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PREFACE

Gravitational waves

In 1915, Albert Einstein introduced the world to the general theory of relativity, or general
relativity for short. General relativity describes how mass distorts spacetime and in turn how
spacetime dictates how masses flow through it. In other words, the spacetime continuum can
be regarded as a fabric, which can be curved by the mass of an object. Masses moving on
this curved spacetime fabric will then be perceived as gravity.

This description of the connection between mass and the curvature of spacetime provided
an improvement to Newton’s law of universal gravitation, which stated that gravity arises
from an action at a distance. General relativity instead predicts that gravity is mediated
by a new type of radiation: gravitational radiation. Gravitational waves that compose grav-
itational radiation are ripples in the fabric of spacetime, which periodically lengthen and
shorten space, and speed up and slow down time.

Detecting gravitational waves

It was not until 1974 that the effects of gravitational radiation were first measured, albeit
indirectly, by Hulse and Taylor. The changes in the orbital motion of two pulsars were
remarkably consistent with the emission of gravitational radiation.

Despite this tremendous discovery, which was awarded the 1993 Nobel Prize in physics,
we have yet to directly detect minor distortions of spacetime caused by passing gravitational
waves. Direct measurements of gravitational waves were first attempted already in the 1960s
using large solid bars of metal, often referred to as resonant-mass detectors or Weber bars.
However, no detection of gravitational waves has yet been made by resonant-mass detectors
and it is generally believed that resonant-mass detectors are only sensitive to extremely strong
sources of gravitational waves.

Since the 1960s, more sensitive gravitational-wave detectors have been build that are
based on laser interferometry. These interferometric detectors, such as LIGO in Hanford and
Livingston (USA) and Virgo in Pisa (Italy), have kilometre-scale arms that are sensitive to
a relative distortion of the arm length of 10−22. So far, no signs of gravitational waves have
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PREFACE

been measured.
In 2010, both LIGO and Virgo were decommissioned to make way for significantly im-

proved versions of these detectors, the so-called Advanced LIGO and Advanced Virgo. These
next-generation detectors are designed to be ten times more sensitive compared to their
predecessors, and will increase the total sensitivity volume by a thousand fold. With the
increased sensitivity of Advanced LIGO and Advanced Virgo, which are scheduled to be
completed in 2014, scientists believe that they are on the verge of the first direct detection
of gravitational waves.

Extracting physics

But the prospects of the first direct detection of gravitational waves extend much beyond
the confirmation of Einstein’s predictions. In fact, the first direct detection of gravitational
waves promises to usher in a new era of astrophysics and astronomy.

Being a new kind of radiation, the ability to detect gravitational waves could provide
independent measurements of known yet poorly understood phenomena. For example, com-
pact objects such as neutron stars and black holes are of great interest to the astrophysical
community, and detectors such as LIGO and Virgo have the ability to measure gravitational
waves emitted by these objects.

Moreover, measurements of gravitational waves directly probe gravity, the interaction
experienced by all known forms of matter, even those that do not emit electromagnetic
radiation. Therefore, measurements of gravitational waves could reveal yet unknown astro-
physical phenomena that could radically change our view of the Universe.

It is thus quintessential to look beyond the detection of gravitational waves, and to think
about how one can utilise gravitational-wave measurements to gain additional knowledge
about the nature of gravity and the astrophysical processes it governs. To achieve this, the
gravitational-wave community needs to develop increasingly accurate models of the sources
of gravitational waves, to prepare the data-analysis tools to extract relevant information,
and finally to use the newly acquired insight to complement or to alter our current state of
knowledge.

Much work in these areas has already been done, yet more remains to be done. This thesis
investigates the ability of interferometric detectors such as Advanced LIGO and Advanced
Virgo, and those planned for the future, to explore different aspects of physics that can be
extracted from gravitational-wave measurements.

Outline

This thesis is divided into three parts. Part I serves as a general introduction to the field of
gravitational-wave data analysis. Parts II and III then each focusses on a specific physical
question to which gravitational-wave measurements could shed light.
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Part I

Chapters 1 and 2 lay the mathematical foundations of the linearised theory of general relativ-
ity and the post-Newtonian formalism, respectively. In particular, Chapters 1 and 2 focus on
obtaining a description of the gravitational waves emitted by systems in which two objects
orbit each other around their common centre of mass.

Chapter 3 gives an overview of existing and future interferometric gravitational-wave
detectors, explain how they are sensitive to a passing gravitational wave, and what sources
they are expected to see.

Chapter 4 introduces the concepts of Bayesian inference, and explains how Bayesian
inference is used to provide a consistent interpretation of gravitational-wave signals. Finally,
Chapter 5 gives an overview of various computational methods used to perform calculations
necessary to conduct Bayesian inference.

Part II

The theme of Part II is using gravitational-wave measurements to test Einstein’s general
relativity. The existing literature is explored in Chapter 6. Chapter 7 then introduces
the Test Infrastructure for GEneral Relativity (TIGER), which is a data-analysis pipeline
designed to test general relativity without the need for knowledge of a specific alternative.
The performance of TIGER is then tested through comprehensive simulations in Chapter 8.
Finally, Chapter 9 concludes Part II by discussing the results and by identifying future work.

Part III

Part III focusses on inferring the large-scale structure of the Universe from gravitational-wave
signals. Chapter 10 introduces the mathematical description of the large-scale structure of
the Universe within general relativity. Next, Chapter 11 explores various methods, using
both electromagnetic and gravitational waves, with which scientists try to infer the large-
scale structure of the Universe. Chapter 12 researches the ability of future interferometric
detectors to obtain information about the large-scale structure of the Universe.

Finally, Chapter 13 concludes the work in Parts II and III, and looks ahead of what might
be in store for the field of gravitational-wave astrophysics.

Tjonnie Li
Amsterdam, 2013

xiii





Part I

Introduction to gravitational-wave data
analysis





CHAPTER 1
GRAVITATIONAL WAVES IN THE LINEARISED

THEORY OF GENERAL RELATIVITY

1.1 Brief overview of general relativity

1.1.1 Notations and conventions

Units

Unless explicitly stated, we will use the geometrised units for which the velocity of light c
and Newton’s constant G are both set to unity, i.e.

c = G = 1. (1.1)

Signature conventions and notations

Lower-case Greek letters denote spacetime indices and take the values of 0, . . . , 3. On the
other hand, lower-case Roman letters denote space indices and take the values of 1, . . . , 3. A
spacetime event xµ is given by

xµ = (t, xi) for µ = 0, 1, 2, 3 and i = 1, 2, 3, (1.2)

where t represents the coordinate time and xi denote the space coordinates. The signature
convention for the metric gµν is (−,+,+,+). For example, the metric tensor describing flat
spacetime in the usual (t, x, y, z) coordinates, is given by

ηµν = diag(−1, 1, 1, 1). (1.3)

The invariant line element, which can be constructed from the metric tensor, is given by

ds2 = gµνdx
µdxν . (1.4)
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GRAVITATIONAL WAVES IN THE LINEARISED THEORY OF GEN. REL.

A comma followed by an index denotes a partial derivative, i.e.

V ν
,µ ≡

∂V ν

∂xµ
. (1.5)

A semi-colon followed by an index denotes the covariant derivative, i.e.

V ν
;µ ≡ V ν

,µ + V αΓναµ, (1.6)

where Γρµν is the Christoffel symbol given by

Γρµν = 1
2g

σρ (gσµ,ν + gσν,µ − gµν,σ) . (1.7)

The Riemann tensor is defined as

Rµ
νρσ ≡ Γµνσ,ρ − Γµνρ,σ + ΓµαρΓανσ − ΓµασΓανρ. (1.8)

The Ricci tensor and Ricci scalar are respectively given by

Rµν ≡ Rα
µαν , and R ≡ gµνRµν . (1.9)

1.1.2 General relativity

The theory of general relativity (GR) states that gravity can be considered as curvature of
spacetime [1]. This relationship is made explicit by the Einstein field equations (EFE),

Gµν ≡ Rµν − 1
2g

µνR = 8πT µν , (1.10)

which form a set of ten coupled differential equations. On the left hand side (LHS), we have
defined the Einstein tensor Gµν , which only depends on terms describing the geometry of
spacetime. On the right hand side (RHS), one has the stress-energy tensor, which describes
the density and flux of energy and momentum. From the second Bianchi identity,

Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ = 0, (1.11)

it follows that

Gµν
;µ = 0. (1.12)

Consequently, the stress-energy tensor satisfies

T µν ;µ = 0, (1.13)

so that the energy and momentum are covariantly conserved quantities in GR.
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Geodesics

As a generalisation of Newton’s first law, i.e. objects move on a straight line in absence of
external forces, GR states that objects move along geodesics in absence of external forces.
Geodesics are the curved-space equivalents of straight lines, which can be found by parallel
transporting the tangent vector of a curve. Therefore, the equations of motion within GR
are given by the geodesic equation

d2xµ

dτ 2 + Γµνρ
dxν

dτ

dxρ

dτ
= 0 for m 6= 0,

d2xµ

dλ2 + Γµνρ
dxν

dλ

dxρ

dλ
= 0 for m = 0. (1.14)

where m is the mass of the object, τ represents the proper time given by dτ 2 = −ds2, and λ
is some affine parameter on the geodesic.

In a flat spacetime, two straight lines that are initially parallel to each other will remain
parallel. In a curved spacetime, geodesics do not satisfy this property. Instead, two nearby
geodesics, separated by ζµ, follow the geodesic deviation equation

D2ζµ

Dτ 2 = −Rµ
νρσζ

ρdx
ν

dτ

dxσ

dτ
, (1.15)

where D/Dτ is defined as
DV µ

Dτ
≡ dV µ

dτ
+ ΓµνρV ν dx

ρ

dτ
, (1.16)

and denotes the covariant derivative along a curve that is parameterised by τ . The geodesic
deviation equation describes the change in separation ζµ between two nearby geodesics. As
the Riemann tensor describes the tidal forces caused by a gravitational field, Eq. (1.15) shows
that these tidal forces can be considered as deviations of nearby geodesics.

1.2 Linearised theory of general relativity

To study the properties of gravitational waves (GWs), it is instructive to first study them in
situations where the gravitational fields are weak. In the so-called weak-field approximation,
one can view the metric as the Minkowski metric with a small perturbation. In this chapter,
we will discuss the properties of GWs in the linearised theory of GR, which only considers
the lowest order perturbation. In particular, we will look into the propagation of GWs on
the flat background spacetime, their interaction with test masses, the energy and momentum
carried by GWs, and the generation of GWs.

1.2.1 Weak-field metric

In GR, the EFE are covariant under general coordinate transformations

xµ → xµ
′(x), (1.17)
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so that the metric transforms as

gµν → gµ′ν′ = xρ,µ′x
σ
,ν′gρσ. (1.18)

This means that one is free to choose a convenient coordinate system without altering the
physical predictions of the EFE. In the weak-field regime, where spacetime is nearly flat, it is
convenient to choose the coordinates such that the metric is composed of the flat spacetime
metric with a small perturbation, i.e.

gµν = ηµν + hµν , for |hµν | � 1. (1.19)

However, by choosing the coordinates such that Eq. (1.19) holds, the general coordinate
invariance of GR is broken. Instead, one has a smaller set of transformations that does
preserve Eq. (1.19). We will discuss these in turn.

Gauge transformations

Firstly, consider gauge transformations of the form

xµ → xµ
′ = ηµ

′
ν(xν + ξν) (1.20)

where we demand that

|ξµ,ν | . |hµν | . (1.21)

Consequently, the metric in Eq. (1.19) transforms as

gµν → gµ′ν′ = xρ,µ′x
σ
,ν′gρσ

= ηµν + hµν − ξµ,ν − ξν,µ + . . . , (1.22)

where ηµν lowers and ηµν raises indices in the linearised theory. Keeping the terms linear in
hµν or ξµ,ν , we observe that hµν transforms as

hµν → hµ′ν′ = hµν − ξµ,ν − ξν,µ. (1.23)

Therefore, provided Eq. (1.21) holds, the form of the metric as shown in Eq. (1.19) is pre-
served.

Lorentz transformations

Secondly, consider Lorentz transformations of the form

xµ → xµ
′ = Λµ′

νx
ν , (1.24)
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1.2. LINEARISED THEORY OF GENERAL RELATIVITY

where Λµ′
ν is the Lorentz transformation from special relativity that transforms the flat

spacetime metric as

Λµ
ρ′Λν

σ′ηµν = ηρ′σ′ . (1.25)

The full metric then transforms as

gµν → gµ′ν′ = Λρ
µ′Λσ

ν′gρσ

= ηµ′ν′ + Λρ
µ′Λσ

ν′hρσ, (1.26)

and therefore

hµν → hµ′ν′ = Λρ
µ′Λσ

ν′hρσ. (1.27)

Note that hµν is a pseudotensor, as it only behaves as a tensor under a Lorentz transformation.
However, since a boost can spoil the condition |hµν | � 1, one is limited to boosts that do
not violate this condition.

Similar to the use of the general coordinate freedom to simplify the EFE, we will use
both the freedom to perform a gauge transformation shown in Eq. (1.20) and a Lorentz
transformation shown in Eq. (1.24) to simplify equations in the linearised theory of GR.

1.2.2 Linearising the Einstein field equations

Next, our aim is to derive the EFE in the linearised theory. To leading order in hµν , the
Christoffel symbol, Riemann tensor, Ricci tensor and Ricci scalar are given by

Γµαβ = 1
2 (hαµ,β + hβ

µ
,α − hαβ,µ) , (1.28)

Rµναβ = 1
2 (hµβ,να + hνα,µβ − hνβ,µα − hµα,νβ) , (1.29)

Rµν = 1
2 (hµα,να + hν

α
,µα − hµν,αα − hαα,µν) , (1.30)

R = 1
2
(
hαβ

,αβ − hαα,ββ
)
. (1.31)

From Eq. (1.29) it follows that the Riemann tensor is invariant under the gauge transforma-
tion of Eq. (1.20). Next, the EFE can be written as

8πTµν = Rµν −
1
2Rgµν

= 1
2
[
hµα,ν

α + hνα,µ
α − hµν,αα − hαα,µν − ηµν

(
hαβ

,αβ − hαα,ββ
)]
. (1.32)

One can write Eq. (1.32) in a more compact form by introducing the trace h given by

h ≡ ηαβhαβ, (1.33)
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and the trace-reversed h̄µν given by

h̄µν ≡ hµν −
1
2ηµνh, (1.34)

so that Eq. (1.32) becomes

16πTµν = h̄µα
,α
ν + h̄να

,α
µ − h̄µν,αα − ηµν h̄αβ,αβ. (1.35)

Eq. (1.35) can be further simplified by using the gauge freedom of Eq. (1.20) to choose the
harmonic gauge

h̄µν ,
ν = 0. (1.36)

As we will see later, by imposing the harmonic gauge one has chosen the coordinates in such
a way that for a single plane wave (or a superposition of plane waves with their wave vectors
pointing in the same direction), the GW polarisations are perpendicular to the direction of
propagation.

It turns out the harmonic gauge does not fix the gauge completely. To make this explicit,
consider the gauge transform in Eq. (1.20) of h̄µν , i.e.

h̄µν → h̄µ′ν′ = h̄µν − ξµ,ν − ξν,µ + ηµνξ
ρ
,ρ. (1.37)

Applying the harmonic gauge condition to Eq. (1.37), one has

h̄µ′ν′,
ν′ = h̄µν,

ν − ξµ,νν . (1.38)

Therefore, if the harmonic gauge holds in the old frame, the condition

ξµ,ν
ν = 0 (1.39)

does not spoil the harmonic gauge and allows an additional gauge specification. We will use
this property when we look for a specific form of the plane wave representation of GWs.

Finally, in the harmonic gauge, the EFE can be written in the simple form

−h̄µν,αα = 16πTµν . (1.40)

This equation forms the backbone of the linearised theory of GR and we will use it to study
some of the properties of GWs.

How many degrees of freedom do we expect to be present in the linearised EFE? The
symmetric metric tensor gµν has ten independent components. By imposing the harmonic
gauge, we have introduced four constraints. Further specifying the gauge by using gauge
transformations that satisfy Eq. (1.39) introduces an additional four constraints, leaving the
metric tensor with two independent degrees of freedom. Indeed, these eight constraints are
in line with the set of transformations that preserve the form of the metric in Eq. (1.19),
namely the gauge transformation (four constraints) and the Lorentz transformation (four
constraints).
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1.3. PROPAGATION OF GRAVITATIONAL WAVES IN VACUUM

1.3 Propagation of gravitational waves in vacuum

To gain insight into the propagation of GWs in the linearised theory, we consider the linearised
EFE in vacuo,

h̄µν,α
α = 0. (1.41)

The solution to Eq. (1.41) can be written in the form of plane waves

h̄µν = <
[
Aµνe

ıkαxα
]
, (1.42)

where < denotes the real part of a quantity. The linearised EFE then yield

kαk
α = 0, (1.43)

so that the wave vector kα is a null vector and the wave travels on the light cone of the
flat background metric. Furthermore, the harmonic gauge in Eq. (1.36) also imposes the
condition

Aµνk
ν = 0, (1.44)

showing that the direction propagation, kα, is orthogonal to the wave polarization, Aµν . In
other words, the wave is transverse to the direction of propagation.

1.3.1 Transverse-traceless gauge

One can now use the residual gauge freedom within the harmonic gauge class, as shown in
Eq. (1.39), to further specify Aµν . Suppose one specifies a fixed 4-velocity uµ throughout
all of spacetime (from a special-relativity perspective). In other words, one defines a family
of observers, one on each point in spacetime, that all have a 4-velocity uµ. A choice of
coordinates is then made by imposing

Aµνu
ν = 0. (1.45)

This condition gives three constraints as one of them can be identified with kµ (Aµνuν) = 0.
As the fourth constraint, one can use the residual gauge freedom to set

Aµ
µ = 0. (1.46)

One can now use a Lorentz transformation to make the explicit choice that the conditions in
Eqs. (1.45) and (1.46) hold in a frame where u0 = 1 and uj = 0. With this choice, one has
specified all the free components. The metric perturbation satisfies

h̄µ0 = 0 (only spatial components),
h̄j

j = 0 (traceless in the spatial part), (1.47)
h̄ij,

j = 0 (spatial part is divergence free).
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The conditions in Eq. (1.47) define the transverse-traceless (TT) gauge. In the TT gauge,
one has h = −h̄ = −h̄µµ = −h̄jj = 0, so that hµν is the same as h̄µν . Finally, quantities in
this gauge are denoted by the superscript TT, e.g. hTT

µν .
Next, consider a single plane wave with wave vector kµ = (ω, ki), where ω = |ki|. Without

loss of generality, one can set the direction of propagation to be the z-direction. Under these
conditions, hTT

µν can be written as

hTT
µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos [ω(t− z)] , (1.48)

where h+ and h× are the two degrees of freedom in the linearised theory of GR, corresponding
to two polarisations of a GW. This nomenclature will be clarified in Sec. 1.4. The line element
in the TT frame is given by

ds2 =− dt2 + dz2 + {1 + h+ cos [ω(t− z)]} dx2 + 2h× cos [ω(t− z)] dxdy
+ {1− h+ cos [ω(t− z)]} dy2. (1.49)

1.4 Interaction with test masses

Next, we study the effect of GWs on test masses (mirrors in the case of the interferometric
detectors, see Fig. 3.1), by using the geodesic equation and the geodesic deviation equation,
shown in Eq. (1.14) and Eq. (1.15) respectively.

1.4.1 Transverse-traceless gauge

Consider a test mass initially at rest at τ = 0. From Eq. (1.14) it follows that

d2xi

dτ 2 = −
[
Γiνρ

dxν

dτ

dxρ

dτ

]
τ=0

= −
Γi00

(
dx0

dτ

)2

τ=0

. (1.50)

Evaluating Eq. (1.28) in the TT gauge, one has

Γi00 = 1
2
(
2h0

i
,0 − h00,

i
)

= 0, (1.51)

where the TT superscript is dropped for convenience. Hence, a test mass initially at rest
will remain at rest as viewed in the TT frame. Similarly, consider a coordinate separation ζ i
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between two test masses that are initially at rest with respect to each other at τ = 0. The
geodesic deviation equation in Eq. (1.15) gives us

d2ζ i

dτ 2

∣∣∣∣∣
τ=0

= −
[
2Γi0j

dζj

dτ

]
τ=0

= 0. (1.52)

This shows that if two test masses are initially separated by a coordinate separation of ζ i and
are at rest with respect to each other, they will remain at this separation. Overall, it seems
that a GW has no influence on the geodesic or on the deviation of geodesics. As we will
see next, this is merely a feature of the TT coordinate system, as we have explicitly chosen
u0 = 1 and uj = 0 to hold throughout spacetime.

