ing from a CBC of undetermined parameters, whose waveform is modelled by
an extended version of the GR template, where an arbitrary subset of the test
coefficients do not have the GR-predicted functional dependence on the intrinsic
parameters.

The latter statement can be translated into the corresponding relative shifts δχi
being non-zero. The word “arbitrary” in the above definition is of great signifi-
cance and implies that the modGR hypothesis is not tied to a model waveform
with a fixed number of extra parameters. This flexibility overrides the danger
of our modGR hypothesis being penalized by Occam’s razor, without sacrificing
our sensitivity to GR violations. If one gave the modGR hypothesis a fixed large
number of free parameters, a Bayesian model selection analysis would penalize
the large prior volume of the unnecessary degrees of freedom and would favour
the much simpler GR hypothesis, even with a slightly worse match. On the other
hand, if one decided to use a particular extension of the parameter space that is
too minimal, one may lose sensitivity to possible violations of GR. Instead, we
chose to formulate the modGR hypothesis as a composite one with parameter
spaces of different dimensionalies being explored.

The parameter space is extended by subsets of NT additional free parameters
which will from now on be referred to as the test coefficients. These are the
relative shifts δψi in the PN coefficients of the phase mentioned in Eq. (5.1). It is
not defined here, what the number of test coefficients should be and which subset
of the known phase PN coefficients should be let free to shift. These choices

2The reader should recall that for TaylorF2 in particular, the dimensionality of the parameter
space is reduced to d = 11, since only (anti-)aligned spins can be considered. In this case the
spin vectors Eq. (5.2) should be replaced by spin amplitudes s1, s2. Moreover, in part of the
investigations that follow, for simplicity non-spinning binaries are considered, in which cases
the parameter space will be the restricted 9-dimensional

~θrestr = {m1,m2, D, α, δ, ι, ψ, tc, φc} . (5.4)
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will be further discussed in Sec. 6.3. For now, we can proceed with the general
formulation where the above details are not yet specified.

The reader should keep in mind that currently the number of PN phase coef-
ficients is 7, that is, the most general deviation from GR within the current
truncated expansion has 7 additional degrees of freedom. This would signifi-
cantly enlarge the parameter space Σ′ and give a lot of redundant freedom to
the waveform. Again, choosing to use an unnecessarily large parameter space for
defining an alternative hypothesis is usually not a good idea, since even though
it has a bigger chance of closely representing the true signal , the actual gain in
knowledge on the nature of the signal will be poor. In more technical terms, the
extra contribution in the evidence, coming from the region of the parameter space
in Σ′\ΣHGR where the likelihood takes values larger than what was obtained on
the peak of ΣHGR , will be diffused away due to the large integration volume.
So even if the augmented model fits the data slightly better for some values of
the extra parameters, the simpler model with less degrees of freedom will still
be preferred if the difference is not significant enough. This is a realization of
Occam’s razor in Bayesian model selection.

With this in mind one would prefer to opt for a rudimentary extension of the GR
model. On the other hand the modGR hypothesis still needs to remain generic
enough to fit as much of the infinitely many possible violations of GR as possible.
This highlights the importance of letting the subset of test coefficients that are
postulated to violate GR be arbitrary.

We now split the modGR hypothesis –with a set of NT test coefficients {δχ1, . . . ,
δχNT }– into a complete set of logically disjoint sub-hypotheses as

HmodGR =
∨

I∈P{1,...,NT }
HI (5.5)

where I = i1i2 · · · ik is a collective index with im corresponding to a test coefficient
index and PX denotes the power set (the set of all subsets) of X.3

In the above expression the model corresponding to each of the sub-hypotheses
HI extends the GR model by a subset I of the test coefficients. For instance, in
the SPA approximation this is thus described by the model waveform

h̃HI (f ; ~θHI ) = A eiΨHI (f ;~θHI )

ΨHI (f ; ~θHI ) = ΨGR(f ; ~θGR) +
3

128η

∑
i∈I

ψi δχi(πMf)
i−5

3 (5.6)

where ~θHI = ~θGR ⊗ (δχi1 , . . . , δχik) belongs to the extended parameter space
ΣHI ' ΣHGR

× Rk.

A similar definition for the HmodGR hypothesis and for the models of its sub-
hypotheses can be made for time-domain PN waveforms using the corresponding
phase PN coefficients.

3For example, if NT = 2, then P = {{1}, {2}, {12}} and the HmodGR decomposes to
H1 ∨H2 ∨H12. Note that we exclude the empty set, which would simply correspond to HGR.
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5.1.2 Likelihood and Evidence

One of the central ingredients for setting up a proper statistical analysis is the
definition of the likelihood function. The explicit form encodes our best guess
about the noise, or in other words about the behaviour of our instrument and its
environment. For each individual detector I, the likelihood for the observed data
d̃I to occur in the frequency domain, given a system with parameters ~θH within
the model hypothesis H, is given by Eq. (3.12), i.e.

p(d|~θH , H, I) = e−
1
2 (d̃I−h̃H |d̃I−h̃H) = e

−2<
{∫∞

0
df

h̃∗H d̃∗I
Sn(f)

}
, (5.7)

where H will be HGR or any of the HI . The likelihood of the noise being the
only component of the data is of course derived by setting the signal to zero.

In Sec. 3.4.1 we saw how the evidence for a hypothesis is obtained from the
likelihood function. For HGR the calculation of the evidence

P (d|HGR, I) =

∫
ΣHGR

d~θHGR
p(d|~θHGR

, I) p(~θHGR
|HGR, I) (5.8)

is performed by means of a numerical integration over the standard parameter
space ΣHGR

using e.g. the nested sampling algorithm described in Sec. 3.3.2.

For HmodGR on the other hand, the evidence will in practice have to be calculated
for each sub-hypothesis HI individually as

P (d|HI , I) =

∫
ΣHI

d~θHI p(d|~θHI , I) p(~θHI |HI , I), I ∈ P{1,...,NT } (5.9)

where the numerical algorithm samples the extended parameter space ΣHI using
the appropriate model waverforms Eq. (5.6).

5.1.3 The odds ratio

For the purpose of model selection, evidences of different hypotheses are compared
and together with the prior ratio form the odds ratio for model selection. In this
section we will work towards explicitly defining the odds ratio for TIGER which
will be our main statistic that we can actually calculate.

Recall from Sec. 3.4.1 that the odds ratio between our competing hypotheses
HGR,HmodGR, given a set of data d, is defined by the ratio of the hypotheses’
posterior probabilities:

OmodGR
GR =

P (HmodGR|d, I)

P (HGR|d, I)
. (5.10)
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Since HmodGR is decomposed into a set of disjoint sub-hypotheses, we can re-
express the odds ratio as

OmodGR
GR =

P (
∨
I∈P{1,...,NT } HI |d, I)

P (HGR|d, I)
=

∑
I∈P{1,...,NT }

P (HI |d, I)

P (HGR|d, I)
. (5.11)

This is a sum of 2NT − 1 terms, since the empty-set sub-hypothesis corresponds
to HGR and is not taken into account.

Using Bayes’ law Eq. (3.8), one may recast Eq. (5.11) as

OmodGR
GR =

∑
I∈P{1,...,NT }

P (d|HI , I)

P (d|HGR, I)

P (HI |I)

P (HGR|I)
, (5.12)

turning the odds ratio into a sum of likelihood ratios or Bayes factors times prior
ratios. The prior ratios may be further simplified if we agree on assigning the
same prior probability to each of the GR-violating sub-hypotheses, i.e. setting

P (HI |I)

P (HGR|d, I)
=

P (HJ |I)

P (HGR|d, I)
=

α

2NT − 1
, ∀I, J ∈ P{1,...,NT }, (5.13)

while still keeping the overall prior ratio P (HmodGR|I)
P (HGR|d,I) = α arbitrary. Then the

common prior ratio drops out as a prefactor and we obtain

OmodGR
GR =

α

2NT − 1

∑
I∈P{1,...,NT }

BIGR, (5.14)

which is an average of Bayes factors times an arbitrary scale α that quantifies our
prior belief that GR is violated in a measurable way. It is useful to already note
here that our final results will be invariant with respect to this arbitrary constant
(see discussion on background and efficiency in Sec. 6.2.2). This is the general
form of our odds ratio, which will become more explicit through the calculation
of Bayes factors for a single source or multiple sources in the following sections.

Single source

The data for a single detected source s consists of a set of n data-streams
{dAs }A∈{1,...,nIFO} (one for each interferometer A), which for simplicity will be
collectively denoted by ds. The odds ratio for a single source is then calculated
as in Eq. (5.14), where the Bayes factors read

BIGR =
P (d|HI , I)

P (d|HGR, I)
=

∫
ΣHI

d~θHI p(d|~θHI , HI , I)πHI (
~θHI )∫

ΣHGR
d~θHGR p(d|~θHGR ,HGR, I)πHGR(~θHGR)

. (5.15)
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Catalogue of n sources

One of the strongest virtues of TIGER, and of Bayesian data analysis in general,
is the straightforward way in which data from different events may be combined
into a single overall result. Consider the scenario where after a certain time of our
instruments being operating, our detection algorithms suggest that a number n of
individual sources {s1, . . . , sn} were detected at different times, with sufficiently
high confidence. Based on the above calculations, we know how to calculate the
odds ratio for each source individually; we now wish to derive the odds ratio
between HGR and HmodGR for a catalogue of n sources.

Let us denote entire observed data by (n)d and the stretch of data related to
each individual source by dsi ,∀i ∈ {1, . . . , n}. The evidence of the data being
measured under a hypothesis H is then given by a joint probability

P ((n)d|H, I) = P (ds1 , . . . , dsn |H, I). (5.16)

Assuming that the data from the individual sources si are pairwise independent
from each other4, one can make use of the multiplication rule of independent
events, turning the joint probability P (ds1 , . . . , dsn |H, I) of the entire observed
data (evidence) into a product of single-source evidences

P ((n)d|H, I) =
∏

i=1,...,n

P (dsi |H, I). (5.17)

We thus define the multi-source odds-ratio for a catalogue of n sources as

(n)OmodGR
GR =

P (HmodGR|{dsi}i=1,...,n, I)

P (HGR|{dsi}i=1,...,n, I)
=

α

2NT − 1

∑
I∈P{1,...,NT }

(n)BIGR.

(5.18)
The catalogue Bayes factors are defined as

(n)BIGR =
P ({dsi}i=1,...,n|HI , I)

P ({dsi}i=1,...,n|HGR, I)
=

∏
i=1,...,n

P (dsi |HI , I)

P (dsi |HGR, I)
(5.19)

where we made use of Eq. (5.17). We can now recast Eq. (5.18) as

(n)OmodGR
GR =

α

2NT − 1

∑
I∈P{1,...,NT }

∏
i=1,...,n

P (dsi |HI , I)

P (dsi |HGR, I)
(5.20)

4That is, the sources themselves are un-correlated and the time of arrival of the GW signals
are well apart from each other. The former assumption is practically a trivial one, while the
latter will most likely be satisfied for second generation GW detectors, as the rate of CBC
detections is expected to be too low for signals to overlap [9].
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Example As a simple example scenario, consider the case where we use NT = 2
test coefficients, δχ1 and δχ2, and we want to derive the odds ratio for a catalogue
of n = 4 independent sources {s1, s2, s3, s4}. The modGR hypothesis is then
decomposed into the set of sub-hypotheses HmodGR = H1 ∨ H2 ∨ H12, and the
multi-source odds ratio for the four sources yields

(3)OmodGR
GR =

α

3

∑
I∈{1,2,12}

∏
i=1,2,3,4

P (dsi |HI , I)

P (dsi |HGR, I)
(5.21)

=
α

3

[
P (ds1 |H1, I)

P (ds1 |HGR, I)

P (ds2 |H1, I)

P (ds2 |HGR, I)

P (ds3 |H1, I)

P (ds3 |HGR, I)

P (ds4 |H1, I)

P (ds4 |HGR, I)

+
P (ds1 |H2, I)

P (ds1 |HGR, I)

P (ds2 |H2, I)

P (ds2 |HGR, I)

P (ds3 |H2, I)

P (ds3 |HGR, I)

P (ds4 |H2, I)

P (ds4 |HGR, I)

+
P (ds1 |H12, I)

P (ds1 |HGR, I)

P (ds2 |H12, I)

P (ds2 |HGR, I)

P (ds3 |H12, I)

P (ds3 |HGR, I)

P (ds4 |H12, I)

P (ds4 |HGR, I)

]
.

5.2 Sensitivity in modified phase coefficients

Let us now estimate the changes in the waveform that a relative shift in one of
the phase PN coefficients would induce, for a typical BNS system with zero spins.
This will give us a rough estimate on the sensitivity of TIGER with respect to the
different phase PN coefficients. First we observe the special properties of some
of the terms in the expansions of Eq. (2.29) and 5.6:

• The 0.5PN term is zero in GR (ψ1 = 0). This does not trivially hold
for alternative theories of gravity. It is thus impossible to parametrize a
relative shift in this term, so one needs to define a shift in absolute value,
if necessary.

• The 2.5PN term is the turning point in the expansion where the frequency

dependence f
i−5

3 switches from negative powers of f to positive powers. The
term itself (i = 5) is an overall constant and is thus completely degenerate
with the phase at coalescence parameter φc in the SPA.

• Tail effects, which will give the first hints of GR non-linear self-interaction
that have ever been measured, enter at 1.5PN in ψ3 [389, 100]. This is the
same order in which the leading order spin-orbit effects appear, as discussed
in Sec. 2.4.2.

• At 2PN, the leading order spin-spin effects appear, as well as the spin-
induced “quadrupole-monopole” (QM) terms; both of them however are
expected to be very small for slowly spinning neutron star components.

• The first unknown term is at 4PN order, the would-be ψ8. This however
is again not measurable, since it goes as ∼ f and would be completely
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degenerate with the 2πftc term in the SPA Eq. (2.29), that is with the
time of coalescence parameter. The consideration or GR-violating shift of
such a term would only result to a bias in the estimation of the arrival time
of the signal to O(1) ms (assuming a value of the order ψ6).

• Leading order tidal effects, due to the NS’s finite-sized matter distribution,
enter at 5PN with a very large pre-factor (see Sec. 2.6.1) which makes
them a potentially measurable source of bias for TIGER if not accounted
for. The point-particle 5PN contribution is not yet known. The impact of
tidal effects as nuisance in our TIGER analysis will be studied in Sec. 7.2,
while a dedicated analysis on the measurement of tidal effects will be the
subject of Part III.

With a closer examination of Eq. (5.6) one observes that modifying different
phase coefficients with the same relative shift will induce effects of different sizes
in the waveform. This occurs both because of the differences in the values of the
PN coefficients themselves, and the differences in the frequency dependence for
each term in the expansion. The plot in Fig. 5.1 summarizes the rate at which
the total number of GW cycles changes, with a modification of any of the phase
PN coefficients, as a function of η. The total number of cycles Ntot is calculated
as in Eq. (2.31) starting from 20 Hz and going up to the frequency of LSO, and
has a linear dependence on each of the relative shifts δχi. For example, this
means that, according to the first plot of the sequence, a 10% deviation in the
1PN coefficient ψ2 will modify Ntot by ∼ 11 cycles. The result scales with the

chirp mass as Mc

i−3
5 and here we have fixed it to the value of a typical BNS

system Mc = 1.22M�.

It is clear that the waveform is more sensitive to modifications of phase coefficients
of lower PN order. The overall sensitivity of a post-detection analysis to such
modifications will most essentially depend on how much the waveform changes
“in the bucket”, that is, in the frequency range where the detector is the most
sensitive. This is more appropriately illustrated by a change in the number of
useful cycles, given by Eq. (2.33) where the density of waveform cycles is weighted
by a signal amplitude-over-noise measure.
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Figure 5.1: (a) Evolution for the phase terms of different PN order with frequency, for
a BNS system of (1.4, 1.4)M�. (b) The change in the total number of GW cycles Ntot
per unit (100%) deviation of each phase PN coefficient ψi, starting from fmin = 20 Hz
and going up to fmax = fLSO = 1

π63/2M
. The chirp mass is fixed to 1.22M� and the

results scale as Mc

i−3
5 .
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Chapter 6

Performance of
TIGER with BNS
signals

Gravity keeps my head down
Or is it maybe shame
At being so young and being so vain

Manic Street Preachers

As a proof of principle, we now turn to assessing the performance of the TIGER
method under a simplified scenario, involving the analysis of data from a set of
detected binary neutron star signals, with a network of three second generation
GW interferometers. Our preference towards analyzing signals from BNS inspi-
rals in particular is twofold: on the one hand, based on astrophysical observations
we are certain that these sources do exist and we have good reasons to believe that
they will be among the most frequently observable kinds (see expected detection
rates in Sec. 2); on the other hand, we know that the available post-Newtonian
waveform models are reliable and accurate enough (with good faithfulness and
effectualness as defined in [114]) within the region of parameter space that covers
BNS systems. The expected distribution of NS masses, according to the avail-
able population of pulsars falls within a narrow range, which restricts the mass
ratio parameter to comparable-mass values. Furthermore, there is observational
evidence that neutron stars are slowly spinning objects (in comparison with a
typical black hole), with χ < 0.02 in existing measurements [248] and a strict
theoretical upper bound of χ . 0.7 [188, 187]. This too allows us to restrict
to a well behaved region of the spin parameter space where existing waveform
models can be safely used as templates. Possible issues may however arise due
to matter effects of unknown magnitude, since the properties of NS matter are
largely uncertain. This discussion is postponed to Chapter 7.
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6.1 Construction of a background of GR sources

6.1.1 Motivation

In spite of the rigour with which the above Bayesian analysis has been set up, one
will in practice need to be extra careful when claiming an apparent consistency
of the data with GR or a discrepancy thereof. If one takes the raw numbers cal-
culated for the odds ratios at face value, one’s analysis is sure to be vulnerable to
systematic errors introduced by a number of uncontrollable factors. This is par-
ticularly evident in the case of CBC data analysis, where the high dimensionality
of the parameter space requires sophisticated algorithms that may sacrifice some
accuracy in favour of computational efficiency. It is clear from Eq. (5.15) that
the calculation of the odds ratio itself involves numerical integration processes
over high-dimensional spaces. This fact alone introduces a sizeable error [365]
estimated to be of order O(1) in the logarithm of OmodGR

GR . Furthermore, the
complexity of the problem of solving the two-body problem in GR does not lead
to a single accurate analytical description but is treated perturbatively as in the
PN formulation, where different approaches lead to different balances between
computational speed and accuracy. Since the analysis implicitly assumes that
the noise spectrum is given, additional sources of systematics may be present,
related to features in the instrumental noise that are difficult to understand and
may vary with time. A number of such effects will be studied extensively in
Chapters 7, 8.

For the moment it is enough for the reader to realize the necessity of constructing
a background distribution for our statistic OmodGR

GR , populated by a number of
sources that are consistent with GR. Knowing what TIGER would yield if GR
was the true underlying theory will help with assessing the significance of a real-
life measured value for the odds ratio. The reader should also observe that the
waveforms used as simulated signals (injection waveforms) do not need to (and
in principle should not) belong to the same waveform family that is optimally
used for analysis (recovery waveforms). The background will then pick up any
waveform discrepancy as a potential violation of its GR approximation, which will
have an impact on the width and shape of the distribution. One is therefore free
to choose the most realistic set of waveforms available, however computationally
expensive, to be used for simulating the true waveform as accurately as possible,
and leave any potential disagreements with the recovery waveforms to feature in
the background distribution.
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6.2 Statistical assessment of a measurement

6.2.1 Definition of the false alarm probability and signifi-
cance

In Sec. 6.3 and 6.3.1 we will establish a simple background distribution for our
statistic OmodGR

GR , against which a real measurement can be compared. One may
then move on to simulating sets of BNS sources within a scenario where the true
underlying theory of gravity gives a phase evolution different from GR. After
calculating an odds ratio for a catalogue of such sources, we may then contrast
the result against the pre-calculated background and see whether we can indeed
classify –with good confidence– our observed sources as non-GR.

We will quantify our confidence for a non-GR measurement by means of a false
alarm probability (FAP), which is calculated as the fraction of the background
that lies above a given catalogue’s calculated value. This is essentially the same
procedure as calculating a p-value in a frequentist analysis. In particular, for a

measured log-odds ratio (n)OmodGR
GR of a catalogue of n sources, the significance

β, or the false alarm probability (FAP) 1 − β for it to be interpreted as a GR
violation is defined as

1− β =

∫ ∞
OmodGR

GR

dOmodGR
GR P (OmodGR

GR |κ, I) (6.1)

=

∫ ∞
lnOmodGR

GR

d lnOmodGR
GR P (lnOmodGR

GR |κ, I) (6.2)

Given a finite number of simulations, there will always exist a value above which
the measured FAP is exactly zero. Theoretically however, in the limit of infinitely
many measurements, the tails of the background distribution should extend to
infinity. For reasons of scientific consensus it is customary to agree upon a FAP
threshold, in the order of ∼ 1% or less, or equivalently a significance of ∼ 99%
or more. This threshold β0 can be mapped to a threshold O0 in the odds ratio
statistic, defined implicitly by

1− β0 =

∫ ∞
lnO0

d lnOmodGR
GR P (lnOmodGR

GR |κ, I). (6.3)

The chosen β0 threshold is usually referred to as the significance level at which
the measurement or non-measurement of a violation is quoted. Any measure-
ment lying above (below) the threshold value O0 will be quoted to be violating
(consistent with) GR at a β0 significance level, or with FAP less than 1 − β0 .
This is depicted schematically in Fig. 6.1.

6.2.2 Measurability of a GR-violating scenario

In the above discussion we were concerned with contrasting a real measurement
against a populated background. Let us now assess how measurable a given type

97



6

Chapter 6. Performance of TIGER with BNS signals

lnOmodGR
GR

p
(l
n
O
m
od
G
R

G
R

)

ln
O

0

ln
O

V
io

la
ti

n
g
 G

R
 w

it
h
 F
A
P
<

1
−
β

0

measurement

GR background
FAP=1−β0

Figure 6.1: Schematic description of a background distribution for lnOmodGR
GR (solid

curve bounding hatched region). A FAP of 1−β0 (represented by the purple shaded area
under the curve), defines a threshold value O0 for the odds ratio (dashed vertical line).
The red X marks a measurement O that falls beyond the threshold (grey region) and
therefore does violate GR at a β0 significance.

lnOmodGR
GR

p
(l
n
O
m
od
G
R

G
R

)

ln
O

0

V
io

la
ti

n
g
 G

R
 w

it
h
 F
A
P
<

1
−
β

0

GR background
FAP=1−β0

GR-violating scenario
Efficiency ζβ0

Figure 6.2: Schematic plot similar to Fig. 6.1, but now showing the efficiency ζβ0

(red shaded region) of a GR-violating foreground distribution (red solid curve bounding
hatched region) with respect to the background and for a given FAP 1 − β0. The fore-
ground represents the probability density of measuring a OmodGR

GR value, assuming that
the underlying theory gives a particular violation of GR.
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of deviation from GR will be, at some significance level β0. By populating a
foreground of simulated catalogues we can estimate the probability of classifying
a catalogue of this nature as a non-GR catalogue with FAP less than a given
threshold 1 − β0. This probability will be referred to as the efficiency ζ for a
type of GR violation and is a feature of both the background and the type of
GR-violation.

Formally, we define the efficiency ζβ0 at a FAP 1 − β0, given a background
GR population κ that defines the threshold O0, and a foreground GR-violating
population κ′ as:

ζβ0 =

∫ ∞
lnO0

d lnOmodGR
GR P (lnOmodGR

GR |κ′, I) (6.4)

This quantity will be calculated for a few individual scenarios of GR violations
listed below (without however referring to any particular alternative theory of
gravity), and is represented schematically by the shaded area under the red fore-
ground in Fig. 6.2. It is also of interest to see how the efficiency for a given
scenario evolves with the number of sources per catalogue. Naturally, the ex-
pected behaviour is that of an increasing efficiency with catalogue size, reaching
the value 1 in the limit of infinitely many sources and assuming no significant
biases being present. More explicit results will be shown towards the end of this
chapter.

6.3 Setting up a simple background

In what follows we construct a simple background for the TIGER odds-ratio
which we eventually compare against values calculated for sets of GR-violating
sources. For the moment our configuration will be minimal, as we will work in
a restricted 9-dimensional parameter space, setting the component spins to zero.
For BNS systems this is not too far from reality; according to the population of
observed NS in binaries to date, the dimensionless spin parameter at the time
of coalescence should fall within a narrow range around zero, with the fastest-
spinning known case estimated to have χ ' 0.02 [248]. However, neutron star
spins introduce additional features in the waveform that cannot be matched with
restricted templates; we shall return to spinning systems in Chapter 7.

Let us assume a population of sources with an astrophysically realistic set of
characteristic properties, such as mass distribution, location, etc, which we will
collectively denote by κ. Each simulated source that enters our analysis is con-
sidered to be an i.i.d. random variable sampled from the population described
by κ. When constructing a background, we also assume κ to be consistent with
GR, i.e. that the GW signals emitted by those sources are described by our
best guess of a GR waveform model. The background distribution for lnOmodGR

GR

pertaining to a κ population can then be formally expressed as the real p.d.f.
P (lnOmodGR

GR |κ, I).
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In practice we numerically populate the background distribution by simulating
data from a large enough set of sources (or catalogues of sources) that complies
with κ and estimating the odds ratio lnOmodGR

GR (or ln (n)OmodGR
GR ) for each of

these datasets. Let us now describe the properties of the first simple background
that we will populate and use as the minimal example that demonstrates the
performance of TIGER. Apart from the algorithm that will be used, which is
the nested sampling algorithm implemented in LAL as described in Sec. 3.3.2,
what also needs to be defined are the assumptions to be used for generating the
simulated signals (injection) and the analysis template waveforms (recovery).

Simulated signals Here we describe the properties κ of the set of simulated
sources that will populate the GR background. In this study we shall only con-
sider zero-spin BNS sources, with component masses ranging in mi ∈ [1, 2]M�.
In principle there is no reason why neutron stars of mass as high as ∼ 3M�
should not exist, and in fact there is recent evidence of an observed pulsar with a
mass marginally larger than 2M� [155, 239]. 1 However, hardly any among the
candidate models for NS matter allows for the existence of even more massive
NS. On the other hand, theoretical limits on the lowest possible NS mass may
be as low as 0.1M�, but the lowest observed value that is relatively precise (in
a binary) is currently 1.05+0.45

−0.11M� for PSR J1518+4904B2 [167, 282, 227]. The
component masses m1,m2 will be sampled from a uniform mass distribution in
[1, 2]M�.

Regarding the distance parameter r the sources will be distributed uniformly in
volume, in other words, p(r)dr ∝ dV = 4πr2dr and so p(r) ∝ r2. The distance
range will be set to [100, 400] Mpc, so that a) overly optimistic events at distances
smaller than 100 Mpc and for which the expected rate is < 0.5yr−1 are excluded,
and b) the volume that is covered extends approximately to the absolute horizon
for BNS, that is expected to be reached by a second generation network of aLIGO
and AdVirgo detectors at design sensitivity.

Having excluded the possibility of a BNS system coalescing within the Milky Way
neighbourhood (rate estimated at RBNS ∼ 10−8 − 10−5Mpc−3yr−1 or RBNS ∼
10−6 − 10−3yr−1 per MWEG [9]), there is no reason to prefer one particular
direction in the sky over another. Therefore, we sample the sky location angular
parameters (θ, φ) from a distribution that is uniform in the celestial sphere, i.e.
cos θ is uniform in [0, 1] and φ is uniform in [0, 2π].

A different educated way of distributing the sources in both distance and sky
location, would be by making use of galaxy catalogues, whereby observed galaxy
sky-locations and redshifts contribute as δ-functions to the angular distribution

1PSR J0348+0432 discovered in 2007 at ra: 03h48m43s.639, dec: +04o32′11.458′′. Its mass
was measured at 2.01 ± 0.04M� by using radio timing and white dwarf spectroscopy on its
companion.

2ra:15h18m16s.799084(16), dec:+49o04′34.25119′′(16)
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and distance respectively3. There are two main reasons why one may find this
to be a waste of effort: 1) the galaxy catalogue is only partially complete at such
large distances and 2) for the sky-resolution of second generation interferometers
the galaxy distribution is effectively smeared out to a more or less uniform one.

As for the remaining binary parameters, the inclination and polarization angles
(ι, ψ) are also sampled uniformly in the 2-sphere that they parametrize and the
phase at coalescence is distributed uniformly in [0, π) 4. There is no need to define
a particular time distribution, other than requiring that the different simulated
signals do not overlap with each other and may thus be processed independently.
Given the expected rates for aLIGO and AdVirgo this is a realistic assumption.

The waveform model that will be used for simulating the signals will be the SPA
based TaylorF2 approximant described in Sec. 2.4, which is generated analytically
in the frequency domain. Only the dominant (22)-mode will be simulated, since
it is known that higher-order modes will not contribute significantly in the case
of BNS systems. This would not trivially hold if we considered for example
BBH systems [360] where higher order harmonics may play a crucial role in the
context of Bayesian analysis (if a secondary mode is excited with a significant
amplitude e.g. larger than 10% of the (22)-mode, then a single-mode analysis
would yield systematically biased results). We only consider Newtonian order in
the amplitude but we include all terms up to 2PN in the phase expansion. An
overview of the set-up for simulated injections is given in Table 6.1.

Parameter Range Unit P.D.F. Topology

m1 [1, 2] M� 1M−1
� linear

m2 [1, 2] M� 1M−1
� linear

r [100, 400] Mpc ∝ r2 linear
θ [0, π] rad ∝ sin θ spherical
φ [0, 2π] rad 1

2π

ι [0, π] rad ∝ sin ι spherical
ψ [0, 2π] rad 1

2π

ϕc [0, π] rad 1
π circular

Table 6.1: Summary of population priors used for generating the simulated sources.

Analysis template and priors For the purpose of analyzing the data, we
need to specify the details of the template waveforms that will be used by nested
sampling, as well as the parameter space and prior p.d.f. defined over it. As with
the simulated signals we shall employ the frequency domain TaylorF2 approxi-
mant expanded up to 2PN order in the phase and to leading order in amplitude.

3Here the best available estimate for the cosmological parameters can be taken into account,
in order to translate redshift into luminosity distance. However, the BNS horizon is at z ' 0.1
which only gives a minor correction compared to the measurement uncertainty.

4Note that the range of φc only covers half a circle. A system with φc is degenerate to the
same system with φc → φc + π and mA ↔ mB
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The parameter space ΣGR will be the 9-dimensional space spanned by the set of
restricted (zero-spin) CBC parameters given in Eq. (5.4). As for the prior p.d.f.

π(~θ) = p(~θ|I), ~θ ∈ ΣGR it will be defined as the product of nine one-dimensional

prior p.d.f.s on the individual components; that is, the different components of ~θ
will be treated as independent parameters. In particular

• for the component massesmA, A = 1, 2 we use a fixed rangemA ∈ [1, 34]M�,

a Jeffreys prior5 on the chirp mass, π(Mc) ∝Mc
−11/6 and a uniform prior

on the symmetric mass ratio η. This choice is fairly wide and only reflects
the fact that the detection pipeline should have already tagged the event
as a low-mass CBC trigger;

• for the distance r we choose to use a prior uniform in volume π(r) ∝ r2 in
the range [1, 1000] Mpc, which encloses the entire detectability region of an
aLIGO-AdVirgo network for the chosen mass range;

• for the sky-location angles (θ, φ) we use a prior uniform in the sphere;

• for the orientation angles ι, ψ (inclination and polarization), we use a prior
uniform in the sphere;

• for the phase at coalescence ϕc we use a uniform prior π(ϕc) = 1
π and

finally,

• for the time of coalescence tc we use a uniform prior π(tc) = 10 s−1 with a
range of 0.1 seconds around the true time of coalescence. This is slightly
wider than the time resolution with which the detection pipelines are ex-
pected to output trigger data from a BNS event. It is also much wider than
the largest possible time lapse within the LIGO-Virgo network δtLV ' 27
ms, or between any two detectors located anywhere on Earth, δtmax ' 42.6
ms.

Technical details Finally, let us describe the technical details behind the nu-
merical computations. The main computational framework on which TIGER is
based and developed is the LIGO Algorithm Library (LAL) and its implementa-
tion of Nested Sampling and other inference algorithms, an updated version of
which is thoroughly described in [364]. The properties of a network of the three
detectors (longitude, latitude, orientation of the two arms and antenna pattern),
are faithfully simulated based on the actual aLIGO Hanford, aLIGO Livingston
and AdVirgo Cascina detectors and summarized in Table 6.3. The noise part of
the data output for each detector is simulated in the frequency domain using syn-
thetic Gaussian noise, according to the estimated noise PSDs of the zero-detuning

5The Jeffreys prior is a non-informative choice of prior, which has the desireable quality of
being invariant under reparameterizations [217, 216].

102



6

6.3. Setting up a simple background

Parameter Prior Range Unit Prior P.D.F. Topology

m1 [1, 34] M� π(Mc) ∝Mc
−11/6 linear

m2 [1, 34] M� π(η) = const linear
r [1, 1000] Mpc ∝ r2 linear
θ [0, π] rad ∝ sin θ spherical

φ [0, 2π] rad 1
2π rad−1

ι [0, π] rad ∝ sin ι spherical

ψ [0, 2π] rad 1
2π rad−1

ϕc [0, π] rad 1
π rad−1 circular

tc [tinj − 0.05, tinj + 0.05] s 10 s−1 linear

Table 6.2: Summary of parameter priors used for the Monte Carlo analysis with Nested
Sampling.

high-power (ZDHP) configuration of aLIGO and the signal-recycling (SR) con-
figuration of AdVirgo shown in Fig. 1.4. The signal waveform is also generated
directly in the frequency domain (TaylorF2). In both cases, the sampling rate
used for the datasets was fs = 4096 Hz which is one fourth of the actual sampling
rate of the interferometers’ hardware. This particular power of 2 was chosen as a
golden mean between computational cost and resolution, since: i) computational
cost scales linearly with number of bins and ii) the Nyquist frequency for this
sampling rate is fN = fs

2 = 2048 Hz, which is high enough to prevent aliasing in
a CBC signal. The calculation of the signal starts at flow = 20 Hz and termi-
nates at fhigh = fLSO, cutting off any contribution from the merger or ringdown
stage. The signal is then added coherently to the three output data-streams after
calculating its time of arrival (TOA) at each detector and transforming it by the
corresponding antenna pattern Eq. (1.80). The TOAs of the signal are calculated
by individually shifting its nominal time of coalescence tc by the wavefront’s time
lapse between each detector and the center of the Earth. As for the Bayesian
analysis algorithm itself, we use nested sampling with 1024 live points and 100
MCMC points, and a termination condition on the evidence difference dZ < 0.1.
An overview of the set-up for the simulations is given in Table 6.4.

6.3.1 Simple Background: numerical results

A total of 1422 sources were simulated and are represented by their signal-to-noise
ratio and their (logarithmic) TIGER odds ratio in the scatter plot of Fig. 6.3,
among which 1267 survived the SNR cut-off of ρnet > 8. In terms of the odds
ratio they yield the background distribution histogram illustrated in the central
panel of Fig 6.3 that approximates P (lnOmodGR

GR |κ, I) for single sources. Note
that a significant part of the background distribution falls within positive values,
despite being populated by GR-consistent GW signals. This large pool of sources
was partitioned into 15-source catalogues, whose combined odds ratios Eq. (5.18)
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Figure 6.3: Top: Scatter plot showing the SNR and log-odds-ratio for 1422 GR
sources. The shaded area includes the rejected events beneath the network SNR thresh-
old ρnet = 8. Center: Histogram for the single-source odds ratio background distribution
P (lnOmodGR

GR |κ, I). Bottom: Histogram for the multi-source odds ratio background dis-
tribution P (ln (15)OmodGR

GR |κ, I) for catalogues of 15 sources each. In both histograms,
the vertical line shows the log-odds threshold for a FAP of 5% (β = 0.95).
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6.4. Results

IFO PSD λ [deg] ϕ [deg] ϑ [deg]
H ZDHP -119.407656 46.455144 126
L ZDHP -90.774242 30.562894 -18
V SR 10.5050 43.631389 71

Table 6.3: Location and orientation of aLIGO Hanford (H), aLIGO Livingston (L)
and AdVirgo (V) detectors. Here, λ represents the longitude, ϕ is the latitude and ϑ is
the angle between the detector’s Y-axis and the local meridian.

fs fN flow fhigh Nlive NMCMC Termination
4096 Hz 2048 Hz 20 Hz fLSO 1024 100 dZ < 0.1

Table 6.4: Parameter choices used in the Nested Sampling algorithm.

were calculated and yield the corresponding background distribution histogram
shown in the bottom panel of Fig. 6.3, that approximates P (ln (15)OmodGR

GR |κ, I).
The expected widening of the background distribution is observed and by the end
of this chapter we will have witnessed how combining information from multiple
sources makes a decisive difference in detecting a violation of GR.

6.4 Results

6.4.1 Measuring a 1.5PN violation of 10%

As a first GR-violating example, we consider a parameter-independent deviation
δχ3 = 0.1, that is a relative shift of 10% in the 1.5PN phase coefficient ψ3. We will
refer to this scenario as Alt1. It is an interesting scenario in its own right, since
1.5PN is the leading order in which one encounters contributions of tail effects.
These are induced by the scattering of waves off the approximately Schwarzschild
background metric close to the source. Our ability to measure GR violations at
this level will signify the first test of the non-linear dynamics of GR.

A set of 851 individual BNS sources with δχ3 = 0.1 is simulated and coherently

added in detector noise for the same network of 3 detectors (HLV). Similarly to
the population of the background, the prior distribution on the source parameter
space is a product of the priors listed in Table 6.1. Here too, sources with ρnet < 8
are excluded from the analysis.

6.4.2 Some more GR-violating scenarios

Following the exact same steps as in Sec. 6.4.1, we will now examine the perfor-
mance of TIGER under several different deviations from GR:
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Figure 6.4: Same as Fig. 6.3, but now comparing the background (blue) against the
corresponding distributions for the GR-violating scenario Alt1 (red), where the 1.5PN
phase coefficient ψ3 is increased by 10%. The resulting efficiency ζ0.95 at 0.95 signifi-
cance level is 0.89 for the single-source distribution and practically 1.0 for catalogues of
15 sources (see Fig. 6.6 for error bars).
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6.5. Expected bounds on parametrized deviations

• Alt2 : a parameter-independent (constant) shift of 2.5% at 1.5PN, i.e.

δχ3 = 0.025 (this is the same as Alt1 of Sec. 6.4.1 only 4 times smaller)

• Alt3 : a constant shift of 20% at 2PN, i.e. δχ4 = 0.2 . This particular

modification mimics the effect of gravity theories with a quadratic curvature
correction [394].

• Alt4 : an additional parameter-independent phase term that does not be-
long to the standard PN-expansion and has a frequency dependence of
(πMf)−5/6. This can be translated as a “1.25PN” term and is given a

coefficient ψ2.5 = −2.2 so that the induced phase shift at 150 Hz in the

waveform is of a similar magnitude to that of Alt1 (∼ 6 rad).

• Alt5 : a non-PN term with a parameter dependent frequency exponent

(πMf)
−2+ M

3M� that spans a behaviour from 0.5PN (when M = 2M�)

up to 1.5PN (when M = 4M�). This too is given a pre-factor such that its
effect on the phase has roughly the same magnitude as Alt1.

The five foreground distributions Alt1-Alt5 for the single-source odds ratio are
plotted against the single-source background in the left panels of Fig. 6.5. Fur-
thermore, Fig. 6.5 shows the foreground and background distributions for
(15)OmodGR

GR , the combined odds ratio for catalogues of 15 sources each. Observe
how the difference between the magnitude of the GR-violation in Alt1 (dark red)
and Alt2 (green) is translated into their distinguishability from GR.

Finally, the efficiencies of each foreground at a threshold β0 = 0.95 and β0 = 0.99
(FAP of 5% and 1% respectively) are plotted as a function of catalogue size in
Fig. 6.6. The error bars represent the statistical error estimated by sampling
1000 different realizations of partitioning the set of available sources into (mutu-
ally disjoint) catalogues. At a 95% significance level, most of these GR-violating
scenarios are almost perfectly distinguishable from GR after combining informa-
tion from the detection of roughly 10 sources. The exception is Alt2, where the
2.5% shift in ψ3 is too weak; many more sources will be required in this case in
order to have a confident result that favours a violation of GR. If one raises one’s
requirements for a stronger significance of 99%, then one would need roughly 30
sources to decisively identify Alt3 as a GR-violation.

6.5 Expected bounds on parametrized deviations

Since a generic GR violation will not give a constant deviation across all sources,
in any parametrization scheme, parameter estimation is not a safe approach in a
testing GR setting. Nevertheless, we are interested in estimating how accurately
a parametrized deviation from GR can be measured using a single source alone.
Moreover, if TIGER gives no indication of GR being violated, one can start
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Figure 6.5: Comparison between the simple GR background of Sec. 6.1 and the 4
different GR-violating scenarios Alt2-Alt5 (top to bottom). Left: single-source distri-
butions for P (lnOmodGR

GR |κ, I) (blue) and P (lnOmodGR
GR |κAltX , I). Right: distributions

for P (ln (15)OmodGR
GR |κ, I) (blue) and P (ln (15)OmodGR

GR |κAltX , I), for catalogues of 15
sources each.
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Figure 6.6: The efficiency at a significance level β0 = 0.95 (top) and β0 = 0.99 (bot-
tom) as a function of catalogue size. The error bars show the 95% confidence intervals
for 1000 realizations of partitioning the available set of sources into catalogues. We no-
tice that the efficiency reaches 100% with 10-20 sources, for all GR-violating scenarios
except for Alt2, for which we see a slowly ascending trend.
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considering putting upper and lower bounds on the non-GR parameters δχi.
This is also a heuristic way of estimating the discriminatory power of GW data
analysis, and comparing it against earlier measurements, such as bounds set by
pulsar binaries.

In Fig. 6.7 we show results from a series of simulations in the network of AdVirgo
and aLIGO, where the signals are consistent with GR (i.e. the true values of
all non-GR parameters are zero), and where the template waveforms used for
recovery have one additional free parameter δχi, indicated in the legend. To
match the expectation for the first years of operation, we use the early advanced
sensitivity curves of Fig. 1.5 and we restrict the analysis to relatively weak signals,
of optimal SNR between 10 and 15. We perform this test for δχ1, δχ2, δχ3, δχ4,
and δχ6 (but not δχ5, due to its known degeneracy with ϕc, see Sec. 5.2). The
results show figure-of-merit estimates on the resolution of such a PE analysis on
a single source, with δχ1 being measurable to ∼ 0.02 (absolute deviation) and
the relative deviations δχ2, δχ3, δχ4 and δχ6 being measurable to a ∼ 10%,
∼ 10%, ∼ 100% and ∼ 300% level respectively. The distribution of effect-size
errors based on the median of the posterior samples in each case, i.e. the offset
from zero divided by the 1-σ posterior error width ∆δχi, are also shown in the
right panels. These crude estimates allow us to fill in the corresponding points
in Fig. 4.2.

parameter 68% CI width 95% CI width effect size

δχ1 0.009 0.017 0.21
δχ2 0.065 0.12 0.01
δχ3 0.07 0.11 -0.98
δχ4 0.63 0.96 0.60
δχ6 1.37 2.65 0.54

Table 6.5: Median values for 68% and 95% confidence interval (CI) width and effect
size error (p.d.f. median/standard deviation) for the five relative shift parameters.

6.6 Outlook

In this chapter we have established a proof of principle for our Bayesian model
selection framework of testing GR with gravitational wave signals from compact
binaries and in particular BNS systems. In the presence of noise, it is not guaran-
teed that the right model will always be favoured, so a careful statistical study is
required. This was done with the construction of a GR background distribution,
against which a given set of observations will be compared. Finally, a set of GR-
violating scenarios were simulated and the efficiency of TIGER in distinguishing
them from GR was evaluated. Overall, we conclude that, even for violations that
cannot be faithfully described by the freedom in the waveform models of the
modGR subhypotheses, a non-GR scenario is correctly identified, provided (as a
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rule of thumb) that its cumulative effect on the waveform phase is in the order
of a few radians. This happens because the free extra parameters will rearrange
themselves in order to accomodate the peculiarity of the signal in an optimal
way, one that the pure GR model fails to match. Furthermore, we have observed
that the sensitivity increases as expected with the number of detected signals.

There are however many challenges that so far remain unexplored. In all of the
above simulations we have restricted ourselves to non-spinning, point-particle,
SPA inspiral signals, embedded in perfectly Gaussian and stationary detector
noise. In the following chapters, we will proceed with evaluating the performance
of TIGER in increasingly realistic scenarios, before establishing TIGER as a
working pipeline for GW data analysis in the advanced detector era.
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Figure 6.7: Distribution of the width of 95% confidence intervals (left) and effect size
errors (right) for sets of GR runs, where in the recovery templates a single relative shift
parameter δχi is left free to vary.
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Chapter 7

TIGER in a realistic
setting

You can prove anything you want by
coldly logical reason—if you pick the
proper postulates.

Isaac Asimov - I, Robot

7.1 Introduction

In the previous chapter we established a proof of principle for TIGER by con-
structing a simple background for GW signals from BNS sources and assessing
the measurability of a few different GR-violating scenarios. We will now study
the performance of TIGER in an increasingly realistic setting where a number of
different effects will be taken into account in the simulated signals. The purpose
of this chapter is to test the robustness of the TIGER method against a number
of uncontrollable effects of fundamental, astrophysical or instrumental nature,
that could bias our inference if not accounted for.

In particular, in addition to what was described in Sec. 6.1, the behaviour of the
background under the following effects will be studied in turn:

• Waveform discrepancies: Even for binary neutron star coalescence, there
are small differences between the various waveform approximants that are
available. Since TIGER is specifically designed to find anomalies in the
signals, we must make sure that these discrepancies, however minor, are
not mistaken for violations of GR.

• Post-Newtonian truncation: Post-Newtonian waveforms are only available
up to 3.5PN in phase. What might be the effect of unknown PN contribu-
tions?
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• Neutron star spins: The dimensionless spins of neutron stars in binaries
are generally expected to be quite small, but the resulting spin-orbit and
spin-spin effects will nevertheless need to be taken into account, at least
to leading order in both the simulated signals and the recovery templates.
Ignoring the effects of neutron star spins in the phase evolution will prove
to have a severe impact on the efficiency of TIGER.

• Tidal deformations: In the final stages of inspiral, neutron stars get de-
formed because of each others tidal fields. This has an effect on the orbital
motion, which gets imprinted onto the GW signal waveform. The size of
these tidal effects is determined by the equation of state (EoS) of neutron
star matter, about which currently not much is known. Can we avoid mis-
taking unknown tidal effects for a violation of GR?

• Instrumental calibration errors: The calibration of the instruments will be
imperfect, leading to frequency dependent uncertainties in the interpreta-
tion of amplitudes and phases. What will their impact be?

• Non-Gaussian, non-stationary noise: So far we have assumed that our
synthetic Gaussian noise, based on a given design PSD, is a faithful repre-
sentation of the real behaviour of interferometric noise. In reality, noise will
neither be perfectly Gaussian, nor will its features be constant over time.
Will our performance be vulnerable to real-life features of the noise?

In the next few sections the above effects will be treated one by one and all will
ultimately be considered in combination. We will be mostly concerned with how
the background distribution is modified by each of the above. In particular, the
last kind of effects, related to real noise will be treated separately in Chapter 8
due to its technical peculiarities. But first, a minimal background needs to be
defined and used as a benchmark against which the results from all the additional
effects will be compared.

7.1.1 Preliminaries

We will first set up a set of simulations in order to populate a benchmark back-
ground distribution. This will be only slightly different from the one used in the
proof-of-principle simulations of Sec. 6.1 in the following ways:

• Both the injection waveforms and the recovery templates will be generated
by using all currently available terms in the PN phase expansion, namely
up to and including 3.5PN. This will minimize possible systematic errors
related to the truncation of our PN models at finite order. In Sec. 7.4 we
shall see whether this is sufficiently good for the purpose of TIGER.

• Our analysis will be terminated with a high-frequency cut-off at fhigh = 400
Hz. The reasons for this have to do with abolishing nuisance matter effects
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of unknown magnitude, such as tidal deformation or tidal disruption. These
will become more clear in Sec. 7.2.

• For a more reliable inference and a better estimate of the evidence, we
double the number of MCMC points for nested sampling to NMCMC = 200.

• Finally, apart from the optimal SNR cut ρnet > 8, an additional condition
will be imposed on the recovered Bayes factor for HGR, which is now re-
quired to satisfy lnBGR

noise > 32. Although in reality the optimal SNR of a
detection candidate will be unknown, this Bayes factor value is to leading
order equivalent with an optimal SNR of 8 which places the source at the
threshold of detectability [366].
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Figure 7.1: The new GR background based on TaylorF2 waveforms at 3.5PN in phase
with a high-frequency cut-off at 400 Hz.

The parameters used to simulate the population were drawn from the same set
of probability densities on the parameter space that were listed in Table 6.1.
Moreover, the prior p.d.f.s used in the analysis with nested sampling are also the
same as those used in Chapter 6, listed in Table 6.2. We thus build our new
benchmark background by simulating a population κB of 1764 GR sources with
the aforementioned properties. The resulting distribution of TIGER odds ratios
for single sources P (lnOmodGR

GR |κB , I), is shown in Fig. 7.1.

7.1.2 The Kolmogorov-Smirnov statistic

The Kolmogorov-Smirnov (K-S) statistic [229, 339] D of a random variable x
for two sets of i.i.d. samples d1 = {Xi}i=1,...,n and d2 = {X ′i}i=1,...,n′ (not
necessarily generated by the same distribution), is defined as the distance between
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Figure 7.2: A schematic representation of the K-S statistic. Left: the histograms of
two sets of samples, d1 and d2. Right: their empirical distribution functions and the
K-S statistic D1,2 as their infinity norm distance.

the empirical distribution functions F1,n and F2,n′ of the two data sets, under
the infinity norm ‖ · ‖∞ = supx | · |, i.e.:

D1,2 = sup
x
|F1,n(x)− F2,n′(x)|, (7.1)

where an empirical distribution function Fn(x) is the (normalized) cumulative
function of the counting of n observation occurrences over x:

Fn(x) =
1

n

n∑
i=1

IXi≤x, IXi≤x =

{
1 if Xi ≤ x
0 otherwise

. (7.2)

This is schematically shown in Fig. 7.2. Note that by definition, 0 ≤ D1,2 ≤ 1.
A small K-S statistic D1,2 � 1 indicates a strong similarity between the two sets
of samples, whereas large differences will yield values of D1,2 ≈ 1.

For the purpose of comparing backgrounds populated under different configu-
rations, we will calculate the K-S statistic for the odds ratio random variable,
OmodGR

GR . 1

7.2 Tidal deformation

Neutron stars are the most compact objects made of matter that are known to
exist. For the purposes of CBC analysis, treating NS as point particles is usually
a good approximation, since any matter effects are estimated to be relatively

1Note that we are not performing a K-S test, which gives a measure of how likely it is that
the two sets of samples originate from the same underlying distribution. In fact we know that
they do not! We are only interested in quantifying the similarity between them.
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Figure 7.3: Comparison between a GR background populated with point-particle in-
jections and one populated with MS1 as the equation of state. In both cases TaylorF2
templates were used to simulate and recover the signal. Left: single-source distributions
for P (lnOmodGR

GR |κtidal, I) (green circle-hatched) and P (lnOmodGR
GR |κB , I) (blue starred).

Right: Empirical distribution function of the same two data sets. The Kolmogorov-
Smirnov statistic takes the value D1,2 = 0.12, quantifying the close similarity of the two
distributions. We thus do not expect tidal effects to be a source of systematic errors in
this treatment.

weak. Nevertheless, the lack of knowledge on the true nature and properties of
NS matter leaves the strength of such effects undetermined by more than an order
of magnitude. In particular, the dominant matter effect on the evolution of a BNS
inspiral is caused by the deformation that the tidal field of each NS imposes on
its companion. These deformations influence the orbital motion, hence modifying
the emitted GW signal. This is described in Sec. 2.6.1. The leading and next-
to-leading order tidal corrections to the waveform (up to fractional 1PN order)

enter the phase with an overall
(
v
c

)5
and

(
v
c

)7
respectively, and are given by the

first two terms of Eq. (2.55)

Ψ1PN
tidal = − 3

128η

(v
c

)−5 2∑
A=1

λA
M5XA

[
24 (12− 11XA)

(v
c

)10

− 5

28

(
3179− 919XA − 2286X2

A + 260X3
A

) (v
c

)12
]
. (7.3)

In this section we will try to estimate the impact of tidal effects on TIGER in a
worst-case scenario.

The undetermined quantities here are the tidal deformability parameters λA,
A = 1, 2 of the two NS or, more conveniently, the dimensionless λ̂A = λA/m

5
A.

These are mass dependent parameters, ranging in ∼ 102− 105 , with the explicit
functional dependence on the mass being determined by the unknown equation
of state. We choose to simulate a population of sources κtidal, assuming one of
the stiffest candidate models, namely MS1 (see Fig. 11.1), to be the true EoS,
inducing strong tidal effects.
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Since the true neutron star EoS is not known, we will use point-particle templates
for recovering the signal. This discrepancy between signal and template may
lead to biases, which we hope to counteract by cutting off the analysis at a
high frequency of 400 Hz, or equivalently at an orbital velocity of v/c ∼ 0.25
and a compactness of GM/(c2R) ∼ 0.07. Hinderer et al. [200] have shown that
with second generation GW interferometers, tidal deformation will not be at all
measurable below 450 Hz. Thus, such a cut-off will relieve us from the best part
of tidal effects in the phase, which occur at high frequencies due to their high PN
order, while at the same time will only cost a loss in SNR in the order of 1%.
Furthermore, any non-perturbative effects which may occur in the late inspiral,
such as tidal disruption of the stars [357, 168] or contact will be also cut off.

After simulating a population of BNS inspirals with the underlying NS EoS being
the stiff MS1, we populate a GR background distribution by analyzing with the
usual point particle templates always cutting off our analysis at 400 Hz. We then
compare against the benchmark background of Sec. 7.1.1 as illustrated in Fig. 7.3.
The two distributions look very much alike and as shown in the right panel, the
K-S statistic is rather small with a value of D1,2 = 0.12. This verifies that with
the current high-frequency cut-off, the most important type of matter effects will
not affect the performance of TIGER. Alternatively, and since the magnitude of
the tidal effects is still unknown, one could even try to marginalize over the λA
parameters within their prior range, in order to reduce possible systematic errors
that arise when using point particle templates.

7.3 Waveform discrepancies

In Section 2.4 we saw how different approaches to performing the post-Newtonian
expansion have led to different waveform models. We also saw how these models
may deviate from one another at different regions of the parameter space [114].

In practice, the Bayesian analysis of the signal must be performed using a tem-
plate family that keeps a good balance between

• being sophisticated and accurate enough to capture all the important fea-
tures of a CBC waveform without introducing fundamental biases and

• being simple enough to be generated fast in the frequency domain.

The second point implies a preference towards templates that are generated di-
rectly in the frequency domain like TaylorF2, rather than time-domain templates
that need to undergo an additional FT stage. However, waveforms that are gener-
ated by numerical methods of differential evolution, and are expected to be more
accurate, are defined in the time domain. In any case, the real gravitational wave
signal will not completely match the template waveforms that we choose to use.

In Chapter 5 we used the TaylorF2 model as a template for the analysis, the
same model that was used to simulate the signal. Here we will investigate to
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Figure 7.4: Comparison between a GR background populated with TaylorF2 injections
and one populated with TaylorT4 injections. In both cases TaylorF2 templates were
used to recover the signal. Left: single-source distributions for P (lnOmodGR

GR |κT4, I)
(purple line-hatched) and P (lnOmodGR

GR |κB , I) (blue starred). Right: Empirical distri-
bution functions of the same two data sets. The distributions are indeed very similar,
with the K-S statistic taking the value D1,2 = 0.07, indicating that our analysis is robust
against waveform-modeling discrepancies.

what extent the use of different models for injection and recovery will affect the
performance of TIGER, and in particular the background distribution, for the
case of BNS sources that we are interested in. We expect that the difference
between our model template and exact GR will have a similar effect. The reader
should recall the results of [114] mentioned in Section 2.4, which show that both
the effectualness and the faithfulness between different waveform models in the
low-mass, zero-spin region of the parameter space, are very close to 1 and in any
case > 0.99. These comparisons include EOB-based waveforms that are tuned
with NR simulations towards the end of inspiral. Overall, we do expect BNS
analysis with TaylorF2 to be sufficiently reliable for our purposes.

It is however crucial to check that such small differences between waveforms
will not be interpreted by TIGER as significant GR violations. To this end, we
simulate a set of injected GR waveforms using the time-domain TaylorT4 approx-
imant, described in Section 2.4, while keeping the frequency-domain TaylorF2 as
the recovery template. A fundamental difference between the two approximants
is that TaylorT4 is based on an adaptive numerical (Runge-Kutta) integration
of the differential equations of motion Eq. (2.20), while TaylorF2 is based on the
assumptions of the stationary phase approximation Eq. (2.29), both calculated to
3.5PN. The setup for the simulations is the same as the one used in Section 7.1.1.
After analyzing 1174 events, the single-source background P (lnOmodGR

GR |κT4, I)
is plotted against the TaylorF2 background of Fig. 6.3 in the left panel of Fig. 7.4.
A background for P (ln (15)OmodGR

GR |κT4, I) for catalogues of 15 sources each, is
also plotted against the corresponding TaylorF2 background, in the right panel.
Judging by the similar shapes of the two backgrounds, it appears that the im-
pact of waveform discrepancies on the performance of TIGER is negligible. To
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Figure 7.5: Comparison between a GR background analyzed by using TaylorF2 @
3.5PN templates (blue starred) and one using TaylorF2 @ 3PN templates (cyan checked),
both cut at 400 Hz. In both cases TaylorF2 @ 3.5PN was used to simulate the signals.
Left: single-source distributions for P (lnOmodGR

GR |κ+PN , I) and P (lnOmodGR
GR |κB , I).

Right: Empirical distribution function of the same two data sets. The K-S statistic
takes the value D1,2 = 0.14, implying a sufficiently small sensitivity to missing higher-
order terms in the phase.

quantify this similarity, we calculate the K-S statistic for the two distributions
to be 0.07.

7.4 Truncation in the post-Newtonian expansion

Apart from the fundamental differences between different approximants and the
exact GR solutions, there is an additional error originating from the incomplete-
ness of the post-Newtonian series. Currently, the phase coefficients are known
up to 3.5PN order, and this is the accuracy with which all our simulations and
waveform comparisons were done so far.

Since at this moment there is no hint at our disposal that would lead to estimates
on higher order PN coefficients, we are restricted to work with the terms that
are already available. One may thus investigate what would have happened if
one had missed the highest available term at 3.5PN, i.e. if one had erroneously
set ψ7 = 0 in the template waveforms. Let us truncate the phase expansion
of the TaylorF2 template used for recovery at 3PN and let κ+PN describe a
population of sources that is exactly the same as the one used in Section 7.1.1.
The new subscript is only there to remind us that the injections are simulated
up to 3.5PN, one term higher than what is used for recovery. In Fig. 7.5 the
new background for P (lnOmodGR

GR |κ+PN , I) is plotted next to the benchmark
background, P (lnOmodGR

GR |κB , I), and it is evident that any effect induced by the
missing PN order is small. In particular, the K-S statistic calculated for these two
single-source backgrounds is DB,+PN = 0.14. This result can also be interpreted
as a very small sensitivity to deviations at 3.5PN order, which is indeed expected,
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in accordance with the discussion of Section 5.2. Note however that weak as it
may be, our sensitivity at 3.5PN order is still many orders of magnitude better
than what was previously achievable with double pulsar observations.

Unless there is a tremendous increase in the values of the coefficients ψi, ψ
(l)
i at

orders of 4PN and higher, one expects that the additional higher-order modi-
fications to the waveform will be less significant than what was missed in the
above scenario, and will mostly affect the high-frequency end of the inspiral. The
fact that NR waveforms cover the late inspiral and that NR-tuned waveforms
show good agreement with their post-Newtonian counterparts further supports
the expectation that the high-order corrections will be small. Finally, recall that
in our analysis the recovery waveforms are cut at 400 Hz. It is thus reason-
able to conclude that, at least within the scope of second generation detectors,
TIGER analysis of BNS signals is safe against biases coming from the missing
high-PN-order effects.

7.5 Instrumental calibration errors

As in any other experiment, the output of GW detectors is subject to errors,
originating from an instrumental mis-calibration of the different hardware com-
ponents. Such calibration errors (CE) are represented as an overall error in
the instrument’s transfer function R(f) which may severely bias any inference
method applied to the data. Nevertheless, the authors of [370] already showed
that CE will not significantly deteriorate parameter estimation or model selection
methods, using a model based on initial LIGO/Virgo measurements. It remains
to be seen whether the impact on TIGER is equally minor.
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Figure 7.6: An example realization of calibration errors in the amplitude (left) and
phase (right) of the output of the three interferometers H1 (red solid), L1 (green dash-
dotted) and V1 (blue dashed), as a function of frequency.

To this end, we populate a set of sources detected with a network of mis-calibrated
interferometers κCE with a different CE realization for each source. The CEs are
simulated separately for each interferometer as errors in both amplitude and
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Figure 7.7: Comparison between GR backgrounds with (brown) and without (blue)
calibration errors in the detectors’ output. Left: single-source distributions for
P (lnOmodGR

GR |κCE , I) and P (lnOmodGR
GR |κB , I). Right: Empirical distribution function

of the same two data sets. The K-S statistic takes the value D1,2 = 0.10.

phase, following the model of [370] that meets realistic expectations. In particu-
lar, we introduce an error in the measured transfer function Rm(f) with respect
to the exact transfer function Re(f) as

Rm(f) =

[
1 +

δA

A
(f)

]
eiδφ(f) Re(f), (7.4)

where the profiles of the amplitude and phase errors are smooth functions of f
with magnitudes in the order of δA/A ∼ 10% and δφ ∼ 3◦ respectively. Errors
in the estimated transfer function act on the data d̃ as multiplicative operators
in the frequency domain and thus induce errors in the interpretation of both the
noise ñ(f) and the signal h̃(f) by the same complex factor

[
1 + δA

A (f)
]
eiδφ(f).

By the definition of the noise PSD in Eq. (1.83), we find that CEs induce an
error in the measured noise PSD Sm(f) with respect to the exact noise PSD
Se(f) = Sn(f), that depends on the amplitude error

Sm(f) ∝ 〈n(f) n∗(f)〉 =

[
1 +

δA

A
(f)

]2

Se(f) . (7.5)

This illustrates how CEs may indeed wither one’s inference methods.

The error-generating process goes as follows: first, we obtain the 1σ CE curves
that were measured during the last science runs of the Initial detectors [8, 26]
(these are summarised in Table II of [370]); next, using these as the 1σ curves of
a Gaussian model for the amplitude δA

A and phase δφ errors, we sample 15 points
in the frequency space; finally, a CE realization is completed by interpolating
these 15 points with a 7th order polynomial in f . An example realization of CEs
that were used is illustrated in Fig. 7.6 for the amplitude and phase errors as
functions of frequency.

The signals are then analyzed under the false assumption of zero CE by using the
same templates as in Sec. 7.1.1. A comparison of this κCE background with the
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benchmark background κB where no calibration errors are present is illustrated
in Fig. 7.7. The K-S statistic in this case yields DCE,B = 0.10, which implies
that the effect of instrumental calibration errors on TIGER is indeed negligible.

7.6 Effect of neutron star spins

Until now all TIGER simulations have been restricted to BNS systems whose
component neutron stars are assumed to be non-spinning. In reality, neutron
stars are observed to be impressively fast-spinning objects, with spin frequencies
reaching e.g. 716 Hz in the case of PSR J1748-2446ad [197]. In the context
of relativistic effects however (see Section 2.4.2), the quantity of interest is the

dimensionless spin parameter ~χ =
~S
m2 which typically takes small values [248],

in the order of O(10−2). The fastest spinning neutron star in a BNS system has
a dimensional spin amplitude χ ∼ 0.02. We thus expect spins in BNS systems
to be small, however the currently available observations of such systems are
few. In our subsequent analysis we will always populate sources by sampling
the component spin-amplitudes χ1, χ2 from a Gaussian distribution centred at
µχ = 0 and with a standard deviation of σχ = 0.02, that is

χA =
|~SA|
m2
A

∼ |N (0, 0.02)|, A = 1, 2. (7.6)

This can be seen as a rather conservative choice, since the spin distribution for
the observed population is much closer to zero.

According to Eq. (2.38), component spins introduce effects that to leading order
enter the GW phase in the 1.5PN coefficient ψ3. It is interesting to observe
that this is the exact same order at which tail effects become measurable. It
thus becomes even more important that the spin effects be accounted for in the
recovery and disentangled from potential modifications of GR. The need for spins
in the recovery templates will become more clear in the following sections.

Introducing spin parameters for both components increases the dimensionality of
the parameter space to 15. Needless to say, this extension gives a richer structure
to the waveform space and puts a heavy burden on the analysis algorithm. In-
terestingly enough, an efficient way to capture the essential modifications of the
spins may be possible by restricting the spins ~S1, ~S2 to be aligned/anti-aligned

with the orbital angular momentum ~L. In what follows, we shall examine how the
presence of both (anti-)aligned and generic spins in the simulated signals affects
the TIGER background and its efficiency in discriminating a 1.5PN GR violation
from spin effects.
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7.6.1 Aligned spins

Let us now extend the restricted 9-dimensional CBC parameter space to the
11-dimensional spin-aligned :

~θaligned = ~θrestr ⊗ (χ1, χ2) , χA ∈ [−1, 1] . (7.7)

We are now dealing with binaries in which each component may have a non-zero
spin, which however is restricted to be parallel to the orbital angular momentum,
i.e. ~si = χiL̂ ‖ ~L. The two additional spin parameters χ1, χ2 are the spin
magnitudes, with the sign indicating whether the orientation is the same (aligned)
or opposite (anti-aligned) to L̂. As a first test we consider a population of GR
sources κχ with (anti-)aligned spins sampled by using the amplitude distribution
of Eq. (7.6) and with a 50-50 probability on each spin being aligned or anti-aligned

with ~L. For a better comparison with previous results we choose to stick with
TaylorF2, since it can accommodate (anti-)aligned spins as shown in Eq. (2.45).
We will have to abandon this choice in the next section where generic precessing
spins will be considered.

As for the template used for recovery, let us examine two different cases:

S0 (no spins): The same TaylorF2 template that was used in Sec. 7.1.1, using
the same priors and with the restricted parameter space of Eq. (5.2) that
assumes zero spins.

SA (aligned spins): A SpinTaylorF2 template with the extended parameter
space of Eq. (7.7) and with a flat prior in the spin-amplitude range χA ∈
[−0.1, 0.1]2. Other than this extension, it has the same properties as S0.

In Fig. 7.8 we compare the two backgrounds constructed by analyzing the aligned-
spin population κaligned with the templates of S0 and SA, with the benchmark

background of Sec. 7.1.1 as reference. This is shown for single-sources and for
catalogues of 15 sources. The corresponding K-S statistic for the single-source
backgrounds compared against the benchmark background gives 0.33 for S0 and
0.05 for SA. Evidently, if one omits the spin parameters in the analysis of BNS
signals, one loses much of the sensitivity in detecting a possible GR violation.
On the other hand, if (anti-)aligned spins are accounted for, the background
distribution is very much the same as the benchmark background where no spins
were considered at all. Let us now see if this statement will still hold if the
population of sources has generic spins that are not restricted to a particular
orientation.

2Note that in principle the prior range may only go up to 0.7 which is roughly the upper
limit where the most compact NS reaches its break-up point. Less compact NS will already
break up at spin values χA < 0.7.
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Figure 7.8: Comparison between background analysis with S0 and SA templates, for
a population κaligned of sources with aligned spins. Left: single-source distributions
P (lnOmodGR

GR |κχ, I) for S0 (grey) and SA (blue). The tail of S0 is clearly visible and
is due to the attempt of recovering signals with spin using zero-spin templates. Right:
Empirical distribution function of the same two data sets. The K-S statistic between S0
and either SA or the no-spin benchmark background is quite high, DB,S0 = DSA,S0 =
0.33. However, aligned-spin recovered with SA is very similar to no-spin benchmark
background, DB,SA = 0.05.

7.6.2 Generic precessing spins

An astrophysically realistic population of BNS sources should have no restrictions
on the orientations of the component spin vectors. It thus seems like a reasonable
choice to sample the spin orientations uniformly in the 2-sphere, parametrized
by the angular coordinates (θ~χA , φ~χA) with respect to the direction of the orbital

angular momentum ẑ = L̂N and an arbitrarily chosen x-axis perpendicular to ẑ
(e.g. the intersection of the orbital plane with the lign of sight). Unlike the (anti-

)aligned case, where the spin axes remain aligned with ~LN throughout the entire
evolution of the binary, in the generic case, the spins will undergo precession,
due to the spin-orbit and spin-spin interactions of Eq. (2.35). The strength of
this precession effect crucially depends on the magnitude of the spins’ off-axis
components and their relative orientation. Our choice of spins will therefore have
to correspond to a particular reference time during the binary evolution, which we
choose to be tinit, the time when the (22)-mode of the signal crosses the flow = 20
Hz low end of the sensitivity band of our detectors.

The probability density on the fully precessing parameter space that will be used
for simulating the sources, will then be the product of

• a p.d.f. on the standard non-spinning CBC parameters,

• the Gaussian p.d.f. of Eq. (7.6) on the spin amplitudes χA, i = 1, 2,

• a uniform density on cos θ~χA ∈ [0, 1],

• a uniform density on φ~χA ∈ [0, 2π).
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Figure 7.9: Comparison between background analysis with SA templates, for a κχ
population of BNS sources with aligned spins based on SpinTaylorF2, and a κ~χ pop-
ulation of BNS sources with generic (precessing) spins based on SpinTaylorT4. Left:
single-source distributions P (lnOmodGR

GR |κχ, I) and P (lnOmodGR
GR |κ~χ, I). Right: Empir-

ical distribution function of the same two data sets. The K-S statistic takes the value
D1,2 = 0.06.

To simulate signals with arbitrary precessing spins a different approximant than
SpinTaylorF2 will be used, namely the time-domain SpinTaylorT4, whose spin
coefficients are described in Sec. 2.4.2.

Based on the results of Sec. 7.6.1, it is already clear that recovering with zero-
spin templates is not a good idea. On the other hand, extending the parameter
space in the recovery to include arbitrary spins would significantly increase the
computational cost, possibly without yielding a proportional amount of informa-
tion [371]. Hence we will attempt to use the same aligned-spin template of SA
that was used in the previous section. The spin-aligned recovery template will
not be able to capture any feature of precession such as amplitude modulation
(which for small spins are anyway expected to be too weak to make a measurable
difference in the waveform). It can however match the main features of the phase
evolution introduced by spins.

The results of this analysis are illustrated in Fig. 7.9 and give a clear indication
that for the analysis of a BNS population with arbitrary precessing spins, it is
enough to use an aligned-spin template. The additional features of non-aligned
spins are absorbed in the background but seem to be too weak to modify signif-
icantly. In particular, the K-S statistic between the generic-spin κ~χ background
and the aligned-spin κχ, both recovered with the aligned-spin SA template, gives
Dχ,~χ = 0.08. From a practical point of view, this is a very successful step towards
establishing the good performance of TIGER under realistic conditions.
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Figure 7.10: Comparison between background analysis with SA templates, for a κχ
population of BNS sources with aligned spins based on SpinTaylorF2, and a κall popula-
tion of BNS sources based on SpinTaylorT4, with generic (precessing) spins, tidal effects,
and calibration errors incorporated. Left: single-source distributions P (lnOmodGR

GR |κχ, I)
and P (lnOmodGR

GR |κall, I). Right: Empirical distribution function of the same two data
sets. The K-S statistic takes the value D1,2 = 0.05.