Consider two events in the TT frame at (t, x1, 0, 0) and (t, x2, 0, 0). These two events are
separated by the coordinate distance x2 − x1 = L, where L is a constant with respect to the
coordinate time t. However, physical effects are encoded in the proper distance, given by

s =
∫
ds

=
∫ x2

x1
dx

√
1 + h+ cosωt

≈ L
(

1 + 1
2h+ cosωt

)
. (1.53)

In general directions, the proper distance is given by

s =
√
L2 + hij(t)LiLj, (1.54)

where Li denotes the spatial separation between two test masses and L the associated co-
ordinate distance. Therefore, the proper distance expands and shrinks periodically. Because
the time that light travels between the two test masses is related to the proper distance, GWs
leave an imprint on the time it takes for a photon to make a round trip. Consequently, inter-
ferometers can potentially measure these imprints by measuring the length difference between
their arms (see Ch. 3 for more information about detecting GWs by using interferometers).

1.4.2 Proper detector frame

Alternatively, consider a detector capable of measuring changes in the proper distance, e.g.
an interferometer, with a characteristic size that is much smaller than the characteristic
wavelength of the GW. In this case, one can approximate the entire detector to be in a near
local Lorentz frame (LLF) (freely falling frame), even in the presence of GWs. The metric
in the near LLF can be written as

ds2 ≈ −dt2 + δijdx
idxj +O

(
xixj

L2
B

)
, (1.55)

11



GRAVITATIONAL WAVES IN THE LINEARISED THEORY OF GEN. REL.

where LB denotes the typical variation scale of the metric. Consider two test masses in free
fall separated by ζ i. We want to know the influence of GWs on these two test masses. It is
instructive to then rewrite the geodesic deviation equation given by Eq. (1.15) as

d2ζµ

dτ 2 + 2Γµνρ
dxν

dτ

dxρ

dτ
+ ζσΓµνρ,σ

dxν

dτ

dxρ

dτ
= 0. (1.56)

Next, assume that the two test masses are moving non-relativistically so that dxi/dτ can
be neglected compared to dx0/dτ . Furthermore, the term proportional to Γµνρ is negligible
compared to the other terms in a near LLF. Consequently, one has

d2ζ i

dτ 2 + ζσΓi00,σ

(
dx0

dτ

)2

= 0. (1.57)

One can further simplify ζσΓi00,σ ≈ ζjΓi00,j and thus write

d2ζ i

dτ 2 + ζjΓi00,j

(
dx0

dτ

)2

= 0. (1.58)

But in the LLF, Ri
0j0 = Γi00,j − Γi0j,0 = Γi00,j and therefore

d2ζ i

dτ 2 +Ri
0j0ζ

j

(
dx0

dτ

)2

= 0. (1.59)

Because dx0/dτ ≈ 1, one can approximate τ ≈ t. This allows us to write

ζ̈j = −Ri
0j0ζ

j, (1.60)

where an overdot denotes a derivative with respect to the coordinate time t. Finally, instead
of evaluating the Riemann tensor in this frame, we use the fact that the Riemann tensor is
invariant under the gauge transformation in Eq. (1.20). Therefore, we can evaluate Eq. (1.29)
in the TT gauge and write

Ri
0j0 = Ri0j0 = −1

2 ḧ
TT
ij . (1.61)

Inserting Eq. (1.61) into Eq. (1.60), the geodesic deviation equation in the proper detector
frame takes the form

ζ̈ i = 1
2 ḧ

TT
ij ζ

j. (1.62)

Remarkably, the influence of a GW in a near LLF resembles a Newtonian force, allowing us
to think about it in terms of classical mechanics.

Caution must be taken with the use of the geodesic deviation equation and the result in
Eq. (1.62) that follows from it. The geodesic deviation equation in Eq. (1.15) is only valid if
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ζ is small compared to the typical variation scale of the metric. When the variation of the
metric is caused by GWs, the scale at which the metric varies is the reduced wavelength of
the GW, λ = λ/(2π). Therefore, the result in Eq. (1.62) is only valid if

L� λ, (1.63)
where L denotes the typical length scale of the GW detector. For Laser Interferometer
Gravitational Wave Observatory (LIGO) or Virgo (λ ≈ 105 m and L ≈ 103 m), the geodesic
deviation equation is valid. For LISA (λ ≈ 1010 m and L ≈ 109 m), the geodesic deviation
equation is no longer valid and a full GR treatment is needed to study the influence of GWs
on test masses.

1.4.3 Ring of test masses

Consider a ring of test masses in the (x, y) plane centred at z = 0 and a GW travelling in the
z-direction. Because hTT

ij is transverse to the propagation direction, the GW will only have
influence in the plane of the test masses and we can restrict our attention to the (x, y) plane
alone. Furthermore, as the two polarisations of Eq. (1.48) are independent, one can consider
them separately. For example, the plus polarisation is given by

hTT
ab = h+ cosωt

(
1 0
0 −1

)
. (1.64)

Consider a proper detector frame where the location of a test mass is denoted by ζa(t) =
(x0 + δx(t), y0 + δy(t)), and where (x0, y0) is the location of the unperturbed test mass and
(δx, δy) is the perturbation due to the GW. The evolution of ζa(t) caused by the plus
polarisation is then given by Eq. (1.62)(

δ̈x

δ̈y

)
+

= −h+

2

(
1 0
0 −1

)(
x0 + δx
y0 + δy

)
ω2 cosωt

≈ −h+

2

(
x0
−y0

)
ω2 cosωt, (1.65)

where one assumes that the perturbations are O(h), and thus small compared to the un-
perturbed locations. Solving Eq. (1.65), the deviations caused by the plus polarisations are
given by (

δx
δy

)
+

= h+

2

(
x0
−y0

)
cosωt. (1.66)

Similarly, the influence of the cross polarisation on a ring of test masses can be described by(
δx
δy

)
×

= h×
2

(
y0
x0

)
cosωt. (1.67)

These deformations can be visualised by considering a ring of test masses as shown in Fig. 1.1.
The labels “plus” and “cross” originate from the directions of the motion of such a ring of
test masses.
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h+

ωt = 0

h×

ωt = π/2 ωt = π ωt = 3π/2 ωt = 2π

Figure 1.1 – Deformations of a ring of test masses caused by the plus (+) or cross (×) polarisations
of a GW for various values of the phase.

1.5 Energy and momentum of gravitational waves

From the motion of test masses, one has a clue that GWs carry energy and momentum.
However, the formalism in Secs. 1.2–1.4 only describes the propagation of GWs on a flat
spacetime, and does not describe the energy and momentum associated to GWs. Indeed,
enforcing a flat background metric, as shown in Eq. (1.19), does not allow GWs to curve the
background metric.

1.5.1 Non-linear corrections

To study the energy and momentum carried by GWs, one must extend the approximation
from Eq. (1.19) to

gµν = g(B)
µν + h(1)

µν + h(2)
µν , (1.68)

where g(B)
µν is the background metric that is now allowed to be curved, and h(1)

µν and h(2)
µν are

the first and second order perturbations describing the GW. Within this approximation, the
Ricci tensor can be written as

Rµν = R(B)
µν +R(1)

µν

[
h(1)
µν

]
+R(2)

µν

[
h(1)
µν

]
+R(1)

µν

[
h(2)
µν

]
, (1.69)

where R(B)
µν is the Ricci tensor for the background metric g(B)

µν . The linear and quadratic
corrections to the Ricci tensor are given by R(1)

µν and R(2)
µν respectively. For example, R(2)

µν

[
h(1)
µν

]
represents those terms in the Ricci tensor that are of second order with respect to the first
order perturbation of the background metric, given by h(1)

µν .
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1.5.2 Short-wave approximation

Although it is valid to approximate the metric as Eq. (1.68), one runs into the problem of
distinguishing the perturbation from the background. In fact, there is no generally unam-
biguous way of distinguishing a perturbation from the background. Consequently, the notion
of local energy density associated to GWs does not exist.

Nevertheless, a distinction in terms of the characteristic lengths can be made for detection
of GWs on Earth. We introduce two length scales: λ denotes the scale on which hµν varies,
whereas R denotes the scale on which g(B)

µν varies. We assume that the GWs measured on
Earth have much smaller characteristic length scales than the background metric, i.e. λ� R.
This is often called the short-wave approximation. Within the short-wave approximation,
one can introduce a scheme to separate the background (smooth) from the perturbation
(fluctuating). Such a split can be accomplished by introducing a length scale l such that
λ� l� R.

We can now introduce the average over a spatial volume with sides of length l, denoted
by 〈. . .〉l. The effect of such an averaging scheme is that terms that vary on the scale of λ
average to zero, whereas terms that vary on the scale of R remain constant. For example,
the part of R(2)

µν that varies on the scale of R can be written as
〈
R(2)
µν

〉
l
. On the other hand,

the part that fluctuates on the scale of λ can be identified as the remainder, R(2)
µν −

〈
R(2)
µν

〉
l
.

Similarly, the Ricci tensor can thus be split into two parts: a smooth (associated to R) and a
fluctuating part (associated to λ). Up to second order contributions in hµν , the Ricci tensor
can be split into

R(smooth)
µν = R(B)

µν +
〈
R(2)
µν

[
h(1)
µν

]〉
l
, (1.70)

R(fluc)
µν = R(1)

µν

[
h(1)
µν + h(2)

µν

]
+R(2)

µν

[
h(1)
µν

]
−
〈
R(2)
µν

[
h(1)
µν

]〉
l
. (1.71)

1.5.3 Stress-energy tensor of gravitational waves

Next, we want to investigate how GWs impact the background metric. To make such a
relationship explicit, consider the smooth part of the EFE in vacuo by only using the smooth
part of the Ricci tensor given by Eq. (1.70). One can rewrite the vacuum EFE as

8πT (GW)
µν = R(B)

µν −
1
2R

(B)g(B)
µν , (1.72)

where the stress-energy tensor of GWs is defined as

T (GW)
µν ≡ − 1

8π

〈
R(2)
µν −

1
2g

(B)
µν R

(2)
〉
l
, (1.73)

15



GRAVITATIONAL WAVES IN THE LINEARISED THEORY OF GEN. REL.

and the quadratic order correction to the Ricci tensor is given by

R(2)
µν [hµν ] ≡

1
2

[1
2hαβ;µh

αβ
;ν + hν

α;β (hαµ;β − hβµ;α)

+ hαβ (hαβ;µν + hµν;αβ − hαµ;νβ − hαν;µβ)

−
(
hαβ ;β −

1
2h

;α
)

(hαµ;ν + hαν;µ − hµν;α)
]
. (1.74)

One can thus see that the energy associated to GWs is only defined as an average over
several periods of the characteristic wavelength. One can further simplify Eq. (1.73) by
noting/assuming the following:

• Assume that the background is close to flat so that one can write A;µ ≈ A,µ, where A
can be a vector or a tensor.

• Boundary terms can be ignored in the integration by parts because λ� l.

• Time and space derivatives can be interchanged, as solutions of h̄µν,αα = 0 depend on
the retarded time t− z.

• Use the field equation h̄µν,αα = 0, and the gauge conditions h̄µν,ν = 0 and h̄ = 0.

With these approximations, the stress-energy tensor takes the simple form

T (GW)
µν = 1

32π
〈
h̄αβ,µh̄

αβ
,ν

〉
l
. (1.75)

In this form, T (GW)
µν can be shown to be invariant under Eq. (1.20) and conserved when

observed far away from the source. Under these conditions and explicitly choosing the TT
gauge, the energy and momentum radiated per unit time through a sphere of radius r are
given by

dE(GW)

dt
= r2

32π

∫
dΩ

〈
ḣTT
ij ḣ

TT
ij

〉
l
, (1.76)

dP k
(GW)

dt
= − r2

32π

∫
dΩ

〈
ḣTT
ij ∂

khTT
ij

〉
l
. (1.77)

1.6 Generation of gravitational waves

Recall that the linearised EFE in the harmonic gauge can be written as

h̄µν,α
α = −16πTµν . (1.78)
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The solution to this equation can be found by using a Green’s function with the appropriate
boundary conditions. When considering the generation of radiation, the appropriate condi-
tion boundary is to impose that there is no incoming radiation. The solution can then be
written as a function of the retarded time and the spatial position

h̄µν (t, ~x) = 4
∫
d3~y

Tµν (t− |~x− ~y|, ~y)
|~x− ~y|

, (1.79)

where ~y is restricted to the inside of the source. This solution can be projected onto the TT
frame by introducing the projecting operator

Λijkl ≡ PikPjl −
1
2PijPkl, (1.80)

where Pij is defined as

Pij ≡ δij − ninj, (1.81)

and ni is the direction of propagation of the GW. Provided that the perturbation is in the
harmonic gauge, the components in the TT gauge can be obtained by

hTT
ij (t, ~x) = Λijklh̄kl

= 4Λijkl

∫
d3~y

Tkl (t− |~x− ~y|, ~y)
|~x− ~y|

. (1.82)

1.6.1 Multipole expansion

One can further simplify the stress-energy tensor by imposing that the typical velocity v of
the source is non-relativistic, i.e.

λ ∼ c

v
d� d, (1.83)

where λ = λ/2π and d represent the reduced wavelength of the GW and the characteristic
size of the source respectively. In this low velocity regime, one can expand the source as

Tkl (t− r + ~y · ~n, ~y) ≈ Tkl (t− r, ~y) + yiniTkl,0 (t− r, ~y)

+ 1
2y

iyjninjTkl,00 (t− r, ~y) + . . . , (1.84)

and introduce the moments of the stress tensor

Sij(t) =
∫
d3~y T ij (t, ~y) , (1.85)

Sijk(t) =
∫
d3~y T ij (t, ~y) yk, (1.86)

Sijkl(t) =
∫
d3~y T ij (t, ~y) ykyl. (1.87)

17



GRAVITATIONAL WAVES IN THE LINEARISED THEORY OF GEN. REL.

Inserting these expressions into Eq. (1.82), one obtains

hTT
ij (t, ~x) = 4Λijkl

r

[
Skl + nmṠ

klm + 1
2nmnpS̈

klmp + . . .
]

ret
. (1.88)

where the expression inside [. . .]ret is evaluated at the retarded time u = t− r. As yk ∼ O(d)
and the time derivative is O(ω), where ω is some typical internal frequency of the source,
each successive order in Eq. (1.88) has an order of v/c more compared to the previous order.
In other words, one has effectively performed an expansion in orders of v/c.

Recall that in the linearised theory, energy and momentum conservation is given by
Tµν,

ν = 0. Therefore, one can use the moments of the energy density (M) and linear mo-
mentum (P )

M =
∫
d3~y T 00 (t, ~y) , P i =

∫
d3~y T 0i (t, ~y) ,

M i =
∫
d3~y T 00 (t, ~y) yi, P ij =

∫
d3~y T 0i (t, ~y) yj,

M ij =
∫
d3~y T 00 (t, ~y) yiyj, P ijk =

∫
d3~y T 0i (t, ~y) yjyk,

(1.89)

to rewrite the moments of the stress tensor. For the lowest two orders, one can write

Sij = 1
2M̈

ij, (1.90)

Ṡijk = 1
6
...
M

ijk + 1
3
(
P̈ ijk + P̈ jik − 2P̈ kij

)
. (1.91)

1.6.2 Mass quadrupole

We conclude this section by looking at the leading order of the multipole expansion in more
detail. Starting from Eqs. (1.88) and (1.90), we write the metric perturbation as

[
hTT
ij (t, ~x)

]
quad

= 2
r

ΛijklM̈
kl(u), (1.92)

where Λijkl is the projection operator defined in Eq. (1.80), and u = t − r is the retarded
time. This leading order is commonly referred to as mass quadrupole radiation. One can
express Eq. (1.92) in terms of the reduced quadrupole moment

Qij ≡M ij − 1
3δ

ijMkk, (1.93)

so that the metric perturbation can be written as[
hTT
ij (t, ~x)

]
quad

= 2
r

ΛijklQ̈
kl(u),

≡ 2
r
Q̈TT
ij (u), (1.94)
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where we have made use of the fact that ΛijklM̈
kl = ΛijklQ̈

kl, as the second term in Eq. (1.93)
vanishes under the Λijkl operator.

One can now construct expressions for h+ and h×. First, we set up a Cartesian coordinate
system such that ni coincides with the z-axis. Evaluating Eq. (1.94) and comparing this to
Eq. (1.48), we can conclude that

h+ = M̈11 − M̈22

r
, (1.95)

h× = 2M̈12

r
. (1.96)

Finally, the energy and momentum radiated can be found by inserting Eq. (1.94) into
Eq. (1.76) and Eq. (1.77)

dE

dt
= 1

8π

∫
dΩ

...
Q

TT
ij

...
Q

TT
ij , (1.97)

dP k

dt
= − 1

8π

∫
dΩ

...
Q

TT
ij ∂

kQ̈TT
ij . (1.98)

Quadrupole radiation from binary systems

Finally, we will look at the leading order GW emission by binary systems in the linearised
theory. Binary systems are the focus of this thesis and are considered one of the prime
candidates for the first direct detection of GWs (see Ch. 3).

Consider two masses, m1 and m2, in a circular orbit with an angular velocity of ω around
their common centre of mass. The distance between the two objects and the distance between
the binary and the observer are denoted by R and r respectively. We set up a Cartesian
coordinate system in such a way that the observer is in the direction of the z-axis, the
orbital plane intersects the x-axis and the origin coincides with the centre of mass. The
angle between the normal to the plane of the two masses and the observer is denoted by ι.
A schematic overview is shown in Fig. 1.2. In this coordinate system, the location of the
masses are given by

~y1(t) = µ

m1
Rê(t), (1.99)

~y2(t) = − µ

m2
Rê(t), (1.100)

where µ = m1m2/(m1 +m2) and ê(t) = (cos(ωt), cos(ι) sin(ωt), sin(ι) sin(ωt)). For simplicity,
we will only consider the radiation from the mass quadrupole

M ij(t) =
∫
d3~y T 00 (t, ~y) yiyj

≈
∫
d3~y [m1δ (~y − ~y1) +m2δ (~y − ~y2)] yiyj

≈ µR2
(

cos2 ωt cos ι cosωt sinωt
cos ι cosωt sinωt cos2 ι sin2 ωt

)
. (1.101)
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z

m1

m2

x

y

ι

R

~ω

observer

Figure 1.2 – Schematic overview of a binary system with component massesm1 andm2, separation
between the masses R, and an orbital frequency ω. The direction of the observer coincides with the
z-axis. The angle between the normal of the binary plane and the observer is denoted by ι.

Inserting this into Eqs. (1.95) and (1.96), one obtains

h+ = 4µR2ω2

r

1 + cos2 ι

2 cos(2ωtret), (1.102)

h× = 4µR2ω2

r
cos ι sin(2ωtret). (1.103)

Finally, we assume that the two masses are sufficiently far apart and use the Newtonian
centripetal force to write R in terms of ω, m1 and m2. For m1, one has

m1(Rµ/m1)2ω2

Rµ/m1
= m1m2

R2 , (1.104)

and a similar expression for m2 exists. Solving for R and defining the so-called chirp mass

Mc = (m1m2)3/5

(m1 +m2)1/5 , (1.105)

one can rewrite Eqs. (1.102) and (1.103) as

h+ = 4M5/3
c ω2/3

r

1 + cos2 ι

2 cos(2ωt), (1.106)

h× = 4M5/3
c ω2/3

r
cos ι sin(2ωt). (1.107)

We can see that the radiation is monochromatic with a constant amplitude. Furthermore,
the source radiates at twice the orbital frequency. This can be explained by observing that
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the quadrupole moment in Eq. (1.101) is invariant under yi → −yi. However, this result is
only true for the dominant quadrupole radiation. Once higher order correction are included,
as shown in Eq. (1.91), harmonics can appear in the form ωn = nω, n = 1, 2, 3, . . .

In reality, the masses do not keep moving on a circular orbit. As orbital energy is radiated
away through the emission of GWs, the separation between the two masses shrinks. Con-
sequently, the angular velocity increases causing the system radiate with a larger amplitude
and a higher frequency. This behaviour is often referred to as a chirp and gives the name to
the mass combination in Eq. (1.105).

So far, we have mainly looked at the properties of GWs in the setting of the linearised
theory of GR. However, the full theory of GR is much more complicated compared with this
simple, albeit insightful, description. For example, we have ignored how GWs propagates
through a curved background, which is described to quadratic order by Eq. (1.71). Further-
more, we have not encountered non-linear aspects of GR such as the scattering of GWs off
the background metric. To encounter these non-linear effects, a description of GWs from the
full EFE is necessary. In Ch. 2, we will discuss a particular framework that is often used to
study GWs in the full theory of GR.
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CHAPTER 2

GRAVITATIONAL WAVES IN THE
POST-NEWTONIAN FORMALISM

We now turn our attention to GWs in the full theory of GR. Solutions to the EFE can only
be found analytically in special cases. Instead, approximation methods are commonly used
to obtain analytical insight into the full theory of GR.

An example of such an approximation method is the linearised theory described in Ch. 1,
where the spacetime metric was assumed to be a flat spacetime metric with some small
perturbation and where the source of GWs is modelled through a multipole expansion (or
equivalently, an expansion in v/c). However, the linearised theory assumes that the flat
background spacetime and the velocity of the sources are somehow independent. For self-
gravitating systems, one can no longer assume that the background metric is independent
of the velocity of the source. For example, the strength of the gravitational field for a
binary system, by equating the gravitational potential to the kinetic energy, is of the order
RS/R ∼ (v/c)2, where RS and R denote the Schwarzschild radius associated to the total mass
and the distance between the two masses respectively. Therefore, the aim is to systematically
include corrections to linearised theory.

We will give an overview of the post-Newtonian (PN) formalism as developed by Blanchet,
Damour, Iyer and co-workers, also known as the BDI formalism. There is a parallel effort
by Will, Wiseman and Pati, termed the Direct Integration of the Relaxed Einstein (DIRE)
formalism, which can be shown to be completely equivalent to the BDI formalism [2]. For
reasons of space, we will only discuss the BDI formalism. Unless explicitly referenced, proofs
and more detail can be found in Ref. [3] and references therein.
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2.1 Relaxed Einstein field equations

To study GWs beyond the linearised theory, it is convenient to first recast the EFE. We
define a gravitational field amplitude

hαβ ≡
√
−g gαβ − ηαβ, (2.1)

where gαβ, g ≡ det(gµν) and ηαβ denote the metric, its determinant and the Minkowski metric
respectively. Similar to Eq. (1.36), we again use the harmonic gauge

hαβ,β = 0. (2.2)

This newly introduced field amplitude can be, up to a minus sign, shown to reduce to the
metric perturbation defined in Eq. (1.34) for small hαβ. Suppose one can write the metric as
gαβ ≈ ηαβ + hαβ. The gravitational field amplitude in Eq. (2.1) can then be evaluated as

−hαβ ≈ ηαβ −
√

1 + h
(
ηαβ − hαβ

)
≈ hαβ − 1

2η
αβh

= h̄αβ. (2.3)

In the harmonic gauge, one can rewrite the full EFE in Eq. (1.10) as

2hαβ = 16πταβ, (2.4)

where 2 ≡ ηµν∂µ∂ν is the flat-space d’Alembertian and

ταβ ≡ (−g)Tαβ + 1
16πΛαβ, (2.5)

Λαβ ≡ hαν,µhβµ,ν − hµνhαβ,µν + 1
2g

αβgµνhµτ ,λhνλ,τ

− gαµgντhβτ ,λhνλ,µ − gβµgντhατ ,λhνλ,µ + gλτgµνhαµ,λhβν ,τ

+ 1
8
(
2gαµgβν − gαβgµν

)
(2gλτgσρ − gτσgλρ) hλρ,µhτσ,ν . (2.6)

The term ταβ can be regarded as the total stress-energy pseudotensor (ταβ is a tensor under
Lorentz transformations) that is composed of the matter field, described by Tαβ, and the
gravitational field, described by Λαβ.

Although Eq. (2.4) bears resemblance to the EFE obtained by using the harmonic gauge
in the linearised theory given by Eq. (1.40), it should be stressed that Eq. (2.4) contains no
approximations and describes the full theory of GR.

So far, we have rewritten the EFE into two relations Eq. (2.2) and Eq. (2.4). Therefore,
just solving for Eq. (2.4) does not yield solutions that also satisfy the EFE. Instead, solutions
to the EFE can be obtained by first solving for Eq. (2.4) and then requiring that the condition
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in Eq. (2.2) holds. Therefore, Eq. (2.4) is referred to as the relaxed EFE. Requiring the
harmonic gauge condition implies a conservation law for ταβ, given by

ταβ,β = 0, (2.7)

which turns out to be equivalent to the conservation law given by Eq. (1.13).
It might seem that one can solve Eq. (2.4), similar to what is done in Sec. 1.6, by imposing

the no-incoming-radiation boundary condition and write

hαβ(t, ~x) = −4
∫
d3~y

ταβ
(
t− |~x− ~y|, ~y; hαβ

)
|~x− ~y|

. (2.8)

However, ταβ is a functional with respect to hαβ and a solution to Eq. (2.8) cannot be found
trivially. Therefore, approximation methods must be employed in order to gain further
insight. Furthermore, since the term hαβ is present on the RHS of Eq. (2.8), the resultant
GWs will themselves be the source of GWs, a consequence of the non-linear aspect of GR.

2.2 Regions of interest

Before we continue to explore the relaxed EFE, it is useful to introduce different regions of
space in which the gravitational field exhibits different characteristics. This is analogous to
the introduction of the near field, far field and the transition region for the electromagnetic
field. The PN formalism introduces the near zone, which is given by

r � λ, (2.9)

where λ is the reduced wavelength of the GW. In the near zone, retardation effects are
negligible. The far zone is given by

r � λ. (2.10)

In contrast to the near zone, retardation effects are important in the far zone. Therefore,
different treatments are required for these two regions.

2.2.1 Near zone

A natural starting point to extend the linearised theory is to look for an expansion of the
equations of motion in orders of v/c, a so-called PN expansion. For low velocity sources, one
has ∂0 = O(v/c)∂i. Therefore, the d’Alembertian goes as

−∂2
0 +∇2 =

[
1 +O

(
v2

c2

)]
∇2. (2.11)

This means that the retardation effects, which are due to the time component of the d’Alembertian,
are subdominant and potentials can be viewed as near static. In other words, one tries to
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r = R

near zone (PN)

r = d

far zone (PM)
overlap zone (PN/PM

)

r =∞

Figure 2.1 – Schematic overview of the different regions and the appropriate expansion considered
in the post-Newtonian formalism for non-relativistic and weakly self-gravitating sources. The near
zone corresponds to a region where retardation effects are small, and is given by 0 < r < R, where
R� d is the boundary of the near zone and d the typical size of the source. In the near zone, one
can use the post-Newtonian (PN) expansion described in Sec. 2.4. The far zone corresponds to the
region where the gravitational fields are weak and is given by d < r <∞. In the far zone, one can
use the post-Minkowskian (PM) expansion described in Sec. 2.3. For non-relativistic and weakly
self-gravitating, an overlap zone exist (d < r < ∞) where both PN and PM expansions are valid,
as described in Sec. 2.5.

expand some quantity F (t− r) for small retardation times, i.e. t� r. Explicitly, this means
that one is looking for an expansion in the form of

F (t− r) = F (t)− rḞ (t) + 1
2r

2F̈ (t) + . . . . (2.12)

Since each derivative carries with it an order of ω = 1/λ, which is the typical GW frequency,
the PN expansion can be viewed as an expansion in orders of r/λ. Therefore, the PN
expansion can only be used in the near zone defined in Eq. (2.9). Indeed, we will explore the
use of the PN expansion to describe the near zone in Sec. 2.4.

2.2.2 Far zone

In the far zone at some distance r, one assumes that the gravitational field is weak and
that to some lowest order, spacetime can be described by the Minkowski metric. Corrections
to the Minkowski metric will then be given in orders of RS/r, where again RS denotes the
Schwarzschild radius associated to the total mass of the system. It is convenient to denote
the order of the expansion in terms of Newton’s constant G, since RS ∝ G. Specifically, we
write the expansion of the metric as

√
−ggαβ = ηαβ +Ghαβ1 +G2hαβ2 + . . . . (2.13)
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Such an expansion is referred to as the post-Minkowskian (PM) expansion, and is the subject
of Sec. 2.3.

2.2.3 Overlap zone

So far, we have seen that the near zone, for non-relativistic sources (λ � d), extends up to
some radius R� d, where d is the typical size of the system (e.g. orbital radius of a binary).
In this near zone, one can use the PN expansion to calculate the gravitational field. The far
zone, instead, is taken to be r � λ. Consider a weak gravitational field inside the object of
interest (e.g. a binary system with a large radius). In this case, outside the typical size of
the system d, the stress-energy tensor associated to the matter fields vanishes and only the
weak gravitational field contributes. As a consequence, the far zone is given by the region
d < r <∞. Therefore, there exist, for weakly self-gravitating and non-relativistic sources, a
region given by

d < r < R, (2.14)

where both the PN and the PM expansions are valid. This region is referred to as the overlap
zone and will prove to be important in connecting the sources of GWs to the GWs observed
as r →∞. A schematic overview of the different regions and their corresponding expansion
method is shown in Fig. 2.1.

2.3 Post-Minkowski expansion in the far zone

As discussed in Sec. 2.2.2, the far zone can be described in the PM expansion. In the PM
expansion, one expands the field amplitude as a series in powers of RS/r ∝ G, as shown in
Eq. (2.13). Therefore, we can write

hαβ =
∞∑
n=1

Gnhαβn . (2.15)

Furthermore, we restrict the region of validity to be outside the source so that

ταβ = 1
16πΛαβ. (2.16)

Subsequently, the EFE in Eq. (2.4) becomes

2hαβ = Λαβ. (2.17)

The term Λαβ depends on the metric gαβ and has therefore all possible powers of G, starting
from G2. Inserting Eq. (2.15) into Eq. (2.4) and equating the terms of the same order in G,
one obtains an infinite set of equations

2hαβn =

0 for n = 1
Λαβ
n

[
hαβ1 , hαβ2 , . . . , hαβn−1

]
for n ≥ 2,

(2.18)

27



GRAVITATIONAL WAVES IN THE POST-NEWTONIAN FORMALISM

where Λαβ
n is a functional of {hαβ1 , hαβ2 , . . . , hαβn−1}. One can now iteratively obtain the solution

for hαβn by solving for h1 first, and then successively compute higher order terms by using
Eq. (2.18) for n ≥ 2. To retain the correspondence to the full EFE, the solutions must also
satisfy the gauge conditions

hαβn ,β = 0. (2.19)

2.3.1 Linearised vacuum solution

The first step in the PM formalism is to solve the equations for hαβ1 . These are the so-called
linearised vacuum equations

2hαβ1 =0, (2.20)
hαβ1 ,β =0. (2.21)

The most general solution to Eq. (2.20) for r > d, can be expressed in terms of symmetric
trace-free (STF) tensors (see Ch. A). For STF tensors, it is convenient to use a multi-index
notation due to Blanchet and Damour.

A tensor F with l (spatial) indices i1, i2, . . . , il will be compactly written by using L =
i1i2 . . . il, i.e.

FL ≡ Fi1i2...il . (2.22)

Similarly, FL−1 = Fi1i2...il−1 and GiL = Gii1i2...il . Derivative operators can also be compactly
written as ∂L = ∂i1∂i2 . . . ∂il . Also, we write the product of vectors as

xL ≡ xi1xi2 . . . xil , (2.23)

and reserve ni = xi/r as the unit vector in the radial direction. Repeated upper case indices
imply the summation over all l indices, i.e.

FLGL =
∑
i1...il

Fi1...ilGi1...il . (2.24)

Also, superscripted integers n surrounded by round brackets denote the nth derivative with
respect to the retarded time u, i.e.

f (n)(u) ≡ dnf/dun. (2.25)

Round brackets around indices denote the symmetrisation with respect to the enclosed in-
dices, e.g.

A(ij) = 1
2(Aij + Aji). (2.26)
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The STF part of a tensor is denoted by either a hat, or by angle brackets surrounding indices,
i.e.

ÂL = A〈L〉. (2.27)

The use of STF tensors will prove to be useful when one matches the PN expansion to the
PM expansion in the overlap zone.

Using the multi-index notation, we most general solution to Eq. (2.20) can be written as

hαβ1 =
∞∑
l=0

∂L

(
Kαβ
L (u)
r

)
, (2.28)

where r = |~x| and u ≡ t− r. If one also imposes Eq. (2.21), the solution can be written as

hαβ1 = kαβ1 + ϕβ,α1 + ϕα,β1 − ηαβϕµ1 ,µ, (2.29)

where kαβ1 is given by

k00
1 = −4

∑
l≥0

(−1)l
l! ∂L

(
IL(u)
r

)
, (2.30)

k0i
1 = 4

∑
l≥1

(−1)l
l! ∂L−1

I(1)
iL−1(u)
r

+ l

l + 1εiab∂a
(
JbL−1(u)

r

) , (2.31)

kij1 = −4
∑
l≥2

(−1)l
l! ∂L−2

I(2)
ijL−2(u)
r

+ 2l
l + 1∂a

εab(iJ (1)
j)bL−2(u)
r

 . (2.32)

The tensor kαβ1 depends on two STF tensors, IL(u) and JL(u). From the gauge condition in
Eq. (2.21) it follows that I, I(1)

i and Ji are time-independent. This expresses the conservation
of total mass, M ≡ I = const, total linear momentum, Pi ≡ I

(1)
i = 0, and total angular

momentum, Si ≡ Ji = const. The two multipole moments IL(u) and JL(u) encode the
physical properties of the source at the linearised level, similar to the multipole moments
shown in Eq. (1.89), and are referred to as the mass-type and current-type multipoles.

The remaining terms in Eq. (2.29) depend on ϕµ1 , which is given by

ϕ0
1 = 4

∑
l≥0

(−1)l
l! ∂L

[
WL(u)
r

]
, (2.33)

ϕi1 = −4
∑
l≥0

(−1)l
l! ∂iL

[
XL(u)
r

]

− 4
∑
l≥1

(−1)l
l! ∂L−1

[
YiL−1(u)

r
+ l

l + 1εiab∂a
(
ZbL−1(u)

r

)]
. (2.34)
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These terms originate from the fact that Eq. (2.20) is invariant under linear gauge trans-
formations, xα → x′α = xα + ϕα1 , cf. Eq. (1.20). One might be inclined to simply use the
residual gauge freedom to transform away ϕµ1 and recover the results from the linearised the-
ory. However, this cannot be done as hαβ1 is used to construct subsequent corrections in hαβ.
Therefore, the set {IL, JL,WL, XL, YL, ZL} is not related to {IL, JL, 0, 0, 0, 0} through a gauge
transformation in the full theory of GR. Instead, one can find a reduced set {ML, SL, 0, 0, 0, 0}
that is related to {IL, JL,WL, XL, YL, ZL} through a gauge transformation. The multipoles
ML and SL encode the physical properties of the source in the full theory, and differ from IL
and JL by non-linear corrections.

So far, the set of multipole moments is not characterised in terms of the source Tαβ.
In fact, this is not possible in the PM regime, as it is intrinsically defined for the region
outside the source. However, the source will be characterised in the near zone and the
matching procedure will fix the exact expressions for these multipole moments. Before the
PN expansion is explored, we first show how to obtain the higher order corrections to hαβ1 .

2.3.2 Non-linear iterative solutions

Once the linearised vacuum solution hαβ1 has been found, the next step is to solve

2hαβn = Λαβ
n

[
hαβ1 , hαβ2 , . . . , hαβn−1

]
, (2.35)

hαβn ,β = 0, (2.36)

to obtain the higher order corrections. Since the wave equation in Eq. (2.35) is only valid for
r > d, the retarded integral solution such as Eq. (2.8) is not a solution any more. In fact,
the multipole expansion shown in Eqs. (2.30)–(2.34) is singular for r = 0.

This problem can be circumvented by realising that one is ultimately interested in the
radiation field up to a finite order in the expansion scheme. Consequently, only a finite
number of multipoles are assumed to contribute. Therefore, one can find a complex number
B, provided the real part of B is large enough, such that rBΛαβ

n is well behaved as r → 0.
In other words, one is able to construct

Iαβn (B) = 2−1
ret

(
rBΛαβ

n

)
, (2.37)

where 2−1
ret denotes the convolution with the retarded Green’s function, given by

(2−1
retf)(t, ~x) ≡ − 1

4π

∫
d3~y

f(t− |~x− ~y|, ~y)
|~x− ~y|

. (2.38)

It can be proven that Iαβn (B) admits a unique analytical continuation to all values of B in
the complex plane, except for some integers values. When taking B → 0, one can expand
Iαβn (B) as a Laurent series involving multiple poles

Iαβn =
∞∑
p=p0

ιαβnp (t, ~x)Bp for p ∈ Z, (2.39)
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where |p0| is some maximum order of the poles that depends on n. Equating Eq. (2.37) to
Eq. (2.39), applying the d’Alembertian to both sides and expanding rB = eB log r in terms of
B, one can equate the relevant powers of p and obtain

2ιαβnp =

0 for p0 ≤ p ≤ −1,
(ln r)p
p! Λαβ

n for p ≥ 0.
(2.40)

For the case p = 0, one has

2ιαβn0 = Λαβ
n , (2.41)

so that ιαβn0 , which is called the finite part at B = 0 of the retarded integral, turns out to be
the particular solution to Eq. (2.35). By defining uαβn ≡ ιαβn0 and denoting the finite part at
B = 0 of the retarded integral as FP , one can write the particular solution as

uαβn = FP
{
2−1

ret

[
Λαβ
n

]}
. (2.42)

So far we have only found the particular solution. To obtain the general solution, one must
add the solution to the homogeneous equation, vαβn . However, the homogeneous solution is
simply the solution to the linearised vacuum equation, which is given by Eqs. (2.29)–(2.34).
Finally, one can choose vαβn such that vαβn ,β = −uαβn ,β and obtain the general solution to
Eqs. (2.35) and (2.36).

2.4 Post-Newtonian expansion for the near zone

So far, we have considered the gravitational fields outside the source by using the PM ex-
pansion. However, we have yet to find a way to compute the multipole moments in terms of
the stress-energy tensor. Inside the source and within the near field, one can make use of the
PN expansion, which is an expansion in powers of v/c.

Similar to the procedure in Sec. 2.3, we start by looking for contributions in successive
orders of v/c. Using 1/cn to keep track of the small parameter, the GW field can be written
as

hµν =
∞∑
n=2

1
cn

hµνn . (2.43)

Similarly, one can write the total stress-energy tensor as

τµν =
∞∑

n=−2

1
cn
τµνn . (2.44)

Inserting this into the relaxed EFE described in Eq. (2.4) and collecting the relevant powers
of v/c, one obtains a set of recursive Poisson-like equations

∇2hµνn = 16πτµνn−4 + ∂2
t h

µν
n−2. (2.45)
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However, these equations cannot be solved by using Green’s functions with the boundary
condition that there is no incoming radiation. As discussed in Sec. 2.2.1, the PN expansion
is essentially an expansion of the retardation effects, which becomes singular as r →∞.

Nevertheless, one can use a procedure similar to that described in Eqs. (2.37)–(2.42).
Instead of having a sufficiently large and positive real part of B, one takes the real part of B
to be sufficiently large and negative. Taking the sum over n of both sides of Eq. (2.45) and
using the finite part procedure, one finds the particular solution to be

uµν = 16πFP
{
2−1

ret [τµν ]
}
. (2.46)

Similar to the PM expansion, one assumes that both uµν and τµν are truncated to a finite
order, corresponding to a predetermined accuracy.

Finally, one must add the solution to the homogeneous equation, with the requirement
that the solution is regular for r → 0. The homogeneous solution can be shown to have the
form

vµν = 16π
∞∑
l=0

(−1)l
l! ∂L

[
Rµν
L (t− r)−Rµν

L (t+ r)
2r

]
, (2.47)

where Rµν
L (t− r) and Rµν

L (t+ r) are arbitrary functions of t− r and t+ r respectively. This
follows again from 2 [f(t− r)/r] = 0 and 2 [g(t+ r)/r] = 0 for arbitrary functions f(t− r)
and g(t + r). The functions Rµν

L will be used later when one matches the PN expansion to
the PM expansions in the overlap zone.

2.5 Matching of the post-Minkowski and post-Newtonian expansions

We can now take stock of what has been done so far. In Sec. 2.3 we introduced the PM
expansion which is valid in the domain d < r < ∞. This PM expansion is supplemented
with the multipolar expansion from Sec. 2.3 and Ch. A. The most general solution in the
PM expansion is characterised by the set of multipole moments {IL, JL,WL, XL, YL, ZL}.
However, the problem is that this set of multipole moments is unspecified.

Next, we introduced the PN expansion in Sec. 2.4. This expansion is only valid in the
near-zone regime 0 < r < R, where R � λ. In the PN expansion, we obtain the GW field
as a function of the stress-energy tensor of the source.