7.7 Robustness against a combination of effects

So far, TIGER has been shown to perform consistently well under a list of un-
controllable effects of astrophysical (NS spins, precession, tidal deformation), in-
strumental (calibration errors) or fundamental nature (waveform discrepancies,
post-Newtonian truncation). Here, a combination of the effects introduced above
will be adopted, and a new background based on the most realistic assumptions
will be populated. Finally, the efficiency of TIGER in a particular GR-violating
scenario will be assessed, by analyzing a simulated set of realistic non-GR sources.

This final robustness test will be set up by using a population κall of sources,
whose GW signals

• feature tidal effects based on a stiff equation of state (MS1), up to next-to-
leading order (5PN, 6PN in phase),

• feature effects of spins sampled from a narrow spin amplitude distribution
(N (0, 0.02)) and of random orientation,

• are modelled by a different waveform approximant (SpinTaylorT4) than the
one used for recovery (SpinTaylorF2) and

• undergo instrumental calibration errors before being represented in the out-
put data stream.

The resulting background distribution of P (lnOmodGR
GR |κall, I) is shown in Fig. 7.10

and is compared against the almost identical GR background with aligned spins of
κχ. In addition to the GR background, we also populate a set of non-GR sources
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κ′all with all the above properties but with an additional parameter-independent

−10% shift at 1.5PN in the expansion of Eq. (2.44) as

dv

dt
(v) = GPP (v) + Gtidal(v) + δξ3α3(m1,m2, ~S1, ~S2)v12 , (7.8)

with δξ3 = −0.1 denoting the relative shift at 1.5PN. This will provide an example
of how TIGER will be able to detect violations of GR with all the above uncon-
trollable effects being present. Again, the data are analyzed with the aligned-spin
SpinTaylorF2 template SA of Sec. 7.6.1 with a high frequency cut-off at 400 Hz.

In Fig. 7.11 we compare the single-source GR background of P (lnOmodGR
GR |κall, I)

(dark blue) and P (lnOmodGR
GR |κ′all, I) (dark red); these are to be contrasted

against the benchmark background P (lnOmodGR
GR |κB , I) of Fig. 7.1. The same for

the odds-ratio of catalogues of 15 sources is shown in Fig. 7.12. The results sug-
gest that the new background is well-behaved and very similar to the benchmark
background. Moreover, the GR violation that was used is clearly distinguishable
from GR after analyzing 15 detected sources, with an efficiency essentially reach-
ing 100% for any FAP within the statistical uncertainty of the available number
of catalogues.
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spin-aligned SpinTaylorF2 template (SA).
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Figure 7.12: Multi-source odds-ratio distributions for GR background
P (ln (15)OmodGR

GR |κall, I) with all effects present (dark blue) and its GR-violating
variant of Eq. (7.8) P (ln (15)OmodGR

GR |κ′all, I), for catalogues of 15 sources each. Both
sets of sources are analyzed by using the spin-aligned SpinTaylorF2 template (SA). The
two are well separated, suggesting that a typical GR-violating catalogue of 15 sources
will be measured way beyond the bulk of the background.
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Chapter 8

TIGER in real data

Knowledge would be fatal. It is the
uncertainty that charms one. A mist
makes things wonderful.

Oscar Wilde

8.1 Introduction

Let us now busy ourselves with the real-life implementation of TIGER and ad-
dress the remaining technical issue of analyzing gravitational wave signals in the
presence of real noise. There are two main features of real noise, in contrast
with the synthetic noise that was used until now, that may further challenge the
discriminatory power of our analysis, namely

• Non-stationarity : the overall behaviour of each instrument in the network
of interferometers will in reality vary over time, yielding a set of PSDs
that vary with time. In any calculation involving the noise-weighted inner
product Eq. (3.3), such as the calculation of the likelihood, a temporary
estimate of each detector’s PSD in the vicinity of the arrival time of each
signal will be necessary. If not, a wrong assessment of the noise may lead
to serious biases in any inference method.

• Non-Gaussianity : a standard assumption used when modelling detector
noise is that a noise realisation is an observation of a random variable
sampled from a product of Gaussian distributions, one for each frequency
bin. This assumed Gaussianity does not necessarily hold in reality, due
to various instrumental effects as well as environmental factors. A few
characteristic categories of non-Gaussianities fall within a general class of
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Figure 8.1: Omega time-frequency spectrograms (see Sec. 8.2.3) of six examples of
glitches. Glitch families are identifiable by their unique time-frequency morphology: a
50 Hz power-line glitch also detected by the magnetometers (top left); a series of glitches
caused by scattered light induced by seismic activity (top middle); a thermal compensa-
tion system (TCS) instability (top right); an airplane event with a clear Doppler effect
(bottom left); a glitch in the laser stabilization loop (bottom middle); and an undefined
shape due to a seismic event up-converted to higher frequencies (bottom right). Auxiliary
channels identifying the glitches are shown as inset plots. Taken from [3].

noise effects termed glitches, which can be described as transient “bursts of
noise”. The identification of such noise effects and their distinction from a
GW signal is a crucial task for a robust analysis.

Moreover, resonant lines have not been taken into account (violin modes, drum
modes, power supply), which may also exhibit non-stationarity. We do not expect
this to affect a broad-band signal such as the BNS signals we consider here.

In this chapter we will see how one would in reality incorporate a time-dependent
PSD estimation and how one would treat the possible presence of glitch-like effects
in the data, both in the context of CBC data analysis. Some of the most familiar
examples of glitch patterns are illustrated in Fig. 8.1 from [3], where their effect
on searches of GW signals is studied.

Notice for example, in the case of the airplane glitch (lower left), the clear corre-
lation between the detector output and the readout of a co-located microphone
sensor. Other types of glitches of different nature may be picked up by a num-
ber of auxiliary sensors/data channels which serve as a useful diagnostic tool for
characterizing the quality of the data. The technical part of this discussion is
the topic of detector characterization (DetChar), a detailed discussion of which
is outside the scope of this dissertation.
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8.2 Data quality and vetoes

There are different ways in which one can deal with bad quality data. If possible
one may try to identify a recurring type of noise or glitch and actively mitigate
the noisy source itself, as is usually done with lab-related resonances. In many
cases however, the noisy source is uncontrollable and most types of glitches occur
unexpectedly. This is why the online detector characterization pipelines are con-
tinuously analyzing the output of hundreds of channels, in order to characterize
data segments and eventually suggest for part of data to be excluded from further
analysis (vetoing).

8.2.1 Veto categories

There are five different levels (categories) of vetoing data, which are listed and
briefly described below. These are ordered in decreasing order of strength with
the most severe being category 1 or CAT1. The interested reader can seek more
technical details in [6, 338].

CAT1 : Obvious problems on the detector. CAT1 periods have to be removed
to redefine the science data.

CAT2 : Noisy periods where the coupling noise source / GW channel is well
established. Triggers are removed before post-processing.

CAT3 : Noisy periods where the coupling is not well understood. The validity
of a GW candidate flagged by a CAT3 should be controlled carefully.

CAT4 : Hardware injections used for sensitivity studies. To be removed from
the GW candidate list

CAT5 : Advisory flags to track problems on the detector but no direct impact
on the GW channel

For selecting good stretches of real data for TIGER simulations, we choose to
exclude anything that is CAT4 vetoed or worse.

8.2.2 Segment types

Apart from the general notion of a segment which is simply defined by a start
time and an end time, we distinguish the following types of segments for a GW
interferometer:

Science Segment A connected time interval during which the detector is in
science mode, i.e. it is operational and in a steady state, with its optical
cavities locked. By convention, the start time of a science segment needs
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to be at least 300 seconds after lock is acquired and the end time at least
10 seconds before lock is lost.

Veto Segment A connected interval within a science segment, during which the
veto conditions for one or more veto categories are satisfied. Depending on
the veto category X ∈ {1, 2, 3, 4}, the segment is tagged as a CAT-X veto
segment.

Unvetoed Segment A connected interval within a science segment that has no
intersection with any veto segment. Similar tagging is applied as for veto
segments e.g. a CAT-4 unvetoed segment does not contain any CAT-4 veto
segments.

Unless stated otherwise, we will always consider the maximal versions of the
above types, that is we will restrict to the longest segments that satisfy the
above definitions.

8.2.3 Omega spectrograms

A quick empirical way to look for glitches in detector data is by inspecting omega
spectrograms [124] like the ones illustrated in Fig. 8.1. These are 2-dimensional
density plots, produced by tiling the time-frequency space and calculating the
normalized energy content of the data in each tile, based on the Q transform.

Given a time series of data x[n], n = 0, . . . , N − 1, the (discrete) Q transform is
defined as the convolution

X[m, l,Q] =
N−1∑
n=0

x[n] w[n−m, l,Q] e−i
2πnl
N , (8.1)

where w[n, l,Q] is a time-domain windowing function of characteristic frequency
l and quality factor Q. Here the windowing function w in its continuous form is
chosen to be the bisquare window, which in the Fourier domain reads

w̃(f, ϕ,Q) =

{
A(1− ( f

∆f )2)2 , if |f | < ∆f,

0 , if |f | ≥ ∆f
, (8.2)

where ∆f = ϕ
√

11
Q is the half bandwidth of the tiling and the normalization

condition gives A2 = 315Q

128
√

11ϕ
. The discrete expression can be obtained by sub-

stituting f → kfs
N , ϕ → lfs

N and A → Af2
s /N

2. This choice of windowing gives
a good finite version of an exponential windowing, without having the pathology
of infinite tails.

Just like the Fourier transform of a signal yields its content of sinusoids of different
frequencies, the Q transform effectively yields its content of burst-like windowed
sinusoids of different frequencies and quality factors. For different values of Q,
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Figure 8.2: Examples of real data omega-scans for an artificial BNS signal of ρ = 13.7
(left) and a NSBH signal of ρ ' 15 (right). The BNS signal is hundreds of seconds long
and the energy that it deposits in the data is so much spread across time that it is not
visible by the naked eye. The higher mass NSBH signal on the other hand is much more
concentrated in time and is clearly visible in an omega spectrogram.

one can apply the Q transform on the output signal of the detector, calculate the
normalized energy for each tile in the time-frequency space and draw the omega
spectogram. The normalization is performed with respect to the expectation
value of the noise energy, according to the currently estimated noise PSD.

The omega spectrograms can give good indications for the presence of bursts of
noise in the data or possibly the presence of a well localized signal. In Fig. 8.2
two examples of omega spectrograms are displayed, where a CBC GW signal was
artificially added in the data and no glitches were present in the noise. The left
panel shows the case of a BNS signal with a single-detector SNR of 13.7, which
however is not visible since, due to the very long duration of the signal in band
(O(100)s), its energy is distributed across many tiles. This is pretty much what
real glitch-free noise would look like. To the right however we see quite clearly
what looks like a chirp signal, which is in fact a hardware-injection of a coalescing
NSBH binary. Notice how the time scale is now much shorter and the waveform
is much better localized, due to the higher total mass of the system, giving a
dense energy deposition in the time-frequency space.

8.3 Estimating the PSD

A reliable estimate for the true noise PSD is of paramount importance for the
purposes of data analysis, since it will affect matched filtering, FAP estimates,
likelihood calculation and any other calculation that involves the noise-weighted
inner product. For the calculation of the PSD one needs to make use of a suffi-
ciently long unvetoed segment of data that is assumed to contain no contribution
from GW signals. Based on the output of detector characterization pipelines, seg-
ments of bad quality data are vetoed and excluded. Furthermore, the different
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search pipelines [2] can guarantee that no signal is present in a given segment.

We require that the data segment from which the PSD is estimated is at least 512
seconds long and falls within O(5) minutes before or after the GW event to be
analyzed, in order to avoid effects of non-stationarity of the noise. The segment
of length lseg seconds is then split into a set of Nseg = b lseg32 c sub-segments of 32
seconds, for which Nseg individual PSDs are calculated Sin(f), i = 1, . . . , Nseg by
means of Eq. (1.83). The final Sn(f) estimate per frequency bin is derived as the
point-wise median of the individual Sin(f).

An example of a real PSD calculation from SR6-VSR2/3 data was shown in
Fig. 1.4. The modelled design sensitivity curves for each detector are plotted
with dashed lines, while the corresponding PSDs estimated from real data are
plotted with solid lines.

8.4 Simulations and results

In this section the performance of TIGER will be tested with data coming from
real detector output. The task is then to populate a GR background distribution
by injecting GW signals from BNS systems into real-noise, unvetoed segments
of LIGO Hanford (H1), LIGO Livingston (L1) and Virgo (V1) detectors. Many
of the unvetoed segments will in fact be too short to either be eligible for a
PSD calculation, or even fit a BNS signal (which can be in band for as long as
∼ 280 seconds for a (1, 1)M� system). Thus, we will be injecting our signals into
segments that are at least 1024 seconds long. Moreover, we will naturally assume
that no real GW signal is present in the data.

8.4.1 Noise

Since none of the second generation GW interferometers was operational during
the time when this study was carried out, there was no real data available from
either aLIGO or AdVirgo. This means that, apart from the modelled sensitivity
curves and some spectral lines that correspond to known resonances, one did
not know in advance what the noise will look like. Nevertheless, one did have
real output data from the initial LIGO and Virgo detectors, which can then be
re-coloured based on the predicted sensitivity curves of their Advanced coun-
terparts [5]. It is not guaranteed that the result will accurately resemble the
actual noise of aLIGO and AdVirgo, since various upgrades have been performed
and new components have been introduced in the Advanced configuration. It
is however an informative first estimate that included both non-stationary and
non-Gaussian features.

For this study we use S6-VSR2/3 data from an extensive 2-month epoch between
GPS times 966383960 (00:00 GMT 21-08-2010) and 971614865 (00:00 GMT 20-
10-2010), which is then re-coloured to follow the early advanced noise curves of
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aLIGO and AdVirgo shown in Fig. 1.5. These correspond to the sensitivities that
are expected to be achieved during the first 4 months of operation (O1). The
science segments of this epoch are then vetoed using the original veto segments
that the detector characterization pipelines tagged as CAT4. We proceed with
the remaining CAT4 unvetoed segments that are at least 1024 seconds long. The
cumulative distribution of CAT4 unvetoed segment lengths for the full 2-month
stretch of data for all three detectors is plotted in the left panel of Fig. 8.3.

Figure 8.3: Top: Unvetoed segments in an example stretch of H1 (left) and L1 (right)
data. V1 data are much more fragmented and are not shown here. Bottom: Cumu-
lative distribution of science (blue) and CAT-4 unvetoed (green) segment lengths for 2
months of data on double H1-L1 (left) and triple H1-L1-V1 (right) time, during which
all detectors were on science mode.

8.4.2 Timeslides

An additional problem in populating a background of thousands of BNS sources
is that of the sparsity of coincident unvetoed time. It will not always be possible
to find thousands of long segments that are simultaneously unvetoed for all three
detectors. This is already clear by looking at the right panel of Fig. 8.3. In order
to solve this issue we can artificially slide the arrival times of the signal at the
three detectors with respect to one another, so that unvetoed segments located
at different times can be combined.

In practice we populate the collections T I = {tI1, tI2, . . . , tInI}, I = H,L, V of
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candidate injection times (one for each detector) and for each source we form a
triple (tH , tL, tV ) by randomly sampling TH , TL and TV respectively. We then
perform the injection at tH , tL and tV in the data-streams of H, L and V respec-
tively (not forgetting to consistently apply the additional time shift with respect
to the center of the earth). The PSD for each detector I is also calculated indi-
vidually using data from the segment that includes tI . By using these timeslides
we significantly enlarge the amount of independent noise realizations on which
the background can be populated.

8.4.3 Real-noise GR background

We are now ready to populate our background distribution in real data. A
total of 631 GR-consistent sources are simulated and injected into S6-VSR2/3
noise, re-coloured to the Early Advanced noise curve for the H1-L1-V1 network
of detectors. Since this is a much less sensitive configuration than the final
ZDHP for aLIGO and the BNS-optimized SR for Virgo, we intentionally lower
the population’s distance range to D ∈ [10, 30] Mpc, so that most of the sources
pass the ρnet = 8 threshold1. In this case no timeslides were used and it turned
out that only a handful of unvetoed segments in triple detector time were longer
than 1024 seconds, so the results that follow come from injections in H1 and L1
only. Other than that, the set-up for the simulated signals is the same as the
one used in Sec. 7.1.1. For the analysis of the data, again the parameter space,
template waveforms and priors used are the ones described in Sec. 7.1.1, again
with the exception of the distance prior which is set within the range [1, 100]
Mpc.

The resulting background distribution of lnOmodGR
GR for single sources is shown

in Fig. 8.4, together with a scatter plot in the ρnet - lnOmodGR
GR plane. In the

latter, the signals recovered with a Bayes factor of GR against noise less than
32 are coloured in gray; these were cut off from the histogram in the bottom
panel. Overall we observe that the background distribution of single-source odds
ratios is similar to the ones we saw throughout Chapters 6,7, with the majority
of sources falling below zero. We do however observe two outlying events, which
will be followed up with a more detailed analysis in Sec. 8.4.4. For FAP values
of 0.05 and 0.01, the corresponding lnOmodGR

GR thresholds are −0.02 and 2.73
respectively. Once the outliers are excluded (which they should, as we shall see
below), the new thresholds become −0.30 and 2.15.

8.4.4 Follow-up analysis of outliers

The diagnostic plots of Fig. 8.5 are generated by the Omega pipeline, based on
the Q transform that was discussed in Sec. 8.2.3. The time-frequency plane is

1Of course the distribution is kept uniform in volume, only the range is rescaled.
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Figure 8.4: A background populated by injecting 631 simulated BNS signals into real
detector noise from S6/VSR3, re-coloured to the Early Advanced noise curve, for a net-
work of two detectors (H,L). Events in single (double) detector time are drawn in green
(blue). Top: a scatter plot showing the distribution of sources in the ρnet - lnOmodGR

GR

plane. Two outliers are clearly visible, which are tagged by their times of coalescence.
Middle: the same plotted zoomed in, without the outliers. Bottom: a stacked histogram of
the background distribution P (lnOmodGR

GR |κ, I) of single-source log-odds ratios in single
(green) and double (blue) detector time. We notice the presence of two clearly distin-
guishable outlying events, one at a log-odds ratio of 40 and one at 289! 139
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tiled according to a minimum acceptable energy mismatch and the normalized
energy of the Q-transformed data is calculated for each tile.

Even though the data segments in which the events were injected were not vetoed,
one should always double check whether the data look reasonably glitch free.
Especially in the case where data are re-coloured to a new noise PSD, there may
be artificial amplifications of glitch patterns that were originally missed by the
data quality algorithms. Such occurrences have shown up in our analysis and we
investigate the data segments enclosing the two most outlying events, injected at
GPS times 967054240 and 968021010.

Figure 8.5: Real data omega-scans capturing glitches that appear within two of the
injections’ data segments. For these events, TIGER yielded an odds ratio of 40 (top)
and 289 (bottom) respectively. Possible glitch candidates in the vicinity of the injections
are shown in the data of H1 (left) and L1 (right). In both cases we can see the presence
of loud glitches in the data.

With a quick look in the Omega pipeline diagnostic plots we immediately find
loud glitches in the vicinity of each event. In particular, L1 data seem to contain
a loud glitch centred at t = 967054216.281s, about 24 seconds before the injected
time of coalescence of the first outlier and lasting for more than 1 s. A weaker
and shorter glitch lasting less than 0.5 s is also found in H1 data 15 seconds
before coalescence. Both seem to be correlated with loud triggers in a number
of the auxiliary channels that hold data from environmental sensors (seismome-
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ters, magnetometers etc). Similarly, during the second outlier another glitch
appears in the data of L1 centred at t = 968021009.801 s and lasting for 0.5 s.
Coincidentally, this places the glitch right on the injected time of coalescence,
which explains the hugely overestimated odds ratio. After cross checking with
the output of the auxiliary channels this glitch seems to be correlated with a loud
electromagnetic event. On the other hand, H1 data seem to be glitch-free with
a possible candidate only appearing 300 s before coalescence, when the signal is
still outside LIGO’s frequency range.

Judging from the above diagnostics alone, it is safe to say that in reality such
events would not have been taken into consideration for full analysis with TIGER.
In a realistic scenario, if such an event occurred, one would exclude it from the
TIGER analysis upon examining the omega spectrograms of Fig. 8.5, because
these loud events are

• too loud for too shortly to be BNS signals,

• morphologically different from the characteristic shape of a chirp signal i.e.
concentrated around a central frequency which is increasing with time, like
in Fig. 8.2,

• correlated with loud events in one or more auxiliary channels,

and would thus be identified as glitches. Furthermore, the Bayesian analysis
algorithms and parameter estimation are affected by the glitches giving unusually
multi-modal posterior distributions. One of the possible consequences of a short
glitch is a strong bias in the mass posteriors, which is in fact what we observe with
the second outlier, whose chirp mass is mis-estimated to be Mc > 8M�. This
is in fact yet another reason why the event would have been rejected, since the
chirp mass posterior p.d.f. lies way beyond the BNS threshold of Mc ≤ 1.3M�.

8.4.5 Future avenues

Different approaches to counteract the existence of glitches in the data are being
considered by the GW data analysis community. The most conservative one has
already been described, namely to completely exclude data segments that contain
glitches from the analysis. In this approach, any detection of a signal that has
an overlap with such a segment will not be followed up with TIGER. A second
approach would be to ignore only the piece of data that is affected by the glitch,
usually referred to as gating. In this case, a detected signal overlapping with a
glitch would in fact be processed, however the contribution of the overlapping
segment to the calculations would be “nullified”.

A third, more ambitious approach is to attempt to fit glitches, based on a set of
parametrized glitch models [135, 247] before proceeding further with data anal-
ysis pipelines. One would then try to remove the glitch by using the best fit
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parameters for the glitch model and subtracting it from the data. Since the du-
ration of a typical glitch is very short (in the order of a second), compared to BNS
signals, and well localized in the time-frequency space, this method can be applied
in many cases without significantly affecting the follow-up analysis of the signal.
Preliminary studies show that glitch fitting can significantly improve parameter
estimation and evidence calculations, successfully removing biases induced by the
presence of glitches.

8.5 Concluding remarks

In the presence of noise, our ability to directly infer the true nature of a sig-
nal is compromised. The success of statistical inference methods that one may
employ relies upon the assumption that the stochastic properties of the noise
are understood. However, long-term variability and unexpected effects in the
noise, mostly due to environmental factors or instrumental misbehaviour, do oc-
cur and may severely compromise our inference methods. Non-stationarity of the
stochastic properties of the noise, seen as the time-variability of the PSD, most
heavily affects very long-duration methods such as continuous-wave (CW) anal-
ysis and searches for stochastic backgrounds. On the other hand, the occurrence
of brief non-Gaussianities (glitches) will severely contaminate the background in
the analysis of short GW signals such as burst search pipelines. Fortunately, our
region of interest falls somewhere in-between. BNS signals last long enough to be
clearly distinguished from short transient effects of noise and much shorter than
the scale of overall variations in the noise PSD.

In this chapter we had an idea of how these two effects of noise can be counter-
acted for our analysis with TIGER and witnessed how severely can instrumental
glitches affect its performance. Since we can never avoid glitches being present
in a large sample of long-duration GW sources, it is important that these are
identified and excluded from the analysis. However, most of the detector char-
acterization efforts are tailored for the purposes of GW searches, and rightly
so. It is then possible that the standards for vetoing a possible glitch event are
good enough for search pipelines but not strict enough for a more thorough data
analysis with sensitive scientific output. Thus, this investigation also raises the
question of a need for an additional veto category, one that is more strict than
CAT4 and ensures the rigorous performance of not only search pipelines but also
full Bayesian PE or MS pipelines.
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OUR LIGO OBSERVATIONS AND WHAT THEY MEAN

On September 14, 2015 at 09:50:45 Greenwich Mean Time the LIGO Hanford and Livingston Observatories both detected a signal from

GW150914. The signal was identified first by what we call low-latency search methods that are designed to analyse the detector data very

promptly, looking for evidence of a gravitational-wavelike pattern but without modeling the precise details of the waveform. These prompt

searches reported the candidate event within only three minutes of the signals arriving at the detectors. The gravitational-wave strain data

acquired by the LIGO interferometers was then compared with an extensive bank of theoretically predicted waveforms – a process known as

matched filtering – with the goal of finding the waveform that best matched the data.

Figure 3 presents key results of these detailed

analyses – all of which firmly point to

GW150914 being produced by the

coalescence of two black holes. The middle

part of the figure shows our reconstruction of

the gravitational-wave strain, as seen by the

Hanford detector. Note, in particular, the

impressive agreement between this pattern

(shown in grey) and (shown in red) a

waveform for two coalescing black holes

consistent with our data, computed using

general relativity.

Images of the black hole horizons at various

stages of this computation are shown at the

top of the figure: the inspiral, as the two

black holes approach each other; the merger
as the black holes join together and the

subsequent ringdown, as the single black

hole that has newly formed briefly oscillates

before settling down.

Comparing the strain data with theoretical

predictions allows us to test whether general

relativity is able to fully describe the event. It

passes this test with flying colors: all of our

observations are consistent with the

predictions of general relativity.

We can also use the data to estimate the

specific physical characteristics of the system

that produced GW150914, including the

masses of its two black holes before the

merger, the mass of the single post-merger

black hole, and the distance of the event.

Our results indicate that GW150914 was produced by the merger of two black holes with masses of about 36 times and 29 times the mass of

the Sun respectively, and that the post-merger black hole had a mass of about 62 times the Sun’s mass. Moreover, we infer that the final

black hole is spinning – such rotating black holes were first predicted theoretically in 1963 by mathematician Roy Kerr. Finally, our results

indicate that the GW150914 occurred at a distance of more than one billion light years. So the LIGO detectors have observed a truly

remarkable event that happened a long time ago in a galaxy far, far away!

If we compare the masses of the pre- and post-merger black holes, we see that the coalescence converted about three times the mass of the
Sun (or nearly six million trillion trillion kilograms) into gravitational-wave energy, most of it emitted in a fraction of a second. By contrast

the Sun converts a mere two billionths of one trillionth of its mass into electromagnetic radiation every second. In fact, the gravitational-

wave power radiated by GW150914 was more than ten times greater than the combined luminosity (i.e. the light power) of every star and
galaxy in the observable Universe.

HOW DOWE KNOW GW150914WAS A BLACK HOLEMERGER?

Our estimated pre-merger masses of the two components in GW150914 make a very strong argument that they are both black holes –

particularly when we also consider the enormous velocity and tiny separation of the two components, as shown in the lower part of figure 3.

In this figure indicative velocities of the two components are seen to be significant fractions of the speed of light. Similarly their approximate

separation is shown to be just a few times the characteristic size of a black hole, known as its Schwarzschild radius.

These graphs imply that the two components were only a few hundred kilometers apart just before they merged, ie. when the gravitational-

wave frequency was about 150 Hz. Black holes are the only known objects compact enough to get this close together without merging.

Based on our estimated total mass for the two components, a pair of neutron stars would not be massive enough, and a black hole-neutron

star pair would have already merged at a lower frequency than 150 Hz.

Figure 3. Some key results of our analysis of GW150914, comparing the reconstructed
gravitational-wave strain (as seen by H1 at Hanford) with the predictions of the best-
matching waveform computed from general relativity, over the three stages of the event:
inspiral, merger and ringdown. Also shown are the separation and velocity of the black holes,
and how they change as the merger event unfolds.

Chapter 9

Testing GR:
conclusions and future
avenues

“Ah, gravity, thou art a heartless
bitch.”

Sheldon Cooper, The Big Bang Theory

The era of gravitational wave detections has just begun, and a new window with
an exciting view is opening for gravitational physics, astrophysics and cosmology.
Motivated by the rich dynamical content of GW signals from compact binaries,
we have developed a Bayesian inference method dedicated to testing general
relativity in its relativistic, strong-field regime. This method is based on assessing
the consistency of the phase evolution of the signal with what is predicted by
GR-based models. Compared against other methods, it has the advantages of
being formulated in a Bayesian framework and that it is not a targeted test that
compares GR against a particular alternative, but a rather generic one.

The need for a population of a background distribution may not sound like some-
thing that a Bayesian purist would appreciate. However, it is one that cannot
be circumvented, mainly due to errors in the calculation of evidences in high-
dimensional spaces, that are difficult to tame. In a sense it is a frequentist’s
cherry on top of a Bayesian cake.

In a proof-of-principle setting of Chapter 6, TIGER was shown to perform well,
with a resolution in high post-Newtonian order that is many orders of magnitude
better than any gravitational experiment has achieved to date. Several effects of
fundamental, astrophysical and instrumental nature were investigated in Chap-
ter 7 and our method was shown to be robust. These effects had to do with
waveform discrepancies, finite-order PN truncation, NS spin and tidal effects,
instrumental calibration errors. Finally, possible effects of non-Gaussian and

Image from [21].
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non-stationary features that are present in the real noise of GW interferometers
were studied in Chapter 8.

For systems with zero spins, the intrinsic parameters that define the phase evolu-
tion are the two component masses. When extending the signal space to include
systems with non-zero spins, the signal space is enlarged by six additional di-
mensions. The main contributions to the phase evolution however, come from
the instantaneous spins’ projections on the axis of total angular momentum. Ef-
fects of precession, driven by non-aligned spins modulate the amplitude of the
waveform and vary the spins’ projections throughout the inspiral. For the weakly
precessing BNS systems that we expect to find in nature, the consideration of
constant aligned spin components is proven to be sufficient to capture the essen-
tial structure of the signal. One therefore only needs to extend one’s template
waveforms to include (anti-)aligned spins without losing much sensitivity in de-
tecting GR-violating features. On the other hand, when considering NS-BH or
BH-BH binaries, one cannot assume that precession effects appear as weak mod-
ifications/modulations of the signal, since typical BHs may have nearly extremal
spins (above 0.9). These systems will need special treatment that will be briefly
discussed below.

9.1 TIGER with binary black holes

In this dissertation we restricted ourselves to consider BNS systems only. There
are clear reasons why these should be used as a first step, related to the region in
the parameter space that these systems occupy, namely a corner of low mass ratios
and low spin magnitudes. Nuisance effects that may appear due to the presence
of matter were counteracted by setting a high-frequency cut-off in the analysis.
Black holes on the other hand have the advantage of consisting of pure spacetime
but may reach extremal spin magnitudes and high mass ratios, in which cases
the reliability (in terms of faithfulness and effectualness) of currently available
waveform models becomes questionable [114]. Such an inadequacy is bound to
cause significant biases in Bayesian model selection methods like TIGER. More
accurate EOB-based models tuned with NR waveforms in the late inspiral are
currently too computationally expensive to be used as recovery templates, of
which millions of waveforms need to be generated.

Zero-spin tests One may however arrive at a first estimate about the per-
formance of TIGER with BBH signals by using existing inexpensive waveform
models such as IMRPhenomB [36] 1 for non-spinning BBH systems. This is

1IMR stands for Inspiral-Merger-Ringdown and ”Phenom” indicates the phenomenologi-
cal nature of this approximant, in the sense that the numerical values of its coefficients are
tuned using a set of accurate NR waveforms. The suffix “B” only enumerates the version of
this approximant. More sophisticated versions have recently been available, namely IMRPhe-
nomC [322] and IMRPhenomP [191, 324, 325].
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actually a frequency-domain approximant, that transcends all three stages of
coalescence: inspiral, merger and ringdown. It is described by an analytical ex-
pression h(f) = A(f)e−iΨ(f) in frequency space, with a common phase expression
Ψ(f) throughout all three stages, of polynomial form, and a split expression A(f)
for the amplitude. The latter is described by the usual chirp form during the in-
spiral, a function during the merger and an exponential decay during ringdown.
More explicitly

A(f) = C f−7/6


(f/f1)−7/6(1 +

∑
i=2,3

αiv
i) : f < f1

wm(f/f1)−2/3(1 +
∑
i=1,2

εiv
i) : f1 ≤ f < f2

wrL(f, f2, σ) : f2 ≤ f < f3 ,

(9.1)

Ψ(f) = 2πftc + ϕc +
3

128 η v5

(
1 +

7∑
k=2

ψkv
k

)
. (9.2)

The phase coefficients ψi are given in Table I of [36], together with expressions for
the transition frequencies f1, f2, f3 and the amplitude parameter σ. Naively using
this as a model waveform, and treating ψi as the test parameters for TIGER,
we populate the background distribution shown in Fig. 9.1. The main difference
in the set-up between these simulations and the ones carried out for BNS is the
wide distribution for the sources’ total mass M , ranging from 3M� to 30M�.
Moreover, we simulate a set of GR-violating scenarios, with the following shifts
to the IMR phase coefficients:

A1 a constant 10% shift in the ψ6 phase coefficient (3PN),

A2 a constant 5% shift in the ψ6 phase coefficient,

A3 a constant 2.5% shift in the ψ6 phase coefficient,

B a constant 10% shift in the ψ7 phase coefficient (3.5PN).

The foreground distributions for these scenarios are plotted against the back-
ground in Fig. 9.1. We find that there is remarkable sensitivity in the high-order
coefficient δψ6 and much less so in δψ7. We also observe how the efficiency of
detecting a deviation in ψ6 decreases as the relative shift becomes smaller (from
10% to 5% to 2.5%). At this level however, the phenomenological nature of the
phase coefficients does not allow for a direct physical interpretation of the above
modifications.

Studies with spinning BH In order to extend the TIGER method to studying
systems with spinning BHs, we will need to make use of accurate waveform fam-
ilies that cover the highly-spinning, highly-asymmetric corners of the parameter
space, the regions where the aforementioned post-Newtonian and phenomeno-
logical waveform models perform poorly. Such waveforms have recently become
available in the form of
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Figure 9.1: Top: Background (blue) and foreground distributions of the TIGER log-
odds-ratio (15)OmodGR

GR for catalogues of 15 sources each. The foreground histograms
correspond to the GR-violating scenarios A1 (purple), A2 (green), A3 (brown) and B
(red). Bottom: Efficiency as a function of catalogue size, for the four GR-violating
scenarios, using 1000 realizations of partitioning the analyzed sources into catalogues.
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• Effective-one-body models with spins (SEOB), calibrated towards merger
by NR waveforms (SEOBNR); these have been developed for non-precessing
spins (SEOBNRv1) [350] and generic precessing spins (SEOBNRv2) [285] 2.

• Phenomenological models with spins, that are described by analytic ex-
pressions, are also calibrated by NR waveforms, and extend all the way to
ringdown. A very recent one is IMRPhenomP [191, 324, 325], which also
models generic precessing spins.

• PhenSpin [341, 342], a hybrid model that evolves as SpinTaylorT4 in the
inspiral, is matched with a NR-tuned waveform towards plunge and merger,
which in turn is matched with the ringdown signal predicted by BH per-
turbation theory.

SEOBNR waveforms are rather expensive to be used as templates but could
easily be used for simulating very realistic signals for injection. Recall that,
even though the template waveforms for the analysis do not need to be perfectly
accurate as much as they need to be fast to produce, the injected waveforms do
need to be as close to reality as possible, if we want to build a reliable background.
Regarding the recovery templates, IMRPhenomP can be directly generated in the
frequency domain, so it is fast enough, and also crucially captures spin effects,
including precession. An interesting question arises regarding the interpretation
of parametrized deviations in the phase of IMRPhenom waveforms, as these are
phenomenologically derived waveforms whose coefficients have no direct physical
interpretation. Alternatively, PhenSpin can also be used; being however a time-
domain numerical template it does come with additional computational costs,
dominated by those of its SpinTaylorT4 part.