Provided that source is non-relativistic and weakly self-gravitating, one can deduce that
an overlap zone d < r < R exist where both the multipolar PM and the PN expansion hold.
Suppose we denote the multipolar expansion of h with M(h) and the PN expansion with
N (h). Then, within the overlap zone, one can write down the so-called matching condition

N (M(h)) =M(N (h)). (2.48)

In other words, one can re-expand the multipolar PM expansion as a PN expansion and relate
that to the re-expansion of the PN expansion in terms of a multipolar expansion. With the
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matching condition, one can express the set of multipole moments {IL, JL,WL, XL, YL, ZL}
in Eqs. (2.30)–(2.34) for the PM expansion in terms of the total stress-energy tensor τµν in
Eq. (2.46) for the PN expansion. Specifically, the multipole moments can written as

IL(u) = FP
∫
d3~y

∫ 1

−1
dz

{
δlŷLΣ− 4(2l + 1)δl+1

(l + 1)(2l + 3) ŷiLΣ(1)
i

+ 2(2l + 1)δl+2

(l + 1)(l + 2)(2l + 5) ŷijLΣ(2)
ij

}
(u+ z|~y|, ~y), (2.49)

JL(u) = FP
∫
d3~y

∫ 1

−1
dz εab〈il

{
δlŷL−1〉aΣb

− (2l + 1)δl+1

(l + 2)(2l + 3) ŷL−1〉acΣ(1)
bc

}
(u+ z|~y|, ~y), (2.50)

WL(u) = FP
∫
d3~y

∫ 1

−1
dz

{
(2l + 1)δl+1

(l + 1)(2l + 3) ŷiLΣi

− (2l + 1)δl+2

2(l + 1)(l + 2)(2l + 5) ŷijLΣ(1)
ij

}
(u+ z|~y|, ~y), (2.51)

XL(u) = FP
∫
d3~y

∫ 1

−1
dz

{
(2l + 1)δl+2

2(l + 1)(l + 2)(2l + 5) ŷijLΣij

}
(u+ z|~y|, ~y), (2.52)

YL(u) = FP
∫
d3~y

∫ 1

−1
dz

{
−δlŷLΣii + 3(2l + 1)δl+1

(l + 1)(2l + 3) ŷiLΣ(1)
i

− 2(2l + 1)δl+2

(l + 1)(l + 2)(2l + 5) ŷijLΣ(2)
ij

}
(u+ z|~y|, ~y), (2.53)

ZL(u) = FP
∫
d3~y

∫ 1

−1
dz εab〈il

{
− (2l + 1)δl+1

(l + 2)(2l + 3) ŷL−1〉bcΣac

}
(u+ z|~y|, ~y), (2.54)

where Σ, Σi and Σij are given by

Σ = τ 00 + τ ii, Σi = τ 0i, Σij = τ ij. (2.55)

These multipole moments are to be complemented with the functions Rµν
L appearing in the

homogeneous solution in Eq. (2.47). These functions are chosen such that the matching
condition in Eq. (2.48) is satisfied. Specifically, the result of this choice is given by

Rµν
L (u) = 1

2πFP
∫
d3~y ŷL

∫ ∞
1

dz δlM (τµν) (u− z|~y|, ~y). (2.56)

2.6 Waveforms for binary systems

With the PN formalism described in Secs. 2.1–2.5, one can model GWs emitted by various
sources. In this work, we will mainly consider GWs emitted by binary systems (see Fig. 1.2),
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for which it will be useful to define the dimensionless frequency variable

x ≡
(
GMω

c3

)2/3
, (2.57)

where M = m1 +m2 is the total mass and ω = 2πf is the angular velocity. This variable can
be shown to be x ∼ O(1/c2) and is useful to keep track of the relevant orders in the expansion.
Furthermore, we adopt the nomenclature of the nPN order for terms proportional to xn. For
example, the 3.5PN order refers to the terms proportional to x7/2 ∼ O(1/c7). For clarity, we
will reinstate the factors of c and G. Furthermore, we define the so-called symmetric mass
ratio

η ≡ µ

M
= m1m2

(m1 +m2)2 , (2.58)

where µ = m1m2/M is the reduced mass. The post-Newtonian parameter, which is useful to
keep track of successive PN corrections, is defined as

γ ≡ GM

Rc2 = O
( 1
c2

)
, (2.59)

where R is the separation between the two masses. Finally, we introduce a dimensionless
time variable

Θ ≡ ηc3

5GM (tc − t), (2.60)

where tc represents the time at which the two objects coalesce.

2.6.1 Equations of motion

The equations of motion are obtained from the geodesic equation given by Eq. (1.14) together
with the metric obtained from the PN formalism. We denote the relative separation between
the two masses in the centre of mass frame by yi = yi1− yi2, where yi1 and yi2 are the positions
of masses 1 and 2. The relative velocity is given by vi = vi1 − vi2, where vi1 = dyi1/dt is the
velocity of mass 1 (and similar for mass 2). The equations of motion are given by

dvi

dt
= −GM

R2

{[
1 +A(R, η,M, vi)

]
ni + B(R, η,M, vi)vi

}
+O

( 1
c8

)
, (2.61)

where ni = yi/R denotes the unit direction between the two masses. The coefficients A and
B are complicated expressions of R, η, M and vi. This expression can be simplified by noting
that the radiation reaction tends to circularise the orbit and that by the time such signals
are detectable by Earth-based detectors, a circular orbit is an adequate representation. For
circular orbits, Eq. (2.61) simplifies to

dvi

dt
= −ω2yi − 32

5
G3M3η

c5R4 vi +O
( 1
c7

)
. (2.62)
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The orbital frequency is given by the generalised version of Kepler’s third law

ω2 =GM
r3

{
1 + (−3 + η)γ +

(
6 + 41

4 η + η2
)
γ2 +

(
− 10

+
[
−75707

840 −
41
64π

2 + 22 ln
(
R

R′0

)]
η + 19

2 η
2 + η3

)
γ3
}

+O
( 1
c8

)
, (2.63)

where the length scale R′0 is a gauge-related constant. In fact, R is the separation between
the two masses in the harmonic-gauge coordinates, and is therefore not invariant under a
coordinate transformation. However GR requires that all physical observables are invariant
under a coordinate transformation, and we will see that within the PN formalism this is still
the case.

From Eq. (2.61), one can deduce that the orbital energy of the circular orbit is given by

E =− µc2γ

2

{
1 +

(
−7

4 + 1
4η
)
γ +

(
−7

8 + 49
8 η + 1

8η
2
)
γ2 +

[
−235

64

+
(

46031
2240 −

123
64 π

2 + 22
3 ln

(
R

R′0

))
η + 27

32η
2 + 5

64η
3
]
γ3
}

+O
( 1
c8

)
. (2.64)

This expression still seems to have terms that depend on the specific coordinate system
through γ and R′0. However, one can rewrite this expression in terms of x from Eq. (2.57)
by solving Eq. (2.63) for γ as a function of x. The resulting expression is given by

E =− µc2x

2

{
1 +

(
−3

4 −
1
12η

)
x+

(
−27

8 + 19
8 η −

1
24η

2
)
x2

+
[
−675

64 +
(34445

576 −
205
96 π

2
)
η − 155

96 η
2 − 35

5184η
3
]
x3
}

+O
( 1
c8

)
, (2.65)

from which we see that all the coordinate dependence has indeed cancelled out. Finally, the
energy of a circular orbit is calculated to 3.5PN order. This is the highest order to which the
energy of a binary system is known. The expressions for the full non-circular binary system
can be found in Ref. [3].

2.6.2 Energy flux

The computation of the equations of motion in the near zone is only one part of the output
of the PN formalism. The other part is the computation of the waveform as r → ∞. From
this waveform, one can determine the energy flux as r → ∞. In particular, the total flux
from GWs is obtained from the binary’s multipole moments, similar to Eq. (1.97), and is
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given by

L =32c5

5G η2x5
{

1 +
(
−1247

336 −
35
12η

)
x+ 4πx3/2 +

(
−44711

9072 + 9271
504 η + 65

18η
2
)
x2

+
(
−8191

672 −
583
24 η

)
πx5/2 +

[6643739519
69854400 + 16

3 π
2 − 1712

105 C −
856
105 ln(16x)

+
(
−134543

7776 + 41
48π

2
)
η − 94403

3024 η
2 − 775

324η
3
]
x3

+
(
−16285

504 + 214745
1728 η + 193385

3024 η2
)
πx7/2 +O

( 1
c8

)}
, (2.66)

where C = 0.577 . . . is the Euler-Mascheroni constant.

2.6.3 Waveform

Orbital phase

One can now relate the orbital energy given by Eq. (2.65) to the flux described by Eq. (2.66)
through the relationship

dE

dt
= −L. (2.67)

Although this relationship seems to be physically intuitive, no proof from first principles of
GR exist for this relationship at 3PN accuracy. However, this equation has been checked
up to 1.5PN, which does include non-linear contributions. Nevertheless, we will assume the
validity of Eq. (2.67) to arbitrary PN orders and use it to obtain the temporal evolution of
the orbital frequency, i.e.

x = 1
4Θ−1/4

{
1 +

( 743
4032 + 11

48η
)

Θ−1/4 − 1
5πΘ−3/8 +

( 19583
254016 + 24401

193536η

+ 31
288η

2
)

Θ−1/2 +
(
−11891

53760 + 109
1920η

)
πΘ−5/8 +

[
−10052469856691

6008596070400 + 1
6π

2 + 107
420C

− 107
3360 ln

(
Θ

256

)
+
(3147553127

780337152 −
451
3072π

2
)
η − 15211

442368η
2 + 25565

331776η
3
]

Θ−3/4

+
(
−113868647

433520640 −
31821
143360η + 294941

3870720η
2
)
πΘ−7/8 +O

( 1
c8

)}
. (2.68)

The accumulated orbital phase can be found by integrating the orbital frequency

φ(t) =
∫ t

t0
dt′ω(t′). (2.69)
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After performing the integration, the orbital phase as a function of Θ is given by

φ =− 1
η

Θ5/8
{

1 +
(3715

8064 + 55
96η

)
Θ−1/4 − 3

4πΘ−3/8 +
( 9275495

14450688 + 284875
258048η

+1855
2048η

2
)

Θ−1/2 +
(
− 38645

172032 + 65
2048η

)
πΘ−5/8 ln

(
Θ
Θ0

)

+
[

831032450749357
57682522275840 −

53
40π

2 − 107
56 C + 107

448 ln
(

Θ
256

)

+
(
−126510089885

4161798144 + 2255
2048π

2
)
η + 154565

1835008η
2 − 1179625

1769472η
3
]

Θ−3/4

+
(188516689

173408256 + 488825
516096η −

141769
516096η

2
)
πΘ−7/8 +O

( 1
c8

)}
, (2.70)

where Θ0 is a constant of integration that can be fixed by the initial conditions, e.g. when
the GW frequency enters the detector’s bandwidth. Finally, the phase can also be written
as a function of x

φ =− x−5/2

32η

{
1 +

(3715
1008 + 55

12η
)
x− 10πx3/2 +

(15293365
1016064 + 27145

1008 η + 3085
144 η

2
)
x2

+
(38645

1344 −
65
16η

)
πx5/2 ln

(
x

x0

)
+
[12348611926451

18776862720 − 160
3 π2 − 1712

21 C

− 856
21 ln(16x) +

(
−15737765635

12192768 + 2255
48 π2

)
η + 76055

6912 η
2 − 127825

5184 η3
]
x3

+
(77096675

2032128 + 378515
12096 η −

74045
6048 η

2
)
πx7/2 +O

( 1
c8

)}
, (2.71)

where x0 is an integration constant similar to Θ0.

Full waveform

The full waveform is currently known up to 3PN order [4]. With the same labelling and
coordinate system as Sec. 1.6.2, the two polarisations can be written as

h+,× = 2Gµx
c2r

{
H

(0)
+,× + x1/2H

(1/2)
+,× + xH

(1)
+,× +O

( 1
c3

)}
. (2.72)

The leading terms of H+,× are given by

H
(0)
+ = −(1 + c2

i ) cos 2ψ, (2.73)
H

(0)
× = −2ci sin 2ψ, (2.74)
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H
(1/2)
+ = −si8

δm

m

[
(5 + c2

i ) cosψ − 9(1 + c2
i ) cos 3ψ

]
, (2.75)

H
(1/2)
× = −3

4sici
δm

m
[sinψ − 3 sin 3ψ] , (2.76)

H
(1)
+ = 1

6
[
19 + 9c2

i − 2c4
i − η(19− 11c2

i − 6c4
i )
]

cos 2ψ

− 4
3s

2
i (1 + c2

i )(1− 3η) cos 4ψ, (2.77)

H
(1)
× = ci

3
[
17− 4c2

i − η(13− 12c2
i )
]

sin 2ψ − 8
3(1− 3η)cis2

i sin 4ψ, (2.78)

where ci = cos ι, si = sin ι and δm = m1 −m2. The auxiliary phase is defined as

ψ = φ− 2GMω

c3 ln
(
ω

ω0

)
, (2.79)

where ω0 is the frequency at which the signal enters the sensitive region of the detector.
Remarkably, to leading order in amplitude, one recovers the form obtained from the linear
theory given by Eq. (1.102) and Eq. (1.103)1, only differing by the definition of the phase.
Furthermore, the inclusion of higher order multipoles indeed leads to harmonics at nψ, where
n = 1, 2, 3, . . ..

2.6.4 Additional contributions

In the calculations of the waveform, we have assumed that the components making up the
binary are non-spinning and point-like. Furthermore, we have assumed that the orbit of the
binary is quasi-circular. In this section, we will look into some of the modifications required
to relax these assumptions.

Spin

Astrophysical observations have suggested that black holes can be spinning significantly [5–
7]. To introducing spin into the model, one requires the inclusion of the spin-orbit and spin-
spin coupling. In other words, to model these additional interactions requires a modification
to the equation of motion shown in Eq. (2.61) and therefore the orbital energy shown in
Eq. (2.65) (see Ref. [8] and references therein).

The result is that the waveform of a binary is augmented with spin-orbit terms starting
from the 1.5PN order, and with spin-spin terms starting from the 2PN order. The spin
couplings introduce rich dynamics resulting in the modulation of the amplitude and the
frequency of the waveform. However, the inclusion of spin couplings requires an additional
six parameters to describe the waveform. This in turn will add complexity to data-analysis
tasks such as testing the strong field dynamics of GR.

1Assuming Kepler’s third law for circular orbits, i.e. R3 = GM/ω2

38



2.6. WAVEFORMS FOR BINARY SYSTEMS

Extended bodies

So far, we have been treating the objects in binaries as point-like objects with a certain mass.
Such an approximation is valid when the objects are far away from each other. However,
as the two objects more closer together due to the loss of energy caused by the emission of
GWs, the internal structure of the bodies start to have an influence on the waveform.

Tidal deformability Consider a star with mass m that experiences the quadrupolar tidal
field Eij of its companion. This quadrupolar tidal field will then induce a quadrupole moment
Qij in the star [9]. To lowest order in Eij, one can relate the induced quadrupolar field to the
external tidal field through

Qij = −λ(m)Eij. (2.80)

The function λ(m) is called the tidal deformability and depends on the internal characteristics
of the star (for black holes, λ = 0). It turns out that the corrections related to the star’s
tidal deformability start from the 5PN order. However, the prefactor associated with these
terms is of such magnitude that the measurement of these terms are in fact plausible and
can provide us with information about the internal structure of the object [10].

Oblateness caused by rotating stars In addition to the distortion caused by an external
tidal field, extended objects can also acquire further distortion through the rotation of the
star itself. This process will introduce a quadrupole term in the gravitational potential and
modify the equations of motion. The waveform modification starts from the 2PN order and
depends on the spin, and the internal structure through the quadrupole moment scalar Q(m)
(not to be confused with the quadrupole moment in Eq. (2.80)) [11]. Similar to the tidal
deformability, this spin-induced quadrupolar moment also depends on the internal structure
of the object.

I-Love-Q relationship It was recently suggested that there might be a phenomenological
relationship between the tidal deformability λ and the spin-induced quadrupole moment
scalar Q [12–14]. Such a relationship will be useful to connect the tidal deformability to
the spin-induced quadrupole moment scalar and provide additional information about the
internal structure of the object.

Eccentricity

Most binary systems are born in bound systems. As a consequence, the system has enough
time to circularise the orbit due to the emission of GWs [15, 16], before the GW signal
becomes detectable by Earth-based detectors. Therefore, most binaries are considered to
be in quasi-circular orbits when their signal reaches the sensitive region of the detector.
However, in dense stellar regions such as the cores of galaxies or globular clusters, stars can
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become gravitationally bound to a companion if their trajectories are close enough [17–19].
In this case, the orbit cannot be assumed to be quasi-circular, and one has to model GWs
from binaries in eccentric orbits.

The effect of eccentric orbits on the waveform is an interplay of many effects. For example,
eccentric binaries will cause additional bursts of GW emission near the periastron passage and
also a shift in the frequency of the dominant harmonic (frequency increases as the eccentricity
increases) [20]. However, the bursts of GW emission near periastron passage will cause the
circularisation of the orbit and therefore weakening the effects of eccentric orbits over time.

Merger and ringdown

So far, we have considered the PN formalism from which follows that the waveform for
binary systems can be written as an expansion in v/c. However, as the binary loses energy
and angular momentum through the emission of GWs, the orbital radius shrinks and the
frequency (hence the typical velocity) of the binary goes up. Therefore, there will be a point
where the PN formalism breaks down.

The break-down of the PN roughly coincides with the situation that the two objects are
sufficiently close together so that they start to merge into a single object. During this stage
of the binary evolution, the system is highly relativistic and self-gravitating. No method has
yet to be found to model this stage analytically, and one has to resort to solving the EFE
numerically instead.

Once the two objects have merged and formed a single object, it will further emit GWs
as the object tries to reach a quiescent state. The GWs emitted during this phase can be
described by a superposition of damped sinusoids, also referred to as quasi-normal modes. As
a consequence of the no-hair theorem, the oscillation frequencies and the associated damping
times of these quasi-normal modes are a function of the mass and the spin only.

2.6.5 Validity of the post-Newtonian formalism

Since the PN formalism is merely an approximation method, it is natural to wonder how
accurate such a scheme is in describing the GWs emitted by binary systems. This question is
difficult to answer for several reasons. Firstly, by the nature of any approximation method,
it is difficult to quantify the higher orders that have yet to be calculated. Secondly, the
development of approximation methods is necessary as numerical methods are computation-
ally expensive and challenging. Modern computers still cannot simulate the evolution of the
binary over a few tens, or produce the high number of waveforms necessary to systematically
asses the validity of approximation methods such as the PN formalism.

A clue to the accuracy of the PN formalism is the determination of the innermost circular
orbit, which is defined as the minimum of the energy given by Eq. (2.64) or Eq. (2.65). It was
shown that the PN formalism up to the 3PN order estimates the frequency and the energy
at the innermost circular orbit to within a fractional accuracy of about 1% [21].

Furthermore, comparisons between waveforms from numerical simulations and the PN
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formalism show that close to the merger of the two objects, assuming an equal starting point,
the difference is only a few percent over a time-span of six cycles [22]. The disagreements
between these two methods are thought to be caused by the truncation of the expansion
series in the PN formalism.

It is common in the literature to assume the validity of the PN formalism up to the point
of the last stable orbit (LSO), which in the test particle limit occurs at separation of R = 6M
and has v/c = 1/

√
6. In some cases, the frequency evolution stops being monotonic before

LSO, which is another indicator that the PN formalism breaks down and the waveform
should no longer be trusted. The actual truncation of the waveform depends the specific
implementation.

2.6.6 Stationary phase approximation

For data-analysis purposes, as we will see in Sec. 3.2, it is important to use the Fourier
transform of the time-domain waveform shown in Eq. (2.72). However, the Fourier transform
is difficult to compute analytically. Instead, one could perform the Fourier transformation
numerically. Since the waveform has to be calculated many times over for different values
of the associated parameters, performing the Fourier transform numerically proves to be
computationally expensive. Luckily, one can use the stationary phase approximation (SPA)
to get an approximation of the Fourier transformation of a time-domain waveform.

Consider a waveform at the 0PN order in amplitude. The plus and cross polarisation of
the GW can be written in a generic time domain form given by

h+,×(t) = A+,×(t) cos Φ+,×(t). (2.81)

The goal is then to compute the Fourier transformation of Eq. (2.81), given by

h̃+,×(f) =
∫ ∞
−∞

dt A+,×(t) cos Φ+,×(t)e2πıft

= 1
2

∫ ∞
−∞

dt A+,×(t)
(
eı(2πft+Φ+,×(t)) + eı(2πft−Φ+,×(t))

)
. (2.82)

The idea of the SPA is to evaluate the integral in Eq. (2.82) only around the point where
one expects the biggest contribution. Explicitly, this means that one neglects the first term
of Eq. (2.82) because it always oscillates rapidly and averages to zero. The second term also
approximately averages to zero, except around the point t∗, where

2πf = Φ̇+,×(t∗) = πfGW(t∗). (2.83)

Next, we can expand the phase up to (t− t∗)2, and make an additional approximation that
the amplitude also varies slowly around t∗, allowing us to take the amplitude out of the
integral. The GW field can then be written as

h̃+,× = 1
2A+,×(t∗)eı(2πft∗−Φ+,×(t∗))

√√√√ 2
Φ̈+,×(t∗)

∫ ∞
−∞

dx e−ıx
2
, (2.84)
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where x =
√

Φ+,×(t∗)/2. The remaining integral can be evaluated [23] as

∫ ∞
−∞

dx e−ıx
2 =
√
πe−ıπ/4. (2.85)

Therefore, Eq. (2.84) becomes

h̃+,× = 1
2A+,×(t∗)

√√√√ 2π
Φ̈+,×(t∗)

e−ıΨ+,× , (2.86)

where the phase Ψ+,× is given by

Ψ+,× = 2πft∗ − Φ+,×(t∗)−
π

4 . (2.87)

Finally, one can invert the expression in Eq. (2.68) to eliminate t∗ in favour of f .
The phase in the SPA has been calculated up to the 3.5PN order [24–26], and is given by

Ψ+,×(f) = 2πftc − φc −
π

4 +
7∑
j=0

[
ψj + ψ

(l)
j ln f

]
f (j−5)/3, (2.88)

where tc and φc are the time and phase of coalescence. The phase coefficients ψj and ψ(l)
j are

given by

ψj = 3
128 η (πM)(j−5)/3αj and ψ

(l)
j = 3

128 η (πM)(j−5)/3α
(l)
j , (2.89)

and the αj coefficients are given by

α0 = 1, (2.90)
α1 = 0, (2.91)

α2 = 3715
756 + 55

9 η, (2.92)

α3 = −16π, (2.93)

α4 = 15293365
508032 + 27145

504 η + 3085
72 η2, (2.94)

α5 = π
(38645

756 −
65
9 η

) [
1 + ln

(
2 63/2πM

)]
, (2.95)
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α6 = 11583231236531
4694215680 − 640

3 π2 − 6848
21 C +

(
−15737765635

3048192 + 2255
12 π2

)
η

+ 76055
1728 η

2 − 127825
1296 η3 − 6848

63 ln (128 πM) , (2.96)

α7 = π
(77096675

254016 + 378515
1512 η − 74045

756 η2
)
, (2.97)

α
(l)
j = 0, for j = 0, 1, 2, 3, 4, 7, (2.98)

α
(l)
5 = π

(38645
756 −

65
9 η

)
, (2.99)

α
(l)
6 = −6848

63 . (2.100)

The amplitude to the 0PN order is determined by A(t∗) and Φ̈(t∗). The expression from
A(t∗) is obtained from Eq. (2.73) and the inversion of Eq. (2.68) to eliminate t∗ in favour of
f . Following Eq. (2.83), one can write Φ̈(t∗) = πḟGW(t∗), where ḟGW can be evaluated as

ḟGW(t) = dfGW

dt

= dfGW

dx

dx

dE

dE

dt

= 3
2
x

πM

−L(x)
E ′(x) . (2.101)

The prime denotes a derivative with respect to x. The SPA of the waveform at the 0PN
order in amplitude is referred to as the TaylorF2 waveform in the literature (e.g. [27]).

Accuracy of the stationary phase approximation

A recent study has compared the SPA to time-domain waveforms from the PN formalism [27].
It was shown that the SPA agrees with time-domain waveforms with an accuracy between a
fraction of a percent to a few percent depending on the total mass of the system (the SPA
becomes less accurate compared to the time-domain waveform as the total mass goes up).

2.6.7 Concluding remarks

The waveform emitted by binary systems depends intricately on the intrinsic parameters
such as the masses and the spin, as well as the extrinsic parameters such as the distance
and the orbital orientation. Measuring GWs emitted by binary system (see Ch. 3) means
that one can infer these parameters (see Chs. 4 and 5) and possibly obtain some answers to
astrophysical problems.

Two of such problems will be the focus of this thesis. Firstly, the functional dependence of
the phase coefficients in Eq. (2.100) on the component masses is set by GR. As will be shown
in Part II, these phase coefficients can be used to construct a generic test of GR. Secondly,
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as shown in Eq. (2.72), the amplitude of the waveform is proportional to 1/r, where r is the
distance between the observer and the source. This distance can be related to the luminosity
distance. Therefore, one can use GWs emitted by binary systems to measure the luminosity
distance directly, and subsequently obtain cosmological information. This will be the topic
of Part III.
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CHAPTER 3
GRAVITATIONAL WAVES: DETECTION AND

SOURCES

3.1 Gravitational wave detectors

In Sec. 1.4, we have shown that a GW causes the stretching and shrinking of the proper
distance between test particles. Therefore, GWs can be observed by measuring these changes
in the proper distance. The focus of this work will be on the use of interferometers to measure
the influences of GWs. These interferometers are configured to show destructive interference
when no distortions are present, as shown Fig. 3.1a. When a GW passes such a detector,
the configuration will no longer support the destructive interference and a bright spot can be
seen, as shown in Fig. 3.1b. By measuring the intensity of this spot as well as its temporal
variation, one will be able to observe the footprints of a GW.

3.1.1 Beam pattern functions

Interferometers are sensitive to the relative difference between two distances, the so-called
strain. Suppose we have an interferometer with its arms pointing along the unit vectors ui
and vi. One can show [29] that the strain, h(t), is given by

h(t) = 1
2(hijuiuj − hijvivj)

= Dijhij(t), (3.1)

where Dij is referred to as the detector tensor and is given by

Dij = 1
2
(
uiuj − vivj

)
. (3.2)

Furthermore, as Eq. (3.1) is linear in h+ and h×, we can also write

h(t) = F+h+(t) + F×h×(t), (3.3)
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(a) No GW present (b) GW present

Figure 3.1 – Schematic overview of an interferometric detector [28]. Without a GW present, the
interferometer is kept at a destructive interference configuration. A GW will change the relative
distance between the arms and cause the interferometer output to deviate from the destructive
interference. The intensity of the light and its temporal evolution encode the footprints of GWs.

where F+,× are called the beam pattern functions.

Suppose we have a detector with arms that are perpendicular to each other, one pointing
in the x-direction and the other in the y-direction in a Cartesian coordinate system. This
detector frame, denoted by (x, y, z), is generally different from the GW coordinate system,
denoted by (x′, y′, z′), where the source is conveniently described. To account for such a
difference, we first note that when the plus and cross polarisations are not equal in strength,
we can rotate the coordinate system by an angle ψ around the z′ axis so that the x′ and y′
axes coincide with the mayor and minor axis of the associated ellipse. In going from the GW
frame to the detector frame, we can rotate the GW frame by an angle θ around the x′ axis
and an angle φ around the z′ axis, where the angles (θ, φ) denote the direction of propagation
of the GW in the detector frame. Applying these three rotations, the beam pattern functions
for a detector with perpendicular arms are given by

F
(90◦)
+ = 1

2
(
1 + cos2 θ

)
cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ, (3.4)

F
(90◦)
× = 1

2
(
1 + cos2 θ

)
cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ. (3.5)

The beam pattern functions are shown in Fig. 3.2. Suppose that the arms of the detector are
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x
y

z

F+

x
y

z

F×

Figure 3.2 – Beam pattern functions F+(θ, φ, ψ) (left) and F×(θ, φ, ψ) (right) for an interferometric
detector with arms at a 90◦ angle.

at a 60◦ angle instead of a 90◦ angle. In this case, the beam pattern functions are given by

F
(60◦)
+ =

√
3

2

[1
2(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

]
, (3.6)

F
(60◦)
× =

√
3

2

[1
2(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ

]
. (3.7)

Compared to a detector with arms at a 90◦ angle, a detector with a 60◦ opening angle is
less sensitive to GWs. However, with a 60◦ opening angle, one is able to fit three detectors
forming an equilateral triangle in the same location. Especially when the detectors are to be
underground, this will significantly save on costs for e.g. digging tunnels.

3.1.2 Ground-based detectors

At the moment, there are several ground-based interferometric gravitational waves detectors,
either operational or in an upgrade phase. Only GEO (600m arms) in Germany [30] is
currently taking data. However, the biggest of these detectors, LIGO (two interferometers,
4 km arm length) in the US [31] and Virgo (3 km arm length) in Italy [32] are currently being
upgraded from the initial/enhanced configurations (collectively referred to as 1st generation)
to the so-called advanced configuration (2nd generation). Aerial views of the LIGO and Virgo
detectors are shown in Fig. 3.3. This round of major upgrades is expected to complete in
2014 and will increase their sensitivity significantly. A Japanese detector named KAGRA
[33] is currently under construction, and is expected to be operational in 2018. Finally, India
aims to have an advanced detector named LIGO-India running by 2020.

47



GRAVITATIONAL WAVES: DETECTION AND SOURCES

Figure 3.3 – Aerial view of the LIGO detectors in Hanford (left) and in Livingston (centre), and
the Virgo detector (right).

Plans are also made for detectors beyond the 2nd generation. The most advanced proposal
is the so-called Einstein Telescope (ET), a European initiative for a 3rd generation detector.
A conceptual design study has been published proposing three co-located, underground de-
tectors, each with 10 km arms with a 60◦ opening angle [28]. Such a design admits even
better sensitivity compared to 2nd generation detectors, up to a factor of ten (see Fig. 3.4).

3.2 Detection of gravitational waves

So far we have only considered the effect of a GW on a ring of test particles. In an actual
detector, we will not only see the effect of GWs on the test masses (mirrors in case of an
interferometer), but also noise contributions such as human traffic. If we denote the noise
contribution as n(t) and the gravitational wave induced strain as h(t), then the total output
of the detector is given by

s(t) = n(t) + h(t). (3.8)

Therefore, not only will we have to understand the effects of GWs, it is also important to
understand the noise in order to find the GW footprint in the detector output. We will
consider each of these contributions in turn.

3.2.1 Characterising the noise

Suppose we can describe the noise n(t) by a Gaussian stochastic process [34]. A Gaussian
stochastic process is uniquely characterised by its average value and its auto-correlation.
Without loss of generality, we can set the average value to be

〈n(t)〉 = 0, (3.9)

where the brackets denote the ensemble average. In practice, one only has access to a single
realisation of the detector. Therefore, we assume ergodicity and replace the ensemble average
with the time average. The auto-correlation, defined as

R(τ) ≡ 〈n(t+ τ)n(t)〉 , (3.10)
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typically decays to zero when |τ | → ∞, i.e. the knowledge of the noise at time t reveals little
information about the noise at a time t+ τ . We can now define the one-sided power spectral
density as

1
2Sn(f) ≡

∫ ∞
−∞

dτ R(τ)eı2πfτ . (3.11)

The reality of R(τ) implies that Sn(−f) = S∗n(f), while the invariance under time translation
implies that Sn(f) is real. Therefore, one has Sn(−f) = Sn(f). With Eq. (3.10) and the
inversion of Eq. (3.11), we can write

R(0) =
〈
n2(t)

〉
=
∫ ∞

0
df Sn(f). (3.12)

This shows that the integrated power spectral density is equal to the variance of the noise.
The relation in Eq. (3.12) also allows us to introduce an alternative form of the power spectral
density, i.e.

〈ñ∗(f)ñ(f ′)〉 = δ(f − f ′)1
2Sn(f), (3.13)

where a tilde denotes the Fourier transform and a star the complex conjugate. The (expected)
power spectral densities for various detectors are shown in Fig. 3.4.

3.2.2 Matched filtering

In the last subsection, we looked at characterising the noise. Naively, one might expect
that the signal h(t) can only be detected if |n(t)| < |h(t)|. However, for ground-based GW
detectors, we are in the regime where |n(t)| � |h(t)|. It turns out that, provided one has
information on h(t), we can still find the GW within the data even if the noise amplitude is
bigger than the GW amplitude.

Suppose we know the shape of h(t). One can compute the average of the product of s(t)
with h(t) over a period of T

1
T

∫ T

0
dt s(t)h(t) = 1

T

∫ T

0
dt h2(t) + 1

T

∫ T

0
dt n(t)h(t). (3.14)

The integral in the first term on the RHS is positive definite and thus grows as T . In terms
of the order of magnitude, we have

1
T

∫ T

0
dt h2(t) ∼ h2

0, (3.15)

where h0 is the characteristic amplitude of the oscillating function h(t). On the other hand,
in the integral in the second term on the RHS, n(t) and h(t) are uncorrelated and the integral
thus grows like T 1/2, similar to a random walk. Therefore, we have

1
T

∫ T

0
dt n(t)h(t) ∼

√
τ0

T
n0h0, (3.16)
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Figure 3.4 – Detector sensitivity for various detectors in terms of the strain sensitivity,
√
Sn(f) The

solid curves represent the strain sensitivity of LIGO in Hanford (LHO, blue), LIGO in Livingston
(LLO, green) and Virgo in Pisa (red) on their last joint science run, before the upgrade to their
advanced configurations. The dashed curves show the design sensitivity for the second generation
detectors Advanced LIGO (blue), Advanced Virgo (red), KAGRA (magenta). The dashed-dotted
curve shows the design sensitivity labelled ET-D for the third generation detector Einstein Telescope
(black).
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where n0 is the characteristic amplitude of the noise n(t) and τ0 is a characteristic timescale,
e.g. the period of h(t). Therefore, it is not necessary to have |n(t)| < |h(t)|. Instead, it
suffices to have

h0 >

√
τ0

T
n0. (3.17)

Thus, if we integrate the signal over long period compared to τ0, we can average the noise
to zero and detect the signal even when |n(t)| > |h(t)|. To exemplify, a binary system has a
characteristic frequency of f ∼ 100Hz, or τ0 ∼ 10−2 s when it is detectable by ground-based
detectors. Such signals can be observed in the order of minutes, say T ∼ 100 s. Therefore, we
have

√
τ0/T ∼ 10−2, meaning that the signal can still be detected if the signal amplitude is

factor of 100 smaller than the noise amplitude. For a continuous signal, such as a millisecond
pulsar, this factor can be even larger. Suppose we have τ0 ∼ 10−3 s, but we can observe
the signal for a period of a year, T ∼ 107 s. Using these numbers, we have

√
τ0/T ∼ 10−5,

meaning we are sensitive to signals with an amplitude of a factor of 100,000 smaller than the
noise amplitude.

We can optimise the above by the application of a technique called matched filtering. We
define

ŝ =
∫ ∞
−∞

dt s(t)K(t), (3.18)

where K(t) is called a filter. Furthermore, we define a signal-to-noise ratio (SNR), ρ = S/N ,
where S is the expectation value of ŝ if a GW signal is present and N is the root mean square
value of ŝ when no GW signal is present. The idea behind matched filtering is to find the
filter that maximises the SNR. Since 〈n(t)〉 = 0, we have

S =
∫ ∞
−∞

dt 〈s(t)〉K(t)

=
∫ ∞
−∞

dt h(t)K(t)

=
∫ ∞
−∞

df h̃(f)K̃∗(f). (3.19)

Furthermore, for h(t) = 0 we have

N2 =
〈
ŝ2
〉
− 〈ŝ〉2

=
〈
ŝ2
〉

=
∫ ∞
−∞

∫ ∞
−∞

dt dt′ K(t)K(t′) 〈n(t)n(t′)〉

= 1
2

∫ ∞
−∞

df Sn(f)
∣∣∣K̃(f)

∣∣∣2 , (3.20)
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where we have used the definition of the power spectral density in Eq. (3.11). Subsequently,
the SNR is given by

ρ =
∫∞
−∞ df h̃(f)K̃∗(f)√∫∞
−∞ df

1
2Sn(f)

∣∣∣K̃(f)
∣∣∣2 . (3.21)

This expression can be simplified by introducing an inner product between a(t) and b(t)

(a|b) = <
∫ ∞
−∞

df
ã∗(f)b̃(f)

1
2Sn(f) . (3.22)

With this definition, we can rewrite Eq. (3.21) as

ρ = (u|h)√
(u|u)

, (3.23)

where ũ(f) is given by

ũ(f) = 1
2Sn(f)K̃(f). (3.24)

From this geometrical representation, we can deduce that ρ is maximised when u points in
the same direction as h. The optimal filter is therefore given by the so-called Wiener filter

K̃(f) ∝ h̃(f)
Sn(f) . (3.25)

Furthermore, the SNR for the Wiener filter, also referred to as the optimal SNR, is given by

ρ =
√

(h|h). (3.26)

From the above results, we can conclude that the optimal filter depends on the signal searched
for, and the properties of the noise. It is therefore critical to gain a good understanding of
both aspects.

Assuming that the noise is uncorrelated between detectors, we can also define the optimal
SNR for a network of detectors by adding the SNR of individual detectors in quadrature. In
other words, the network SNR is given by

ρ2
net =

∑
i

ρ2
i , (3.27)

where the index i runs over individual detectors.
In the derivation of the matched filtering, we have assumed that the shape of the true

signal and the characteristics of the noise are known. For GW analyses, however, several
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issues are present. Firstly, the characterisation of the noise is not trivial. For example,
the noise might not be stationary and Gaussian. Moreover, there is an inherent ambiguity
whether a GW signal is being included in the noise characterisation. Secondly, one rarely
has access to the exact same GW signal in the filter. For example, for most realistic GW
sources, the waveform is only known in the form of an approximation (cf. the PN formalism
in Ch. 2). Furthermore, as the GW signal depends on many parameters, the discretisation
of the collection of filters used can cause an SNR lower than the SNR given by the exact
Wiener filter. We will further discuss the issues concerning the interpretation of GW signals
in Ch. 4.

3.3 Sources of gravitational waves

Although every accelerating non-symmetric system emits GWs, only the ones that are able to
perturb the metric enough can be detected with current technology. Naturally, we are looking
for those systems that are massive, compact and/or violent enough to induce a sufficiently
strong gravitational field. It turns out that such sources are only of astrophysical origin,
such as black holes (BHs) and neutron stars (NSs) or violent events like supernovae and
gamma-ray bursts. In this section, we will look at some of the most promising sources for
detection by ground-based detectors. The study of the sources of GWs is an extensive field
and citing only a few references will not do justice to the large body of work performed by
numerous authors. Therefore, unless explicitly stated, references and/or proofs to relevant
statements can be found in Ref. [29] and references therein.

3.3.1 Compact binary coalescences

Compact binary coalescence (CBC) is a class of sources in which two compact objects, either
a NS or a BH, orbit around each other. CBC sources are further subdivided into binary
neutron star (BNS), black hole neutron star binary (BHNS) and binary black hole (BBH).
The emission of GWs carries energy and angular momentum away from the system, causing
the two objects to spiral towards each other. The most famous CBC system is perhaps the
Hulse-Taylor binary pulsar [35]. The orbital evolution of the Hulse-Taylor binary pulsar
provided the first indirect evidence of the emission of GWs. GWs from CBC sources can be
divided into three stages, the inspiral, the merger and the ringdown phase.

The inspiral phase is when the two object are spiralling towards each other, while the
system loses orbital energy and angular momentum. As a result, the GW amplitude and
frequency slowly increase as a function of time, the so-called chirp. Sources can remain
in the inspiral phase for hundreds of millions of years, but they can only be observed by
ground-based detectors towards the end of the inspiral phase. During the inspiral phase, the
gravitational fields and velocities are still relatively weak and the GWs emitted can be found
through approximation methods such as the PN formalism in Ch. 2.

The merger phase is a short-lived phase that follows the inspiral phase and occurs when
the two objects are so close to each other that they start to merge into a single object.
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The gravitational fields are now very strong and the GW emission can only be computed by
considering the full EFE numerically. As it turns out, the merger phase can cause a GW
luminosity that exceeds the electromagnetic luminosity of the entire Universe.

Once the two objects have merged, they enter the ringdown phase. During this phase,
the newly formed object tries to reach a quiescent state by radiating away its deformations
from the merger phase. The GWs in the ringdown phase can be computed by means of
perturbation theory. The resulting GWs consist of superpositions of damped sinusoids, known
as quasi-normal modes.

3.3.2 Continuous wave sources

Continuous wave (CW) sources are those that emit GWs with roughly constant frequency
and amplitude compared to the observation time. The prime candidates to emit such signals
are rapidly rotating, non-axisymmetric NSs. Such deformations can arise due to, for example,
strain build-up in the crust or in the core, or accretion of matter.

The GW signal from CW sources is relatively simple due to their slow variation of amp-
litude and frequency. Although the GW amplitude is generally weaker compared to CBC
sources, a longer integration time means that CW sources may also achieve detectable SNRs.
Finally, the analysis of such sources can be simplified if some of its characteristics can be
determined through means other than GWs, e.g. rotational frequency of a NS through the
observation of a pulsar.

3.3.3 Burst sources

Burst sources are associated with astronomical transient phenomena, such as supernovae,
gamma-ray bursts or instabilities in NSs. Supernovae occur when massive objects collapse
under the influence of gravity. In the process that follows, NSs or BHs are formed, and GWs
are emitted through dynamical processes. On the other hand, GRBs are flashes of gamma
rays, for which the progenitors are still uncertain. Possible progenitors are supernova-like
events (causing long duration soft spectrum GRBs, also called long soft GRBs) as well as the
merger of compact objects (causing short hard GRBs).

These sources are generally difficult to model because of the complicated physics associ-
ated with such phenomena. Therefore, the search for GWs from such sources often happens
with unmodelled filters, where unmodelled means that there is no astrophysical model asso-
ciated to the GW. An example of such a filter is a sine-Gaussian signal.

3.3.4 Stochastic background

The stochastic background comes from the superposition of numerous unresolved GW sources.
The stochastic background is divided into two classes: the primordial background and the
astrophysical background. The primordial background consists of radiation originating from
the early Universe, such as the Big Bang. The astrophysical background comes from the GW
radiation from astrophysical sources such as CBC systems or cosmic-string cusps and kinks.
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The detection of a stochastic background is somewhat different compared to the sources
described above. Since random radiation is indistinguishable from instrumental noise, at
least for short observation times, it cannot be detected with a single detector. Instead, the
output of several detectors are combined to calculate the cross-correlation between detectors.
An excess in the cross-correlation can then be an indication of a stochastic background.
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CHAPTER 4

BAYESIAN INFERENCE

In this chapter, we introduce the field of Bayesian inference. Named after Reverend Bayes,
Bayesian inference aims to give a consistent mathematical framework to inductive logic.
Inductive logic, also referred to as plausible reasoning, is a subfield of formal logic that tries
to evaluate logically certain statements. This should be viewed in contrast to deductive logic,
which attempts to draw conclusions from logically certain statements.