Reduced-order modelling for expensive templates One may in fact be
able to use seemingly unaffordable waveform models like SEOBNR as recovery
templates, by means of newly developed surrogate modelling methods like reduced
order modelling (ROM). ROM provides an algorithm of pre-processing the space
of templates, in order to produce principal components for the likelihood calcula-
tions. This allows for reliable analysis to be made on a signal by only producing
a small optimal fraction of the each template waveform. The pre-processing part
may be a very long and computationally intense process but it needs to be per-
formed only once per template family. ROM is considered the most promising
way to speed up current analysis methods that require the production of millions
of waveforms (TIGER being one of them), and to render the use of “expensive”
realistic templates affordable in the near future.

2See references for the restrictions on intrinsic parameters that apply to each waveform
model.
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9.2 Constraining the graviton’s massive disper-
sion relation

One of the attractive features of TIGER is that it is built to capture generic
deviations from GR and as a framework is not tied to any particular alternative
theory of gravity. In this section we shall only slightly deviate from this rule
and will perform a phenomenological analysis that can indicate whether gravity
is mediated by a massive field. The motivation for doing this is simple: although
the parameterization of this test is very specific, we will in fact be probing the
phenomenology of a wide class of possible theories featuring a massive graviton,
and will still remain agnostic to the details of the underlying theory. In fact,
we will apply this test of Bayesian parameter estimation to the first direct GW
detections, in order to set the most stringent upper bound on the graviton rest
mass to date!

9.2.1 Theory and waveform modeling

An interesting class of alternative theories of gravity, the earliest of which were
put forward in the 1970s, is one where gravitation is mediated by a massive
field [150]. In these “massive graviton” theories, a gravitational wave would
propagate slower than light, with a speed of propagation that depends on its fre-
quency/wavelength. Following the standard prescription for a massive dispersion
relation

E2 = p2c2 + h2c2/λ2
g , (9.3)

one finds that the speed of a graviton will depend on its wavelength λ as

vg ' c
√

1− (λ/λg)2 , (9.4)

in the limit λ� λg, where λg = h/(mgc) is a length scale that can be interpreted
as the Compton wavelength of the graviton (mg being its rest-mass).

This massive dispersion relation has a direct effect on the GW phase which is
frequency dependent and is accumulated throughout propagation. In [382] Will
finds that a GW signal will arrive distorted at the observer (since high-frequency
waves will arrive earlier than low-frequency waves); in the frequency domain this
is encoded as the extra phase term

δΨMG(f) = − π2McD

λ2
g(1 + z)

(πMcf)−1 + ϕg + tgf . (9.5)

Here, z is the cosmological redshift and D is a cosmological distance defined
in Eq. (9.6) below. Since the chirping waveform consists of a rich spectrum of
frequencies, the effect described by Eq. (9.5) leaves a characteristic frequency-
dependent signature whose magnitude can be measured. Prospects for this kind
of analysis using Bayesian methods were first studied in [154].
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Now, in Eq. (9.5) the second and third term can be absorbed in a re-definition of
the measured phase and time of coalescence ϕc and tc, since the corresponding
modifications can be considered uniform for all detectors. The remaining first
term has a pre-factor that crucially depends on the Compton length of the gravi-
ton λg, as well as on the distance to the source. The appropriate cosmological
distance parameter D is defined as

D =
1 + z

a0

∫ t0

te

a(t) dt , (9.6)

where a is the cosmological scale factor, te and t0 are the times of emission and
detection and a0 = a(t0) is the value of the scale factor at the time of detection
(now). To first order in the redshift z, D can be approximated by D ∼ (1−z)DL,
where DL is the luminosity distance. As a result, our measurement will have an
inherent degeneracy with cosmological parameters, which however is weak at low
redshifts. In the analysis that follows we will be effectively measuring a parameter
lg defined by

D

λ2
g(1 + z)

=
DL

l2g
, (9.7)

i.e. the combination that appears as a distance factor in Eq. (9.5); we shall
treat lg as an additional free parameter in our waveform model. Again, for small
redshifts, the quantity lg will be a good approximation of λg and to first order in
z one finds lg ' (1 + z)λg. Subsequently, for a given cosmological model which
fixes the exact functional relation between z and DL (and therefore between
D and DL), we may analytically transform the posterior p.d.f. of lg to one
of λg via Eq. (9.7). The result is only weakly sensitive to the choice of ΛCDM
cosmological parameters, which here are set to the latest Planck values [28] (Table
4, ”TT+lowP+lensing+ext”):

H0 = 67.90 km s−1 Mpc−1 , ΩΛ = 0.6935 , Ωm = 0.3065 . (9.8)

Existing bounds A good overview of current bounds on the Compton wave-
length of the graviton is given in [80], where a clear distinction is also made
between bounds of static and of dynamical nature. Simply put, static bounds
originate from the static sector of the gravitational interaction, which would also
be affected if gravity was mediated by a massive field. In particular, the static
potential would take a Yukawa form V (r) = −Gmr e−r/λg , where λg acts as the
effective cut-off scale for gravity. The most stringent static bound to date comes
from Solar System measurements [346, 382] (and the orbit of Mars in particu-
lar), which set the constraint λg > 2.8 × 1012 km. There exist two more static
bounds, one from studying the large-scale galactic cluster dynamics [185] and one
from weak lensing observations [126], setting lower bounds at 6.2× 1019 km and
1.8× 1022 km respectively, however these result from strongly model-dependent
calculations and incorporate assumptions, most notably on thegalactic distri-
bution of dark matter. The systematics introduced by these assumptions can
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dramatically weaken the lower bound claims. Dynamical bounds are related to
the dynamical sector of GR and come from observations involving the generation
and/or propagation of GWs; we are about to set such a bound in Sec. 9.2.2. Prior
to the first GW detection, the only such bound came from observations of bi-
nary pulsars and the consistency of their orbital decay rate with GR. If gravitons
were massive, the modified propagation of gravitational waves within the binary
system would alter the orbital dynamics and would modify the way in which the
orbit decays [169]. No such inconsistency was observed in PSR B1534+12 or PSR
B1913+16 and a dynamical lower bound was set at 1.6× 1010 km.

9.2.2 Results

We analysed GW150914 according to the set-up outlined in [23], assuming a
uniform prior in the logarithm of λg (based on the fact that λg is a scale parame-
ter), and using a prior range of λg ∈ [1013, 1020] m. Two waveform approximants
are mainly used in this analysis, namely the single-spin-precessing IMRPhe-
nomPv2 [191, 222] and the aligned-spin SEOBNRv2 for which reduced order
modeling is employed to speed up the analysis [303]; moreover, the same anal-
ysis performed with other waveform models gives similar results.We find that
λg > 1013 km, below which value the posterior abruptly drops to practically zero
and above which it quickly rises like a sigmoid function to a flat distribution.
Because with this particular prior the λg posterior is formally unbounded, we
can make use of a flat prior in mg (which translates to π(λg) ∝ 1/λ2

g) in or-
der to obtain a meaningful 90% confidence lower bound. This is illustrated in
Fig. 9.2, where the cumulative posterior distribution on λg is plotted. This con-
straint is tighter than the current lower bound set by Solar System tests [382]
by a factor of a few, and translates to a bound on the graviton rest mass of
mg < 1.24 × 10−22eV/c2. It also beats the only other dynamical bound related
to GW propagation, the one set by binary pulsars [169], by three orders of magni-
tude! Additionally, we have calculated the Bayes factor between the GR hypothe-
sis and the massive dispersion relation (MDR) hypothesis to be lnBGRMDR = 0.52,
slightly in favour of the GR hypothesis.

The same analysis on the second confirmed detection GW151226 yields posteriors
on λg that are slightly looser than what was already obtained by GW150914; this
is largely due to the overall weakness of the former relative to the latter. Since
the Compton wavelength of the graviton is a global parameter whose value is
expected to be common across all GW signals, we can straightforwardly combine
information from both events and arrive at a combined posterior p.d.f. for λg
(and equivalently for mg), as outlined in Sec. 3.4.3. As expected, the second
event does not improve the lower bound of λg > 1013 km, since its posterior is
non-informative above that value.

The bound inferred from the current analysis is expected to further tighten in
the future, with the detection and analysis of more GW signals from compact
binaries. In particular, low-mass BBH systems or neutron star binaries of similar
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Figure 9.2: Cumulative posterior distribution for the Compton wavelength λg of the
graviton, resulting from the analysis of GW150914, and setting a 90% lower bound at
1013 km [24]. The new exclusion region based on this measurement is shaded in red and
spans almost an order of magnitude. Exclusion regions from the dynamical bound of
binary pulsars and the tightest static bound based on Solar System tests are shaded in
cyan and orange respectively.

loudness are expected to contribute valuable information, since much more of the
earlier inspiral (where (πMcf)−1 is large) will be in band.

9.3 Testing the no-hair theorem with black hole
ringdown

The framework developed in Chapter 5 is not specific to CBC inspiral. In fact
it was recently applied to the analysis of simulated GW signals from the BH
ringdown stage, that follows a BBH merger [259], for the purpose of testing
the no-hair conjecture. The scenario that was investigated was a population of
intermediate-mass black hole (IMBH) mergers, whose ringdown signal would be
detectable by Einstein Telescope (ET).

The idea is the following: by the master equation of Kerr BH perturbation the-
ory [352, 301, 242], the ringdown signal is a superposition of damped sinusoids,
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schematically taking the form

h(t) =
M

DL

∑
l≥2,|m|≤l

Al,|m| e
i(ωlm+2πi/τlm)t

−2Y
l,m(ι, φ) , (9.9)

where −2Y
l,m consist the functional basis of (−2)-spin-weighted spherical har-

monics. These terms are the black hole’s superradiant eigenmodes or quasi-
normal modes (QNM), whose complex eigen-frequencies ω̃lm = ωlm+ i 2π

τlm
(mode

frequencies ωlm and damping times τlm) are completely characterized by two
numbers: the BH mass M and spin J , according to the no-hair conjecture; the
relations that give ωlm(M,J) and τlm(M,J) and the QNM amplitudes Al,m,
have been calculated numerically to good approximation. This means that by
measuring more than a pair of QNM parameters, one gets a consistency test of
the no-hair conjecture. A violation thereof means that one or more of the QNM
parameters does not have the functional dependence on M and J predicted by
GR. By parametrizing relative deviations in ω̃lm, we immediately get a way of
applying the TIGER machinery for testing the no-hair conjecture with ringdown
signals. It was found that a relative shift of 10% in either the (22)-mode or
the (33)-mode frequencies will almost surely be detectable after combining in-
formation from about 10 sources, while a 25% relative deviation in the damping
time of the (22)-mode is still not likely to be detected after 50 sources are ana-
lyzed. However, parameter estimation in a targeted analysis for τ22 shows that
such a deviation may be constrained to roughly 10% with the same amount of
sources. The method is less sensitive to mode frequencies and damping times of
the remaining subdominant QNMs.

9.4 Into the future

Before closing Part II of this dissertation, I would like to point out a valid question
that naturally arises once one obtains a clear picture of what TIGER will and will
not do. TIGER will make a statement about whether the data are consistent with
what GR predicts or not. However, if it finds the data to be perfectly consistent
with GR, it is not designed to put direct bounds on particular alternative theories
of gravity or families thereof. And if it does find inconsistencies between the data
and GR, it will not make any statement on the nature of the GR violation.

So, once detections start coming in, how should one follow up results produced
by TIGER that point to one direction or the other? If TIGER shows consistency
with GR a further step would be to run PE analysis on parametrized deviations,
in order to put bounds on modifications of the PN coefficients, and possibly on
parameters of alternative theories of gravity. This should be continued as long
as the consistency remains clear. If, on the other hand, TIGER indicates a clear
violation of GR, one should be prepared to follow it up with tailor-made tests
against alternative theories. Not many theories have made exact predictions on
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how CBC waveforms are modified, and there is ample work to be carried out in
this respect. Those who have, can then be ranked on the basis of their evidence
and compared against GR, and marginalized posterior p.d.f.s can be drawn on
the non-GR part of their parameter space. It could well be that more than one
alternative theories of gravity are favoured over GR, and that for more than one
of them we will be able to obtain lower bounds on GR-violating parameters (if ~0
is left outside of the posterior bulk). Needless to say, claims of falsification of GR
should come with great caution and only after any other possible explanation is
ruled out; that is, all the implicit assumptions of our model, on the nature of the
sources and their environment, on the properties of the detectors, on the waveform
models, etc., everything that can be found in our background information I,
should be thoroughly studied, or stated as a possible caveat. Of course, there is
always the intermediate scenario where the combined odds ratio lies beyond the
bulk of the background, but with a FAP that is not low enough to indicate a clear
GR violation. The safe thing to do in such a case, would be to wait patiently for
more detections to come in, which will eventually drive the combined odds ratio
deeper into or further beyond the background.
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The Neutron Star Equation
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Chapter 10

The physics of neutron
stars

The entire universe has been neatly
divided into things to (a) mate with,
(b) eat, (c) run away from,
and (d) rocks.

Sir Terry Pratchett

Apart from being the constituent of compact binaries, a neutron star is an ex-
tremely interesting astrophysical object in its own right. Holding the title of the
most dense stable form of matter known to exist, with densities reaching a few
times above that of an atomic nucleus, neutron stars have captured the attention
and imagination of the physics community. One of the great unresolved myster-
ies in modern physics, lying unsettled on the interface of relativistic astrophysics,
nuclear physics, particle physics and condensed matter physics, is that of deter-
mining the nature and physical properties of the cold interior of a neutron star,
where densities reach supranuclear values, unattainable by any current man-made
experiment.

Neutron stars, being compact astrophysical objects, take up a special place in
a number of efficient mechanisms for the emission of gravitational waves. From
a macrophysical perspective, the physics of the NS interior is encoded in the
neutron star’s equation of state (EoS), which describes the way the pressure
builds up with increasing density, and thus the way hydrostatic equilibrium is
achieved in the interior of the star. Current bounds to the NS EoS have been
set by both physical arguments and astrophyiscal observations. However, due
to the highly non-trivial nature of the microphysics that describes cold matter
at supranuclear densities, as well as the lack of access to such regimes through
current laboratory experiments, there is still a high degree of uncertainty in the
NS EoS.

It then naturally occurs that a possible GW detection from a system containing a
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NS may yield valuable information on its physical properties and, in particular, its
equation of state. This part of the dissertation is devoted to studying the possible
ways in which gravitational waves, emitted during the coalescence of Neutron Star
binaries, may yield information on the neutron star EoS, and inventing possible
methods that will allow us to extract this information from the observed data.

To date, various methods have been proposed and applied in an attempt to
measure NS structure related quantities by means of electromagnetic observations
of NS as pulsars. Among those, the following are considered for measuring NS
masses, radii, or other matter properties of NS:

• observations of X-ray binaries, in which a NS accretes mass from a com-
panion for measuring masses and possibly radii;

• EM observations of isolated binaries, measurement of quasi-periodic oscil-
lations and NS surface cooling;

• gravitational redshift measurements of spectral lines for constraining com-
pactness M/R;

• pulsar timing with binary pulsars for (i) accurate mass measurements (ii)
measurements of spin-orbit coupling and moments of inertia, and (iii) study-
ing pulsar glitches which can give hints on the internal structure and EoS;

• neutrino detections during proto-NS formation in core-collapse SN explo-
sions.

However, in most cases the resolution and systematics of the observations are far
from satisfactory if one wishes to put significant constraints on the EoS.

In a distinct category of methods, one should classify the first interesting con-
straint on “asymmetries” of observed NS, set by the non-detection of gravitational
waves during the science runs of the initial LIGO and Virgo detectors (most no-
tably for the case of the Crab 1 and Vela 2 pulsars [11, 10, 7]). As we shall see,
the methods discussed here will provide an independent way of measuring these
properties, being susceptible to a totally different set of systematic uncertainties
than the ones based on electromagnetic observations.

Coalescing binary neutron stars, nuclear physics and cosmology Much
effort in GW research has been put on solving the direct problem of deriving a
gravitational waveform from the known physics. Conversely, lack of knowledge
in NS physics results in a certain degree of ambiguity in the waveform. The
current uncertainty in the physics underlying the NS EoS provides fertile ground
for studying an inverse problem, of extracting physics from the analysis of GW
signals emitted by BNS systems. In particular, GW data analysis can probe

1ra: 5h34m32.0s dec: 22o, 0′, 52.1′′
2ra: 8h35m20.6s, dec: −45o − 10′ − 35.0′′
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unexplored territory in nuclear physics and provide invaluable input on the matter
properties and composition at supranuclear densities.

Once the NS EoS problem is settled, cosmology gives us yet another inverse prob-
lem that we can then solve. Inspiraling BNS systems are known to be standard
sirens, i.e. their luminosity distance DL and redshift z can be inferred indepen-
dently. Moreover, in contrast with EM observations at cosmological distances,
there is no need for calibration (equivalent to the “cosmic distance ladder”), since
luminosity distance is only found in the GW amplitude, and the intrinsic lumi-
nosity is also encoded in the phase via the chirp mass. In the absence of matter,
a coalescing binary is characterized by a single scale, given by its chirp mass;
this implies that cosmological redshift will have an effect on the entire waveform
that is completely degenerate with that of a “redshifted mass” (i.e. the source’s
mass will appear to be larger than its intrinsic value by 1 + z). In the presence of
matter however, this redshift-mass degeneracy is broken by the additional scale
introduced by matter effects, so the redshift can indeed be measured indepen-
dently3. This gives us a new, totally independent way of doing cosmography
and the potential of independently inferring the values of cosmological parame-
ters (H0,Ωm,ΩΛ) in the standard ΛCDM model. This avenue was first explored
in [261].

In the remainder of this chapter, we will briefly go through the basic physical
mechanisms underlying the properties of neutron stars.

10.1 The Neutron Star Equation of State

Even though the prediction of the existence of extremely compact objects made
almost solely of neutrons dates as far back as the late 1930s with the pioneering
work of Baade and Zwicky [53] and Oppenheimer and Volkoff [278], the first
detection of such an object did not occur until 1967 [198]; interestingly enough,
an exact modelling of the equation of state at such high densities is yet to be
devised. Theoretically, fairly accurate predictions can be made under realistic
assumptions up to a certain density regime, starting from the simplest model of
an ideal Fermi gas. Let us briefly walk through the crucial features of a realistic
EoS, going up the scale of complexity and density, to the point where theoretical
uncertainties prohibit any further predictions.

10.1.1 Simple EoS models

At densities where degenerate electrons are still the dominant source of stabi-
lizing pressure, typically at ρ < 1011g cm−3, the EoS of normal matter can be

3A different way of measuring the redshift is by means of a coincident EM observation.
However, this kind of information is expected to be available for only a small fraction (∼ 10−3)
of the coalescing systems.

159



10

Chapter 10. The physics of neutron stars

approximated, starting from the ideal Fermi gas model. This has its roots in
the pioneering work of Chandrasekhar [123], who established the first consistent
model for the hydrostatic equilibrium of ideal white dwarfs (WDs). There, the
gravitational force was counteracted by the degenerate pressure of the Fermi elec-
tron gas. Similarily, in the most simplified model for neutron stars, one considers
a cold, degenerate gas of non-interacting neutrons, that dominates the pressure
and energy density of the star. As shown in Appendix B, one gets a polytropic
form for the EoS,

P = KρΓ
0 , (10.1)

whose validity will of course be restricted to a particular density range. In the
non-relativistic limit, ρ0 � 6 × 1015 g cm−3 the polytropic coefficients Γ and K
are calculated as: Γ = 5

3 ,K = 5.38031× 103 kg−2/3 m4 s−2

10.1.2 EoS at low densities

Building on the simple non-interacting gas model described above, we will now
briefly describe the relatively well understood EoS at densities below the density
of neutron drip, ρdrip (see Sec. 10.1.3). Apart from WD and gas planets, the EoS
at such densities describe one of the outmost layers of a NS, known as the crust.

The model outlined in Sec. 10.1.1 has been further corrected and enriched by:

1. Electrostatic effects between the charged particles of the fluid. These give a
significant correction for WD, but a rather negligible one for NS as matter
becomes increasingly neutron-rich.

2. Detailed balance in the β-decay reaction that regulates the fractional abun-
dances in the n-p-e mixture.

3. Nucleon-nucleon many-body interactions; these require either the applica-
tion of semi-empirical models for the nuclear energy, or/and field-theoretic
calculations of quantum chromodynamics (QCD) that govern the strong
interaction.

4. Different compositions if more species/resonances become stable at high
densities (pions, kaons, strange hadrons, etc.). Transitions to energetically
favourable compositions result to “softening” of the EoS since more compact
stable configurations become available.

The book by Shapiro and Teukolsky (1983) [329] is an excellent guide for the
interested reader that wishes to see the details behind the calculations of the
listed features.

Since our interest lies in the very high-density regime, we will not discuss the first
point, apart from mentioning that it may contribute a non-negligible correction
to the NS radius and maximum mass, as it becomes important in the outer, less
dense layers of the NS. However, it is instructive to discuss the inverse β-decay,
one of the crucial physical processes that makes a NS what it is.
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Inverse β-decay Assuming a mixture of the three basic particles e, p, n, that
make up all of regular matter, one may derive the conditions of detailed balance
for the reaction

n0 + νe 
 p+ + e− (10.2)

which is an amphidirectional version of the familiar β-decay (in which an anti-
neutrino is found on the RHS instead). The outcome will depend on the current
state variables of the system, while it is evident that the natural direction of the
reaction is to the right, due to the rest-mass difference between mn and mp+me.
In a high-density environment however, where the electron Fermi energy is high
enough and where the electron fluid is highly degenerate, each additional electron
would contribute an energy larger than its rest mass by roughly EF , due to the
Pauli exclusion principle. When working with neutron stars, all three species will
be in a highly degenerate state and –electrostatic and nuclear interactions aside–
can be modelled as ideal Fermi gases. As shown in Appendix B, the abundance
of neutrons can become more than three orders of magnitude larger than that of
protons, settling to an asymptotic value of 8 at large densities.

More realistic low-density EoS The above ideal Fermi gas mixture model is
good first approximation but, as already mentioned above, is missing key ingredi-
ents for a realisitc EoS. More realistic models that include a number of additional
features, such as electrostatic forces, semi-empirical formulas for the energy of nu-
clei, and many-body interactions were developed throughout the 20th century.
Recall that at low densities the nucleons are grouped into heavy nuclei, with 56

26Fe
being the lowest energy state of matter below ρ ∼ 107 g, at which point the e−

Fermi gas becomes fully relativistic. Then, inverse β-decay kicks in, enriching nu-
clei with neutrons, which in turn shifts the balance of the fission process towards
heavier nuclei.

A few characteristic low-density models are outlined in [329]. In brief, the
Thomas–Fermi approach incorporates electrostatic corrections to the EoS and
is solved numerically in the Feynmann-Metropolis–Teller model (FMT). The
Harrison-Wheeler (HW) EoS considers heavy nuclei that become neutron rich
at high densities due to β-equilibrium and is based on a semi-empirical mass
formula for M(A,Z), known as the liquid drop model to minimize the energy
with respect to (continuous) A and Z; it is considered valid in the region 107 ≤
ρ ≤ 3 × 1011 g cm−3, above which it is smoothly matched to that of a mixture
of equilibrium nuclides with free neutron and electron gas (see below). The
Baym–Pethick–Sutherland (BPS) EoS uses a more sophisticated mass formula
that includes Coulomb lattice corrections and treats A and Z as discrete vari-
ables; the latter effect introduces discontinuities in the density wherever a phase
transition to a different (A,Z) pair takes place. The BPS EoS closely agrees with
HW and is valid for densities below neutron drip ρ ≤ 4.3×1011 g cm−3 which are
met in the interior of white dwarfs and in the outer crust of neutron stars.
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10.1.3 EoS at very high densities

Neutron drip As the inverse β-decay leads to more and more neutron rich
nuclei, the effect of intra-nuclear Coulomb forces weakens, and so does the ten-
dency for nuclei heavier than 56

26Fe to break apart. With increasing density, larger
and larger nuclei become more energetically favorable, up to a critical point
where it becomes energetically favorable for the first neutrons to “drip” out of
the nuclei. The onset of this effect, known as the “neutron drip” is at roughly
ρ ∼ 3.2×1011 g cm−3; above this density, neutrons are found in two phases: both
in nuclei and as free particles outside the nuclei in the form of a degenerate Fermi
gas. At even higher densities the free neutron gas starts to dominate in pressure
and density, until eventually the nuclei begin to dissolve at roughly the nuclear
density ρnucl = 2.8 × 1014 g cm−3. Until that regime is reached, the EoS is well
described by the Baym–Bethe–Pethick model (BBP) [64].

EoS above nuclear densities In contrast with EoS calculations at lower den-
sities, the uncertainties at densities much larger than neutron drip become in-
creasingly large, mainly due to the lack of understanding of nucleon-nucleon
many-body interactions at this regime. Most notably, the situation becomes
largely uncertain when densities reach values a few times larger than nuclear
densities ρ > ρnuc ' 2.8 × 1014 g cm−3, where nucleons are essentially in touch
with each other. Models developed over many decades can be classified into
three broad categories: (i) nonrelativistic potential models, (ii) models based
on field theoretical approaches, and (iii) models based on the relativistic Dirac-
Brueckener-Hartree-Fock approach. Some experimental results are available for
symmetric nuclear matter but any naive extrapolation to highly asymmetric cold
matter at even higher densities cannot be relied upon.

10.1.4 Neutron star structure and modern EoS models

Contemporary models for the NS EoS at very high densities are based on rel-
ativistic field theory or the relativistic Dirac-Brueckner-Hartree-Fock approach,
but are even more sophisticated than what is described above, in terms of compo-
sition and calculations of nucleon-nucleon interactions. An extensive list of such
models can be found e.g. in papers by Lattimer et al. [237], Hinderer et al. [200]
and references therein. In Fig. 10.2 a few examples of such models are listed,
together with the approach that each model is based on, as well as the matter
composition that it considers.

According to the current models, the NS has a structure that subdivides its
interior to: (i) the inner core, (ii) the outer core, (iii) the crust and (iv) the
envelope. Most of the mass is found in the core, while the much less dense crust
typically extends only 1-2 km deep. In the simplest models, the composition of
the core (in models where only ordinary matter is considered) is mainly neutrons
with a small proton and electron fraction, while the crust consists of a mixture of
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neutrons and heavy nuclei. The envelope and an overlaying atmosphere is rich in
charged particles and is where most of the observed EM phenomena take place.

Some EoS models predict that a NS’s inner core can reach densities that are
high enough to populate additional strange species, or excite heavier baryonic
resonances. The transition to non-normal matter effectively softens the EoS, since
it opens up new channels to lower the total energy of the star. As a consequence,
the maximum NS mass in such models is expected to be smaller.

Hyperons Hyperons are baryons that contain at least one strange quark. Such
particles can be formed in the NS core by e.g. the inverse decay of a nucleon’s
u-quark, accompanied by the emission of a meson, when such a process is en-
ergetically favored by the conditions in the core. EoS models that predict the
formation and co-existence of hyperons with normal matter inside the inner core
of NS exhibit a relative softening at high densities. Examples of such models
can be found e.g. in [65]. In the investigations that follow, we will be using a
hyperonic model that is still consistent with current physical and observational
constraints, namely the H4 model described in [234].

Pion condensates Yet another EoS-softening mechanism may occur through
the formation of mesons, which may begin to appear e.g. via the reaction n →
p + π−, as soon as this becomes energetically favorable, i.e. µn − µp = µe >
mπ = 139.6 MeV (this may occur at supranuclear densities). It can be shown
that any such population will consist mainly of pions, the lightest possible type
of mesons. Due to their bosonic nature, pions at very low temperatures will
form dense Bose-Einstein condensates, in which the bulk kinetic energy/pressure
becomes very low. This softens the EoS quite significantly, which is why many of
these models have already been excluded by existing observations (see Sec. 10.3).

Superfluidity and superconductivity A well known effect in cold condensed
matter physics is that of electron pairing, where Cooper pairs of electrons behave
as integer-spin particles (bosons) and form a condensate with near-zero resistance
and viscosity. In the interior of neutron stars, the same effect may occur, but
this time it is the nucleons that form the fermion pairs. Since the proton density
is governed by the electron density, the protons occupy much lower momenta
than the neutrons, so pairing mostly happens between p–p and n–n pairs. The
proton pairing gives superconductive properties for the charge transfer in the NS
interior, while the neutron pairing gives superfluid properties for mass transfer
in the star. The equivalent to the Curie temperature below which the pairing is
populated, is expected to be in the order of 1010K, which is many orders of mag-
nitude higher than the typical NS temperature. These super-features are held
responsible for violent phenomena that seem to occur in observed pulsars and
manifest themselves in the form of rotational irregularities or sudden bursts of
EM radiation. These types of glitches observed in pulsar signals can be explained
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by sudden (quantized) reconfigurations of the superconductive (magnetic) or su-
perfluid (rotational) vortex structure in the NS interior.

10.1.5 Quark matter and strangeness

It has been advocated that the inner core of a NS can reach densities high enough
that nuclear matter undergoes a phase transition where quarks break free from
the nucleons and can be found in a deconfined state. This introduces an entirely
different regime for the core, featuring three quark species (u, d, s), that most
probably exhibit color superconductivity and potentially color flavour locking ;
the strange quark core extends almost out to the surface, and is enveloped in
a very thin crust of normal nuclear matter. Such a state of matter would be
more stable than any nuclear matter configuration and was conjectured to be
the ultimate state of matter by Bodmer and Witten, in what is known as the
“strange matter hypothesis”. A characteristic property of EoS models for strange
quark stars, which are the softest ones currently available at high densities, is
that pressure drops towards zero at a critical lower density (self-bound stars).
In practice, the quark matter EoS are non-differentiably continued by normal
matter EoS at lower densities. Realistic SQM models employ perturbative QCD
methods; a popular model described in [299] uses the MIT bag model, with an
energy per baryon ceiling at 939 MeV setting a strict bound on the bag constant
B ≤ 94.92 MeV fm−3. An extensive review of the theory and phenomenology of
SQM stars is given by Weber in [376].

10.2 Relativistic stars in hydrostatic equilibrium

Hydrostatic equilibrium configurations for stars in GR can be obtained by ap-
plying the EFE Eq. (1.14) after using the fluid’s properties to define the stress
energy tensor in the RHS. Usually a high degree of freedom is postulated, e.g. for
stable spherically symmetric stars one has three Killing vector fields, along which
the metric is invariant. Symmetries remove degrees of freedom from the problem
and make the solutions easier to derive. Furthermore, we will only consider a
perfect fluid, whose stress energy tensor is given by:

Tµν = (ρ+ P )uµuν + Pgµν . (10.3)

The two state functions that enter the stress-energy tensor, the energy density
ρ and pressure P are related; for a given type of matter this relation can be
made explicit once its equation of state P = P (ρ, s) is known. Since we will be
interested in neutron stars, for which T ' 0 (or at least much smaller than the
Fermi temperature E′F /k), we shall also use that s = 0 everywhere, and thus the
entropy dependence is removed and the EoS is fully characterized by knowing
P = P (ρ).
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10.2.1 The Tolman-Oppenheimer-Volkoff equation

A spherically symmetric metric in its most general form is given by the line
element:

ds2 = −e2Φ(t,r)dt2 + e2λ(t,r)dr2 + r2

dΩ2︷ ︸︸ ︷[
dθ2 + sin2 θ dφ2

]
. (10.4)

In the special case when the metric is also static, we have ∂Φ
∂t = ∂λ

∂t = 0 and we
also recover the Schwarzschild metric Eq. (4.3) as the exterior (vacuum) solution.
In the presence of matter in the star’s interior, and for a given initial condition
(e.g. mass density ρc at r = 0), the interior solution will give a density profile
ρ(r) and pressure profile P (r) depending on the matter EoS, P = P (ρ).

Working towards this derivation, we define the quantity m(r):

e2λ(r) ≡
(

1− 2m(r)

r

)−1

. (10.5)

Recall that in Newtonian gravity, the hydrostatic equilibrium is achieved by the
cancellation between the pressure gradient and the gravitational force, dP

dr =

−Gm(r)ρ(r)
r2 , on each infinitesimal shell of matter. In GR, the equilibrium equa-

tions are derived from the EFE, giving the following system of three independent
linear differential equations

dm

dr
= 4πr2ρ(r) , (10.6)

dP

dr
= −

ρ(r)m(r)
(

1 + P (r)
ρ(r)

)(
1 + 4πr3P (r)

m(r)

)
r (r − 2m(r))

, (10.7)

dΦ

dr
= − 1

ρ(r) + P (r)

dP

dr
. (10.8)

The first equation (10.6) tells us that m(r) can be interpreted as the integrated
mass within a ball of radius r,

m(r) =

∫ r

0

dr′ ρ(r′) 4πr′2 . (10.9)

This quantity is not a bare (baryonic) mass (it is not an integral of the local
density ρ with the invariant volume element) but also it includes the gravita-
tional binding energy, so that it matches an exterior Schwarzschild solution for
a total gravitational mass M = m(R). The second equation (10.7) is known as the
Tolman-Oppenheimer-Volkoff equation [354, 278, 355] and together with Eq. (10.6)
gives a solution for the density and pressure profiles in the star’s interior. Fi-
nally, in Eq. (10.8) the remaining unknown metric function Φ is directly derived
once ρ(r) and P (r) are obtained, and fixes the g00 component of the metric.
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Its integration constant is fixed by the continuity condition with the exterior
Schwarzschild metric. Thus, given an explicit expression for the EoS, for a given
central density ρc or central pressure Pc, the integration of the above system of
equations yields a unique solution that defines the equilibrium configuration of
the star. In the eyes of gravity, all the details of the complex microphysics that
govern the fluid properties at every single point in the star, are encoded in a
single function.
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Figure 10.1: Solutions to the TOV equations using different values for the central
density ρc as an initial condition, with a particular EoS model. Top: mass enclosed
within radius r; the list of central densities used is given on the right, in g cm−3. Bottom:
pressure as a function of radius (left); total mass M∗ of the star plotted against its total
radius R∗ (right), each point corresponding to a choice for ρc. The EoS model used here
is H4.

10.2.2 Stability condition

A star that satisfies the TOV equation is in hydrostatic equilibrium, however
it is not guaranteed to be stable under small density or pressure perturbations.
In [351, 329] and references therein, it is shown how stability is related to the
criterion that the total mass at equilibrium M∗ increases with increasing central
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TABLE 1

EQUATIONS OF STATE

Symbol Reference Approach Composition

FP . . . . . . . . . . . . . . Friedman & Pandharipande (1981) Variational np
PS . . . . . . . . . . . . . . Pandharipande & Smith (1975) Potential nn0
WFF(1È3) . . . . . . Wiringa, Fiks & Fabrocine (1988) Variational np
AP(1È4) . . . . . . . . Akmal & Pandharipande (1997) Variational np
MS(1È3) . . . . . . . . Mu! ller & Serot (1996) Field theoretical np
MPA(1È2) . . . . . . Mu! ther, Prakash, & Ainsworth (1987) Dirac-Brueckner HF np
ENG . . . . . . . . . . . Engvik et al. (1996) Dirac-Brueckner HF np
PAL(1È6) . . . . . . Prakash et al. (1988) Schematic potential np
GM(1È3) . . . . . . . Glendenning & Moszkowski (1991) Field theoretical npH
GS(1È2) . . . . . . . . Glendenning & Scha†ner-Bielich (1999) Field theoretical npK
PCL(1È2) . . . . . . Prakash, Cooke, & Lattimer (1995) Field theoretical npHQ
SQM(1È3) . . . . . . Prakash et al. (1995) Quark matter Q (u, d, s)

NOTE.È““ Approach ÏÏ refers to the underlying theoretical technique. ““ Composition ÏÏ refers to strongly
interacting components (n \ neutron, p \ proton, H \ hyperon, K \ kaon, Q \ quark) ; all models
include leptonic contributions.

relativistic corrections are progressively incorporated into
prior models, AP1È3. AP1È3 are included here because they
represent di†erent pressure-energy density-baryon density
relations and serve to reinforce correlations between
neutron star structure and microscopic physics observed
using alternative theoretical paradigms. Similarly, several
di†erent parameter sets for other EOSs are chosen.