After introducing some elementary concepts of inductive logic, we will show how Bayesian
inference provides a mathematically consistent framework to two commonly required tasks
within data analysis: parameter estimation and hypothesis testing.

4.1 Concepts of inductive logic

4.1.1 Definitions and notations of logic

Propositions

The central concept in the field of formal logic is a proposition. A proposition is defined as

a statement in which a subject and a predicate are combined to assert its (un)truth.

Thus, a proposition can be the statement “hypothesis H is correct” or “quantity x has a
value of 3”. Proposition are usually denoted by an upper case roman letter, e.g. A and B.

Boolean algebra

Operations on, or combinations of propositions can be conveniently written according to the
rules of Boolean algebra. These operations or combinations are the following.
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Conjunction The conjunction, also called the logical product, of A and B is denoted by

AB or A ∧B, (4.1)

and is associated to the proposition “both A and B are true”. The conjunction operator is
commutative.

Disjunction The disjunction, sometimes referred to as the logical sum, of A and B is
denoted by

A+B or A ∨B, (4.2)

and is associated to the proposition “at least one of A and B is true”. Similarly to the
conjunction, the disjunction commutative.

Denial The denial, or negation, of a proposition A states that “A is false” and is denoted
by

Ā or ¬A. (4.3)

We can further assert that the denial of the denial of A equals A again.

Implication The implication relates two propositions conditionally. The implication of A
and B is defined to be “if A is true then B is true” and is written as

A→ B or A⇒ B. (4.4)

Bi-implication An even stronger relational statement between two propositions can be
made in the form of a bi-implication. The bi-implication of A and B represents the proposi-
tion “B is true if and only if A is true” and is denoted by

A↔ B or A⇔ B. (4.5)

In the language of Boolean algebra, when two propositions are related by a bi-implication
they have the same truth value. From a logical point of view, they are hence considered to
be equivalent propositions and the bi-implication can thus also be written as

A = B. (4.6)

Similarly, we also have the “equal by definition”, denoted by

A ≡ B. (4.7)
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4.1.2 Foundations of inductive logic

The study of inductive logic is in an extension of the Aristotelian logic. Instead of assigning
either true or false to a proposition, one assigns a degree of certainty to a proposition. This
degree of certainty, also referred to as plausibility, is always dependent on what we consider
to be known. For example, if we know that the sky is cloudy, the plausibility of rain to
come soon is higher compared to a sunny sky. Therefore, we expand the notation of Boolean
algebra with the conditional plausibility “A is true given that B is true” or simply “A given
B”. The conditional plausibility is denoted by

A|B. (4.8)

Cox’ postulates and axioms

In search of mathematical rules for plausible reasoning, Cox wrote down a set of postulates
which such a theory should obey. Following Jaynes [36], these can be stated as a set of
desiderata:

• Desideratum 1 Plausibilities are represented by real numbers.

• Desideratum 2 The theory should have a qualitative correspondence with common
sense.

• Desideratum 3 The theory should be consistent. If a conclusion can be reasoned out
in more than one way, then every possible way must lead to the same result.

However, these desiderata lack the mathematical rigor from which the rules of plausible
reasoning can be derived. Instead, the desiderata can be augmented with mathematical
axioms to produce the necessary proofs. Let the plausibility of a proposition A be denoted
by w(A). Cox’ axioms can then be stated as [37]

• Axiom 1 Degree of belief can be ordered; if w(A) is greater than w(B), and w(B) is
greater than w(C), then w(A) is greater than w(C). Consequently, plausibility can be
mapped onto real numbers.

• Axiom 2 The plausibility of A and its negation Ā are related, i.e. there is a function
f such that

w(A) = f
[
w(Ā)

]
. (4.9)

• Axiom 3 The plausibility of a conjunction AB is related to the plausibility of the
conditional proposition A|B and the plausibility of B alone, i.e. there is a function g
such that

w(AB) = g [w(A|B), w(B)] . (4.10)

59



BAYESIAN INFERENCE

4.1.3 Quantitative rules for plausible reasoning

Cox showed that under these axioms, consistent mathematical rules exist to describe the
field of inductive logic. Firstly, the plausibility w can be mapped onto probabilities p, if one
assumes that w ranges from 0 for impossibility to 1 for certainty (another choice is to have
w range from 1 for certainty to infinity for impossibility). Therefore, we will use the terms
plausibility and probability interchangeably. It turns out that the rules of plausible reasoning
coincide with the laws of probability, given by the sum rule,

p(A|I) + p(Ā|I) = 1, (4.11)

and the product rule,

p(A,B|I) = p(A|B, I)P (B|I), (4.12)

where the proposition I represents all the relevant background information that one is aware
of before the assignment of plausibilities. Many other results can be derived from these two
rules. Amongst the most useful ones for data analysis are Bayes’ theorem,

p(A|B, I) = p(B|A, I)p(A|I)
p(B|I) , (4.13)

and the marginalisation rule,

p(A|I) = p(A,B|I) + p(A, B̄|I). (4.14)

The marginalisation rule can be generalised in several ways. Firstly, assume we have a set of
propositions {Bk} that form a mutually exclusive,

p(Bk|Bl, I) = p(Bk|I) for k 6= l, (4.15)

and exhaustive set of propositions, ∑
k

p(Bk|I) = 1. (4.16)

In this case, the marginalisation rule can be written as

p(A|I) =
∑
k

p(A,Bk|I). (4.17)

We can go a step further and generalise the marginalisation rule to the continuum limit.
But before we can do so, we need to explain what is meant by the continuum limit of a
proposition. Take a proposition of the form “a continuous variable x has a value of α”. We
can write the probability of this proposition in the form p(x = α). However, since within the
limits of a continuous variable there exist an arbitrary large number of propositions, we fail
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to assign a useful meaning to the probability of x = α. So instead, we can only define the
probability associated to a continuous variable in a finite interval, i.e.

p(x1 ≤ x ≤ x2|I) =
∫ x2

x1
pdf(x)dx, (4.18)

where pdf represents the probability density function. For a continuous variable, the property
of exhaustiveness is written as ∫ xmax

xmin
pdf(x)dx = 1, (4.19)

where the integration limits include all possible values of x. The marginalisation rule for
continuous variables becomes

p(A) =
∫ xmax

xmin
pdf(A, x)dx. (4.20)

At this point, it should be noted that the probability p(B) is dimensionless, whereas the
probability density function pdf(x) has the inverse dimension of x. However, in the literature,
the symbols p or P are used for both the probability and the probability density. The reader
is expected to distil the meaning from the context.

4.2 Parameter estimation

We can now use the rules in Sec. 4.1.3 to infer the value of a parameter given the observed
data, commonly referred to as parameter estimation. Examples of parameter estimation
include the inference of the mass of a black hole through the measurement of its gravitational
waves, or the measurement of the Hubble constant by observing a set of standard candles.

Consider a model H that provides a description of the data d provided the parameter θ
is known. In this case, model H is referred to as generative. The plausibility of the data d is
then governed by the likelihood p(d|θ,H, I), where I represents the state of knowledge prior
to the experiment. In most experiments, we have enough knowledge about the model H to
assign the likelihood function. For example, given that we know we are flipping a biased coin
that gives, on average, 7 heads out of every 10 flips, we can assign the likelihood of observing
m heads from n throws. However, in most experiments we are only exposed to the data d
and are interested in the so-called posterior probability of the parameter θ, p(θ|d,H, I). The
aim of this section is to show how to go from the likelihood to the posterior, whilst being
consistent with the rules of plausible reasoning.

4.2.1 From Bayes’ theorem

Suppose we have a generative model H, and can therefore assign the likelihood of the data
d. The posterior is related to the likelihood through Bayes’ theorem in Eq. (4.13)

p(θ|d,H, I) = p(d|θ,H, I)p(θ|H, I)
p(d|H, I) . (4.21)
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Two factors in this equation have yet to be given a name. Firstly, we have the prior p(θ|H, I)
which represent the state of knowledge of the parameter θ before the experiment is conducted.
This could be the interval in which the parameter is expected or the distribution of values it
is expected to have. Secondly, we have the evidence p(d|H, I). This quantity, as it does not
depend on the parameter of interest θ, will be ignored for the time being and Eq. (4.21) will
be turned into the proportional statement

p(θ|d,H, I) ∝ p(d|θ,H, I)p(θ|H, I). (4.22)

We will revisit the evidence in Sec. 4.3 where we show that this factor plays a crucial role in
the case that the generative model is the object of interest.

Eq. (4.22) shows that the inference on the posterior is given by the likelihood weighted
by the prior. This seems to be in line with desideratum 3, set out in Sec. 4.1.2, as common
sense would dictate that one forms its conclusions based on the information that one has
before the experiment and the experimental data that one obtains.

4.2.2 Characterising the posterior

Once we have calculated the posterior, we have acquired all the information about the vari-
ables given the observed data. Suppose we are only interested in a single variable. We can
plot the posterior as a function of this variable. From this plot, we can infer the values that
are more likely than others, simply by looking at the height of the plot. However, this might
not always be the desired representation. For example, plots in dimensions higher than three
are difficult to interpret. Furthermore, one might want to summarise the posterior with only
a few numbers, instead of a plot.

Marginalisation

Suppose we have performed an experiment governed byN parameters θi where i = 1, 2, . . . , N ,
which we try to infer. Using Bayes’ theorem, we obtain the so-called joint posterior

p(θ1, . . . , θN |d,H, I). (4.23)

But suppose that we only want to show the posterior for variable θ1, given by p(θ1|d,H, I).
We can achieve this through the marginalisation rule given by Eq. (4.20). Thus, we can
obtain the desired posterior through

p(θ1|d,H, I) =
∫ θmax

2

θmin
2

. . .
∫ θmax

N

θmin
N

p(θ1, . . . , θN |d,H, I) dθ2 . . . dθN . (4.24)

Therefore, one way to present a multidimensional posterior is to draw one or two dimensional
marginalised posterior functions.
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Mean, standard deviation

Sometimes it can be more convenient to summarise the (joint) posterior with a few numbers.
For example, instead of plotting the full posterior, we want to convey the expected value
and the associated uncertainty. In case of a one dimensional posterior, we can calculate the
expectation value, also known as the mean, through

µ = E [θ]

=
∫ θmax

θmin
θ p(θ|d,H, I) dθ. (4.25)

A measure of the uncertainty can be represented by the second central moment, also referred
to as the variance, which is given by

σ2 = E
[
(θ − µ)2

]
=
∫ θmax

θmin
(θ − µ)2 p(θ|d,H, I) dθ. (4.26)

The multi-dimensional equivalents of the mean and the variance can also be defined. Suppose
an experiment has N variables, θi where i = 1, 2, . . . , N . The means of these variables are
then given by

µi = E [θi]

=
∫ θmax

1

θmin
1

. . .
∫ θmax

N

θmin
N

θi p(θ1, . . . , θN |d,H, I) dθ1 . . . dθN . (4.27)

Similarly, a higher dimensional variance-like object called the covariance matrix can be
defined as

Σij ≡ E [(θi − µi) (θj − µj)]

=
∫ θmax

1

θmin
1

. . .
∫ θmax

N

θmin
N

(θi − µi) (θj − µj) p(θ1, . . . , θN |d,H, I) dθ1 . . . dθN . (4.28)

The diagonal elements give the variances of the variables, whereas the off-diagonal elements
represent the correlations between the variables.

Confidence interval

The variance is a good measure of the uncertainty if the posterior is symmetric. However,
if the posterior is asymmetric, then the variance fails to report the direction to which the
posterior is skewed. Of course, one can provide the skewness (3rd central moment) alongside
the mean and the variance. In this case, a better representation of the posterior is given by
the confidence interval. The confidence interval is defined to be the smallest limits within
which a fraction γ of the posterior is contained. Formally, this is given by

γ =
∫ θhi

θlo
p(θ|d,H, I)dθ, (4.29)
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where the distance between θhi− θlo is minimised. In most literature, γ is either chosen to be
0.68 or 0.95, which are the fractions of the total probabilities given by the 1 and 2 standard
deviation intervals in a Gaussian distribution, which follows from the central limit theorem
[37].

The multidimensional confidence interval can also be defined as an area in two dimen-
sions, volume in three dimensions and hypervolume in even higher dimensions. However,
the information quickly becomes difficult to summarise, something we set out to do by de-
fining the confidence interval. More useful would be to show the confidence interval of the
marginalised posteriors. For θ1, this is given by

γθ1 =
∫ θhi

1

θlo
1

p(θ1|d,H, I)dθ1

=
∫ θhi

1

θlo
1

∫ θmax
2

θmin
2

. . .
∫ θmax

N

θmin
N

p(θ1, . . . , θN |d,H, I)dθ1 . . . dθN . (4.30)

Multimodality

In the case of multimodal posteriors, providing a summary in just a few numerical values
can be troublesome. The mean value could occur in a location with low probability. The
variance and the confidence interval can span multiple modes, thus suggesting that the data
are expected with a larger spread than actually is expected by looking at the individual
modes.

Unfortunately, there is no generic way of summarising multimodal distributions. In cases
where there are only a few modes, one could try to characterise each single mode through
the mean, standard deviation or confidence interval. However, if the posterior exhibits more
complicated structures, the most honest thing to do is to show the full or marginalised pos-
terior where possible.

The practice of estimating parameters is intimately connected to all aspects of experimental
science. GWs from CBC systems possess the unique property of carrying information about
the distance from the source to the observer. Being able to infer this distance allows us to
map the dynamics and the content of the Universe. In Part III, we will use the concepts of
parameter estimation to investigate the power of using GW sources to infer the cosmological
parameters that dictate the large scale properties of our Universe.

4.3 Hypothesis testing

Estimating parameters is useful when the generative model is known, but this not always the
case in an experiment. For example, suppose we measure a process of which we do not know
whether its output follows a normal distribution or a Lorentzian distribution. If we want to
compare generative models to each other, we have to perform hypothesis testing, also known
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as model comparison or model selection. In order to compare hypothesis X to hypothesis Y ,
we must calculate the posterior probabilities p(X|d, I) and p(Y |d, I) and compare the two.

4.3.1 From Bayes’ theorem

Just as with parameter estimation, we want to calculate the posterior probability through
quantities that are easier to compute. To do this, we again turn to Bayes’ theorem and write

p(X|d, I) = p(d|X, I)p(X|I)
p(d|I) . (4.31)

In order to compare model X with model Y , we take the ratio of the posterior probabilities
and compute the so-called odds ratio,

OX
Y ≡

p(X|d, I)
p(Y |d, I)

= p(d|X, I)
p(d|Y, I)

p(X|I)
p(Y |I) , (4.32)

where the factors of p(d|I) have cancelled out. The factor p(X|I)/p(Y |I) is called the prior
odds and expresses our relative initial belief in the hypotheses. The factor p(d|X, I)/p(d|Y, I)
is the ratio of evidences, commonly known as the Bayes factor,

BX
Y = p(d|X, I)

p(d|Y, I) . (4.33)

Thus, in order to do hypothesis testing, one needs to calculate the evidence for propositions
X and Y , and assign the prior odds between the same propositions.

We have seen the evidence before in Eq. (4.21). We can rewrite Bayes’ theorem in
Eq. (4.21) as

p(θ|d,H, I)p(d|H, I) = p(d|θ,H, I)p(θ|H, I), (4.34)

and marginalise both sides over θ, i.e.∫
p(θ|d,H, I)p(d|H, I)dθ =

∫
p(d|θ,H, I)p(θ|H, I)dθ. (4.35)

But as p(d|H, I) does not depend on θ and the posterior is normalised by definition, we can
evaluate the LHS to be∫

p(θ|d,H, I)p(d|H, I)dθ = p(d|H, I)
∫
p(θ|d,H, I)dθ

= p(d|H, I). (4.36)
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Therefore, the evidence is given by

p(d|H, I) =
∫
p(d|θ,H, I)p(θ|H, I)dθ, (4.37)

and can be interpreted as the fully marginalised, prior weighted likelihood, also referred to
as the marginal likelihood. As we expect from common sense, the evidence does not depend
on the value of θ.

The odds ratio thus tells us which of the propositions is favoured compared to another.
If OX

Y > 1, the data tell us that proposition X is more likely, if OX
Y = 1 the propositions

are equally likely, and if OX
Y < 1, proposition Y is favoured over X. But the odds ratio also

tells us how much a proposition is favoured over another through the magnitude of the odds
ratio. If OX

Y = 5, proposition is 5 times more likely compared to Y .
Up to now, we have shown how to compare two propositions. Can we calculate the

absolute probability of a single proposition from Eq. (4.31)? We have seen that the evidence
and the prior can be assigned. But what about the factor p(d|I)? Can we assign the
probability of the data given the background information? The probability of the data can
be written as

p(d|I) = p(d,X|I) + p(d, X̄|I)
= p(d|X, I)p(X|I) + p(d|X̄, I)p(X|I) (4.38)

Although the prior probabilities can be related through

p(X|I) + p(X̄|I) = 1, (4.39)

assigning an evidence to X̄ is, in most cases, impossible, as one needs a generative model
instead of the denial of a single proposition. To illustrate this point, we can predict the signal
of a GW assuming GR is correct, but we cannot predict the signal of a GW when we only
know that GR is incorrect. Therefore, in order to perform inference on generative models,
we need to compare one generative model to another.

4.3.2 Occam’s razor

Does the model which fits the data best always give the highest evidence? If that is the
case, one expects that the generative model with the most freedom to have a higher evidence
compared to a more restrictive model. However, we will show that this is not generally true
within Bayesian inference.

The fit of the data with model X is represented by the evidence p(d|X, I). However,
from Eq. (4.32), we see that the Bayes’ factor is altered by the prior odds to give the odds
ratio. Thus, a model needs to be particularly favoured by the data if prior belief in this
model is lower compared to the other model. Therefore, important to hypothesis testing is
the assignment of the background information, i.e. what is known prior to the experiment.
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But that is not all. From common sense, it seems to be unfair if the more complex
model is always favoured compared to a more restrictive model. Suppose the generative
model is described by a linear relationship. One would hope that a consistent analysis of
the data shows that the generative model was indeed the linear relationship instead of a
general polynomial that can describe the data equally well through the appropriate choice
of parameters. We can show how Bayesian inference works under such conditions by an
example.

Suppose we have a generative model X, which has no free parameter, and generative
model Y , which does have a free parameter λ. Will the more complicated model, Y , be
automatically favoured compared to X? To answer this question, we turn to the odds ratio

OX
Y = p(d|X, I)

p(d|Y, I)
p(X|I)
p(Y |I) . (4.40)

The assignment of the evidence for X is straightforward, but the evidence of Y depends on
λ through

p(d|Y, I) =
∫
p(d, λ|Y, I)dλ

=
∫
p(d|λ, Y, I)p(λ|Y, I)dλ. (4.41)

To aid our understanding, we make some simplifying assumptions on the two factors in the
integral. Suppose we have no prior information on λ and that our model does not favour any
value of λ. In this case, the prior on λ is constant within the range λ ∈ [λmin, λmax], i.e.

p(λ|Y, I) = 1
λmax − λmin

, for λmin ≤ λ ≤ λmax. (4.42)

Furthermore, we assume the likelihood to be a Gaussian centred around the maximum like-
lihood λ0 with a standard deviation given by σλ. Therefore, the likelihood p(d|λ, Y, I) is of
the form

p(d|λ, Y, I) = p(d|λ0, Y, I) exp
[
−(λ− λ0)2

2σ2
λ

]
. (4.43)

The evidence is consequently given by

p(d|Y, I) =
∫
p(d|λ, Y, I)p(λ|Y, I)dλ

=
∫ 1
λmax − λmin

p(d|λ0, Y, I) exp
[
−(λ− λ0)2

2σ2
λ

]
dλ

= p(d|λ0, Y, I)
λmax − λmin

∫
exp

[
−(λ− λ0)2

2σ2
λ

]
dλ

= p(d|λ0, Y, I) σλ
√

2π
λmax − λmin

. (4.44)
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Finally, the odds ratio can be written as

OX
Y = p(X|I)

p(Y |I)
p(d|X, I)
p(d|λ0, Y, I)

λmax − λmin

σλ
√

2π
. (4.45)

The factor p(X|I)/p(Y |I) represents the prior odds of the models. We assume that there is
nothing in the background information that favours either X or Y , so that the prior odds
equals unity. The factor p(d|X, I)/p(d|λ0, Y, I) compares the best fits of the two models. In
the case that Y is a more complicated model compared to X, this factor is usually smaller
than unity. If the goodness-of-fit was the only contribution, we would indeed get that the
more complicated model is preferred.

However, there is a third contributing factor, given by (λmax − λmin)/(σλ
√

2π). This
factor is big if the prior range for λ is large compared to the width of the likelihood, and
conversely small if the width of the likelihood is much smaller than the prior range. If the
extra parameter λ is extraneously added such that the width of the likelihood σλ is much
smaller than the prior range λmax − λmin, the third factor penalises model Y . Therefore, one
is not at liberty to add arbitrary complexity to the model without being penalised within
the formalism of hypothesis testing. This aspect of hypothesis testing is in line with Occam’s
razor, i.e. “it is vain to do with more what can be done with less”.