In all cases, except for PS (Pandharipande & Smith 1975),
the pressure is evaluated assuming zero temperature and
beta equilibrium without trapped neutrinos. PS contains
only neutrons among the baryons, there being no charged
components. We chose to include this EOS, despite the fact
that it has been superseded by more sophisticated calcu-
lations by Pandharipande and coworkers, because it rep-
resents an extreme case producing large radii neutron stars.

The pressure-density relations for some of the selected
EOSs are shown in Figure 1. There are two general classes
of equations of state. First, normal equations of state have a
pressure that vanishes as the density tends to zero. Second,
self-bound equations of state have a pressure that vanishes
at a signiÐcant Ðnite density.

The best-known example of self-bound stars results from
WittenÏs (1984) conjecture (also see Fahri & Ja†e 1984 ;
Haensel, Zdunik, & Schae†er 1986 ; Alcock & Olinto 1988 ;
Prakash et al. 1990) that strange quark matter is the ulti-
mate ground state of matter. In this paper, the self-bound
EOSs are represented by strange-quark matter models
SQM1È3, using perturbative QCD and an MIT-type bag
model, with parameter values given in Table 2. The exis-
tence of an energy ceiling equal to the baryon mass, 939
MeV, for zero-pressure matter requires that the bag con-

TABLE 2

PARAMETERS FOR SELF-BOUND STRANGE

QUARK STARS

B m
s

Model (MeV fm~3) (MeV) a
c

SQM1 . . . . . . 94.92 0 0
SQM2 . . . . . . 64.21 150 0.3
SQM3 . . . . . . 57.39 50 0.6

NOTE.ÈNumerical values employed in the MIT
bag model as described in Fahri & Ja†e 1984.

stant B ¹ 94.92 MeV fm~3. This limiting value is chosen,
together with zero strange quark mass and no interactions

for the model SQM1. The other two models(a
c
\ 0),

chosen, SQM2 and SQM3, have bag constants adjusted so
that their energy ceilings are also 939 MeV.

For normal matter, the EOS is that of an interacting
nucleon gas above a transition density of to Below13 12n

s
.

this density, the ground state of matter consists of heavy
nuclei in equilibrium with a neutron-rich, low-density gas of
nucleons. In general, a self-consistent evaluation of the equi-
librium that exists below the transition density, and the
evaluation of the transition density itself, has been carried
out for only a few equations of state (e.g., Baym, Pethick, &
Sutherland 1971 ; Negele & Vautherin 1974 ; Lattimer et al.
1985 ; Lattimer and Swesty 1990). We have therefore not
plotted the pressure below about 0.1 MeV fm~3 in Figure 1.
For densities 0.001 \ n \ 0.08 fm~3 we employ the EOS of
Negele & Vautherin (1974), while for densities n \ 0.001
fm~3 we employ the EOS of Baym et al. (1971). However,
for most of the purposes of this paper, the pressure in the
region n \ 0.1 fm~3 is not relevant, as it does not signiÐ-
cantly a†ect the mass-radius relation or other global aspects
of the starÏs structure. Nevertheless, the value of the tran-
sition density, and the pressure there, are important ingre-
dients for the determination of the size of the superÑuid
crust of a neutron star that is believed to be involved in the
phenomenon of pulsar glitches (Link et al. 1999).

There are three signiÐcant features to note in Figure 1 for
normal EOSs. First, there is a fairly wide range of predicted
pressures for beta-stable matter in the density domain

For the EOSs displayed, the range of pres-n
s
/2 \ n \ 2n

s
.

sures covers about a factor of 5, but this survey is by no
means exhaustive. That such a wide range in pressures is
found is somewhat surprising, given that each of the EOSs
provides acceptable Ðts to experimentally determined
nuclear matter properties. Clearly, the extrapolation of the
pressure from symmetric matter to nearly pure neutron
matter is poorly constrained. Second, the slopes of the pres-
sure curves are rather similar. A polytropic index of n ^ 1,
where P \ Kn1`1@n, is implied. Third, in the density domain
below the pressure-density relations seem to fall into2n

s
,

two groups. The higher pressure group is primarily com-
posed of relativistic Ðeld-theoretical models, while the lower
pressure group is primarily composed of nonrelativistic

Figure 10.2: Table with a few representative EoS models, based on different approaches
and matter compositions; taken from [237].

density ρc (or pressure Pc) as

stable:
dM∗
dρc

> 0 , unstable:
dM∗
dρc

≤ 0 . (10.10)

The main idea behind the stability criterion (10.10) is that the occurrence of a
small density perturbation that compresses the star should induce an increase
in the energy (mass) of the star; should the contrary be true, the star would
uncontrollably roll down towards lower energy configurations, with its central
density continuously increasing. One thus finds that the central density ρc or
pressure Pc, or NS mass M∗, for which dM∗/dρc = 0 (turning point), marks
the onset of instability for a given equation of state. This is illustrated in the
plots of Fig. 10.1, where the TOV equations are solved numerically for the EoS
model known as H4 [234]. There is of course the possibility that the turning
point is only one of the local maxima, and that the instability criterion is only
satisfied locally; at even higher densities stability may be re-established. This
implies that the population of stars that reaches the region of instability will
immediately migrate to the next stable region of its EoS. For instance, this is
what happens past the stability region of white dwarfs: once a WD becomes
unstable, the configuration makes a violent transition (collapse) into the next
stable region of the EoS at much higher central densities, which corresponds to
a NS.
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10.3 Constraints from theory and observation

The main constraints on the NS EoS are given by the following theoretical bounds:

• maximal compactness in GR

• causality and the speed of sound

and the following observational bounds:

• largest measured NS mass

• largest measured spin

• largest measured redshift.

10.3.1 Maximally compact star

According to the TOV equation, a matter configuration can achieve hydrostatic
equilibrium in GR only if it can be supported by the pressure predicted by its
EoS. In GR however, the EoS itself cannot be arbitrarily stiff: any block of matter
that becomes as compact as a sphere of its Schwarzschild radius (or inner Kerr
horizon if it is rotating) immediately collapses into a black hole. The outer less
dense shells will inevitably follow, since there is no more pressure to support them.
Thus, a maximum compactness condition m(r)/r < 1/2 is imposed throughout
the star’s interior, up to its surface (M/R < 1/2); this is shown as the excluded
region in the upper left corner of Fig. 10.3.

10.3.2 Causality

An EoS that respects causality cannot predict a supra-luminal speed of sound
anywhere in the NS interior, at least for the mass range for which the NS is
stable. This imposes a physical constraint on the isentropic EoS function P (ρ),
which has to satisfy (in geometric units)

cs =

√
dP

dρ
≤ 1 . (10.11)

An additional assumption is that, by Le Chatelier’s principle, the pressure is a
monotonically non-decreasing function of density, i.e.

dP

dρ
≥ 0 (10.12)

The combination of Eq. (10.11) and (10.12) allowed Rhoades and Ruffini [314] to
develop a formalism that predicts an overall maximum allowed NS mass, within
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the uncertainty on the EoS. Given a density range ρ1 ≤ ρ ≤ ρ2 for which the EoS
is unknown but still respects causality, and assuming that the EoS is known out-
side this range, the EoS that maximizes the NS mass is the one that is marginally
causal in the low-end, until it reaches P (ρ) = P (ρ2) and remains constant at this
value, up to ρ = ρ2.

10.3.3 Measuring masses

Accurate measurements of large NS masses alone can in fact exclude EoS models
that predict maximum NS masses that are smaller than the largest measured
mass. In 2013 Antoniadis et al. [44] reported the measurement of a neutron star
mass 2.01 ± 0.04M� for a pulsar in a NS-WD binary PSR J0348+0432 4. This
observation already excludes many of the softest EoS models, among which most
of the SQM models. In the MIT bag model described in Sec. 10.1.5 a choice of
B = 57.39 MeV fm−3, ms = 50 MeV and αc = 0.6 gives one of the stiffest SQM
models often referred to as SQM3, whose maximum mass falls just within the
errors of the measurement.

50 LATTIMER

Figure 2: Representative hadronic and strange quark matter (SQM) equations

of state. The mean exponent � = d ln p/d ln n ' 2 holds for hadronic EOSs in

the vicinity of ns = 0.16 fm�3. The range of pressures at ns is approximately

a factor of six. This figure is taken from and the EOS names are identified in

Reference (13).

Figure 10.3: Left: the defining P (ρ) function for a list of EoS models, from Lattimer
(2012) [238]. Notice how the SQM models are self-bound, giving vanishing pressure at
finite non-zero density values. Right: M(R) curves for several different NS EoS, from
Demorest et al. (2010) [155]. Different bounds are shown in the labelled shaded regions.
The horizontal bands represent the mass measurements for the three most massive NS
observed. An EoS whose maximum mass lies below the measured value is ruled out.

4ra: 03h48m43s.639000(4), dec: +04o32′11′′.4580(2)
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10.3.4 Rotation

Neutron stars are well known for both their compactness and their rapid rotation.
Due to conservation of angular momentum, during the formation of a NS that
follows the collapse of a much bigger rotating star, the newly formed NS may
often happen to rotate as fast as a few hundreds times per second. A large
population of millisecond pulsars has been observed in the radio and microwave
EM spectrum.

The rotational frequency for a NS of a given mass M is approximately limited by
the Keplerian frequency fK(M ; EoS) of a test particle co-rotating on a circular
orbit, along the equator of the NS surface. Depending on the details of the EoS,
the maximum frequency has an explicit dependence on the mass. This relation
has been approximated very accurately by an empirical formula, obtained with
numerical simulations using a relativistic NS model [330, 331, 189].

fK ' C
(
M

M�

)1/2(
R

10 km

)−3/2

, C = 1.08 kHz . (10.13)

This relation, that involves both the mass and the radius of the non-rotating
configuration, is universal and does not seem to depend on the details of the
EoS.

Currently, the fastest spinning NS that has been accurately measured has a ro-
tation frequency of ∼ 716 Hz. This allows us to set a constraint on the space of
EoS, that excludes all models whose mass-shedding limit due to rotation is set
at a frequency less than the highest observed one. The corresponding bound is
illustrated as the excluded region in the lower right part of the mass-radius plot
of Fig. 10.3.

For SQM models the empirical formula is also valid but for a different value of the
C constant, which in this case is larger, CSQM = 1.15 kHz. These are self-bound
models with R→ 0 as M → 0, as can be seen in the representative curves of the
SQM family that start from the bottom left corner of the M–R plane in Fig. 10.3.

10.3.5 Direct gravitational wave detection: a new hope

The big variety of approaches and compositions in existing EoS models, and the
parametric freedom that each of those may entail, yield a plethora of consistent
EoS candidates that is only partly represented in the table of Fig. 10.2. Fur-
thermore, a more intuitive picture of the variety of models is given in Fig. 10.3,
where the interesting problem to be solved is clearly illustrated. In the left panel
we see the defining P (ρ) function of different EoS models, and in the right one
we see the M–R curves that the different models predict, together with exclusion
regions given by the aforementioned set of bounds.

It is evident that, due to the unknown physics above nuclear densities, there is
still a large degree of uncertainty in the determination of both the microphysics
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and the macrophysical properties of the EoS, even after all available theoretical
and observational constraints are applied. In the next chapter, we shall see that
GW detections with AdVirgo and aLIGO may contribute significantly in putting
futher constraints on the space of NS EoS. This will be achieved by analysing
GW signals from coalescing NS binaries and by simultaneously measuring the
NS mass and at least one additional EoS-sensitive quantity, most notably the
tidal deformability parameter. Other potential observables that will also aid in
inferring the EoS are the NS radius/compactness, the moment of inertia or spin-
induced quadrupolar moment, as well as features that characterize the post-
merger behaviour (resonant frequencies, lifetime of hypermassive NS, etc.).

The EoS signature on GW signals is rather fine, hence the discriminatory power
of individual observations of this sort crucially depends on the strength of the
signal, i.e. on the SNR. At a first glance it seems that only with an unrealistically
loud BNS event will we be able to obtain a sufficiently accurate measurement.
However, we shall see how, given a solid Bayesian formulation of the problem,
information from many low-SNR detections can be statistically combined into
tight, significant constraints.
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Chapter 11

Three roads to the
neutron star EoS

“New shit has come to light!”

The Dude, The Big Lebowski

11.1 Introduction

In this chapter, we study the possibility of inferring the neutron star equation of
state using detected GW signals generated during the inspiral of binary neutron
star systems. To this end we shall develop Bayesian analysis methods, along the
lines of Sec. 3.2, and will perform a number of numerical experiments to test their
potential, in the context of second generation ground-based interferometers.

The possibility of measuring the neutron star EoS with gravitational wave obser-
vations of BNS coalescences has recently been the subject of extensive investiga-
tion. Here, the first complete, realistic data analysis effort is presented, giving
a credible assessment of EoS measurability in the era of second generation GW
detectors. The dominant matter effect that may contribute with a measurable
signature in the GW signal is the tidal deformation effect of Sec. 2.6.1, that enters
the phase Φ(t) as in Eq. (2.56). Recall that the tidal deformability is expressed
by a parameter λ, which is related to the NS mass m and radius R(m) through
λ(m) = (2/3)k2(m)R5(m), where k2 is the second Love number. This quantity
determines the magnitude of the effect in the gravitational waveform. Although
the leading order tidal effects enter the phase at high apparent post-Newtonian
order (first appearing alongside the 5PN phase contribution), these corrections
come with a large prefactor: λ(mA)/M5 ∝ (RA/M)5 ∼ 102 − 105 (with M the
total mass of the binary), so that they may be observable with advanced detec-
tors.
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The potential of detecting tidal effects in the early inspiral (fgw < 450 Hz)
was studied in a Fisher matrix analysis by Hinderer et al. [200], based on prior
1PN calculations performed in [170, 368]. During this stage, tidal effects can
be safely treated as small perturbations on the orbital evolution of the binary
(that is accurately described by post-Newtonian waveforms), and are sensitive
to the details of the NS equation of state. They have shown that λA are only
measurable for very loud BNS sources and only for the stiffest EoS in the case
of second generation GW detectors. Read et al., using waveforms hybridized
with input from NR simulations and Fisher matrix analysis, estimated that with
a single close-by source (at a distance of ∼ 100 Mpc), the neutron star radius
could be constrained to 10% [309]. In a similar study for multiple detected
sources, Markakis et al. [255] concluded that a similar accuracy as in [309] could
be attained with 3 sources that have low signal-to-noise ratio (SNR). Lackey
et al. performed a similar analysis for NSBH, which also indicated encouraging
prospects [233]. Damour, Nagar and Villain [147] extended the calculation of
tidal effects to higher order, namely 2.5 PN beyond their Newtonian contribution
in an effective one-body setting, and demonstrated a Fisher matrix calculation,
in a parametrization where the tidal deformability λ is approximated as a linear
function of the NS mass. By extending the EOB calculation to high order, the
tidal contribution to the phase can be trusted up to the very end of the inspiral.
This approximation is sufficiently good for most known EoS, within the range of
mass values under consideration. We follow this approach in one of our methods
and perform a full Bayesian analysis on a series of simulations using realistic sets
of BNS sources.

Here, it is important to note that, even though an analytical Fisher matrix ap-
proach may be a good first estimate of what can be achieved with a given detector
sensitivity, its validity restricts to the regime of high SNR [132, 358, 396]. Es-
pecially in problems with a rich parameter space, the estimates derived by a
Fisher matrix analysis are by no means reliable at low SNR and are often too
optimistic. In the case of second generation GW detectors however, the major-
ity of detections are expected to lie close to the detection threshold (SNR' 8).
Thus, it is desirable to obtain results from Bayesian studies, using realistic sim-
ulated sources, and in a realistic data analysis setting, as will be demonstrated
below. In what follows, we shall see how performing a full Bayesian analysis on
the data from multiple GW detections from BNS inspirals can significantly en-
hance one’s ability to measure the NS EoS. Two qualitatively different methods
indicate that, given a few tens of detections, and assuming non-spinning BNS
systems, one can extract significant information about the tidal deformability
and discriminate between a soft, a moderate and a stiff EoS, using the Advanced
LIGO-Virgo network of detectors. We will extend the investigation to systems
consisting of spinning NS, and will include higher order tidal effects as calculated
in [147], as well as contributions from quadrupole-monopole effects [181]. An im-
portant part of this work is summarized in [152, 35]. In a recent Bayesian study,
Lackey et al. [235] showed how similar results could be obtained by performing
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parameter estimation on Λ̃, a combination of the tidal deformability parameters
and masses of the two component NS (essentially what appears as the leading
order coefficient), which is claimed to be the optimal one in terms of uncertainty
and correlations [200].

Sources will be distributed in an astrophysically realistic way, leading to the
distribution of SNRs that we expect to see towards 2018. Two different Bayesian
analysis methods will be investigated:

HR: Hypothesis ranking within a finite list of different theoretical EoS, and

PE: Parameter estimation on parameters that characterize the EoS and are
common across all sources.

The first method is based on Bayesian model selection (Sec. 3.4.1), that trivially
allows one to combine information from multiple sources so as to arrive at a
stronger result. To do the same with PE, global parameters need to be identified
that do not vary from source to source; these will be simply taken to be coefficients
in a polynomial expansion of λ(m) in powers of (m−m0)/M�, where m0 is some
reference mass. A similar analysis in terms of parameter estimation was recently
performed by Lackey and Wade [235]. The latter authors modeled the EoS as
piecewise polytropes, allowing them to arrive at statements on the measurability
of pressure as a function of density and neutron star radius as a function of mass.
The PE method also has the advantage that physical priors such as causality can
more easily be folded in.

Of necessity, we will use relatively simple waveform approximants, as otherwise
the simulated data analysis problem would have been intractable with existing
methods and computational infrastructure. Much effort is being put into large-
scale numerical simulations of the spacetimes of coalescing BNS, especially of the
late inspiral [56, 57, 73, 203, 307, 305]. The resulting waveforms are “hybridized”
by matching them onto post-Newtonian or effective one-body waveforms, so that
the earlier inspiral is also represented. While such waveforms represent the state
of the art in our understanding of BNS coalescence, producing a single one of them
can take weeks. By contrast, high quality parameter estimation requires millions
of waveforms to be compared with the data (see [364] and references therein). A
full solution of the problem of inferring the EoS from BNS detections will likely
involve a combination of constructing phenomenological or “tuned” waveform
models with input from numerical relativity [341, 342, 285, 349, 324, 191, 325],
and significantly speeding up the analysis of the data, e.g. through the use of
Reduced Order Modeling; see [303, 119] and references therein. In that regard
we note the recent work by Bernuzzi et al. [72], who derived an effective one-
body model that accurately describes tidal effects close to merger for a number
of different EoS, matching results from numerical simulations essentially to within
the numerical uncertainties.

The main concern regarding the reliability of methods that rely on effects tak-
ing place during the inspiral, is that of the validity of the existing point-particle
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(PP) inspiral waveform models close to merger. This was already pointed out
in [200] (together with some less important sources of errors) and studied in detail
in [372], where the authors demonstrate that significant biases arise due to the
discrepancies between the different (PN) waveform approximants at high frequen-
cies. Indeed the true PP waveform may not agree with any of the existing models
to sufficient accuracy. Furthermore, the possibility of obtaining significant input
from numerical relativity (NR) would require a large set of lengthy simulations
that go hundreds of cycles deep into the inspiral; such an effort is currently un-
feasible. The author is very much aware of this issue and does not claim the
current analysis to correspond to an ideal scenario to its last detail1. However,
based on results of [307, 203], we do expect that the predicted contribution of the
matter effects to the waveform is close to reality and that the main part of the
systematics originates from the point-particle sector. In particular, an important
observation made by Read et al. [307], had to do with the “distinguishability”
||δh|| ≡

√
〈h2 − h1|h2 − h1〉 in terms of the usual PSD-weighted inner product

〈 · | · 〉 for waveforms h1, h2 of the same family but differing in their parameter
values, in this case λ. As can be seen in their Fig. 12, the dependence of ||δh||
on changes in λ is very similar for PN approximants and for hybridized numeri-
cal relativity (NR) waveforms. Thus we are confident that already by using PN
approximants we can accurately predict how well we will be able to infer the
EoS, once the accurate PP waveforms become available for use in data analysis
algorithms. The current analysis will also inform the waveform modeling, NR
and data analysis communities as to what can reasonably be expected in terms
of scientific output, once their considerable efforts come to fruition.

We will consider three different effects that take place during a BNS inspiral and
affect the orbital evolution of the binary and thus the GW waveform emitted by
the system, namely (i) tidal deformations induced by the companion’s gravita-
tional field, (ii) the coupling of spin induced quadrupole moment and (iii) the
physical contact between the two finite-sized stars, which we consider to signify
the end of the coherent GW emission of the inspiral.

The remainder of this chapter is structured as follows. In 11.2 we introduce the
waveform model and the EoS-related contributions from the two effects mentioned
above. Before diving into the methods, a general set-up for the simulations is
given in Sec. 11.3. The main body of this work lies in Sec. 11.4.1 and 11.5.1,
where two different Bayesian methods are studied, for inferring the NS EoS using
realistic sets of GW detections. There, details of the methodologies are discussed
and results from a series of simulations for each of the three approaches are
demonstrated. A brief note on the EoS information content of BNS signals is
given in Sec. 11.6, and possible sources of inference bias are explored in Sec. 11.7,
before reaching a discussion on current and future developments in Chapter 12.

1In this study, we will consistently use a single waveform approximant (TaylorF2), both for
simulating the signals and as templates for the analysis, in order to avoid such biases.
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11.2 Waveform modelling

11.2.1 Post-Newtonian waveform for point particle

For the modelling of our BNS inspiral waveforms, we will be using a post-
Newtonian approximation, where the evolution of the orbit is expressed in terms
of an expansion in powers of v/c, v being the instantaneous characteristic orbital
velocity of the binary, v = (πMfgw)1/3, fgw being twice the orbital frequency
and M = m1 +m2 being the total mass.

More specifically, we employ the stationary phase approximation (SPA) to obtain
an analytical expression for the waveform directly in the frequency domain (FD),
the TaylorF2 waveform defined in Sec. 2.4. The GW polarizations are then
expressed as

h̃(f) = A(f)eiΨPP (f) (11.1)

where the amplitude A(f) and phase ΨPP (f) in the “point-particle case” take
the form of Eq. (2.27), (2.28) and (2.29).

Throughout the whole study, we will again only assume quasi-circular orbits. We
will not take into account post-Newtonian corrections in the waveform amplitude.
On the other hand, we make use of the expansion coefficients in the phase that
are calculated up to 3.5 post-Newtonian order [50], including spin-orbit, spin-
spin and self-spin-spin interactions which enter at 1.5 PN, 2PN and 2PN order
in the phase ΨPP (f) respectively [114, 295, 262] as given explicitly in Sec. 2.4.
When moving away from the simple “point-particle” scenario, to a finite-sized
matter distribution, as in the case of a BNS system, the expression for the phase
evolution in Eq. (2.28) will be enriched with additional terms, whose magnitudes
depend on each component’s internal structure.

11.2.2 Matter effects and equations of state

Based on the discussion of Sec. 2.6, we will enrich the waveform phase structure
with two additional matter effects that will be present and potentially measur-
able in coalescing BNS systems. These will be (i) the effects of tidal-induced
deformation on each NS by the gravitational field of its companion, and (ii) the
contribution of the additional spin-induced quadrupole moment of each (spin-
ning) NS. Furthermore, a more realistic termination condition than fLSO will be
chosen below.

In the series of numerical simulation experiments that will be presented, three
different EoS models are considered, namely MS1 [267], H4 [234] and SQM3 [299].
These can be seen as representatives of stiff (MS1), moderate (H4) and soft
(SQM3) equations of state, the distinguishability among which we are aiming to
investigate. The defining P (ρ) functions and the derived mass-radius graphs of
the three EoS considered here, can be seen in Fig. 10.1 and Fig. 10.3.
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Tidal deformations In order to incorporate the effects of tidal deformability
in the GW phasing, we will be using the tidal terms calculated up to 2.5PN
beyond leading order, as shown in Eq. (2.56). Since three individual EoS will be
considered for our numerical experiments, we will need to known how to calculate
the tidal deformability parameter λ as a function of the NS mass m. Instead of
solving the differential equations “on the fly”, it will be enough to interpolate the
different λ(m; EoS) curves with a quartic polynomial fit

λ(m; EoS) =

4∑
i=0

aEoS
i mi (11.2)

using a set of points that lie within the mass region of interest. The fitting is done
once and for all and the calculation of λ using the fitted polynomial will speed up
the analysis of the HR method. The values of the fitted polynomial coefficients
are given in Table 11.1 and the corresponding curves and residuals are shown in
Fig. 11.1. We see that the uncertainties introduced by the fitting, (in the order
of 0.01 × 10−23s−5) are quite small in comparison with the differences between
the three EoS, as well as with the statistical errors that we expect to see in the
analysis.

EoS a0 [10−24s5] a1 [10−17s4] a2 [10−12s3] a3 [10−7s2] a4 [10−3s]
MS1 6.0437 1.1206 −2.0384 1.3264 −3.2735
H4 2.0486 0.88919 −1.6739 1.2290 −4.4138

SQM3 −15.319 1.1693 −2.3354 2.2036 −8.6594

Table 11.1: Quartic polynomial fitted coefficients for the three representative EoS.

11.2.3 Universal relations between NS matter properties

Much attention has recently been drawn to a set of phenomenological relations
that have been established between different physical mass-dependent parameters
of neutron stars, namely the moment of inertia I, the second Love number k2,
the quadrupole moment q [390, 391], and the compactness C [258]. The claim is
that these relations hold irrespectively of the EoS at hand.

We shall make use of these relations to reduce the problem of inferring the EoS
to a single parameter problem, that is, knowledge of one of the above parameters
implies knowledge of any other EoS-related parameter that may enter our model.
In particular, we make use of the Love–Q relation (Eq. (54) and Table I of [391] to
obtain an expression of the form a(λ,m), as well as a Love–C relation, to obtain
the NS compactness and radius R(λ,m) = m/C(λ,m). Both these relations
will help adding realistic effects, without increasing the dimensionality of our
parameter space by unifying the parameters of the tidal effects, Q-M effects and
radii for each component NS.
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Figure 11.1: Left: The tidal deformability parameter λ(m) as a function of neutron
star mass for three different EoS: a soft one (SQM3), a moderate one (H4), and a
stiff one (MS1). Curves are fitted quartic polynomials, whose residuals are shown in
the lower subplot. Only masses within the unshaded region [1, 2]M� will be considered.
Right: The quadrupole parameter a(m) as a function of neutron star mass for the three
different EoS. The horizontal dashed line indicates the value for black holes, which is
a = 1.

Quadrupole-monopole effects The second matter effect that we will incor-
porate in the waveform is that of the spin-induced quadrupole moment, that
enters the waveform phase as in Eq. (2.64). The magnitude of this effect is de-
termined by the NS spin χ and the QM parameter a, which depends on the NS
mass in a way that is dictated by the EoS. For computing a(m), we make use
of the recently discovered phenomenological Love-Q relation [390, 391], which
is believed to hold irrespective of the EoS and allows us to calculate a directly,
given a value for λ,

ln a(m) = 0.194 + 0.0936 ln
λ

m5
+ 0.0474

(
ln

λ

m5

)2

−4.21× 10−3

(
ln

λ

m5

)3

+ 1.23× 10−4

(
ln

λ

m5

)4

.

The systematic errors that may rise due to this assumption are expected to be
much smaller than the statistical uncertainties met in this study. The relative
fractional errors due to the universal fit were estimated in [391] for several EoS
to be at the 1% level. Together with Eqs. (2.63) and (2.64), this then allows us
to compute the QM contribution to the phase. The resulting a(m) curves for
the three EoS models of interest are illustrated in the right panel of Fig. 11.1.
QM contributions to the phase are expected to be sub-dominant compared to
the tidal effects of Sec. 2.6.1, even for relatively fast spinning NS, as shown in
Fig. 11.3.
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Termination of the waveform at contact In the recent simulations [152,
235], the waveform was cut off at a frequency corresponding to the last stable
circular orbit (LSO) in the point particle limit, given by

fLSO =
1

63/2πM
. (11.3)

However, as we shall see below, it will often happen that the two neutron stars at-
tain physical contact before the corresponding distance between the components
is reached. We will instead impose the cut-off

fcut = min{fLSO, fcontact}, (11.4)

where, using Kepler’s third law, the “contact frequency” is given by

fcontact =
1

π

(
M

R(m1) +R(m2)

)1/2

. (11.5)

We stress that the termination condition (11.4) is still a relatively heuristic one
(not taking into consideration effects of tidal deformation, tidal disruption, Roche
lobes, spins, etc.), but is crucially more realistic than termination at fLSO. More-
over, the length of the waveform itself carries physical information [254], in this
case on the EoS, which we wish to incorporate 2. On the other hand, shorter
waveforms have a smaller number of cycles from which information can be ex-
tracted; when we come to the results of our simulations we will see which effect
wins out.

In order to compute the radii R(m1), R(m2), we again make use of a recently
discovered phenomenological relation, this time between the compactness C =
m/R and λ; this is the Love-C relation, Eqn. (4) of Maselli et. al [258]

C = 0.371− 3.91× 10−2 ln
λ

m5
+ 1.056× 10−3

(
ln

λ

m5

)2

. (11.6)

For a given EoS (i.e a given relationship λ(m)), the above expression gives us
R(m), from which the contact frequency (11.5) is obtained. The relative error in
the compactness (and hence in the radius) due to the fit of Eq. (11.6) was found
to be at the 2% level, implying a relative error of 1% in the contact frequency.

Fig. 11.2 shows the dependence of fLSO and fcontact on component masses m1,
m2 for the EoS considered above. Note how in the astrophysically relevant range
mA ∈ [1, 2]M�, A = 1, 2, it often happens that fcontact < fLSO, especially for low
masses and for the stiffer EoS (MS1) which can support larger neutron star radii.
In order to get an impression of the magnitude of the matter effects, we show

2It seems reasonable to expect that termination at our fcut will be sufficiently indicative of
the in reality more complicated but nevertheless dramatic changes in the waveform evolution
that will occur around that frequency, and which should indeed carry information about the
EoS [56, 57, 73, 203, 307, 305].
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Figure 11.2: Left: The frequencies fLSO and fcontact as functions of m1, m2 for the
EoS shown in Fig. 11.1. Right: Maximum frequency cut-off as a function of total mass
for equal-mass binaries, for the same three EoS. Observe how the stiffer EoS signals
will be cut short earlier in the inspiral than the softer ones, for low-mass systems.

in Fig. 11.3 the evolution of the different matter terms introduced in the phase,
as the inspiral frequency increases. The system is a typical (1.35, 1.35)M� BNS
system following a stiff EoS (MS1), with relatively high NS spins (χ1 = χ2 = 0.1).
The effect scales linearly with λ and quadratically with the spin amplitudes; the
high spin values are chosen in order to show a visible effect in the phase, which
is still rather small, compared to the tidal effects.

11.3 Simulations set-up

In the sections that follow, we investigate two qualitatively different Bayesian
methods that can be used to acquire information on the NS EoS, given a set of
GW detections from BNS coalescence. These are potential post-detection meth-
ods that should be applied on events that are verified BNS detections. The BNS
nature of the detected source may be established by a mass-related criterion,
such as the Mc < 1.3M� criterion proposed in [32]. However it is possible that
imposing such a high-mass restriction on the detections to be processed, could po-
tentially exclude sources holding decisive information related to the NS EoS (e.g.
a high-mass NS that would provide strong evidence against a set of soft EoS).
Therefore, one would definitely benefit from using a combination of criteria of
different nature; one that may incorporate evidence of a post-merger meta-stable
object, or an electromagnetic (EM) signature matching one of a BNS coales-
cence [348, 204]. Here however, we will not be concerned with selection criteria
and will assume that all our sources are guaranteed to be BNS coalescences.

The computational methods used for the analysis of the simulated data are based
on the nested sampling algorithm of Sec. 3.3.2, which can produce both the
evidence for a waveform model and a set of posterior samples of its parameter
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Figure 11.3: Phase contributions of the QM effect and tidal effects up to different
PN orders as functions of GW frequency for a (1.35, 1.35)M� binary with a stiff EoS
(MS1). The QM contribution from each NS scales quadratically with its spin and is
shown here for χ1 = χ2 = 0.1. The dashed vertical lines indicate the contact and LSO
frequencies.

space. These two kinds of output will play a central role in the inference methods
that will be studied.

To give a figurative description, the HR method comprises a set of Bayesian
Model Selection tests, while the PE method performs Bayesian Parameter Esti-
mation on a set of EoS-related parameters; a third functional inference method
(FI) outlined in Appendix C, is currently under development as an attempt to
formulate Bayesian non-parametric inference on the global functional dependence
of one source parameter (λ) on another (m). All methods have the feature of
seamlessly combining information from multiple detections into a unique result,
therefore effectively improving the discriminatory power of the network of GW
interferometers on the EoS, as more and more sources are detected.

A common set-up will be used in the simulations that will be performed for
all methods, so that their behaviour can be judged on common grounds. This
entails choices for both the parameters of the simulated and noise and signals
(injection), as well as the ones for the templates used in the analysis algorithm
(recovery). Different scenarios for underlying NS mass and spin distributions will
be investigated; the choices for these and all other parameters of the set-up are
described below.
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11.3.1 Injections set-up

Mass distribution For the injected mass parameters we consider two different
scenarios for the distributions of mA:

MU : a uniform mass distribution in the range [1, 2]M�

MG : a Gaussian distribution centred at µm = 1.35M� with a standard devia-
tion of σm = 0.05M�, restricted within [1, 2]M�

The latter scenario is motivated by currently available mass measurements on NS
binaries, see e.g. Kiziltan et al. [227].

Spin distribution For the injected spin parameters we consider three different
scenarios for the distributions of the dimensionless (anti-)aligned spin magnitudes
χ1, χ2:

S0 : zero spins,

S02 : a Gaussian distribution centred at µχ = 0, with a standard deviation of
σχ = 0.02,

S05 : a Gaussian distribution centred at µχ = 0, with a standard deviation of
σχ = 0.05.

Positive (negative) spin values will correspond to spins ~SA that are aligned (anti-

aligned) with the orbital angular momentum ~L. Note that in the case of zero
spins, the quadrupole-monopole effect is not present.

The choice for small spin values is motivated by the observed population of spins
in NS binaries [248] and is a rather conservative one, since by the time of co-
alescence NS will have spun down further. However, it would be precarious to
assume that the properties of the observed population of NS will be identical to
those of the coalescing BNS populations that will be detected with GW interfer-
ometers, since different sets of selection effects may be in play for EM and GW
observations. This cautionary note refers to both the underlying NS spin and
mass distributions.

Other injection parameters The simulated signals will be added coherently
into simulated Gaussian and stationary noise, for the network of an AdVirgo
detector at Cascina, Italy and two aLIGO detectors at Hanford, WA, and Liv-
ingston, LA, based on the design sensitivity noise PSDs shown in Fig. 1.4 (SR
and ZDHP respectively). As for the remaining CBC parameters, the orientation
ι, polarization ψ and sky-location (θ, φ) angles will be distributed uniformly in
the sphere, the phase at coalescence φ will be uniform in [0, π) and the distance
r will be sampled uniformly in volume (i.e. ∝ r2dr) and, unless stated otherwise
will range in [100, 250] Mpc.
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11.3.2 Recovery set-up

For analysing the data, again a Gaussian, stationary noise model will be used,
based on the design aLIGO and AdVirgo noise PSDs for calculating likelihoods.
Analysis will initiate at a lower frequency of 40 Hz and will terminate at fcut,
with a sampling rate of 4096 Hz.

Unless stated otherwise, the mass prior will be uniform in [1, 2]M� and, whenever
applicable, the prior for the (anti-)aligned spin amplitude will be uniform in
[−0.1, 0.1]. Here too, the angular parameters (ι, ψ) and (θ, φ) are assigned priors
uniform in the sphere and the distance prior will range in [100, 250] Mpc, using a
logarithmic prior. The time of coalescence parameter tc will range within 10 ms
before and after the injected time of coalescence. The priors used for additional
EoS-related parameters will be described separately below.

As we shall see, the prior density distribution for the component masses will
play an important role. In principle we could take this to be always the same
as the mass distribution for the injections. However, we would then implic-
itly be assuming that the astrophysical mass distribution of neutron stars in
binaries will be reliably known in the advanced detector era. At the time of
writing only 9 double neutron star systems have been observed, sometimes with
large error bars on the measured masses; it seems unlikely that this situation
will improve dramatically in the next few years. We also note the differing re-
sults for observationally based estimates of the mass distribution in BNS sys-
tems; for example, (µm, σm) = (1.37M�, 0.042M�) in Valentim et al. [356] and
(µm, σm) = (1.33M�, 0.13M�) in Kiziltan et al. [227], the difference partially
being due to the use of different subsets of the known systems based on the
reliability of individual mass measurements. Finally, it is possible that due to se-
lection biases, the distribution of masses in electromagnetically observed neutron
star binaries will not be identical to the mass distribution in BNS coalescences
detected by Advanced LIGO and Virgo. For these reasons, we will mostly assume
a flat component mass prior with m ∈ [1, 2]M�. However, in Sec. 11.7 we will
also briefly investigate what happens if the astrophysical distribution of masses
of neutron stars in binaries can be assumed known after all.

As for the nested sampling algorithm itself, 1024 live points and 200 MCMC
points will be used for sampling the parameter space. The termination condition
is the same as in Sec. 6.3, namely dZ < 0.1.

11.4 Hypothesis Ranking

11.4.1 Method

Given a discrete set of (finitely many) EoS models {M1, · · · ,MK}, we will be
interested in ranking them, in the light of data d1, · · · , dN coming from a set of
N BNS GW detections. The ranking process will be one on the set of hypotheses
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{Hi}i=1,··· ,K , where the hypothesis Hi states that model Mi is the true model

for the NS EoS and defines a family of waveforms h̃(i)(f ; ~θ).

Each model predicts a unique way in which the tidal deformability parameter
λ, the quadrupole parameter a and the NS radius R depend on the mass m of
the neutron star. This was illustrated e.g. in Figs. 11.1 and 11.2 for a rep-
resentative set of candidate equations of state. Therefore the set of parame-
ters ~θ is the standard set of CBC parameters (5.2) and is the same across all
waveform families, however the calculated values for λA = λ(mA;Mi), aA =
a(mA;Mi) and RA = R(mA;Mi) differ. The general form of the waveform given
by Eq. (11.1), (2.27) and (2.29), together with the spin, tidal and QM contribu-
tions Eq. (2.45), (2.56), (2.64) and the waveform termination condition (11.4),

yield a waveform model h̃(i)(f ; ~θ) associated with the hypothesis Hi.

Now, once we have data from a verified BNS detection we can compute the evi-
dence P (d|Hi, I) for each model hypothesisHi, using the corresponding waveform

family h̃(i)(f ; ~θ) as templates for analysing the data. The likelihood of a (Fourier

transformed) data set d̃(f) on a given point ~θ of the parameter space, for the
model hypothesis Hi, is given by the integral of Eq. (3.12)

p(d|~θ,Hi, I) = N exp

[
−2

∫ fhigh

flow

df
|d̃(f)− h̃(i)(f ; ~θ)|2

Sn(f)

]
, (11.7)

where N is a normalization factor, and Sn(f) is the detector’s one-sided noise
power spectral density. 3 We set the low frequency cut-off at flow = 40 Hz, and
the high-frequency cut-off at fhigh = fcut given in Eq. (11.4). The evidence of
the data for each individual model is given by the prior-weighted integral of the
likelihood over the parameter space

P (d|Hi, I) =

∫
d~θ p(~θ|I) p(d|Hi, ~θ, I) . (11.8)

We will numerically compute P (d|Hi, I) by using the nested sampling algorithm.

Then the odds ratio Oij for any pair of models Hi, Hj is directly computed as
the ratio of the models’ posteriors

Oij =
P (Hi|d, I)

P (Hj |d, I)
=
P (Hi|I)

P (Hj |I)

P (d|Hi, I)

P (d|Hj , I)
(11.9)

Assuming a set of N independent detections d = d1, . . . , dN one can rewrite the
odds ratio as in Eq. (3.33), using Bayes’ theorem and the multiplication rule for
independent random variables as

(N)Oij =
P (Hi|I)

P (Hj |I)

N∏
n=1

P (dn|Hi, I)

P (dn|Hj , I)
, (11.10)

3For a network of multiple detectors with uncorrelated noise, the multiplication
rule Eq. (3.30) may be used to express the overall likelihood as a product of likelihoods for
individual detectors.
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where P (H|I) is the probability that quantifies our prior belief in the hypothesis
H, in the absence of any GW data. Note that it is often convenient to work with
the logarithms of the odds ratios, as we will also do here. For the purpose of
this study, we show no prior preference for any model over the rest, and will thus
set the priors for all hypotheses to be equal to each other (i.e. the prior ratio in
Eq. (11.10) for any pair of hypotheses equals 1)

P (Hi|I) = P (Hj |I) ∀i, j ∈ 1, . . . ,K . (11.11)

We will refer to (N)Oij as the combined odds ratio for N sources between hypothe-

sesHi andHj . According to Eq. (11.10), if (N)Oij > 1 (equivalently ln (N)Oij > 0),
then the data favors the hypothesis Hi over the hypothesis Hj . By comparing
the evidences of all hypotheses considered, we arrive at an overall ranking for
the set of hypotheses {Hi}i=1,...,K , where the highest ranked model is the one
assigned with the largest posterior probability, given the observed data.

It is important to note that

1. Even if the true equation of state were in the set Hi, i = 1, . . . ,K, one
should not necessarily expect it to end up at the top of the ranking; this is
due to the effects of noise and the fact that the majority of detected sources
will have low signal-to-noise ratios (SNRs). The evidences for the different
hypotheses, and thus the odds ratios should be treated as statistics over
the random variable d. Thus one should not expect to obtain a definite
result when calculating the odds ratios for a given set of detections; the
purpose of the simulations described in the following section is to explore
the behaviour of the combined odds ratio statistic.

2. In practice, the correct equation of state will probably not be in the finite
set Hi, i = 1, . . . ,K. Nevertheless, one may expect the highest-ranked
hypothesis to be close to the true one.

Here a notion of closeness or distance in a space of functions is implied; this can
be defined by e.g. employing the L2 norm ||f || = (

∫
|f |2dµ)1/2. The integration

measure µ need not be uniform in mass (i.e. in principle dµ 6= dm), but should
rather reflect the amount of information that is collected from each infinitesimal
mass interval. That is, if two functions differ significantly at a mass interval
where no sources are found, but are almost equal elsewhere, then the “distance”
between them should be small. In this sense, an appropriate notion of distance
between EoS would depend on the NS mass-distribution. Here however, the set
of functions λ(i)(m) that we consider are clearly distinguishable across the mass
interval of interest [1, 2]M� and admit a strict ordering in terms of stiffness.

11.4.2 Simulations and results

We wish to demonstrate the ability to distinguish at least between a stiff, a
moderate and a soft EoS, which will be represented by the models MS1, H4 and
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SQM3 respectively. Our simulated signals will be generated according to these
three models. For the analysis of the data we will use the same three models,
as well as the point particle (PP) model, in which no tidal effects are present
(λ = 0). In this way we will arrive to results for hypothesis ranking on the set of
hypotheses {HPP , HSQM3, HH4, HMS1}, for 3 realistic sets of BNS sources.

Since this is meant to be a post-detection analysis, two additional conditions
are imposed on the simulated signals, in order to ensure that the sources that
participate in the analysis would have been detected in real science run conditions:

1. An optimal signal-to-noise-ratio cutoff of 8 ≤ ρopt ≤ 30. The lower cutoff
is chosen as the nominal threshold for detection, whereas the high cutoff
excludes unlikely loud events that may yield overly optimistic results; and

2. A post-analysis signal-to-noise Bayes factor cutoff of lnBsignal
noise ≥ 32 on the

point particle template 4 (roughly corresponding to a detected SNR of 8).

The latter implies that any signal that is distant enough from the manifold of
point particle signals h̃PP (f ; ~θ) so as not to be confidently detected by the PP
template, is discarded. This may inevitably introduce a small bias disfavoring
hard EoS models, as the waveforms generated by those models will deviate the
most from their PP counterparts.

We populate a set of simulated sources by choosing astrophysically motivated
scenarios, based on combinations of the mass [MG, MU] and spin [S0, S02, S05]
distribution scenarios of Sec. 11.3.1. Ideally one would like to look at the impact
of the different matter effects, for each of the population scenarios and each of
the model EoS individually. However, the corresponding simulations are com-
putationally expensive if one wants to have good statistics. For this reason, we
proceed as follows:

• First we set the spins to zero both in injections (S0) and templates. We
generate results for injected component masses according to the uniform
MU, and then the Gaussian MG population scenario; however, in both cases
the mass prior in our Bayesian analysis is taken to be uniform on [1, 2]M�.
Again because of computational cost, we only make this comparison for the
case where the EoS in the signals is MS1, i.e. the stiffest equation of state
considered in this paper.

• Next we specialize to the more astrophysically motivated Gaussian dis-
tribution for the component masses (still keeping a uniform prior in the
analysis), and we also switch on spins. In the injections, we distribute the
latter according to the S02 and S05 scenarios, while in the templates we let
the prior on the spins be uniform on the interval [−0.1, 0.1], to reflect the
ignorance about spins we will in practice have. Since in this case we are

4The detection efforts themselves can not take the unknown EoS effects into account, and
searches are done with point particle templates.
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including all the aforementioned astrophysical effects, we generate results
not only for MS1, but for H4 and SQM3 as well.

Results are presented in terms of the natural logarithm of the odds ratio ln(N)Oij ,
since quantities like the evidence typically take very large values.

Masses: MU (uniform), MG (Gaussian); no spins

We examine how the ranking statistics (N)Oij are distributed after having com-
bined information from 20 BNS detections (N = 20) drawn from a uniform mass
distribution. The resulting distribution of ln (20)OiMS1 for this set of simulations,
using MS1 as the true EoS, is shown in the cumulative plot of Fig. 11.4.
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Figure 11.4: Hypothesis ranking results for a population of sources with component NS
masses sampled from a uniform mass distribution in [1, 2]M� and with zero spins. Left:
cumulative distribution for the combined odds ratio between the underlying EoS (MS1)
and the other three candidate models (PP, SQM3, H4), for 90 independent catalogs of
20 sources each. Negative values correctly favor MS1. Right: the fraction of correct
rankings εMS1

EOS as a function of catalog size. A set of 1,800 sources is partitioned into
catalogs in 1,000 different ways; medians are drawn as thick lines and 95% confidence
intervals are shown as shaded regions.

We let the injections have MS1 as their EoS, and we compute the log odds ratios
ln (20)OEOS

MS1 for catalogs of 20 sources each, where, in turn, “EOS” stands for PP,
SQM3, and H4. Examples of the cumulative distributions of these log odds ratios
are shown in the left panel of the figure. In the absence of detector noise, one
would have ln (20)OEOS

MS1 < 0 in all three cases, since any EoS different from the
correct one (MS1) would be deprecated. What we see is that ln (20)OPP

MS1 < 0
for about 80% of the catalogs, while ln (20)OH4

MS1 < 0 in about 60% of the cases.
Note that H4 is the most similar to MS1, followed by SQM3 and PP; and indeed,
the log odds ratios obtained tend to correctly rank the EoS in this way. This
is similar to what one sees in the top right panel of Fig. 2 of our earlier work
[152], where tidal effects were considered up to 1PN beyond leading order and
termination was set to fLSO. However, despite the fact that in the present work
we take tidal effects to much higher order, the left tails of the cumulative log odds
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ratio distributions stretch to less negative values. This can be explained by the
different termination of the waveforms, which for the EoS and mass distributions
we consider tends to be at contact rather than LSO (see Fig. 3). For a typical
system with component masses (1.35, 1.35)M� and equation of state MS1, the
termination frequency is fcontact = 1222 Hz whereas fLSO = 1629 Hz, so that
the signal contains less information on tidal effects (which manifest themselves
at high frequency) than in [152]. Indeed, as can be seen in Fig. 11.3, the higher-
order tidal effects due to their alternating signs do not significantly change the
number of cycles in the phase, though they will add some structure because they
come with different powers of v; on the other hand, termination at contact seems
to have a much stronger effect, cutting the tidal phase short (in this example by
roughly 15 radians). The QM effect is much weaker and is not expected to give
a significant contribution to the inference.

It is also of interest to observe how the performance of this method improves as the
number of detected sources increases. We expect the fraction of correct rankings
between the true model and any of its competitors to gradually increase with
the catalog size. Such a trend is indeed exhibited in the right panel of Fig. 11.4,
which shows the fraction εMS1

EOS of catalogs for which MS1 is ranked higher than,
respectively, H4, SQM3 and PP (i.e. ln (20)OEOS

MS1 < 0 where “EOS” is, in turn,
PP, SQM3, and H4), as a function of the number of sources per catalog. This is a
good hint in favour of posterior consistency of the current method, which implies
that for N large enough, the success of hypothesis ranking will converge to 100%.
A variance over this statistic is also expected when partitioning a finite number
of sources into catalogues; a curve corresponding to the median of εMS1

EOS and a
band corresponding to its 95% confidence interval based on 1,000 partitioning
realizations are drawn for each EoS, as N runs from 0 to 100. We see the same
trend as in the left panel: H4, being the most similar to MS1, is ranked below
MS1 the least often, and PP, being the most dissimilar, the most often. We note
that in going to a higher number of sources per catalog, we start experiencing
small number statistics; with a total of 1,800 sources available, at 100 sources per
catalog only 18 independent catalogs can be composed. However, if we assume
that the distribution of the 1,800 single-source odds ratios is representative of the
underlying distribution, we can safely say that the results are free from statistical
artifacts.

Next, in Fig. 11.5 we look at the case where the spins are still zero in injections and
templates, but the injected masses are distributed according to a Gaussian (MG)
with µm = 1.35M� and σm = 0.05M�. Unlike in Fig. 11.4, in the left panel
showing the cumulative distributions of the log odds ratios, we now consider
catalogs of 100 sources each, which turns out to be necessary to approach the
discriminatory power we had with a uniform mass distribution. Even then, H4,
the EoS that most closely resembles the injected MS1, is not distinguishable from
it: the probability that MS1 gets ranked above H4 is approximately the same as
the probability that H4 ends up above MS1.
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Figure 11.5: Same as Fig. 11.4 but in this case for a population of NS following the
Gaussian mass distribution MG with a strong peak around 1.35M�. Here however, the
left panel shows cumulative distribution of the combined odds ratio for catalogs of 100
sources.

Masses: MG (Gaussian); Spins: S0, S02, S05

We now specialize to the astrophysically better motivated Gaussian distribution
for the injected component masses (but sticking to a uniform mass prior in our
analyses), and we switch on (anti-)aligned spins χA, A = 1, 2. In the injections,
the spins are sampled according to the scenarios S0 (χA = 0), S02 (σχ = 0.02)
and S05 (σχ = 0.05), while in the templates, we also use (anti-)aligned spins
with priors that are uniform in χA ∈ [−0.1, 0.1]. This time we give results for
injections where the EoS is MS1, H4, and SQM3, respectively.

S0 The results for non-spinning sources (S0) are summarised in Fig. 11.6. From
top to bottom, the injections follow MS1, H4, and SQM3, respectively. In the left
panels we see examples of cumulative distributions of ln (100)OEoS

inj for independent
catalogs of 100 sources each, where “inj” is the injected equation of state, while
“EOS” is, in turn, taken to be each of the other three EoS considered. Recall
that a negative value of the log-odds ratio favours the correct hypothesis.

In the right panels of Fig. 11.6 we again vary the number of sources per catalog,
and show the fraction εinj

EoS of times that the injected equation of state is ranked
higher than each of the other three EoS in turn. For a given number of sources
per catalog, we partition individual sources into catalogs in 1,000 different ways
and look at the medians and 95% confidence intervals of the εinj

EOS.

We observe that, in the case of a stiff EoS (MS1), the true model is most often
favoured against SQM3 and PP. The median fraction of correct rankings with 20
(100) combined sources is 70% (90%) against SQM3 and 76% (93%) against PP.
However, similarly to what we saw in Fig. 11.5, we see that the runner-up model
H4 is favored as often as MS1; the ranking statistics do not seem to improve with
catalog size, so again we see that MS1 and H4 are indistinguishable in this case.
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Figure 11.6: On the left: cumulative distribution plots for the odds-ratio ranking statis-
tic between a model EoS and the one used in the simulated signal (top: MS1, middle:
H4, bottom: SQM3). The odds ratios are calculated after combining sets (catalogues) of
100 distinct sources. On the right: the dependence of the ratio of correct rankings on the
catalogue size. Error bars represent 95% confidence intervals calculated by simulating
1,000 different partitioning realizations on the full set of useful sources.

If the true model is a moderate EoS (H4), it will correctly be ranked higher than
the runner-up (SQM3) 66% of the time after 100 sources are combined. MS1 is
actually more deprecated than the soft SQM3, which shows that MS1 and H4
are much better distinguishable in this case, in contrast with what we saw in the
top panels. This is an interesting result that hints towards a possible presence
of a bias favouring a softer EoS. A similar feature will be observed and studied
further in Sec. 11.5.
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Figure 11.7: Same as Fig. 11.6, but for sources with (anti-)aligned spin sampled from
a Gaussian distribution with µχ = 0 and σχ = 0.02.

Finally, if the true model is a soft EoS (SQM3), the stiff MS1 is, as expected, the
most deprecated, and with 100 combined sources will be correctly disfavoured
90% of the time. The moderate H4 is very weakly deprecated and even with 100
sources the fraction of correct rankings only reaches 55%, while there also seems
to be a small bias towards favouring PP, with a negative trend as more sources
are combined.

S02 Similar results for aligned-spins with magnitudes sampled from a normal
distribution centred at zero, with a standard deviation of σχ = 0.02 are summa-
rized in Fig. 11.7. The waveform templates for analysing the data also have the
two aligned spin components as free parameters, again with a uniform prior in
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χA ∈ [−0.1, 0.1].

Let us first compare the results for MS1 (top panels in Fig. 11.7) with the ones
for Gaussian distributed masses but zero spins in injections (Figs. 11.5 and 11.6).
Looking at the εMS1

EOS, we infer that EoS again tend to be ranked correctly accord-
ing to “stiffness” and similarity to MS1, and we even see some improvement in
the discernibility of H4 from MS1, especially as the number of sources per catalog
goes to 100.

For H4 injections (middle panels in Fig. 11.7), the medians of εH4
EOS are still

ordered, with the median of εH4
PP staying above that of εH4

MS1, which in turn trumps
εH4
SQM3. However, H4 being in between MS1 and SQM3 in stiffness (see Fig. 11.1),

the 95% uncertainty intervals of the εH4
EOS show considerable overlap; although H4

is ranked above each of the other EoS reasonably frequently, the internal ranking
is less clear but still PP seems to be the most deprecated.

Finally, for SQM3 (bottom panels), this being the softest EoS other than the PP
model, the stiff MS1 tends to be deprecated reasonably strongly, but it is hard to
distinguish SQM3 from either H4 or PP. Note again the slightly downward trend
in the median of εSQM3

PP with increasing number of sources per catalog; this may
indicate a small bias.

S05 Similar results for aligned-spins with magnitudes sampled from a normal
distribution with µχ = 0 and σχ = 0.05. Again, the waveform templates have the
two aligned spins as free parameters, with a uniform prior in χA ∈ [−0.1, 0.1].
Here too, we see similar results for the distinguishability between the different
EoS as in the previous two scenarios. The εinj

EoS curves are ranked as expected
but the inference is again poorer than one would hope for. Most notably, we see
hints of possible bias that may e.g. be responsible for the non-deprecation of H4
when MS1 is used as the underlying EoS in the top-right panel.

11.5 Parameter Estimation

11.5.1 Method

In this section we introduce a second method for inferring the NS EoS, based on
Bayesian parameter estimation. As implied by the title, we first need to formulate
the inference problem in a parametrized way. A clear advantage of hypothesis
ranking was that information from multiple detections can trivially be combined.
In measuring parameters, we will want to do the same. The obvious choice of
simply formulating the problem as one of inference on the central EoS-related
parameters λA that enter the waveform model, is problematic if we want to
eventually combine information from multiple detections. The reason is that λ
is a source-dependent parameter and in particular it depends on the NS mass;
therefore, it would make no sense to combine measurements of an observable
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Figure 11.8: Same as Fig. 11.6, but for sources with (anti-)aligned spin sampled from
a Gaussian distribution with σ = 0.02, centered at 0.

that depends on incidental details of the sources. Instead one needs to identify
observables that only depend on the EoS; we will attempt to infer the dependence
of λ on the NS mass and, if possible, in a parametrized way.

One example of such a parametrization would be a Taylor expansion of λ(m)
around a reference mass m0, as was suggested by Damour et al. [147]

λ(m) =

jmax∑
j=0

1

j!
cj

(
m−m0

M�

)j
. (11.12)

This will result in a set of global parameters, the expansion coefficients ci, which
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are common across the entire set of detected sources. 5 We shall adopt this
parametrization of the equation of state; in our preliminary work [152] we re-
stricted ourselves to a first-order approximation, where the functions λ(m) are
modelled by straight lines

λlin(m; c0, c1) = c0 + c1(m−m0) . (11.13)

Our choice for the reference mass m0 will always be 1.4M�, motivated by the
increased density of observed NS masses around that value. Here, we will mostly
examine the case of a quadratic expansion

λquad(m; c0, c1) = c0 + c1(m−m0) +
c2
2

(m−m0)2 . (11.14)

Already at zero-th order, the value of c0 (i.e. the value of λ at 1.4M�) is indicative
of the stiffness of the EoS. Since this value will be inferred from detected systems
of masses that lie within a wide range, an important assumption of the quadratic
method is that the true EoS can be well approximated by a quadratic function,
within the range of the observed NS masses.

Note that since the true EoS will almost surely not be characterized by a linear or
quadratic λ(m) function, the true value of the global parameters c0, c1 and c2 is
not well defined. For a given BNS population with a given NS mass distribution,
one can treat the EoS parameters themselves as random variables and define their
expectation value. This will be further studied in Sec. 11.7.

The parameter space will now be extended to take the form

~θ = {~θCBC, ~θEOS} (11.15)

where ~θCBC is the usual set of CBC parameters given in Eq. (5.2) and ~θEOS is
the set of parameters that define the EoS. Our EoS-extended waveform model
will be constructed by mapping the new global parameters ~θEOS and the masses
mA to the tidal deformability parameters λA of Eq. (2.56)

λA = λEOS(mA; ~θEOS) . (11.16)

An example of such a mapping is given in Eq. (11.14). The posterior p.d.f. over
the entire parameter space of each BNS system can be obtained by means of a
numerical algorithm like nested sampling, which will be employed here. Now, the
likelihood function is defined as

p(d|~θCBC, ~θEOS , I) = N exp

[
−2

∫ fhigh

flow

df
|d̃n(f)− h̃EOS(f ; ~θCBC, ~θEOS)|2

Sn(f)

]
,

(11.17)

5Here again it seems that we need to assume a single-branched equation of state. This will
be further discussed in Section 12.1.
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where N is a normalization factor, d̃n(f) is the Fourier transformed data and
Sn(f) is the detector’s one-sided noise power spectral density. 6 The tem-

plate h̃EOS(f ; ~θCBC, ~θEOS) is the modelled gravitational waveform in the fre-

quency domain, for a given set of (source-dependent) binary parameters ~θCBC

and (global) EoS-related parameters ~θEOS . The limits of integration are taken
to be flow = 40Hz and fhigh = fcut.

Once the likelihood function on the parameter space is sampled well enough,
the nested sampling algorithm allows us to obtain a good estimate of the pos-
terior pdf, p(~θCBC, ~θEOS |d, I). Since we are only interested in the EoS-related

parameters ~θEOS , the rest can be marginalized over

p(~θEOS |d, I) =

∫
ΣCBC

d~θCBC p(~θCBC, ~θEOS |d, I). (11.18)

In order to combine information from N independent detections {d1, . . . , dN}, one
may again make use of Bayes rule and the multiplication rule for the independent
random variables d1, . . . , dN

p(~θEOS |d1, . . . , dN , I) =p(~θEOS |I)
N∏
n=1

p(~θEOS |dn, I)

p(~θEOS |I)

=p(~θEOS |I)N−1
N∏
n=1

p(~θEOS |dn, I) (11.19)

which shows how the posterior on the global parameters is updated by the
posterior-to-prior ratio for each source that gets detected.

It is instructive here to justify the possibility of inferring more than two global
parameters, as in the case of a model that characterizes the EoS by quadratic
polynomials λquad(m; c0, c1, c2). For any given BNS source, the number of real
EoS observables is always 2, since the quantities that fully describe the waveform
beyond point-particle are λ1 and λ2. It follows that any attempt to do parameter
estimation on a set of three parameters that are functions of λ1 and λ2 will lead
to a 1-dimensional degeneracy in the likelihood (i.e. there is a 1-dimensional
family of quadratic functions that pass through a set of 2 points on the m − λ
plane). However, for two BNS sources of different masses and/or spins, these
degeneracies will generically not foliate the space of global parameters in the
same way; thus, it is expected that degeneracies of this sort will be lifted as the
variety of detected sources increases.

Alternative parameterizations Finally, we should note that one is free to
choose other ways of parametrizing the problem, as long as one has a way to
map the global EoS parameters ~θEOS to the source-dependent λA parameters,

6For a network of multiple detectors with uncorrelated noise, the multiplication rule may be
used to express the overall likelihood as a product of likelihoods for individual detectors.
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given the component masses mA. More specifically, a physically well motivated
parametrization is acquired by adopting a family of piecewise polytropic models
for the NS EoS. These are models where the interior of the NS is characterized
by a (small) number of polytropic EoS of the form

P (ε) = Kiε
1+1/ni , εi−1 < ε ≤ εi , (11.20)

where different polytropic indices ni are valid in different ranges of the energy
density ε (and most of the pre-factors Ki are fixed by continuity conditions). As
discussed in [308], even a simple such model with two free parameters is sufficient
to cover closely enough the existing set of candidate EoS.

Yet another possibility is the set of parameters related to the constant speed of
sound model that attempts to describe the macrophysics of a hybrid NS inte-
rior [39]. As long as one can directly map the set of global parameters to a
function λ(m), one can directly perform Bayesian inference techniques on these
parameters and possibly apply any physical or observational constraints, or even
a prior p.d.f. that may be in one’s disposal.

These considerations deserve elaborate investigations that are outside the scope
of the current thesis. It is however interesting to note that translating from one
parameterization ~θEOS to another ~θ′EOS is only a matter of performing a simple
transformation 7 and using the transformation law for probability densities

p(~x) = p(~y)

∣∣∣∣∂~y∂~x
∣∣∣∣ , ~x↔ ~y . (11.21)

If we denote by ϕ,ϕ′ the mappings

ϕ : (~θEOS,mA)→ (λA,mA) , ϕ′ : (~θ′EOS,mA)→ (λA,mA) (11.22)

then ϕ−1◦ϕ′ gives the desired transformation. In practice, the most flexible choice
would be to simply parameterize the templates used in our numerical algorithm
by the λA’s, and leave the transformation to whichever set of global parameters
we wish to use to be worked out in the post-processing stage of the analysis. The
posterior information contained in the results will in any case remain intact.

11.5.2 Simulations and results

For the global EoS-related parameters, namely {c0, c1, c2} in the quadratic ap-
proximation to λ(m) as in Eq. (11.13) and Eq. (11.14) respectively, the priors
are chosen to be uniform in c0 ∈ [0, 5] × 10−23s5, c1 ∈ [−2.5, 0] × 10−23s5, and
c2 ∈ [−3.7, 0]× 10−23s5. In the mass regime of interest, this choice of ranges can
accomodate all the EoS in Fig. 2 of [200]. As it turns out, in the quadratic ap-
proximation only the leading-order coefficient c0 can be measured with any kind

7Extra care is needed in cases where this transformation is not bijective.
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of accuracy. Nevertheless, one has c0 = λ(m0), with m0 some fixed reference
mass (which we take to be 1.4M�), and as can be seen in Fig. 2 of Hinderer et
al., which shows nearly 20 different predictions for λ(m), valuable information
could be gleaned from just that one number.

We will impose additional conditions on the simulated signals, similarly to those
of Sec. 11.4.2, before accepting a detected source for analysis:

1. The optimal network SNR should be: 8 ≤ ρnet ≤ 30 and

2. A post-analysis signal-to-noise Bayes factor cutoff of lnBsignal
noise ≥ 32 .

As before, we consider the following cases:

• Spins are zero both in injections and templates; regarding the mass distri-
butions, we compare results for an MU population with what one gets with
an MG population. However, for the templates we do not assume knowl-
edge of the astrophysical mass distribution, sticking to a uniform mass prior
on [1, 2]M�. We will also compare between terminating the waveform at
fLSO or fcut.

• Next we again consider both MU and MG mass distributions, but now we
switch on spins. In the simulated population, the latter follow the scenarios
S0, S02 and S05, while in the templates the priors for the spins are uniform
on [−0.1, 0.1].

Thus, there are several different variable features that may affect the analysis,
(frequency cutoff, mass/spin distribution) and we shall introduce them gradually
so that their individual effects on the main result, namely the posterior p.d.f. of c0
can be better understood. To give a more detailed picture of the analysis, further
extensive results will be shown in plots, but only for the benchmark set-up, that
uses fcut as a waveform termination condition, MU for the mass distribution and
no spins.

Masses: MU, MG; no spins

We first consider an S0 population of BNS sources, where the component bodies
are non-spinning (χA = 0, A = 1, 2); we also do not include spins in our recovery
templates. In particular, this means that the quadrupole-monopole effect does
not come into play, and neither do the spin-orbit and spin-spin terms of Eq. (2.45),
starting at 1.5PN and 2PN respectively.

A summary of the parameter estimation results for c0, for a set of sources whose
mass distribution follows the uniform scenario MU, is shown in Fig. 11.9.

The median and 95% confidence intervals as functions of N give a first impression
of how the combined posterior is progressively updated each time a new source
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Figure 11.9: Median and 95% confidence intervals of the combined marginalized pos-
terior p(c0|{di}i=1,...,N , I) for the zero-th order expansion coefficient c0 as a function
of the number of detected sources. The waveforms extend up to fcut, the sources are
non-spinning with m1, m2 drawn from a uniform mass distribution. The different colors
indicate the EoS used in three different sets of simulated waveforms, with the horizontal
dashed lines marking the ‘true value’ of c0 in each case.

is detected and incorporated in the analysis. We observe that in each of the
scenarios studied here, the combined posterior distribution will eventually peak
around a certain value of c0, with a few tens of detected sources.

We point out however, that the remaining EoS-related global parameters, c1 and
c2 are not well measurable by themselves, at least given the number of sources
available in these sets of simulations. An example of the 1D posterior evolution
for c1 and c2, corresponding to the plot of Fig. 11.9, is given in Fig. 11.10. Even
so, the information on c0 = λ(m0) alone is enough to significantly narrow down
the true EoS.

The plots of Figs. 11.9 and 11.10 show median values and confidence intervals
which are good representatives of the posterior distribution but still yield lit-
tle information about the shape of the p.d.f.. The p.d.f.s were estimated and
combined using a kernel density estimator (KDE) with a Gaussian kernel on the
posterior points of each source, and making use of Silverman’s rule to optimize the
bandwidth. In Fig. 11.11 a set of plots is shown, that illustrate the marginalized
posterior p.d.f. of c0 (top), c1 (middle) and c2 (bottom) after having combined
data from 50 sources whose underlying EoS is MS1 (left), H4 (center) and SQM3
(right). In the same plots we can also see in green the single-source posterior
p.d.f. of the last source that was analysed, generated using a KDE on its poste-
rior points (around 5000 per source). We see that (at least for the best inferred
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Figure 11.10: Evolution of the medians and 95% confidence intervals in the measure-
ment of the higher-order coefficients c1 and c2 in the quadratic approximation to λ(m),
for the case of spinning injections. The behavior for non-zero injected spins and/or
gaussian mass distribution is qualitatively the same.

parameter c0), even if a single-source measurement gives large uncertainties and
is not peaked around the true value, the combination of information from tens
of sources will eventually drive the combined posterior to converge to the correct
value.

Figure 11.11: Example of posterior p.d.f. plots for c0 (left), c1 (centre) and c2 (right),
after combining information from 50 sources (black curve) using a Gaussian kernel
density estimator. The p.d.f. of the last added source is also shown (green curve) and
its SNR is given at the top left corner. The underlying EoS used are from top to bottom:
SQM3, H4 and MS1, and the “true values” are drawn as red vertical lines.
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Since the EoS cannot be characterized by a single parameter, it is also useful
to look at two-dimensional posteriors for pairs of the global parameters (or even
three-dimensional if possible); this way one can also check for correlation patterns
that are not visible in single-parameter p.d.f.s. A typical set of two-dimensional
combined posteriors is shown in Fig. 11.12, in which the contours represent the
95% confidence areas of the c0-c1, c1-c2 or c0-c2 combined PDF each time a set
of 10 new sources is combined, with the curves being drawn more solid as the
number of combined sources increases. The innermost, darkest drawn contours
correspond to the 95% CI after 50 sources have been analysed. We see that c0
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Figure 11.12: Example of two-dimensional posterior plots for the three pairs of global
variables c0-c1 (left), c0-c2 (centre), c1-c2 (right), after 50 sources have been analysed.
The injected EoS are MS1 (blue), H4 (green) and SQM3 (red), with stars marking
their corresponding “true values”. The 95% confidence contours are drawn for each 10
sources that are added to the analysis in increasingly solid color, the most solid one
corresponding to 50 combined sources.

does not appear to be significantly correlated with either c1 or c2.

Next, we turn to the scenario where the simulated population of sources has
an underlying Gaussian mass distribution MG, with µm = 1.35 M� and σm =
0.05M�. Again the spins parameters are always set to zero in both injection and
recovery waveforms.

Results on the evolution of the posterior medians and 95% confidence intervals
for c0 with increasing number of detections are shown in Fig. 11.13. We see that a
good separation between MS1, H4, and SQM3 doesn’t occur until > 100 sources
have become available, and large systematic biases appear. As explained below,
this is related to the continued use of a flat prior on the component masses, a
distribution which now has a significant mismatch with the astrophysical one.
The effect of the mass prior is further investigated in Sec. 11.7.

Masses: MU, MG; Spins: S0, S02, S05

We now move on to a more realistic set of scenarios where NS spins are not
neglected, but are added as additional free parameters in our recovery model,
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Figure 11.13: Same as Fig. 11.9 but this time the component NS masses of the sim-
ulated population are drawn from a Gaussian mass distribution (MG). There is clear
evidence of systematic bias in all three sets of sources: the posterior p.d.f.s converge
significantly far from the horizontal dashed lines that mark the underlying ‘true value’
of c0 in each case.

with a uniform prior on their magnitudes ranging in χA ∈ [−0.1, 0.1] (we again

restrict to spins (anti-)aligned with ~L) A set of plots similar to that of Fig. 11.9 is
panelled in Fig. 11.14, where combinations of the different mass distributions MU
(left) and MG (right) with spin amplitude distributions S0 (top), S02 (middle)
and S05 (bottom) were used for sampling the parameters of the simulated sources.

Judging from the behaviour of the median and 95% confidence intervals as the
number of combined sources increases we arrive at the following conclusions.