The concepts of hypothesis testing are pivotal when we wish to develop a test for a specific
physical theory. For example, it should be clear by now that simply measuring a parameter
or comparing best fits cannot constitute a test of the validity of a theory. Furthermore, it
should be clear that a test of GR should always compare two generative models. In Part II, we
show that a generic test of GR can be constructed by considering the GW phase coefficients
from a CBC signal, given by Eq. (2.89), and associate propositions to the correctness of these
coefficients.
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CHAPTER 5

COMPUTATIONAL METHODS

Both parameter estimation and hypothesis testing follow the simple relations Eqs. (4.21)
and (4.31), respectively. However, the computation of the posterior and the odds ratio can
turn out to be difficult in practice. Suppose we have a problem with N parameters in the
model and we want to sample each parameter with an accuracy of 1 part in R. One would
need to RN computations in order to evaluate the posterior and even more to perform the
evidence integral. For problems with limited number of parameters, these calculations can be
done through brute-force uniform sampling. For problems in higher dimensions, brute-force
methods are simply too inefficient to be practically useful. Instead, a range of specialised
algorithms are available to alleviate the problems of computation.

In Sec. 5.1, we will introduce the Levenberg-Marquardt algorithm. The Levenberg-
Marquardt algorithm aims to find the stationary points of a given function. In Ch. 12,
we will use the Levenberg-Marquardt algorithm to find maxima of posterior density func-
tions associated to the cosmological parameters that describe the large scale properties of
the Universe.

Furthermore, we will introduce the Fisher information matrix in Sec. 5.2. The Fisher
information matrix is used to estimate the accuracy with which parameters in a given model
can be measured. The technique is often used in GW data-analysis to obtain a quick estimate
of the error associated to a given parameter. In Ch. 12, we will use the Fisher information
matrix to estimate the accuracy of the distance measurement by the Einstein Telescope. The
accuracy of the distance measurement will then be used to construct likelihood functions for
the cosmological parameters.

Finally, in Secs. 5.3 and 5.4 we will look into methods that can approximate the full
posterior density function given by Eq. (4.21) and the associated evidence given by Eq. (4.37).
Both Markov chain Monte Carlo methods (see Sec. 5.3) and Nested Sampling (see Sec. 5.4)
can be used to approximate the posterior density function and the evidence. In Ch. 8, we
use these techniques to construct a data-analysis pipeline that aims to test GR through the
calculation of the odds ratio given by Eq. (4.32).
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5.1 Levenberg-Marquardt algorithm

Suppose we want to find the maximum of the posterior, because we are interested in the most
likely values of the parameters. One way to tackle this problem is to evaluate the posterior on
a grid and find the entry with the highest probability. This method proves to be prohibitive
if the dimensionality is more than a few. Instead, we can use our knowledge of the posterior
to find the maximum more efficiently.

The stationary points of a function f(x) can be found through the condition df/dx|x0 = 0.
Similarly, if the posterior depends on a set of N parameters θ, we can find the stationary
points through the simultaneous equations

∂θip(θ|d,H, I)
∣∣∣
θ0

= 0, (5.1)

where H denotes the generative model and d represents the data. The stationary point is a
maximum if the eigenvalues of the Hessian ∂θi∂θjp(θ|d,H, I)

∣∣∣
θ0

are all negative. Furthermore,
if we are largely ignorant about the parameters before the experiment, we can assign a flat
prior distribution to the prior p(θ|I) and write

p(θ|d,H, I) ∝ p(d|θ, H, I). (5.2)

Therefore, the maximum posterior coincides with the maximum likelihood.
Suppose we perform M independent measurements, yielding dk for k = 1, 2, . . . ,M . The

combined likelihood is subsequently given by

p({dk}|θ, H, I) =
M∏
k=1

p(dk|θ, H, I). (5.3)

Similar to Sec. 3.2.1, we assume that the experimental noise is governed by a Gaussian
stochastic process with zero mean. This means that the probability distribution of the noise
nk is given by

p(nk|I) = 1
σk
√

2π
exp

{
− n2

k

2σ2
k

}
, (5.4)

where σk is the standard deviation associated to the characteristics of the experimental noise.
We can turn this into a probability distribution for dk by assuming that dk = nk+fk, where the
function f relates the parameters θ to the expectation value of the data, i.e. fk(θ) = f(θ, k).
The expression in Eq. (5.4) can then be rewritten as

p(dk|θ, H, I) = 1
σk
√

2π
exp

{
− [dk − fk(θ)]2

2σ2
k

}
, (5.5)

Finally, the combined likelihood can be written as

p({dk}|θ, H, I) ∝ exp
[
−χ

2

2

]
, (5.6)
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where we have defined the variable χ2 as

χ2 ≡
N∑
k=1

[
dk − fk(θ)

σk

]2

. (5.7)

Therefore, the minimisation of χ2 is equivalent to the maximisation of the likelihood.

5.1.1 Gauss’ method

One way to minimise χ2 is through Gauss’ method. In this method, one expands the gener-
ative function f to linear order around θ, i.e.

f(θ + δθ, k) ≈ f(θ, k) + ∂fk
∂θj

δθj, (5.8)

where we assume that repeated indices are summed over. Then, Eq. (5.7) can be rewritten
as

χ2 =
[
dk − fk − Jkjδθj

σk

]2

, (5.9)

where Jij is called the Jacobian and is given by

Jij = ∂fi
∂θj

. (5.10)

We can simplify the notation by dividing all variables by σk and denoting them with a hat,
i.e. d̂k ≡ dk/σk. To find the minimum, we then solve for the set of simultaneous equations

∂δθiχ
2 = Ĵki

[
d̂k − f̂k − Ĵkjδθj

]
= 0. (5.11)

Rearranging this equation, we obtain the so-called normal equation

ĴkiĴkjδθj = Ĵki
(
d̂k − f̂k

)
. (5.12)

Starting from an initial guess θ1, Eq. (5.12) can be solved for δθ1 and the estimate updated
through θ2 = θ1 + δθ1. The algorithm will thus find the minimum through successive
iterations until the Jacobian yields the desired minimisation condition.

Gauss’ method has a rapid convergence near the optimal solution. However, solving the
normal equation does not guarantee that the updated estimate resides in a location where
the approximation Eq. (5.8) is valid. It is therefore not uncommon that Gauss’ method fails
to converge.
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5.1.2 Gradient method

Another method to find the minimum of a function f is to traverse in the negative direction
of the gradient ∇f . Thus, in order to get reach the minimum, we obtain the update on the
current state through the gradient of the χ2 in Eq. (5.7):

δθi = −κ
(
∇θχ2

)
i

= κĴki
(
d̂k − f̂k

)
, (5.13)

where κ ≥ 0 is a parameter to be adapted throughout the algorithm. Just as Gauss’ method,
the gradient method finds minima through iteratively updating the initial guess with δθ from
Eq. (5.13) until the conditions of a minimum are met.

5.1.3 Levenberg-Marquardt method

The Levenberg-Marquardt method combines Eqs. (5.12) and (5.13) into the so-called aug-
mented normal equation, (

ĴkiĴkj − λIij
)
δθj = Ĵki

(
d̂k − f̂k

)
, (5.14)

where Iij is the unit matrix and λ ≥ 0 is again a parameter to be tuned throughout the
course of the algorithm. Depending on the value of λ, the algorithm behaves either like
Gauss’ method or the gradient method. For large λ, the augmented normal equation becomes
similar to Eq. (5.13) and thus the gradient method. Conversely, for small λ, the augmented
normal equation becomes similar to Eq. (5.12) and thus Gauss’ method.

The algorithm decides on the value of λ according to several principles. Firstly, the value
of χ2 should decrease, i.e.

χ2 (θi+1) < χ2 (θi) . (5.15)

Secondly, the value of λ should be kept small enough to make sure that the linear expansion
in Eq. (5.8) is sufficient to validate the normal equation in Eq. (5.12).

5.2 Fisher information matrix

Suppose we have an experiment with a generative model H, the corresponding set of N
parameters θ, the observed data d and the background information I. We can then express
the posterior of θ by using Bayes’ theorem

p(θ|d,H, I) = p(d|θ, H, I)p(θ|H, I)
p(d|H, I) . (5.16)

The only factor on the RHS that depends on the data d and involves the parameters θ is the
likelihood p(d|θ, H, I). It is therefore evident that
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within the context of the specified model, the likelihood function p(d|θ, H, I)
contains all the information about the set of parameters θ that is present in the
data d.

This statement is often referred to as the likelihood principle. Using the likelihood principle,
we can argue that in order to assess the ability of an experiment to measure θ, we only need
to focus on the likelihood.

5.2.1 Resolving power of an experiment

Suppose that the data d consist of a set of M independent measurements

d = {x1, x2, . . . , xM} . (5.17)

The logarithm of the likelihood function is then given by

1
M

ln p(d|θ, H, I) = 1
M

M∑
i=1

ln p(xi|θ, H, I). (5.18)

In the limit of M →∞, we assume that the relative frequency of the values of xi is the same
as if the values were drawn from the sampling distribution p(x|θT , H, I), where θT is the true
value of θ. Therefore, we can assert that

lim
M→∞

1
M

ln p(d|θ, H, I) =
∫
p(x|θT , H, I) ln p(x|θ, H, I)dx

= E [ln p(x|θ, H, I)]x . (5.19)

We make the assumption that the true value of θT coincides with the maximum likelihood
value θ0. Next, we can expand the likelihood function around the maximum value θ0

ln p(x|θ, H, I) ≈ ln p(x|θ0, H, I) + 1
2

N∑
i,j=1

∂2 ln p(x|θ, H, I)
∂θi∂θj

∣∣∣∣∣
θ0

δθiδθj, (5.20)

where we have used the fact that the linear terms in this expansion disappear at the maximum
likelihood. Taking expectation values, we obtain the following expression

E [ln p(x|θ, H, I)]x ≈ E [ln p(x|θ0, H, I)]x + 1
2

N∑
i,j=1

E

 ∂2 ln p(x|θ, H, I)
∂θi∂θj

∣∣∣∣∣
θ0


x

δθiδθj. (5.21)

Rearranging this expression and using Eq. (5.19) we can write

lim
M→∞

1
M

ln
[
p(d|θ, H, I)
p(d|θ0, H, I)

]
= −1

2

N∑
i,j=1
Iijδθiδθj, (5.22)
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where the Fisher information matrix Iij is defined as

Iij ≡ −E

 ∂2 ln p(x|θ, H, I)
∂θi∂θj

∣∣∣∣∣
θ0


x

= −
∫
p(x|θ0, H, I) ∂

2 ln p(x|θ, H, I)
∂θi∂θj

∣∣∣∣∣
θ0

dx. (5.23)

Eq. (5.22) already gives us a hint that the Fisher information matrix is a measure of an
experiment’s resolving power for the parameters θ. Formally, the Fisher information matrix
can be shown to follow the Cramer-Rao bound [38, 39]

σ2(θi) ≥
(
I−1

)
ii
, (5.24)

i.e. the diagonal elements of the inverse Fisher matrix give a lower bound on the variances
expected from an experiment.

5.2.2 Fisher Matrix in gravitational-wave data analysis

Suppose that the detector output is given by

s(t) = h(t,θ) + n(t), (5.25)

where n(t) is the noise described by a Gaussian stochastic process, cf. Sec. 3.2.1, and h(t,θ)
denotes the GW which depends on the set of N parameters θ. The probability distribution
of the detector output is given by

p(s|θ) ∝ exp
{
−1

2

∫
dt1dt2 n(t1)Ω(t1, t2)n(t2)

}
∝ exp

{
−1

2

∫
dt1dt2 [s(t1)− h(t1;θ)] Ω(t1, t2) [s(t2)− h(t2;θ)]

}
, (5.26)

where we have replaced the auto-correlation function R from Eq. (3.10) with

Ω(t1, t2) ≡ R−1(t1, t2). (5.27)

Consequently, the Fisher matrix is given by

Iij ≡ −E

 ∂2 ln p(s|θ, H, I)
∂θi∂θj

∣∣∣∣∣
θ0


s

= −
∫
Dsdt1dt2 p(s|θ0, H, I)

{
∂2h

∂θi∂θj
(t1;θ0)Ω(t1, t2) [s(t2)− h(t2;θ0)]

− ∂h
∂θi

(t1;θ0)Ω(t1, t2) ∂h
∂θj

(t2;θ0)
}
, (5.28)
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where
∫
. . .Ds denotes the functional integral over all possible data realisations. Next, we

assume that the SNR is high and that first term on the RHS can be neglected compared to
the second term. We can thus write

Iij ≈
∫
dt1dt2

{
∂h

∂θi
(t1;θ0)Ω(t1, t2) ∂h

∂θj
(t2;θ0)

}∫
Ds p(s|θ0, H, I)

≈
∫
dt1dt2

{
∂h

∂θi
(t1;θ0)Ω(t1, t2) ∂h

∂θj
(t2;θ0)

}

≈
∫
df1df2

{
∂̃h

∂θi
(f1;θ0)Ω̃(−f1,−f2) ∂̃h

∂θj
(f2;θ0)

}
. (5.29)

From Eq. (3.11) and Eq. (5.27), we can verify that

Ω̃(f1, f2) = δ(f1 + f2)
1
2Sn(f1) . (5.30)

Inserting Eq. (5.30) into Eq. (5.29), we have

Iij ≈
∫
df1df2

{
∂̃h

∂θi
(f1;θ0)δ(−f1 − f2)

1
2Sn(−f1)

∂̃h

∂θj
(f2;θ0)

}

≈
∫
df2

{
∂̃h

∂θi
(−f2;θ0) 1

1
2Sn(f2)

∂̃h

∂θj
(f2;θ0)

}

≈
∫
df2

{ ˜∂h
∂θi

∗
(f2;θ0) 1

1
2Sn(f2)

∂̃h

∂θj
(f2;θ0)

}
, (5.31)

where we have used the fact that h(t) is real. Finally, with the definition of the inner product
in Eq. (3.22), we can write

Iij =
(
∂h

∂θi

∣∣∣∣∣ ∂h∂θj
)∣∣∣∣∣
θ0

. (5.32)

Therefore, the ability for GW detectors to measure parameters can be estimated by the
knowledge of the waveform and the power spectral density.

5.3 Monte Carlo methods

What we have seen so far are methods to obtain specific pieces of information from a tar-
get distribution, e.g. Levenberg-Marquardt algorithm to find the maximum and the Fisher
information matrix for the variance. To get a complete picture, one would like to obtain
the full probability (density) function, P (x). However, it is often the case that one only has
access to a function P̃ (x), where

P (x) = P̃ (x)
Z

, (5.33)
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i.e. one does not have access to the normalisation constant Z. Furthermore, even if one
has access to Z, evaluating P (x) in a high-dimensional space can be cumbersome, even for
modern computers.

To alleviate this problem, one can resort to the use of Monte Carlo methods. Monte Carlo
algorithms are computational techniques that use random numbers to generate samples from
a desired probability distribution P (x). The goal is thus to generate a set of samples

{
x(r)

}
from P̃ (x).

5.3.1 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods form a subclass of Monte Carlo methods that
sample the desired distribution P (x) by using an object that transitions from one location of
the parameter space to another. An MCMC method is characterised by an initial distribution
p(0)(x) and a transition probability T (x′, x). The probability distribution of the state at the
t+ 1th iteration of the Markov chain is given by

p(t+1)(x′) =
∫
dx T (x′, x)p(t)(x). (5.34)

The Markov chain must posses two properties [37]. Firstly the desired distribution P (x)
is an invariant distribution of the chain. The invariance of a distribution π(x) under the
transformation T (x′, x) is given by

π(x′) =
∫
dx T (x′, x)π(x). (5.35)

Alternatively, the chain must satisfy detailed balance, i.e.

T (xa, xb)P (xb) = T (xb, xa)P (xa). (5.36)

Secondly, the chain must be ergodic, i.e. tend to an invariant distribution Λ(x) under the
transformation T (x′, x). This can be written as

p(t)(x)→ Λ(x) as t→∞ for any p(0)(x). (5.37)

5.3.2 Metropolis-Hasting sampling

The Metropolis-Hastings algorithm is an MCMC method that aims to sample from a target
distribution that is inherently difficult to sample by using a different distribution from which
we do know how to sample.

The Metropolis-Hastings algorithm works as follows. A new sample x(t+1) is generated
from the proposal distribution Q(x;x(t)). The transition from x(t) to x(t+1) depends on the
acceptance a, where

a = P (x′)
P (x(t))

Q(x(t);x′)
Q(x′;x(t)) . (5.38)
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If the proposal distribution is symmetric, such as for a Gaussian distribution, the acceptance
simply becomes

a = P (x′)
P (x(t)) . (5.39)

Subsequently, the new sample x(t+1) is chosen according to

if a ≥ 1:
x(t+1) = x′

else:

x(t+1) =

x′ with probability a
x(t) with probability 1− a.

(5.40)

The disadvantage of the Metropolis-Hastings algorithm is that it produces correlated samples.
Hence, samples should only be kept for every n iterations, such that n steps in the proposal
distribution are larger than the auto-correlation length of the proposal distribution. As an ad-
vantage, the proposal distribution does not need to match the target distribution in order for
the Metropolis-Hasting algorithm to be practically useful. Therefore, the Metropolis-Hastings
algorithm is a generically useful approach to sample distributions such as the posterior or
the prior.

5.4 Nested Sampling

We now turn to the calculation of the evidence

p(d|H, I) =
∫
dNθ p(d|θ, H, I)p(θ|H, I)

=
∫
dNθ L(θ)π(θ), (5.41)

where L(θ) represents the likelihood and π(θ) represents the prior. The calculation of the
evidence is crucial in performing hypothesis testing, cf. Sec. 4.3. In this section, we describe
Nested Sampling, which is an algorithm aimed at efficiently computing the evidence integral
Eq. (5.41), even if the parameter space is large or has a high dimensionality. As an op-
tional by-product, Nested Sampling also outputs the posterior distribution at minimal extra
computational cost.

5.4.1 Basic idea

Nested Sampling computes the evidence by rewriting the functions in Eq. (5.41) that depend
on the set of N parameters θ in terms of a single scalar variable called the prior mass X.
This prior mass is defined as “the fraction of the prior volume with likelihood greater than
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λ”. Mathematically, the prior mass is defined as

X(λ) ≡
∫ ∫

· · ·
∫
L(θ)>λ

π(θ)dNθ. (5.42)

In other words, the prior mass corresponds to the prior integrated over the hypervolume in
the N -dimensional parameter space Θ which is bounded by the hypersurface characterised
by L = λ, as show in the top left panel of Fig. 5.1. The element of the prior mass is given by

dX = π(θ)dNθ. (5.43)

Since the prior probability density function π(θ) is normalised with respect to θ, the prior
mass has a range of X ∈ [0, 1]. The lower bound X = 0 corresponds to the surface within
which there is no higher likelihood, thus associated to λ = Lmax. The upper bound X =
1 corresponds to the surface where all the points inside have a higher likelihood, and is
associated to λ = Lmin.

We can now transform the factors in Eq. (5.41) to functions depending on the prior mass.
Firstly, the likelihood function can be expressed as

L̃(X(λ)) ≡ λ. (5.44)

where L̃(X) is a monotonically decreasing function. An example of L̃(X) is shown in the top
right panel of Fig. 5.1. Secondly, we can rewrite the evidence integral to be

Z =
∫ ∫

· · ·
∫
L(θ)π(θ)dNθ

=
∫
L̃(X)dX. (5.45)

The evidence is thus the area under the L̃(X) curve as shown in the bottom left panel of
Fig. 5.1. Lastly, the posterior P (θ) is given by

P̃ (X) = L̃(X)
Z

. (5.46)

This posterior is obtained by sampling the curve L̃(X) as shown in the bottom right panel
of Fig. 5.1.