1. The posterior p.d.f.s seem to be consistently wider than the ones obtained
in the no-spin analysis. This is to be expected: when adding spin param-
eters in the recovery templates we enlarged the parameter space by two
additional dimensions, thus seeding additional correlations between intrin-
sic parameters and making the parameter space harder to sample. The
delicate measurement of matter effects is thus affected by additional statis-
tical errors, which slow down the convergence of e.g. the c0 posterior.

2. There is clear presence of a bias that again appears when the NS population
follows a peaked mass distribution; weak signs of bias are also present when
the mass distribution is uniform. The magnitude of this bias varies slightly
across the right panels of Fig. 11.14 and in some cases it is not as evident
as in Fig. 11.13, mainly due to the wider error bars. Two possible sources
of bias will be investigated in the following section.
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Figure 11.14: Same as Fig. 11.9, but for populations of BNS systems whose mass
and spin distributions follow different scenarios; for recovery, templates have (anti-
)aligned spins with uniform priors χA ∈ [−0.1, 0.1]. The component masses m1, m2 are
sampled from a uniform (left) or a Gaussian (right) distribution. The (anti-)aligned
spin amplitudes are either set to zero (top) or sampled from a Gaussian distribution
with σχ = 0.02 (middle) or σχ = 0.05 (bottom).

11.6 EoS Information Content of BNS signals

With different EoS-related effects introducing mass-dependent contributions to
the phase, throughout the entire inspiral, it would be useful to quantify the gain
in inference yielded by each source of information. In this section we briefly
discuss the information yield of a BNS system related to the EoS parameters.

203



11

Chapter 11. Three roads to the neutron star EoS

��� ��� ��� ��� ��� ������

���

���

���

���

���

�� [��]

�
�
[�

�
]

Nuse
tidal [rad]

0.2

0.6

1

1.4

1.8

��� ��� ��� ��� ��� ������

���

���

���

���

���

�� [��]

�
�
[�

�
]

residuals

0.01

0.03

0.05

0.07

0.09

Figure 11.15: Left: Number of useful tidal cycles as a function of the component
masses. It is a monotonically decreasing function of mass, and the dependence seems
to be primarily on the chirp mass parameter Mc. Right: For each point in m1-m2 we
assume N tidal

use to be the same as for the point with an identical Mc but with q = 1, and
calculate the residual. The EoS used here is MS1.

11.6.1 Number of Useful Cycles

Typically, most of the phase contribution of matter effects is attributed to tidal
effects, which appear at high PN order and therefore are stronger at high fre-
quencies. However, one may identify two competing factors that define how each
part of the waveform contributes to the measurability of EoS-related parameters.
The first factor is, of course the phase contribution of tidal (and Q-M) effects, as
demonstrated in section 2.6.2. The second factor is the set of sensitivity curves
of the detectors used. It is thus instructive to estimate the number of useful
cycles Nuse Eq. (2.33) contributed by the matter effects, which is a quantity that
counts the accumulated phase multiplied by a PSD-weighted factor. As can be
seen in Fig. 11.16, even though the bulk of the tidal phase is accumulated at high
frequencies, the low detector sensitivities at this frequency range may render the
effect unmeasurable.

As a first note, it is interesting to see that this quantity almost reduces to a
function of the chirp mass of the system. This becomes evident in Fig. 11.15,
where the number of useful cycles is plotted in the m1 −m2 plane, along with a
family of lines of constantMc. The relative uncertainty introduced by assuming
N tidal

use = N tidal
use (Mc(m1,m2)), plotted in Fig. 11.15 is less than 5% in the best

part of the parameter space and less than 10% for q ∼ 2, the largest mass ratios
considered here.

Keeping this in mind, we now fix the mass-ratio to that of equal-mass systems
(q = 1 or η = 0.25) and examine how the useful cycles accumulate as a function
of frequency, for a set of Mc values. This is plotted in Fig. 11.16, starting at
40 Hz and terminating at fcut. The extension to fLSO (plotted with faint lines)
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gives us an idea of how much information is lost due to the fact that the waveform
terminates upon contact. In the same plot we also show the number of useful
cycles NQM contributed by the Q-M phase terms.
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Figure 11.16: Number of useful cycles for the tidal and QM effects in the phase as a
function of frequency, for a BNS system of (1.4, 1.4)M� and for three EoS: SQM3 (red
dash-dotted), H4 (green dashed) and MS1 (blue solid).

11.7 Sources of bias

11.7.1 Underlying mass distribution vs mass prior

Unlike with our evidence calculations, in the case of posterior density functions
it is relatively easy to “re-weight” the sampling of parameter space so as to make
p(~θCBC, {cj}|d, I) correspond to different priors on the parameters [364]. The
degradation in the estimation of c0 (and for that matter, hypothesis ranking)
happened when we changed the way the component masses in the injections were
distributed. Hence it is of interest to study the effect of the prior on the masses
in particular.

Let us pretend to have perfect knowledge of the astrophysical mass distribution –
in our example a Gaussian with µm = 1.35M� and σm = 0.05M� – and take the
prior on m1, m2 to be identical to it. In the case of zero spins, the result is shown
in the left panel of Fig. 11.17. We see that the significant biases we encountered
in Fig. 9 have largely gone away. In the right panel of Fig. 11.17 we also include
spins as before; here too, the biases seen earlier are strongly mitigated, though
the larger parameter space to be probed still causes larger statistical errors.

This is not a typical case of a “prior-dominated” inference on a parameter, since
the bias originates from a bad choice of priors for different parameters (m1, m2)
than the one that we are interested in (c0). Two important details that make this
bad choice manifest itself as a bias in the c0 posteriors are the following. First,
there is the fact that the parameters λA, through which c0 is inferred, have an
implicit dependence on the masses mA. The c0 posterior is determined by the
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Figure 11.17: Same as Fig. 11.14 but using the true underlying mass priors (Gaussian
in both cases) by reweighting the posterior points. We see how the prominent bias
observed earlier largely goes away.

posterior on the m–λ plane for each component NS, and if the masses are biased
then so is the inferred λ(m) curve. Second, since c0 is treated as an independent
parameter, the bias enters through the mass prior, in the process of marginalizing
over m1 and m2, consistently for each source, and is therefore a persistent bias
that will not average out as the number of sources increases.

In conclusion, the biases we see in the estimation of c0 mostly result from the
mismatch between the mass distribution for the sources and the prior distribution
of component masses in the Bayesian analysis of the data. The relatively small
remaining biases that occur when the injected mass distribution is the same as
the prior can be attributed to the quadratic approximation for λ(m) used in the
template waveforms, and the fact that when most of the masses are in a narrow
interval, less of the underlying tidal deformability function is being probed by
the sources.

Finally, the small residual bias that can be observed not only in the right panel
of Fig. 11.17 but also in the left panels of Fig. 11.14, where the mass distribution
was uniform, is due to the corresponding spin distributions. Spin parameters χA
enter the phase at 1.5 PN onwards, and are known to have significant correlations
with the mass ratio η, which in turn is found in the tidal terms. Consequently,
a discrepancy between the injected spin distribution and the recovery (uniform)
spin prior will introduce a bias in EoS parameters through the χ-η correlation.

11.7.2 Treatment of PE method as an unbiased estimator

Starting with a given prior p.d.f., the product of our PE method is a sequence of
p.d.f.s on the space of global EoS parameters. The main aim of such inference
methods is to deliver fast convergence and posterior consistency, i.e. the posterior
p.d.f.s should converge to a highly peaked distribution around the “true value”
predicted by the underlying model (if such a point exist); if the underlying model
provides an underlying distribution rather than a single value, then the sequence
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of p.d.f.s should converge to that distribution.

Strictly speaking, there is no “true value” for the polynomial coefficients c0, c1, c2,
since the Taylor expansion coefficients that were quoted are only local infinites-
imal quantities around the reference mass m0. On the other hand, by applying
parameter estimation on each BNS inspiral signal, we probe pairs of points in
the m-λ plane, with which we effectively infer an interpolation of the underlying
λ(m) curve. Depending on the distribution of NS masses, a particular region of
the mass prior will be probed; such a mass-distribution dependency will result
in a posterior distribution which may well deviate from the Taylor expansion
values that can be calculated via Eq. (11.14) and Table 11.1. In other words,
the PE method is not an unbiased estimator of these values8. However, within
the scope of this study, we will content ourselves with the peak of the distri-
bution converging to the expectation value of the underlying distribution on cj
with an increasing accuracy, to the level where the different models are clearly
distinguishable from each other.

The expectation value of a mass-dependent parameter θ is defined as its mean
value over m1-m2 pairs under the underlying mass distribution f

θ̄ =

∫ 2M�

1M�

dm1

∫ 2M�

1M�

dm2 θ̂(m1,m2) f(m1) f(m2) (11.23)

where by θ̂ we denote the measured value of θ given a pair of masses. For instance,
if we used the linear approximation to parameterize the space of EoS models, then
a BNS system with m1 6= m2 would uniquely define a set of parameters {ĉ0, ĉ1};
these are the ones that yield a line that passes from the two points on the m-λ
plane predicted by the underlying EoS model

ĉ0(m1,m2) = λ(m2) +
λ(m1)− λ(m2)

m1 −m2
(m0 −m2) , (11.24)

ĉ1(m1,m2) =
λ(m1)− λ(m2)

m1 −m2
. (11.25)

To demonstrate how much the expectation value c̄0 can differ from the corre-
sponding Taylor expansion coefficient, depending on the underlying mass distri-
bution, we plot c̄0 for the Gaussian family of mass distributions in Fig. 11.18.
The two axes represent the mean µm and standard deviation σm of the under-
lying Gaussian mass distribution N (µm, σm), for which the expectation value is
calculated. A uniform mass distribution is represented as the limit of σm → ∞
for any value of µm, so the top border of the plot, corresponding to σm = 1M� al-
ready gives a good approximation for it; the N(1.35, 0.05) scenario studied above
corresponds to the point marked in white. Indeed, we see that the differences be-
tween expectation values for different mass distributions are relatively minor, in
comparison with the differences between the three EoS models considered. The

8This is also why one should not expect the posterior to converge to a delta function in the
limit of infinitely many detections.
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Figure 11.18: Expectation value for c0, calculated as in Eq. (11.23), for a population of
sources following an underlying Gaussian mass function, as a function of the mean µm
and standard deviation σm and for the three EoS, SQM3 (left), H4 (centre), MS1(right).
The uniform distribution MU can be seen as the limit of infinite σm and is approximated
by the top edge of the plots; the Gaussian distribution MG corresponds to the white mark
at (1.35, 0.05).

Taylor expansion coefficient c0 for MS1 is 2.248×10−23s5, for H4 1.409×10−23s5

and for SQM3 0.694 × 10−23s5, which are sufficiently close to the expectation
values c̄0, as long as the mass function is not highly peaked close to the edges of
the mass prior. However, as our inference method combines more and more in-
formation from a large number of observations, even these minor differences may
give an apparent bias, if the Taylor expansion coefficients are naively interpreted
as the “true values” of the models.
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Chapter 12

Discussion and outlook

The first principle is that you must not
fool yourself – and you are the easiest
person to fool.

Richard Feynman

12.1 Conclusions

For many decades, the elusive equation of state of neutron star matter has re-
mained one of the biggest open problems of astrophysics. With the detection
of GW signals from coalescing NS binaries, we will have a new source of unique
information, with which we may probe the NSs’ internal structure.

The astrophysicists will thus gain a better understanding of the underlying phys-
ical mechanisms that hold a NS together, the composition of NSs, their habits
and life cycle, and will be able to collect ‘’demographics” on their population
throughout the Universe. More information of similar importance can be ob-
tained by detecting GWs sourced by isolated NSs (quakes, mountains, etc.), as
well as by observing and correlating simultaneous GW and EM events. Moreover,
a possible correlation between GW detection from NS binaries and EM detections
of certain types of gamma-ray bursts will shed light on determining the origin of
the latter, for which the exact mechanisms are still unknown.

Apart from the impact on astrophysics, by significantly constraining the NS EoS
we will also feed invaluable input to nuclear physics community, on the composi-
tion and properties of cold matter at a so far inaccessible regime of supranuclear
densities. For instance, we may be able to give answers to: whether a phase tran-
sition takes place, of what type and at what densities; whether our observations
are compatible with different matter compositions, the formation of condensates,
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the presence of Kaons, Hyperons, etc.; whether any of our theoretical approaches
to nuclear interactions are indeed valid in this high-density regime. It could also
reveal a long sought for connection between NS binary coalescence and a nu-
clear process of rapid neutron capturing, known as the r-process. The extreme
conditions during a BNS merger may provide a fertile environment for nuclei
of heavy isotopes to be formed by means of the r-process. If sufficient fraction
of the mass escapes as ejecta, then the population of BNS mergers (together
with core-collapse supernovae) could account for the missing part of the observed
abundances of some heavy isotopes in our Universe. And of course it may well be
that NS matter is not the ultimate final state before gravitational collapse into a
black hole. Indications of the existence of an even more compact or exotic kind
of stellar object (e.g. a boson star) could pave the way for a series of unexpected
discoveries in the future.

Knowledge of the NS EoS will also open new horizons for cosmology, by es-
tablishing BNS systems as self-calibrating standard sirens, with which one will
be able to perform simultaneous measurements of luminosity distances and red-
shifts. These measurements will have direct implications to cosmography and
cosmology, providing us with a new independent way of estimating the parame-
ters of the standard cosmological model, free of the intrinsic systematics of the
cosmic distance ladder. This kind of analysis was put forward by Messenger &
Read [261] and was further explored recently in [153], where the authors find
that the knowledge of the NS EoS allows to measure the Hubble parameter H0,
the matter energy parameter Ωm and the dark energy parameter ΩΛ – the basic
ingredients of the Friedman equation in a ΛCDM cosmology.

In this part of the dissertation we developed and studied Bayesian analysis meth-
ods in a realistic setting, in order to obtain a realistic estimate of the potential
of EoS inference with the upcoming network of AdVirgo and aLIGO detectors.

Hypothesis ranking The first is a hypothesis ranking method, based on
Bayesian model selection within a set of competing candidate EoS models. It is
shown that this method seems to be giving results that converge towards favour-
ing the true underlying EoS model as the number of analyzed signals increases,
and that the ranking also respects the order of “stiffness” in the set of candidate
models. There are however cases where the convergence is not as fast as one
would hope for. To a certain extent, this is due to a combination of inherent un-
certainties of different origins, the control of which could lead to a more efficient
performance with faster convergence. Apart from the expected statistical uncer-
tainties due to noise, a very prominent source of uncertainty is of numerical origin.
Let us recall that the essence of this method is the calculation of Bayes factors
for the signal hypotheses for a number of different EoS models. Now, the numer-
ical calculation of the evidence integral with nested sampling is subject to errors,
which may be non-negligible in our high-dimensional parameter space. The size
of the errors depends on the parameter values chosen for the nasted sampling
algorithm, most crucially the number of live points, the number of MCMC points

210



12

12.1. Conclusions

and the termination condition. Here we have chosen Nlive = 1024, NMCMC = 200
and dZ = 0.1. In Fig. 4 of Veitch & Veccio (2009) [366], the authors show how
the standard deviation of a logB calculation varies with the number of live points
and MCMC points used. For our choices the standard deviation is estimated to
be of O(1); moreover, it would need ∼ 104 live points and at least 500 MCMC
points in order to reach a desirable error of less than 0.1. However, given the
large amount of simulations that needed to be run in order to obtain sufficiently
good statistics, such an increase in either Nlive or NMCMC would significantly
increase the computational cost. Of course, in a real-life analysis, one will only
need to perform a small set of runs per detected signal, and will thus have enough
resources to increase one’s performance goal.

Parameter estimation In the second method the space of EoS was para-
metrized based on the shape of the λ(m) function, so that Bayesian parameter
estimation would produce posterior p.d.f.s and put constraints on the EoS param-
eters space. This method is able to distinguish between typically soft, medium
and stiff EoS after combining information from a few tens of sources. In the
chosen parametrization, where the λ(m) function is represented by a parabola,
most of the information is channeled into the posterior of c0, the zeroth order
coefficient which gives the value of λ at 1.4 M�. Even this piece of information
alone can significantly constrain the NS EoS and rule out the majority of cur-
rently competing models. As seen in the plots of Sec. 11.5.2, the 95% confidence
regions of the posterior p.d.f. shrink as more sources are detected and tend to
peak around the expected value.

Functional Inference A third road to the neutron star EoS, a Bayesian non-
parametric method, is currently under development and is described in Ap-
pendix C. The purpose of this third, more generic method is to infer the functional
dependence of λ on m, without restricting to a certain parametrization scheme.
Instead it makes use of any piece of information that each source provides for
the value of λ over any given mass m (or mass bin mi). Therefore, depending on
the underlying mass distribution, mass regions that are probed better will yield
a more informative λ posterior p.d.f., while results are more uncertain in mass
regions where less NS are found.

A source of systematic errors, which is common to all three methods, is related
to the underlying distribution of NS masses and was discussed in Sec. 11.7.1.
An interesting workaround consists in folding in information from the already
analyzed signals, and updating the mass prior p.d.f. every time a new source is
detected. This parallel inference on the underlying distribution of masses would
be the object of a Bayesian non-parametric study and is left for future work.

An interesting question arises when one considers the possibility of there being
more than one population of NS that, due to a certain divergence in their evolu-
tionary paths, may be described by different EoS (i.e. by multi-branched P (ρ),
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M(R), λ(m) functions). This scenario is possible and has been considered in
theoretical studies (and also encompasses the possibility of there being a very
light BH population, within the NS mass range). The question is then, if such
a multi-branched scenario exists, e.g. featuring two distinct populations of NSs,
would it manifest itself in the above methods? Clearly, the results given by the
HR method could reveal no such information, unless of course that particular
multi-branched EoS is explicitly prescribed as a candidate model. With the PE
method, one would expect to find such evidence in the form of a persistent multi-
modal posterior p.d.f., given enough detections that would statistically cover both
populations. The relative posterior weights of the peaks would then reflect the
relative abundancy of BNS systems whose components belong to either branch.
However, information from systems where the two populations mix will be dif-
ficult to interpret. Finally, the non-parametric FI method would directly reveal
two distinct branches in the λ(m) posterior plot. Such a population study is
outside the scope of this dissertation but is worth mentioning nonetheless.

12.2 Future avenues

Arbitrary spins The current studies started in a proof-of-principle setting,
where only non-spinning NS were considered, and were extended to a setting
where spins were aligned or anti-aligned with orbital angular momentum. Natu-
rally, the next stage would be to completely discard any restriction on the spin
direction (while keeping the spin magnitudes at astrophysical realistic values),
which would also allow for precessional effects to kick in. Such an extension
will have consequences on our inference that are twofold: On the one hand, the
parameter space will be largely extended and, given the correlations between pa-
rameters at high-PN orders, the statistical uncertainties for any Bayesian method
are expected to grow. On the other hand, allowing for precession to take place
will give additional structure to the waveform, especially through amplitude mod-
ulation; this will help in lifting any degeneracies between spin parameters and
mass or matter-related parameters. Therefore, for recovery one should employ
a template family that captures well the principal features of precession in the
waveform.

Input from numerical relativity simulations Significant amount of work
has been devoted to studying high-order effects that appear towards the end of
the inspiral, as well as the merger and post-merger behaviour of BNS systems,
using Numerical Relativity (NR) waveforms [309, 307, 72, 57, 345, 305, 202, 203].
The production of such waveforms relies on computationally heavy simulations,
which can currently cover a few tens of cycles prior to merger. Even though
the magnitude of EoS-related effects during the early inspiral is believed to be
reliably estimated by the existing analytical methods [147, 307, 203], a detailed
comparison with accurate solutions from NR simulations, where no approxima-
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tions need to be considered, is in order. More importantly, the discrepancy
between the point-particle parts of different PN approximants at high frequen-
cies, where tidal effects yield the best part of their signal, may lead to serious
biases when trying to infer the EoS; this was already mentioned in [200] and was
explicitly demonstrated in [372]. Furthermore, the non-linear behaviour of tidal
effects becomes increasingly important towards the end of the inspiral and needs
to be further investigated both analytically and numerically, for different EoS
models. Therefore, it will be of great benefit for the robustness of any inference
method to obtain reliable inspiral waveforms with input from NR simulations.
As a bonus, a systematic study with NR waveforms will also allow us to fold
in information from the post-merger phase. Independent studies [72, 345] have
shown that the post-merger spectrum can reveal characteristic peaks that are
related to matter effects and are sensitive to the EoS. A detailed investigation
towards this direction is currently under way. Finally, a coincident or subsequent
EM observation of a burst and the expected afterglow, coming from the environ-
ment of the merger and the ejected mass, will also hold information related to
the EoS, as shown e.g. in [347, 204].

Importance of high-frequency sensitivity: squeezed light In Sec. 11.6, it
was shown how potentially useful information is suppressed due to the limited de-
tector sensitivity at high frequencies. The noise curves used for the current study
correspond to the SR (AdVirgo) and ZDHP (aLIGO) configurations for a network
of three second generation interferometers at design sensitivity. There is however
the prospect for further improvement of the sensitivity at high frequencies, by
implementing the quantum-enhancing technology of squeezed light [4]. For a cer-
tain set of sources such a modification may actually decrease the observed SNR,
due to a noise increase at low frequencies. However, this may eventually be
avoided by implementing frequency-dependent squeezing [225]. In any case, the
re-distribution of sensitivity will surely enhance tidal-related measurements. In
Fig. 12.1 we compare both the corresponding noise PSDs and the non-normalized
number of useful cycles of the tidal phase for a (1.4, 1.4)M� BNS system at 100
Mpc, when a single advanced detector is used with and without sqeezed light.

Einstein Telescope The next generation of gravitational wave detectors is
already under investigation. A comprehensive design study document was pub-
lished in 2011 [1] describing the Einstein Telescope (ET), a proposed third genera-
tion underground cryogenic GW detector, consisting of three V-shaped co-located
interferometers. The advanced technology that will be used for ET will lead to
an improvement in sensitivity over the second generation of detectors by almost
an order of magnitude overall, and even more at low frequencies. The left plot of
Fig. 12.1 shows the expected noise PSD in comparison with those of AdVirgo and
aLIGO and their squeezed-light upgrades. Such an improvement in sensitivity
will dramatically increase the detection rate for coalescing compact binaries (with
a BNS reach in the order of a Gpc), it will give a fairly large number of high-
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Figure 12.1: Left: Noise PSDs for AdVirgo and aLIGO, their squeezed light upgrade,
and Einstein Telescope. The gain in the high frequency band is clearly visible. Right:
Number of useful tidal cycles for the same set of detectors, for a (1.4, 1.4)M� BNS in-
spiral at a distance of 100Mpc. The high-frequency upgrades are expected to significantly
increase the sensitivity to EoS signatures in the waveform.

SNR detections per year, and will give an overall boost to our EoS-measuring
capabilities. On the right plot of Fig. 12.1 we also see the non-normalized num-
ber of useful tidal cycles for a (1.4, 1.4)M� BNS system at 100 Mpc as detected
by ET. Preliminary studies indicate that with a couple of months’ worth of ET
data, the EoS parameters can be constrained with a ∼ 10% accuracy. Finally,
ET will be able to carry out the task of constraining cosmological parameters
with thousands of BNS inspirals being detected over the course of a few years of
operation.
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Appendix A

Post-Newtonian
equations of motion

In the post-Newtonian approximation the equations of motion for the two-body
problem in the center-of-mass frame take the form

d~v

dt
= −GM‖~x‖2 [ (1 +A)x̂+B ~v ] +O

(
1

c8

)
. (A.1)

Here, ~v = ~̇x is the velocity related to the separation vector ~x = ~x1 − ~x2 between
the two point masses. The quantities A and B have been calculated to 3.5PN
order [88] and are explicitly given by the following expressions

A =
1

c2

{
−3ṙ2η

2
+ v2 + 3ηv2 − GM

r
(4 + 2η)

}
+

1

c4

{
15ṙ4η(1− 3η)

8
− 9ṙ2ηv2

2
+ 6ṙ2η2v2 + 3ηv4 − 4η2v4

+
GM

r

[
−ṙ2(2 + 25η + 2η2) +

(
−13η

2
+ 2η2

)
v2

]
+
G2M2

r2

(
9 +

87η

4

)}
+

1

c5

{
−GM

r
ṙv2 24η

5
− G2M2

r2
ṙ

136η

15

}
+

1

c6

{
ṙ6

(−35η

16
+

175η2

16
− 175η3

16

)
+ ṙ4v2

(
15η

2
− 135η2

4
+

255η3

8

)
+ ṙ2v4

(
−15η

2
+

237η2

8
− 45η3

2

)
+ v6

(
11η

4
− 49η2

4
+ 13η3

)
+
GM

r

[
ṙ4

(
79η − 69η2

2
− 30η3

)
+ ṙ2v2

(
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+v4

(
75η

4
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r2

[
ṙ2

(
1 +
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+

11η2

8
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64
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(
r

r′0
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+v2

(
−26987η

840
+ η3 − 123ηπ2

64
+ 22η ln

(
r

r′0

))]
+
G3M3

r3

[
−16− 437η

4
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]}
+
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+ ṙv2

(
692η

35
− 724η2

15

)]
+
G3M3

r3

[
3956η

35
+

184η2

5

]}
, (A.2)
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ṙ

}
+

1

c5

{
8ηv2

5

GM

r
+

24η

5

G2M2

r2

}
+

1

c6

{
15ṙ5
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]
+
G2M2

r2

[
v2

(
164η

21
+

148η2

5

)
− ṙ2
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Modeling the neutron
star equation of state

B.1 Statistical physics reminder

In a relativistic context it is instructive to describe all thermodynamic quantities
in a local inertial frame, comoving with the fluid. This is known as the Local
Comoving Lorentz Frame (LCLF). In the LCLF we define the baryon density n,
the total energy density ε and entropy density s, the energy per baryon ε

n and
entropy per baryon s

n . The first law of thermodynamics then gives:

ðQ = d
( ε
n

)
+ P d

(
1

n

)
, (B.1)

where ðQ is the amount of heat transferred into the system, P is the pressure and
1
n is the volume per baryon. For a fluid element in equilibrium at temperature T
we also have:

ðQ = T ds⇒ d
( ε
n

)
= −P d

(
1

n

)
+ T ds . (B.2)

The energy density is then a function of number density and entropy density:
ε = ε(n, s). For multi-component systems, where m different species of particles
co-exist, with number densities ni and concentrations

Yi =
ni
n

, i = 1, . . . ,m . (B.3)

Note that concentrations sum to unity and the total energy density is now ε =
ε(ni, s) or equivalently ε = ε(Yi, n, s), and Eq. (B.2) becomes:

d
( ε
n

)
= −P d

(
1

n

)
+ T ds+

∑
i

µidYi , (B.4)

where µi is the chemical potential for the species i, the quantity that defines the
energy contribution per particle addition and thus regulates the abundance of
the species. For instance, in NS formation models, where the produced neutrinos
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propagate freely and are free to escape to infinity, the corresponding chemical
potential would be µνi = 0 for neutrinos of any flavour (i = e, µ, τ).

We now have a definition for the statistical conjugates to the state functions 1/n,
s, Yi:

P = n2 ∂(ε/n)

∂n
(volume conjugate) (B.5)

T =
∂(ε/n)

∂s
(entropy conjugate) (B.6)

µi =
∂(ε/n)

∂Yi
=

∂ε

∂ni
(species concentration conjugate). (B.7)

B.2 Models

B.2.1 Preliminaries

Starting from the simple model of a completely degenerate ideal Fermi gas in
equilibrium, and by gradually introducing non-trivial components to the system,
we will show a number of theoretically predicted equations of state by explicitly
calculating expressions for the state functions of density, energy and pressure.
In Appendix B.1, the reader will find a brief overview of the basics of statistical
physics and thermodynamics that are necessary to describe the properties of
matter in thermodynamic equilibrium.

We recall that for a particle species i with degeneracy factor (number of polar-
izations) gi, and number density in phase space dNi

dVph
, the distribution function

fi plays the role of the dimensionless probability density of the species in phase
space and is defined as

dNi
dVph

=
gi
h3
fi(~x, ~p, t) , (B.8)

where h is Planck’s constant. Then the number density of the species gives the
normalization of the distribution function:

ni =

∫
gi
h3
fi(~x, ~p, t)d

3p , (B.9)

The species’ state functions such as the energy density ε and the pressure P are
given by

εi(~x, t) =

∫
E
gi
h3
fi(~x, ~p, t)d

3p , (B.10)

Pi(~x, t) =
1

3

∫
pv
gi
h3
fi(~x, ~p, t)d

3p . (B.11)
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The ideal Fermi gas The ideal fermi gas is a physical description of a fluid
of a given density, consisting of non-interacting fermions at a given temperature
T . Thermodynamically, its distribution function at equilibriium is governed by
the Fermi-Dirac probability density function,

f(E) =
1

e
(E−µ)
kT + 1

. (B.12)

The Fermi energy EF = µ is determined by the chemical potential µ and the
Fermi momentum is defined via the dispersion relation:

pF =

√
E2
F −m2c4

c2
. (B.13)

Alternatively the dimensionless relativity parameter x = p
mc2 is often used.

The two asymptotic limits of low and high temperature give:

T = 0 the completely degenerate ideal Fermi gas:

f(E) =

{
1 , if E ≤ EF
0 , if E > EF

, (B.14)

kT � µ the Maxwell-Boltzmann distribution:

f(E) ∝ eµ−EkT . (B.15)

B.2.2 Simple EoS models

In the most simplified model for neutron stars, one considers a degenerate gas
of non-interacting neutrons, which will indeed, at high densities, dominate the
pressure and energy density of the star. Here we continue the discussion of
Section 10.1.1 in more detail. Assuming a completely degenerate (cold) Fermi
gas of neutrons, the distribution function of Eq. (B.14), combined with Eq. (B.10)
and (B.11) gives:

εn =
m4
nc

5

3~3
χ(xn,F ) , Pn =

m4
nc

5

3~3
φ(xn,F ) , (B.16)

where we have defined the dimensionless functions:

χ(x) =
1

8π2

[
x
√

1 + x2

(
2x2

3
− 1

)
+ ln(x+

√
1 + x2)

]
, (B.17)

φ(x) =
1

8π2

[
x
√

1 + x2
(
1 + 2x2

)
− ln(x+

√
1 + x2)

]
. (B.18)

A closer look at Eq. (B.16) reveals that a self gravitating configuration of a
neutron Fermi gas can sustain a much more compact structure than what the
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electron gas could. Quite interestingly, in this model, one gets a polytropic form
for the EoS:

P = KρΓ
0 (B.19)

whose validity will of course be restricted to a particular density range.

For the ideal neutron Fermi gas the polytropic coefficients Γ and K can be cal-
culated in the relativistic and non-relativistic limits:

• Non-relativistic neutron gas, ρ0 � 6× 1015 g cm−3:

Γ =
5

3
,K =

32/3π4/3~2

5m
8/3
n

= 5.38031× 103 kg−2/3 m4 s−2 (B.20)

• Ultra relativistic neutron gas, ρ0 � 6× 1015 g cm−3:

Γ =
4

3
,K =

31/3π2/3~c
4m

4/3
n

= 1.22928× 1010 kg−1/3 m3 s−2 (B.21)

For a typical NS, densities are expected to be restricted to values where the
neutron gas is essentially nonrelativistic. 1

B.2.3 EoS at low densities

Here, we continue the discussion of Section 10.1.2 on the inverse β-decay in more
detail.

Inverse β-decay Assuming a mixture of the three basic particles e, p, n, that
make up all of regular matter, one may derive the conditions of detailed balance
for the reaction

n0 + νe 
 p+ + e− (B.22)

which is an amphidirectional version of the familiar β-decay (in which an anti-
neutrino is found on the RHS instead). The outcome will depend on the current
state variables of the system, while it is evident that the natural direction of the
reaction is to the right, due to the rest-mass difference between mn and mp+me.
In a high-density environment however, where the electron Fermi energy is high
enough and where the electron fluid is highly degenerate, each additional electron
would contribute an energy larger than its rest mass by roughly EF , due to the
Pauli exclusion principle. When working with neutron stars, all three species will
be in a highly degenerate state and –electrostatic and nuclear interactions aside–
will behave as ideal Fermi gases.

1By contrast, an electron gas becomes relativistic at much lower densities, ρ0 > 107g cm−3.
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In equilibrium, where additionally we consider ds = 0 and dn = 0, we get
from Eq. (B.4)

∑
i µidYi = 0 and, given that neutrinos can escape freely from

the system, we also have µνe = 0, so:

µn = µe + µp . (B.23)

Furthermore, charge neutrality implies that:

ne = np ⇒ pe,F = pp,F ⇒ me xe,F = mp xp,F . (B.24)

Thus the unknown parameters reduce to a single unknown chemical potential, or
relativistic parameter x. By combining Eq. (B.23), (B.13) and (B.24), one arrives
at the equation of state via the parametric equations:

P =
c5

~3

[
m4
n φ(xn,F (x)) +m4

p φ(xp,F (x)) +m4
e φ(xe,F (x))

]
, (B.25)

ε =
c5

~3

[
m4
n χ(xn,F (x)) +m4

p χ(xp,F (x)) +m4
e χ(xe,F (x))

]
, (B.26)

n =
2c3

3π2~3
[mn xn,F (x) +mp xn,F (x)] (B.27)
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Figure B.1: Proton-neutron ratio as a
function of neutron relativistic parameter
xn. Asymptotic value is np/nn = 1/8,
while a global minimum is reached at xn =
5.04055× 10−2, np/nn = 1.35726× 10−4.

By setting xn = 0 we obtain the
threshold values when neutrons start
to appear, in which case Eq. (B.23),
combined with Eq. (B.24) and (B.27)
yields a baryon (proton) density of
n(xn=0) ' 7.352 × 1030cm−3, or a
mass density ρ0(xn = 0) ' 1.230 ×
107g cm−3. The general solution
above this threshold density gives
the proton-to-neutron ratio shown in
Fig. B.1, where we see that the ra-
tio decreases to a minimum before
increasing to the asymptotic value
1
8 in the limit of infinite momen-
tum/density.
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Appendix C

Functional Inference: a
third road to the NS
EoS

C.1 Functional Inference: Method

Let us now discuss a third Bayesian method with which we attempt to directly
infer the functional form of λ(m), which characterizes the EoS. It is a non-
parametric Bayesian inference method, in the sense that the EoS will not be
described/modelled by a particular parametrized family as was done in Sec. 3.4.2;
instead, the inference will be made on the full space of functions. The observable
in this case is the function λ(m) itself, rather than a set of real-valued parameters.

Again, the output that contains the information for a source s is the posterior
p.d.f., which in this case will be marginalized over all binary parameters except
for the masses mA and tidal deformabilities λA,

p(m1,m2, λ1, λ2|d, I).

The intermediate product that we wish to derive for a given detection, is a family
of posterior p.d.f.s, pm(λ|d, I), which, for each mass value m (or mass bin), yields
a probability distribution on the value of λ, given the data d of a single source.
Then, we shall make use of Bayes’ law for each member of the family, as was done
in Sec. 11.5 in order to make it possible to combine information from multiple
sources

pm(λ|d, I) =
pm(d|λ, I)pm(λ|I)

pm(d|I)
. (C.1)

Each such posterior pm is expected to converge to a δ-function centered around
the true value of λ over m, as predicted by the underlying EoS.

Naturally, not all sources can give the same amount of information (if any) for
each mass or mass bin considered. Indeed, given an observation of a source i, the
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posterior density pm(λ|d, I) over a mass m is given by the marginalization

pm(λ|d, I) =
∑
mi

pm(λi|mi, di, I) p(mi|di, I) , (C.2)

where by i we index a particular NS, and where p(mi|di, I) is simply the marginal-
ized posterior of the NS mass. The first factor pm(λi|mi, di, I) represents the
posterior p.d.f. of λ over m, given the observed data di and the knowledge that
the mass of the NS is equal to mi. It can be argued that the set of all realistic
EoS predicts a correlation between values of λ over neighbouring masses. At this
stage we will not take such correlations into account; we will also consider mass
bins that are wide enough

Now we consider two different cases that apply in the limit of no prior correlations
between the values of λ at different masses:

• If mi ∈ m, then clearly we have pm(λ|mi, di, I) = p(i)(λi|mi, di, I).

• If mi 6∈ m, then we have no information over m and the prior is returned:
pm(λ|mi, di, I) = pm(λ|I).

In the continuum limit the marginalization is given by

pm(λ|di, I) =

∫
dmi pm(λ|mi, di, I) p(mi|di, I) , (C.3)

and in the limit of no correlations between the values of λ at different masses,
the first factor limits to a δ(mi −m)p(i)(λi|mi, di, I). In practice however, the
continuous mass variable is grouped into bins, and thus for data analysis pur-
poses the categorical expression is more appropriate. Furthermore, there do exist
correlations between the values of λ at different masses, since for example (due
to physical restrictions ) λ(m) needs to be a continuous function that cannot
vary too wildly as the mass varies. Then one may define a correlation function
Cλ(m;m′) that acts as a kernel that propagates information of p(λ|m′, d, I) from
the neighbouring points of m to pm(λ|d, I). This however will not be quantified
here and is deferred for a future study.

The above expressions hold for example in the case of a NSBH binary system,
where information on the tidal parameter λ is obtained from a single NS compo-
nent per source. Some modification is required when BNS systems are considered,
since for each source s that is associated with a given data set ds, there are two
pairs of m and λ parameters, one for each component NS. Eqn. Eq. (C.2) is
modified to a marginalization over the m1 - m2 plane:

pm(λ|d, I) =
∑
m1,m2

pm(λ|m1,m2, d, I) p(m1,m2|d, I) , (C.4)
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where p(m1,m2|d, I) is the marginalized 2D posterior of the component masses.
Here the factor pm(λ|m1,m2, d, I) represents the posterior p.d.f. of λ over m,
given the observed data d from a BNS source and the knowledge that the com-
ponent masses are equal to m1 and m2. We consider four cases regarding the
values of m1,m2 with respect to m:

• m1 ∈ m , m2 6∈ m : then pm(λ|m1,m2, d, I) = p(λ1 = λ|m1,m2, d, I)

• m1 6∈ m , m2 ∈ m : then pm(λ|m1,m2, d, I) = p(λ2 = λ|m1,m2, d, I)

• m1 6∈ m , m2 6∈ m : then the prior is returned, pm(λ|m1,m2, d, I) =
p(λ|m, I)

• m1 ∈ m , m2 ∈ m : then we assign

pm(
λ1 + λ2

2
|m1,m2, d, I) = p(

λ1 + λ2

2
|m1,m2, d, I)

The last case is the less trivial one. It corresponds to both masses of the posterior
point taking values within the same mass bin m, in which case we can assume
m1 ' m2. But if the masses are the same, then this implies λ1 ' λ2, which
is generally not satisfied by the posterior points. However, from the expression
Eq. (2.56) giving the tidal contribution to the phase, we observe that when η =
0.25, XA = 0.5, the resulting contribution in each PN order is of the form (λ1 +
λ2) times a constant. Therefore, when m1 = m2, there exists a 1-dimensional
degeneracy in the λ1-λ2 plane, in the calculation of the waveform (and therefore
the likelihood) and thus, we are free to choose the only set of values for which
the function λ(m) is single-valued. This corresponds to the point (λ′1, λ

′
2) =

(λ1+λ2

2 , λ1+λ2

2 ).

The above argument does not hold for the QM effects in the phase and the above
waveform degeneracy is lifted when these are taken into account. However, as
shown in Sec. 11.6, the best part of the information on the EoS comes from the
tidal effects and thus, this approximation is well justified.

It is noteworthy that, since the chirp mass Mc is a very accurately estimated
parameter (with a relative error of O(10−3)), and since

∂m1(Mc, η)

∂η
≤ 0 ,

∂m2(Mc, η)

∂η
≥ 0 ,

it follows that up to a small error,

supp p(m1|d, I) ∩ supp p(m2|d, I) = {1.1487M̄c} , (C.5)

where M̄c is the estimated peak of the chirp mass posterior, and where the RHS
corresponds to the m1 = m2 value in the equal-mass case, η = 0.25. In other
words, almost the entire m1 posterior is located at larger masses than the entire
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m2 posterior. This means that the two component NS of each source contribute
to (almost) disjoint subsets of the family of posteriors.

The final step is to combine information from multiple observations to obtain the
final posterior family of p.d.f.s, pm(λ|{ds}s∈S , I). When combining information
from multiple sources s ∈ S = 1, . . . , N one needs to take into account all the
possibilities of each of the observed masses {ms1,ms2}s∈S being within or outside
any of the mass bins considered. Let m ∈ Im which represents the family of
masses or mass bins, and denote by p(sA)(λ,m|ds, I), A = 1, 2 the posterior
p.d.f. of p(λsA = λ,msA = m|ds, I) for the s-th source.

pm(λ|{ds}s∈S , I) =
pm({ds}s∈S |λ, I)pm(λ|I)

pm({ds}s∈S |I)
(C.6)

= pm(λ|I)
∏
s∈S

pm(ds|λ, I)

pm(ds|I)

= pm(λ|I)
∏
s∈S

pm(λ|ds, I)

pm(λ|I)
, ∀m ∈ Im.

Now, making use of the marginalization process for each source, as described
above, we see that when the s-th source is added, the current prior (i.e. the
posterior after s− 1 detections) is updated

• by p(s1)(λ|ms1 ∈ m, ds, I)/pm(λ|I) with a probability weight of p(ms1 ∈
m|ds, I),

• by p(s2)(λ|ms2 ∈ m, ds, I)/pm(λ|I) with a probability weight of p(ms2 ∈
m|ds, I), and

• by the identity with a probability weight of p(ms1 6∈ m,ms2 6∈ m|ds, I).

Finally we obtain:

pm(λ|{ds}s∈S , I) =pm(λ|I)
∏
s∈S

[
ps1(λ,m|ds, I)

pm(λ|I)

+
ps2(λ,m|ds, I)

pm(λ|I)
+ p(ms1 6∈ m,ms2 6∈ m|ds, I)

]
, (C.7)

where we managed to obtain an expression for the combined posterior in terms
of the two-dimensional posteriors on the λ-m plane for each component.

C.2 Functional Inference: Preliminary Results

Serving as a proof-of-principle demonstration, some preliminary results are shown
in Fig. C.1 after combining information from 30 relatively loud BNS sources
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Figure C.1: Functional inference posterior on λ(m) after analyzing a set of 30 BNS
sources with one of three EoS: SQM3 (left), H4 (centre) and MS1 (right). The posterior
density profile is drawn above each mass bin, with denser regions (red) representing more
posterior weight for the corresponding values of λ.

with 8 < ρnet < 30, with the underlying EoS being SQM3 (left), H4 (centre)
and MS1 (right). The mass distribution is taken to be uniform in [1, 2] M�
and the NS components are non-spinning. The template waveforms used for
recovery also have spins set to zero but have the tidal deformabilities λ1 and
λ2 as additional free parameters with a uniform prior in [0, 5 × 10−23] s5. The
posterior probabilities are shown in color and are normalized per mass bin, i.e.
for each mass bin m, the posterior p.d.f. of λ(m) is drawn on the corresponding
column. We clearly see that the posterior densities tend to accumulate around
the underlying EoS in each case, so posterior consistency is indeed achieved. 1

As an additional by-product, one may integrate the posterior probability along
each of the candidate EoS in order to obtain a ranking figure of merit:

FEoS ∝
∫

dmpm(λ(m; EoS)|{ds}s∈S , I) . (C.8)

An arbitrary number of candidate EoS models can thus be directly compared
against each other with no extra computational cost. We show results from the
analysis of Fig. C.1 in Table C.1, where we see that the candidate models are
ranked correctly.

aaaaa
rec

inj SQM3 H4 MS1

SQM3 0.628 0.385 0.234

H4 0.547 0.539 0.273

MS1 0.306 0.423 0.489

Table C.1: FEoS scores of the three candidate EoS models after combining 30 BNS
sources.

1The slight apparent bias towards zero in the can be attributed to the one-sidedness of the
contributions of correlations as one approaches the edges of the m-λ plane.
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[311] H. Reissner. Über die Eigengravitation des elektrischen Feldes nach der Einstein-
schen Theorie. Annalen der Physik, 355:106–120, 1916.

[312] G. Renzetti. Are higher degree even zonals really harmful for the
LARES/LAGEOS frame-dragging experiment? Canadian Journal of Physics,
90:883–888, Aug. 2012.

[313] G. Renzetti. First results from LARES: An analysis. New A, 23:63–66, Oct. 2013.

[314] C. E. Rhoades and R. Ruffini. Maximum mass of a neutron star. Phys. Rev. Lett.,
32:324–327, Feb 1974.

[315] H. Robertson. Kinematics and World-Structure. Astrophys.J., 82:284–301, 1935.

[316] H. Robertson. Kinematics and World-Structure. 2. Astrophys.J., 83:187–201,
1935.

[317] H. Robertson. Kinematics and World-Structure. 3. Astrophys.J., 83:257–271,
1936.

[318] P. Roll, R. Krotkov, and R. Dicke. The Equivalence of inertial and passive gravi-
tational mass. Annals Phys., 26:442–517, 1964.

[319] C. Rovelli. Loop Quantum Gravity. Living Reviews in Relativity, 11, July 2008.

[320] F. Ryan. Gravitational waves from the inspiral of a compact object into a massive,
axisymmetric body with arbitrary multipole moments. Phys.Rev., D52:5707–5718,
1995.

[321] F. D. Ryan. Spinning boson stars with large selfinteraction. Phys.Rev., D55:6081–
6091, 1997.

[322] L. Santamaria, F. Ohme, P. Ajith, B. Bruegmann, N. Dorband, et al. Match-
ing post-Newtonian and numerical relativity waveforms: systematic errors and a
new phenomenological model for non-precessing black hole binaries. Phys.Rev.,
D82:064016, 2010.

[323] R. Scaramella et al. Euclid space mission: a cosmological challenge for the next
15 years. 2015.

[324] P. Schmidt, M. Hannam, and S. Husa. Towards models of gravitational waveforms
from generic binaries: A simple approximate mapping between precessing and
non-precessing inspiral signals. Phys.Rev., D86:104063, 2012.

[325] P. Schmidt, F. Ohme, and M. Hannam. Towards models of gravitational wave-
forms from generic binaries II: Modelling precession effects with a single effective
precession parameter. Phys.Rev., D91(2):024043, 2015.

[326] B. F. Schutz. A First Course in General Relativity. Feb. 1985.

[327] K. Schwarzschild. On the gravitational field of a mass point according to Einstein’s
theory. Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.), 1916:189–196, 1916.

[328] A. Sesana, J. Gair, E. Berti, and M. Volonteri. Reconstructing the massive black
hole cosmic history through gravitational waves. Phys.Rev., D83:044036, 2011.

[329] S. L. Shapiro and S. A. Teukolsky. Black holes, white dwarfs, and neutron stars:
The physics of compact objects. 1983.

[330] S. L. Shapiro, S. A. Teukolsky, and I. Wasserman. Implications of the millisecond
pulsar for neutron star models. ApJ, 272:702–707, Sept. 1983.

248



Bibliography

[331] S. L. Shapiro, S. A. Teukolsky, and I. Wasserman. Testing nuclear theory using
the 0.5 MS pulsar. Nature, 340:451, Aug. 1989.

[332] S. S. Shapiro, J. L. Davis, D. E. Lebach, and J. S. Gregory. Measurement of
the solar gravitational deflection of radio waves using geodetic very-long-baseline
interferometry data, 1979˘1999. Phys. Rev. Lett., 92:121101, Mar 2004.

[333] M. Shibata. Numerical Relativity. World Scientific Publishing Co, 2016.

[334] M. Shibata and K. Taniguchi. Coalescence of Black Hole-Neutron Star Binaries.
Living Rev.Rel., 14:6, 2011.

[335] D. Sivia and J. Skilling. Data analysis: a Bayesian tutorial. Oxford science
publications. Oxford University Press, 2006.

[336] D. S. Sivia, W. I. F. David, K. S. Knight, and S. F. Gull. An introduction to
Bayesian model selection. Physica D Nonlinear Phenomena, 66:234–242, June
1993.

[337] J. Skilling. Nested sampling. AIP Conference Proceedings, 735(1):395–405, 2004.

[338] J. Slutsky, L. Blackburn, D. Brown, L. Cadonati, J. Cain, et al. Methods for
Reducing False Alarms in Searches for Compact Binary Coalescences in LIGO
Data. Class.Quant.Grav., 27:165023, 2010.

[339] N. Smirnov. Table for estimating the goodness of fit of empirical distributions.
Ann. Math. Statist., 19(2):279–281, 06 1948.

[340] T. P. Sotiriou. 6+1 lessons from f(R) gravity. Journal of Physics Conference
Series, 189(1):012039, Oct. 2009.

[341] R. Sturani, S. Fischetti, L. Cadonati, G. Guidi, J. Healy, et al. Complete
phenomenological gravitational waveforms from spinning coalescing binaries.
J.Phys.Conf.Ser., 243:012007, 2010.

[342] R. Sturani, S. Fischetti, L. Cadonati, G. Guidi, J. Healy, et al. Phenomenological
gravitational waveforms from spinning coalescing binaries. 2010.

[343] Y. Su, B. R. Heckel, E. Adelberger, J. Gundlach, M. Harris, et al. New tests of
the universality of free fall. Phys.Rev., D50:3614–3636, 1994.

[344] H. Tagoshi, A. Ohashi, and B. J. Owen. Gravitational field and equations of
motion of spinning compact binaries to 2.5 postNewtonian order. Phys.Rev.,
D63:044006, 2001.

[345] K. Takami, L. Rezzolla, and L. Baiotti. Spectral properties of the post-merger
gravitational-wave signal from binary neutron stars. Phys. Rev., D91(6):064001,
2015.

[346] C. Talmadge, J. P. Berthias, R. W. Hellings, and E. M. Standish. Model Inde-
pendent Constraints on Possible Modifications of Newtonian Gravity. Phys. Rev.
Lett., 61:1159–1162, 1988.

[347] M. Tanaka and K. Hotokezaka. Radiative Transfer Simulations of Neutron Star
Merger Ejecta. Astrophys. J., 775:113, 2013.

[348] M. Tanaka, K. Hotokezaka, K. Kyutoku, S. Wanajo, K. Kiuchi, et al. Radioac-
tively Powered Emission from Black Hole-Neutron Star Mergers. Astrophys.J.,
780:31, 2014.

249



Bibliography

[349] A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer, M. Boyle, et al. Effective-one-
body model for black-hole binaries with generic mass ratios and spins. Phys.Rev.,
D89(6):061502, 2014.

[350] A. Taracchini, Y. Pan, A. Buonanno, E. Barausse, M. Boyle, et al. Prototype
effective-one-body model for nonprecessing spinning inspiral-merger-ringdown
waveforms. Phys.Rev., D86:024011, 2012.

[351] J.-L. Tassoul. Theory of rotating stars. 1978.

[352] S. A. Teukolsky. Perturbations of a rotating black hole. 1. Fundamental equations
for gravitational electromagnetic and neutrino field perturbations. Astrophys.J.,
185:635–647, 1973.

[353] K. S. Thorne. Multipole expansions of gravitational radiation. Reviews of Modern
Physics, 52:299–340, Apr. 1980.

[354] R. C. Tolman. Relativity, Thermodynamics, and Cosmology. 1934.

[355] R. C. Tolman. Static solutions of einstein’s field equations for spheres of fluid.
Phys. Rev., 55:364–373, Feb 1939.

[356] R. Valentim, E. Rangel, and J. Horvath. On the mass distribution of neutron
stars. 2011.

[357] M. Vallisneri. Prospects for gravitational wave observations of neutron star tidal
disruption in neutron star / black hole binaries. Phys.Rev.Lett., 84:3519, 2000.

[358] M. Vallisneri. Use and abuse of the Fisher information matrix in the assessment of
gravitational-wave parameter-estimation prospects. Phys.Rev., D77:042001, 2008.

[359] H. van Dam and M. Veltman. Massive and mass-less yang-mills and gravitational
fields. Nuclear Physics B, 22(2):397 – 411, 1970.

[360] C. Van Den Broeck and A. S. Sengupta. Binary black hole spectroscopy.
Class.Quant.Grav., 24:1089–1114, 2007.

[361] C. Van Den Broeck and A. S. Sengupta. Phenomenology of amplitude-corrected
post-Newtonian gravitational waveforms for compact binary inspiral. I. Signal-to-
noise ratios. Class.Quant.Grav., 24:155–176, 2007.

[362] M. Vasuth, Z. Keresztes, A. Mihaly, and L. A. Gergely. Gravitational radiation re-
action in compact binary systems: Contribution of the magnetic dipole - magnetic
dipole interaction. Phys.Rev., D68:124006, 2003.

[363] A. Vecchiato, M. G. Lattanzi, B. Bucciarelli, M. T. Crosta, F. de Felice, et al. Test-
ing general relativity by micro-arcsecond global astrometry. Astron.Astrophys.,
399:337–342, 2003.

[364] J. Veitch, V. Raymond, B. Farr, W. Farr, P. Graff, et al. Parameter estimation
for compact binaries with ground-based gravitational-wave observations using the
LALInference software library. Phys.Rev., D91(4):042003, 2015.

[365] J. Veitch and A. Vecchio. Assigning confidence to inspiral gravitational wave
candidates with Bayesian model selection. Class.Quant.Grav., 25:184010, 2008.

[366] J. Veitch and A. Vecchio. Bayesian coherent analysis of in-spiral gravitational
wave signals with a detector network. Phys.Rev., D81:062003, 2010.

250



Bibliography

[367] R. F. C. Vessot, M. W. Levine, E. M. Mattison, E. L. Blomberg, T. E. Hoffman,
G. U. Nystrom, B. F. Farrel, R. Decher, P. B. Eby, C. R. Baugher, J. W. Watts,
D. L. Teuber, and F. D. Wills. Test of relativistic gravitation with a space-borne
hydrogen maser. Phys. Rev. Lett., 45:2081–2084, Dec 1980.

[368] J. Vines, E. E. Flanagan, and T. Hinderer. Post-1-Newtonian tidal effects in the
gravitational waveform from binary inspirals. Phys.Rev., D83:084051, 2011.

[369] J. E. Vines and E. E. Flanagan. Post-1-Newtonian quadrupole tidal interactions
in binary systems. Phys.Rev., D88:024046, 2013.

[370] S. Vitale, W. Del Pozzo, T. G. Li, C. Van Den Broeck, I. Mandel, et al. Ef-
fect of calibration errors on Bayesian parameter estimation for gravitational wave
signals from inspiral binary systems in the Advanced Detectors era. Phys.Rev.,
D85:064034, 2012.

[371] S. Vitale, R. Lynch, P. Graff, and R. Sturani. Use of gravitational waves to
measure alignment of spins in compact binaries. 2015.

[372] L. Wade, J. D. E. Creighton, E. Ochsner, B. D. Lackey, B. F. Farr, et al. Sys-
tematic and statistical errors in a bayesian approach to the estimation of the
neutron-star equation of state using advanced gravitational wave detectors. 2014.

[373] R. V. Wagoner. Scalar tensor theory and gravitational waves. Phys.Rev., D1:3209–
3216, 1970.

[374] R. M. Wald. General relativity. 1984.

[375] A. G. Walker. On milne’s theory of world-structure. Proceedings of the London
Mathematical Society, s2-42(1):90–127, 1937.

[376] F. Weber. Strange quark matter and compact stars. Prog.Part.Nucl.Phys., 54:193–
288, 2005.

[377] S. Weinberg. Gravitation and Cosmology: Principles and Applications of the
General Theory of Relativity. July 1972.

[378] S. Weinberg. Ultraviolet divergences in quantum theories of gravitation. In S. W.
Hawking and W. Israel, editors, General Relativity: An Einstein centenary survey,
pages 790–831, 1979.

[379] J. M. Weisberg and J. H. Taylor. Relativistic binary pulsar B1913+16: Thirty
years of observations and analysis. ASP Conf.Ser., 328:25, 2005.

[380] J. Wess and J. Bagger. Supersymmetry and Supergravity. 1992.

[381] C. Will. Theory and Experiment in Gravitational Physics. Cambridge University
Press, 1993.

[382] C. M. Will. Bounding the mass of the graviton using gravitational wave observa-
tions of inspiralling compact binaries. Phys. Rev., D57:2061–2068, 1998.

[383] C. M. Will. Generation of postNewtonian gravitational radiation via direct inte-
gration of the relaxed Einstein equations. Prog.Theor.Phys.Suppl., 136:158–167,
1999.

[384] C. M. Will. Post-Newtonian gravitational radiation and equations of motion via
direct integration of the relaxed Einstein equations. III. Radiation reaction for
binary systems with spinning bodies. Phys.Rev., D71:084027, 2005.

251



Bibliography

[385] C. M. Will. The Confrontation between General Relativity and Experiment.
Living Rev.Rel., 17:4, 2014.

[386] C. M. Will and J. Nordtvedt, Kenneth. Conservation Laws and Preferred Frames
in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN For-
malism. Astrophys.J., 177:757, 1972.

[387] C. M. Will and A. G. Wiseman. Gravitational radiation from compact binary sys-
tems: Gravitational wave forms and energy loss to second postNewtonian order.
Phys.Rev., D54:4813–4848, 1996.

[388] J. Williams, X. Newhall, and J. Dickey. Relativity parameters determined from
lunar laser ranging. Phys.Rev., D53:6730–6739, 1996.

[389] A. Wiseman. Coalescing binary systems of compact objects to
(post)Newtonian**5/2 order. 4V: The Gravitational wave tail. Phys.Rev.,
D48:4757–4770, 1993.

[390] K. Yagi and N. Yunes. I-Love-Q. Science, 341:365–368, 2013.

[391] K. Yagi and N. Yunes. I-Love-Q Relations in Neutron Stars and their Applica-
tions to Astrophysics, Gravitational Waves and Fundamental Physics. Phys.Rev.,
D88(2):023009, 2013.

[392] N. Yunes, A. Buonanno, S. A. Hughes, M. Coleman Miller, and Y. Pan. Mod-
eling Extreme Mass Ratio Inspirals within the Effective-One-Body Approach.
Phys.Rev.Lett., 104:091102, 2010.

[393] N. Yunes and S. A. Hughes. Binary Pulsar Constraints on the Parameterized
post-Einsteinian Framework. Phys.Rev., D82:082002, 2010.

[394] N. Yunes and L. C. Stein. Non-Spinning Black Holes in Alternative Theories of
Gravity. Phys.Rev., D83:104002, 2011.

[395] V. Zakharov. Linearized gravitation theory and the graviton mass. JETP Lett.,
12:312, 1970.

[396] M. Zanolin, S. Vitale, and N. Makris. Application of asymptotic expansions of
maximum likelihood estimators errors to gravitational waves from binary mergers:
the single interferometer case. Phys.Rev., D81:124048, 2010.

[397] J. Zinn-Justin. Quantum field theory and critical phenomena.
Int.Ser.Monogr.Phys., 113:1–1054, 2002.

252



ACRONYMS

ADM Arnowit-Deser-Misner.

BBH Binary Black Hole.

BH Black Hole.

BHNS Black Hole Neutron Star.

BNS Binary Neutron Star.

CBC Compact Binary Coalescence.

CDT Causal Dynamical Triangula-
tions.

CE Calibration Errors.

CI Confidence Interval.

d.o.f. degrees of freedom.

DIRE Direct Integration of Relaxed
Einstein equations.

E-H Einstein-Hilbert.

EEP Einstein’s Equivalence Principle.

EFE Einstein Field Equations.

EM Electromagnetic.

EOB Effective One-Body.

EoS Equation of State.

ET Einstein Telescope.

FAP False Alarm Probability.

FD Frequency Domain.

FI Functional Inference.

FLRW Friedman-Lemaitre-Robertson-
Walker.

FT Fourier Transform.

GR General Relativity.

GW Gravitational Wave.

HR Hypothesis Ranking.

IID Independent Identically Dis-
tributed.

IMBH Intermediate-Mass Black Hole.

IMC Input Mode Cleaner.

ISCO Innermost Stable Circular Or-
bit.

K-S Kolmogorov-Smirnov.

KDE Kernel Density Estimator.

LAL LIGO Algorithm Library.

LCLF Local Comoving Lorentz
Frame.

LIGO Laser Interferometric Space
Antenna.

LLR Lunar Laser Ranging.

LQG Loop Quantum Gravity.

LSO Last Stable Orbit.

MCMC Markov Chain Monte Carlo.

253



MS Model Selection.

MWEG Milky Way Equivalent
Galaxy.

NCG Noncommutative Geometry.

NP Non-parametrics.

NR Numerical Relativity.

NS Neutron Star.

ODE Ordinary Differential Equation.

PDE Partial Differential Equation.

PDF Probability Density Function.

PE Parameter Estimation.

PK Post-Keplerian.

PM Post-Minkowskian.

PN Post-Newtonian.

PP Point Particle.

pPE parametrized Post-Einsteinian.

pPN parametrized Post-Newtonian.

PSD Power Spectral Density.

QCD Quantum Chromodynamics.

QM Quadrupole-Monopole.

QNM Quasi-Normal Mode.

ROM Reduced-Order Modeling.

SEP Strong Equivalence Principle.

SMBH Super-Massive Black Hole.

SNR Signal-To-Noise Ratio.

SPA Stationary Phase Approxima-
tion.

SQM Strange Quark Matter.

SR Science Run.

ST Scalar-Tensor.

SVT Scalar-Vector-Tensor.

TD Time Domain.

TIGER Test Infrastructure for GEn-
eral Relativity.

TOA Time Of Arrival.

TOV Tolman-Oppenheimer-Volkoff.

TT Transverse Traceless.

UTC Coordinated Universal Time.

UV Ultraviolet.

v.f. vector field.

VSR Virgo Science Run.

VT Vector-Tensor.

WD White Dwarf.

WEP Weak Equivalence Principle.

ZDHP Zero-Detuned High-Power.

254



SUMMARY

So much universe, and so little time.

Sir Terry Pratchett

In 2015 the world of science celebrated the 100-year “birthday” of the General
Theory of Relativity, a theory of gravity put forward by Albert Einstein in a
trilogy of historical papers published in 1915. His effort to reconcile gravity
with Special Relativity, leading to a geometric theory of gravity, culminated into
the formulation of the theory’s fundamental equations in November 1915, now
commonly known as the Einstein equations. In an unexpected twist of fate it was
around that time in fall of 2015 when we verified (within the utmost secrecy of the
LIGO-Virgo Collaboration) the first direct detection of gravitational waves, one
of the fundamental (and notoriously elusive) features of Einstein’s theory. The
news broke in early 2016, 100 years after Einstein first predicted the existence
of gravitational waves. The world was more or less agog, and whether people
grasped the actual importance of this discovery or not, it was celebrated by
all as yet another scientific breakthrough of mankind. But why does this long-
anticipated discovery qualify as such an important milestone in modern physics
and what are its actual implications to our understanding of the Universe and
the laws of nature? In an attempt to answer this question without resorting to
equations or plots, so as to keep the next few pages as non-technical as a summary
deserves to be, I find that a philosophical detour may be efficient in giving the
necessary perspective.

The Cave

In Plato’s allegory of The Cave, one finds a group of people chained down from
birth, forced to face towards the inside of a dark cave, not being able to directly
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see what happens around them or outside the cave walls. They can only observe
shadows, created by a fire that burns somewhere in the cave, and projected upon
the wall in front of them. And through these shadows they try to infer what
reality is like; what living things look like, how they behave, etc. However,
like any projection, shadows do not reveal the complete picture: e.g. given a
shadow’s size, the chained cannot calculate the true object’s size without knowing
the distances between the fire, the object and the wall; in fact they most likely
cannot even conceive the sheer notion of fire or shadow.

This allegory not only reveals Plato’s acknowledgement of the restricted emperical
means of his time, but most importantly it sets the grounds for a very profound,
epistemological view of reality, by stressing the essential connection between the
real world and what is accessible to us through observation. And indeed, our
limited means of observation may withhold crucial information from us, without
which our understanding of the world around us is incomplete. Whether mankind
will ever be able to access all channels of information that the physical world is
endowed with or whether it is doomed to be forever blind to some of them, is a
deep philosophical question, but whatever the answer, the best we can do is to
keep on exploring.

And we have done so for thousands of years, gazing at the night sky, studying the
motions of celestial bodies, performing experiments and building equipment with
which we can measure physical quantities to ever-increasing precision. Within the
last four centuries, using telescopes and light as our main observational channel
to the Universe, we have familiarized ourselves with our solar system, our stellar
neighbourhood, our host galaxy and the ones beyond it, all the way out to the
deep space, billions of light years away. But even though light may dominate
our senses as human beings, it is merely the fire in our cosmic Cave, casting
“shadows” upon our hi-tech telescopes. After decades of efforts, we now have the
tools to explore what lies beyond the walls of our Cave.

General Relativity and Gravitational Waves

Gravitational waves are cosmic messengers, carriers of information on the ge-
ometry of spacetime around the source that emitted them. Their existence is a
direct consequence of Einstein’s General Relativity (GR), a theory that interprets
gravitation as nothing else but a manifestation of the curvature of spacetime, the
stage upon which all events that we witness around us take place. For instance,
free-body trajectories in the vicinity of a massive gravitating body (e.g. the
planetary orbits around the Sun, or the trajectory of a stone thrown upwards
from the surface of the Earth) appear to be curved not because of a gravita-
tional force acting on them as in Newton’s theory of gravity, but only because
spacetime itself becomes curved in the presence of mass. One may picture it as
an elastic sheet that gets deformed when a heavy object is placed on top of it.
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Orbit of a planet around its star in Newtonian gravity
(top) and General Relativity (bottom). Notice how
the curvature of space causes a small but character-
istic modification in the orbit.

The generalization of a straight
line in a curved space setting,
where straight lines do not al-
ways exist, is called a geodesic.
These are exactly the curves
followed by objects that per-
form free motion.

Space is not anymore a static
entity, but rather a dynamical
one; it curves and twists and
evolves dynamically as stuff
move around in it, and this
evolution is determined by the
Einstein equations. The same
equations tell us that when
that same mass that curves
spacetime performs acceler-
ated motion (e.g. while orbit-
ing around another massive object), the changes in curvature induced by that
motion can generate ripples in the geometry of space which propagate outwards
with the speed of light; these ripples are what we call gravitational waves (GWs).
What GWs do is stretch and squeeze the dimensions of spacetime itself and this
effect is what physicists have been trying to measure for 100 years. So now
that we have done it, we have essentially “unlocked” a whole new sense to the
Universe, we can feel the vibes in the fabric of spacetime itself.

The biggest challenge when trying to detect gravitational waves is the weakness
of the signals we are looking for. On the right hand side of Einstein’s equations,
which describes the matter content that causes spacetime to curve, one finds an
overall prefactor 8πG

c4 ' 2×10−43 m kg−1 s−2. This means that every kilogram of
mass will curve spacetime by a similarly tiny amount; in other words, spacetime
is an extremely hard thing to bend! In terms of GW production, a back-of-the-
envelope calculation shows that no conceivable man-made experimental setup can
generate a GW signal that is sufficiently strong to be detected. But then, the
only alternative is to resort to GW sources provided by nature itself (and she is
indeed rather generous in that respect). Once again, we need to turn our eyes
(or “ears”) towards the depths of outer space, and try to eavesdrop on some of
the most violent, cataclysmic events in the history of the Universe.

Sources of Science

Amongst the most promising candidate sources of GWs, one finds the family
of coalescing compact binaries. These are binary systems consisting of Black
Holes or Neutron Stars in tight orbits around their common center of mass. For
millions of years these systems kept emitting GWs in a very quiet but steadily
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increasing rate. The energy drained in this way slowly pulled the system closer
and closer together in an accelerating rate, until the two companions eventually
merged together in a crescendo of GW emission, forming a black hole as final
product. Black holes are the most compact objects that can possibly exist in
the Universe, with neutron stars coming second best. Black holes can be formed
as the end result of total gravitational collapse, when a star cannot support its
self-gravitating mass by means of controlled, “conventional” processes of nuclear
fusion. If the star is sufficiently massive, it eventually ends its life in a supernova
explosion, leaving behind a compact remenant as the product of its collapse.
That remenant can be a black hole or a neutron star.

Although they are not made of matter but should rather be conceived as pure
curved spacetime, black holes have mass, usually thought of as concentrated in
their (geometric) center, a point known to host a so called “singularity”, where
quantities like curvature become infinite. Gravity around such a singularity, and
out to a surface known as the horizon, is so strong that not even light can escape it.
What exactly takes place at or just next to the singularity remains a fundamental
open question in physics. What makes black holes even more fascinating from
the observational point of view is that the vicinity of a black hole horizon is a
place where physical phenomena can be strongly affected by both gravity and
quantum mechanics. Now at a fundamental level, GR and quantum mechanics
are notoriously incompatible with each other, and if one wishes to reconcile the
two theories or perhaps abandon features of one in favour of the other, then the
observation of phenomena around a black hole would provide key information
that may eventually lead to a unified theroy of Quantum Gravity.

Neutron stars on the other hand are made of matter in its most highly compressed
state, at the final stage before total gravitational collapse. In the interior of a
neutron star, matter can reach densities that are a few times higher than the
denisties found in an atomic nucleus. If the Earth was as dense as a neutron star,
it would have had the size of a golf ball! Neutron stars are typically slightly more
massive than the Sun, and in a neutron star binary one finds two such objects
orbiting each other hundreds of times per second, at a distance of a few tens of
kilometers, before they finally merge into a single black hole. And of course, by
observing astrophysical phenomena at such extreme conditions, we can infer the
properties of matter at regimes that were so far inaccessible to us. This is the
subject of Part III of the current dissertation.

A prelude to the future

About 1.3 billion years ago, in a galaxy far far away, two massive black holes were
engaged in a tight orbit around their common center of mass. This close encounter
was destined to come to a climax whereby these Netherlands-sized objects, each
weighing at around 30 Suns, would collide with inconceivable violence at a speed
close to the speed of light and merge into a single black hole. Within the last 0.2
seconds of this death-spiral a mass equal to 3 Suns was radiated away as pure
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energy in the form of gravitational waves. For comparison with human scales,
note that just 1 kilogram of pure energy would be enough to cover the demands
of a city like Amsterdam for months. About 1.3 billion years later, life on Earth
had just started to operate a network of two GW detectors that were finally
sensitive enough to detect a gravitational wave that was just passing through.
And so they did. Mankind listened to the first audible note in the eternal cosmic
symphony of gravitational waves.

It soon became clear that this was a signal from the merger of two black holes. As
discussed above, it can be argued that GR is not the ultimate theory of gravity
and that at extreme regimes, such as one where two black holes or neutron stars
collide, we may be able to witness its breaking point. Now in the context of GR,
we have accurate models that describe what a GW signal emitted by a coalescing
binary should look like. So if GR is in fact violated, then the detected GW signal
will differ from the one that our model predicts and, if that difference is large
enough, our analysis will identify the violation of GR. This sort of investigation
was the subject of Part II of this dissertation, where a complete analysis pipeline
was developed and tested for this purpose. After analyzing the first GW detec-
tion, we found no inconsistency with general relativity, and we thus placed upper
bounds on possible violations thereof. We now know that so far GR passes the
test in a regime that was never probed before.

Similar detections in the future will reveal a wealth of information on the nature
of gravity, on the properties, the formation, and the population of black holes and
neutron stars throughout the Universe, and much more. Soon we may be able
to sense the bursts of GW radiation coming from the deep interior of supernova
explosions, or even the GW “echo” from the Big Bang itself.

My first draft of this summary ended with the statement that the “first detection
of gravitational waves will be a triumph for science and mankind”. One year and
one triumph later, I do not dare make firm predictions on what nature may have
in store for us in the near or distant future. And this is in fact the most exciting
thing about living the dawn of gravitational wave physics.

Credits: LIGO, xkcd comics [www.xkcd.com]
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