The idea behind Nested Sampling is thus to construct the function L̃(X). This is done by
progressively finding locations in the parameter space with higher likelihood and assigning
a progressively smaller prior mass to these locations (as L̃(X) is a monotonically decreasing
function). Once L̃(X) has been mapped, the assignment of the evidence and the posterior
can be done with Eqs. (5.45) and (5.46). Before we explain the Nested Sampling algorithm
further, we can elucidate the concepts thus far with two examples from Skilling [40].
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θ1

θ2

10 XX3 X2 X1

10 X 10 X

Area Z

L̃ L̃

L̃

posterior
samples

L1

L2

L3

L1

L2

L3

Figure 5.1 – Schematic example of the transformation of the evidence integral from a multi-
dimensional integral into a single dimensional one. The top left panel shows the equal likelihood
contours in the (θ1, θ2) plane of the parameter space Θ. The black lines represent the contours
for equal-likelihood and the area inside represents the prior probability subject to the likelihood
constraint L > Li, the prior mass. The top right panel shows the likelihood as a function of the
prior mass L̃(X). The bottom left panel shows that the evidence is simply given by the area under
the L̃(X) curve. The bottom right panel is a depiction of posterior samples obtained by sampling
the L̃(X) curve.
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Example 1

Suppose we have a two dimensional parameter space and the corresponding likelihood func-
tion, represented by a 4× 4 grid

L =


0 8 15 3
11 24 22 10
19 30 26 16
9 23 18 6

 . (5.47)

To each cell of the 16 cells, we assign an equal prior mass element of ∆X = 1/16. The idea
of Nested Sampling is to sort the likelihood elements starting with the lowest value of the
likelihood, which in this case is given by

L = (0, 3, 6, 8, 9, 10, 11, 15, 16, 18, 19, 22, 23, 24, 26, 30). (5.48)

To get the evidence, one approximates the integral in Eq. (5.45) by

Z =
∫
L̃(X)dX

≈
∑
i

L̃i∆Xi, (5.49)

and evaluates the evidence to be

Z = 0 + 3 + 6 + 8 + 9 + 10 + 11 + 15 + 16 + 18 + 19 + 22 + 23 + 24 + 26 + 30
16

= 5. (5.50)

Having sorted the two dimensional likelihood into a one dimensional array, we can now
approximate the likelihood for X = 1/5 by the fourth item (roughly a fifth of the sixteen
items) counting from the right, from the sorted list. The associated likelihood is thus L̃(X =
1/5) ≈ 23 (remember that X = 1/5 confines a fifth of the total prior volume in which
the likelihood is greater than the likelihood of the boundary). The corresponding area in
parameter space is shown in grey

L =


0 8 15 3
11 24 22 10
19 30 26 16
9 23 18 6

 . (5.51)

Example 2

In the second example, we do not assume that the likelihood has already been mapped.
Suppose we first drop 3 so-called live points uniform with respect to the prior. On the left
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panel of Fig. 5.2 these points are denoted by the numbers 1, 3, 4. Their associated prior mass
Xi is shown in the right panel of Fig. 5.2. Point 1 has the lowest likelihood L1 and the
highest prior mass X1. We assume for the moment that we know how to assign the prior
mass according to a given likelihood. Finally, we store its location in the parameter space
θ1, its prior mass X1 and its likelihood L1.

1

2

3

4

5

6

7
8

θ1

θ2

8

7

6

5

4

3

2

1

X = 1

X = 0

Figure 5.2 – Schematic overview of the Nested Sampling algorithm with 3 so-called live points and
5 iterations. The left panel shows the locations in the parameter space which either of the three live
points have explored. The right panel shows these same locations, but now in terms of the prior
mass.

Next, we discard the point with the lowest likelihood (point 1) from our set of live points
and sample a new point from the prior, but now with the constraint that L > L1. This new
point is denoted by point 2. Note that the remaining live points (points 3 and 4) automatically
satisfy the condition L > L1. Again, we find the live point with the smallest likelihood, which
turns out to be point 2 (note that it is not necessary that the newly drawn point has the
lowest likelihood value; it only has to obey the condition L > L1). Since L2 > L1, we know
that the prior mass for point 2 must satisfy X2 < X1. As with X1, the parameters of point
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2 are stored and the point is subsequently discarded from the set of live points in favour of
again a new point, but now subject to the adjusted likelihood condition L > L2. After 5
iterations, we have collected 5 sorted points (1,2,3,4,5) from the L̃(X) curve, which allows us
the perform the integral in Eq. (5.45) and obtain an estimation of the evidence.

5.4.2 Algorithm

Probabilistic estimation of the prior mass

Although there is a correspondence between the parameter space Θ and the prior mass X,
the mapping might not be trivially done through brute-force computation if the parameter
space is large or if the dimensionality is high. Instead, Nested Sampling seeks to assign the
prior mass statistically.

Suppose we have two points in the parameter space θ0, θ1, their corresponding likelihoods
L0, L1 and prior masses X0, X1, respectively. If L1 > L0, then, from the definition of the
prior mass in Eq. (5.42), we can assert that

X0 > X1 for L0 < L1. (5.52)

Furthermore, from Eq. (5.43), we know that the density of states of the prior mass is equal
to the density of states of the prior in the parameter space. Therefore, if we sample the
prior in the parameter space subject to the constraint L > L∗, we know we are sampling
the prior mass uniformly between 0 < X < X∗, where X∗ is the prior mass corresponding
the likelihood value L∗. With this in mind, we can now statistically assign a prior mass
corresponding to the exploration of our parameter space.

Suppose we drop M samples across the entire parameter space, labelled by an index
i, according to the prior probability distribution. Each of these samples has a likelihood
associated with it through its location in the parameter space. Thus, we know that each
of these samples is associated to a surface within which the likelihood is higher than at the
boundary. Equivalently, we know that these samples are uniformly sampled in the entire
prior mass region (between 0 and 1). Therefore, each sample in prior mass can be considered
to be drawn from

X ∈ U(0, 1), (5.53)

where U(0, 1) represents the uniform distribution in the interval [0, 1). The probability that
the prior mass is drawn with a value less than some X is given by

P (X) =
∫ X

0
dX ′

= X. (5.54)

If we define the X∗ to be the highest prior mass, then we know this surface has a corres-
ponding likelihood L∗ that is the smallest of the set of M likelihoods. The probability that
the surface with the highest prior mass is at X = χ is therefore given by the joint probability
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that none of the samples have a prior mass greater than χ. This joint probability distribution
is thus

P ({Xi} < χ) =
M∏
i

∫ χ

0
dXi

=
M∏
i

χ

= χM . (5.55)

The probability density that the highest of M samples has a prior mass of χ is subsequently
given by

P (χ,M) = ∂P (Xi < χ)
∂χ

= MχM−1. (5.56)

Similarly, if we sample M points from the prior within the region 0 < X < X∗, we can
define the shrinkage ratio t ≡ X

X∗
. The shrinkage ratio follows the same distribution as χ in

Eq. (5.56)

P (t,M) = MtM−1, (5.57)

and the prior mass X can then be obtained by X = tX∗.

Sampling the constrained prior

The main difficulty of Nested Sampling is sampling the prior subject to the constraint L > L∗.
For most problems, the prior cannot be straightforwardly sampled and one has to resort to
Monte Carlo methods.

The specific details of sampling the constrained prior are unimportant to the Nested
Sampling algorithm, as long as one is able to obtain (approximately) independent samples.
It therefore suffices to use a Monte Carlo method. A common method used in conjunction
with Nested sampling is the Metropolis-Hastings algorithm, explained in Sec. 5.3.

Termination condition

The steps described above can, in principle, be repeated ad infinitum and can be used to
acquire an increasingly better estimate of the evidence. In practice, one would like to have a
termination condition that ensures a good evidence estimation in the least amount of time.

Although there is no obvious termination condition associated to Nested Sampling, several
practical guidelines can be applied. Firstly, one can estimate the information as a function
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of the evidence and the likelihood

H =
∫
P (X) ln (P (X)) dX

≈
∑
k

Lk
Z

ln Lk
Z

∆Xk, (5.58)

where P (X) is the posterior density as a function of the prior mass. As most of the evidence
is found within X = e−H, one can terminate the algorithm when most of the information is
acquired [37].

Secondly, one can estimate the amount of evidence yet to be accumulated and compare
that to the evidence already accumulated. The algorithm can be stopped if the remaining
evidence is a user-specified fraction of the evidence already accumulated. For example, we
can assume that all the remaining points have a likelihood equal to the maximum likelihood
in the set of live points Lmax. The termination condition then becomes

LmaxXcur < αZcur, (5.59)

where α is a user-specified constant.
Ultimately, the termination condition will depend on the specifics of the likelihood and the

prior. Therefore, a termination condition is usually found through trial and error, satisfying
the required accuracy as well as optimising for the computation time.

Computing the posteriors

Although Nested Sampling is mainly aimed at producing the evidence, it can also estimate
the posterior as a by-product. Recall that Nested Sampling stores a set of locations {θk} in
the parameter space, the associated likelihoods {Lk} and prior masses {Xk}. Each of the
samples θi obtained from the Nested Sampling algorithm occupies a fraction of the posterior
distribution given by the associated fraction of prior volume and the likelihood value at θi,

wi = L(θi)∆Xi

Z
. (5.60)

This fraction of the posterior wi is then the weight given to each sample in order to construct
the posterior distribution.

Nested Sampling in pseudo-code

We can summarise the Nested Sampling algorithm in terms of pseudo-code. We assume the
algorithm to run with M live points and that the sampling of the prior with a likelihood
constraint does not pose computational problems.

1. Sample M points θ1, . . . ,θM from prior π(θ).
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2. While not termination condition

(a) record live point i with lowest Li as Lk,
(b) assign Xk = tkXk−1 where tk from P (tk) = MtM−1

k ,
(c) replace point i with sample from π(θ) subject to Li > Lk.

3. Estimate Z by integrating {Lk, Xk}.

5.4.3 Accuracy of Nested Sampling

There are several uncertainties that can be associated to the probabilistic nature of the Nested
Sampling algorithm. Firstly, the probabilistic determination of the prior mass introduces an
uncertainty that is linked to the spread of the distribution in Eq. (5.57).

Suppose we use a series of shrinkage factors denoted by t. One can quantify the statistical
properties of the evidence and the posterior by evaluating its jth moment

E
[
Zj
]
t

=
∫

[Z(t)]j P (t)Dt, (5.61)

E
[
(P (θk))j

]
t

=
∫

(P (θk, t))j P (t)Dt. (5.62)

Computationally, we can achieve this by generating the series of shrinkage factors a number
of times with a different state of the random number generator. With a collection of series
of shrinkage factors, we can obtain a collection of evidences from which we can obtain the
statistical properties. Note that this does not require us to rerun the algorithm as the
likelihood values are obtained independent of the values of the prior mass.

As it turns out, this contribution to the uncertainty decreases with the number of live
points used. This can be seen by evaluating the variance of Eq. (5.57), given by

σ2
t = M

(M + 1)2 (M + 2)
. (5.63)

We see that the uncertainty goes to zero in the limit of large M . Therefore, providing a
sufficient number of live points reduces the uncertainty in the distribution of t.

Secondly, the imperfect sampling of the prior is a source of uncertainty. This kind of
uncertainty affects the set of likelihoods from our live points and ultimately affects the as-
signment of the prior mass. However, this uncertainty depends on the details of the method
used to sample the prior. A quantification of this source of uncertainty can be obtained
by running the algorithm a number of times with a different state of the random number
generator.

The accuracy of Nested Sampling will ultimately depend on the problem at hand. The
choice for the number of live points and the method used to sample the prior depends largely
on the shape and dimensionality of the likelihood and prior.
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5.4.4 Nested Sampling in gravitational-wave data analysis

Consider a data stream s that represents the strain output of the interferometer. The data
stream can consist of noise, n, and the GW signal, h. We can compute the evidence for the
following two hypotheses.

1. HN is the noise-only model. It assumes that the detector strain only results from noise
sources, i.e.

s = n. (5.64)

This model has no free parameters, as it is only a function of the noise.

2. HS is the signal model. This model assumes that the detector response consists of the
true GW signal embedded in noise, i.e.

s = n+ hS. (5.65)

This hypothesis does depend on the signal parameters θS through hS.

To obtain the desired odds ratio, one needs to compute the evidences P (s|Hi, I) for each of
the two aforementioned hypotheses (cf. Eq. (4.32)). Assuming that the noise is governed by
a Gaussian stochastic process (see Eq. (5.4)), the evidence for the noise-only hypothesis HN

is given by

P (s|HN , I) ∝ e−(s|s)/2, (5.66)

For the signal hypothesis HS, the evidence is given by

P (s|HS, I) ∝
∫
dNθ e−[s−h(θ)|s−h(θ)]/2π(θ), (5.67)

where the model waveform h can be different from the signal waveform hS. For example, a real
GW will be different from a waveform obtained by using the PN formalism. In simulations,
such differences can be introduced by using different approximations of the waveform. The
evidence integral can be computed with the Nested Sampling algorithm. However, one still
needs to choose the appropriate prior probability function for the GW parameters. The choice
of priors are left to be discussed when the method parameters are chosen for the simulations
(see Sec. 8.1.2).

Finally, the joint likelihood for the coherent analysis of the output from multiple detectors
is simply the product of the individual likelihoods

P (scoh|Hi, I) =
∏
j

P (sj|Hi, I), (5.68)

where the index j runs over the individual detectors considered, and the Hi is either the
noise or signal hypothesis.
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Testing the strong-field dynamics of general
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CHAPTER 6

INTRODUCTION

6.1 Classic tests

Einstein’s theory of GR is known for its mathematical elegance, but the theory also acquired
great success through its agreement with experiments. Three tests of GR are considered
to be the classic tests. The first classic test was the correct explanation of the anomalous
perihelion advance of Mercury. Despite careful analyses, Newton’s laws could not account for
an excess of 43 arc seconds per century in the perihelion shift, discovered as early as 1845 by
Le Verrier [41]. In 1915, Einstein showed that his theory of GR could explain this anomalous
shift, without the need of an ad hoc solution such as an extra planet [42].

The second classic test was the measurement of the deflection of light by the Sun. As
light grazes the surface of the Sun it is deflected by the mass of the Sun. Based on Newtonian
arguments, this deflection was calculated to be 0.88 arc seconds, whereas GR predicted this
to be 1.75 arc seconds. Two teams led by Eddington measured the positions of stars before
and during the solar eclipse of 1919. The measurements of the angular displacement by
the two groups confirmed the prediction by GR [43]. However, these results were later met
with skepticism over systematic errors. Nevertheless, upon the announcement of the results,
Einstein and his theory of GR became world famous.

The third test, the measurement of the gravitational redshift, was already hypothesised
by Einstein in 1907. It was not until 1960 that Pound and Rebka measured the redshift
associated to the non-uniformity of the gravitational field [44]. In this experiment, photons
were sent down the seventy-four feet tower of the Jefferson Physical Laboratory (Harvard
University) and their frequency was measured at the ground. The resulting shift in frequency
was consistent, up to a few percent in accuracy, with Einstein’s prediction that photons gain
energy, i.e. are measured with a higher frequency, as they go down the Earth’s gravitational
potential. Similarly, photons were found to lose energy when they were sent upwards. This
experiment confirmed the influence of a massive object on spacetime itself. The measurement
of the gravitational redshift sparked a period of precision tests of GR.
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6.2 Precision tests

As technology improved over the years, new tests of GR were devised in order to put Einstein’s
theory under scrutiny. Most of these tests could not be performed in a regular laboratory, as
the distances were too short and objects not massive enough. Instead, the solar system and
beyond became the test bed for GR.

The sheer volume of different precision tests that were performed makes it impossible to
review them all. However, below is a list of a few notable tests.

• Shapiro time delay: As radar signals graze a massive object, they experience a time
delay in a round-trip due to the gravitational potential [45]. The most accurate test
on this phenomenon was done by the Cassini-Huygens spacecraft and its result is in
accordance with the predictions made by GR to less than 2× 10−3% [46].

• Gravitational lensing: Similar to the deflection of light by the Sun, gravitational lensing
occurs through the deflection of light by massive objects. Such massive objects, e.g.
galaxies or galaxy clusters, act like a lens for light, magnifying and distorting the
images observed here on Earth [47]. Measurements of the deflection of radio waves by
the solar gravitational field using a technique called very-long baseline interferometry
(VLBI) constrain GR to ∼ 1× 10−2%. [48].

• Nordtvedt effect: If the Earth and the Moon were to have different fractional contribu-
tions from self-gravitation to the mass, i.e. the equivalence principle is violated, they
would each behave differently under the Sun’s gravitational field, causing a shift of the
orbit between the Earth and the Moon [49]. The most up to date measurement of this
effect is done through laser observation on the Earth-Moon system [50]. The so-called
Nordtvedt parameter is found to be η = (−0.6± 5.2)× 10−4, where η = 0 corresponds
to GR.

• Lense-Thirring effect: GR predicts the existence of a relativistic correction to the pre-
cession of a gyroscope near a large rotating mass, called the Lense-Thirring effect [51].
Gravity Probe B reported a geodetic drift rate and a frame-dragging drift rate that
are consistent with the predictions by GR up to ∼ 6 × 10−2% and ∼ 5% in accuracy,
respectively [52].

6.3 Binary Pulsars

As impressive as the solar system tests of GR have been on the technological side, the regime
in which GR was tested does not compare with the fully dynamical and non-linear aspects
that are predicted by GR. The measurements of GWs could be the primary means through
which experiments will have access to these aspects of GR.

A first realisation of such measurements, albeit indirect, came from the discovery of the
binary pulsar system PSR B1913+16 by Hulse and Taylor [35]. This binary system consists
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of a pulsar and a companion NS, spiralling around each other. As the two objects go through
their orbital motion around their common centre of mass, the orbital separation decreases
as GWs carry away energy and angular momentum. Through precise measurements on the
pulsar, one can infer the system’s characteristics, and in particular, the change in the orbital
period. As it turns out, this change is in close agreement with the quadrupole emission of
GWs, described in Sec. 1.6.2, and leaves little room to doubt the quadrupole formula for the
emission of GWs.

In order to gauge the regime in which tests of GR reside, it is instructive to look at two
dimensionless quantities, the speed and the compactness. The dimensionless speed, v/c, gives
us an insight into how significant relativistic effects are on the system. The compactness,
GM
c2R

, where M denotes the total mass of the system and R the orbital separation, shows the
strength of the gravitational potential relative to the rest energy of a test particle.

Even the most relativistic binary pulsar, PSR J0737-3039 [53, 54], is still in the relat-
ively slowly varying, weak-field regime from a GR point of view, with a compactness of
GM/(c2R) ' 4.4 × 10−6, and a typical speed of v/c ' 2 × 10−3. As a reference, the com-
pactness at the Sun’s surface is of the order of 10−6 and the typical speed of Mercury is of
the order of 10−4. It is thus evident that even the binary pulsar systems, which are currently
providing the most stringent tests of GR, are still mildly relativistic in nature.

6.4 Gravitational Waves

The direct detection of GWs with interferometric detectors such as LIGO and Virgo will
provide more stringent tests of GR than binary pulsar measurements. As a comparison,
for CBC systems, in the limit of a test particle around a non-spinning BH, the last stable
orbit [1] occurs at a separation of R = 6GM/c2, where GM/(c2R) = 1/6 and v/c = 1/

√
6.

This constitutes the genuine strong-field, dynamical regime of GR, which, in the foreseeable
future, will only be directly accessible by means of GW detectors.

6.4.1 Literature overview

Indeed, an important goal of direct detections of GWs is the confirmation or falsification of
GR in the truly strong-field and dynamical regime. Even as much as a single detection of
GWs can make countless experiments that were in accordance with GR redundant. There
exists a rich literature in which a number of tests were proposed that can be performed on
the direct detection of GWs. What follows is a brief overview of these tests.

Gravitational-wave properties

One way to test GR is to look at the properties of GWs. For example, GWs propagate at
the speed of light. If a GW event is measured with an associated electromagnetic event,
one can compare their arrival times. If the source distance is large enough, even a small
fractional difference in the speed at which these two types of waves propagate, could lead to
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a measurable mismatch in their arrival times. Theories such as the Rosen bi-metric theory
[55], where GWs follow geodesics of a flat metric and light follows geodesics of a curved
metric, and massive graviton theories [56, 57] would both predict such a difference in the
arrival times between light and GWs.

Another property of GWs in GR is that they can be described by only two polarisations,
as shown in Sec. 1.3. In alternative theories, this is not necessarily true. For example, the
Brans-Dicke theory [58] predicts a monopole polarisation, which manifests itself as a so-called
breathing mode [59–63]. When a wave arrives perpendicular to the plane of circularly aligned
test masses, such a mode would cause the entire ring of test particles to expand uniformly
and is therefore invisible to a single interferometric detector, cf. Sec. 1.4.3 and Sec. 3.1.1.
However, a network of detectors does provide the opportunity to measure such a polarisation
[64, 65]. A single measurement of the monopole polarisation would also provide evidence
that GR may not be the correct theory.

Additionally, one can test the objects that GR predicts. Most notable of such objects are
BHs. As the interaction of non-charged BHs is a pure spacetime phenomenon, this provides
an excellent way to study the predictions made by GR. Measurements of the BH properties,
such as its mass and spin, can empirically test, for example, Penrose’s cosmic censorship
conjecture [66, 67] and the BH uniqueness theorem [67–73].

Direct search for an alternative theory

Besides the searches for unpredicted phenomena, studies have targeted the evolution of binary
systems. These tests have focussed on modelling the expected GWs from alternative theories,
and the ability to measure the difference between these and the predictions made by GR.

Possible deviations from GR that have been considered in the context of CBC systems
include scalar-tensor theories [74–79], a varying Newton constant [80], modified dispersion
relation theories, usually referred to in literature as ‘massive graviton’ models1 [78, 79, 82–
87], and parity violating theories [88–91]. The (rather few) specific alternative theories of
gravity that have been considered in the context of ground-based GW detectors – essentially
scalar-tensor and ‘massive graviton’ theories – happen to be hard to constrain much further
with GW observations. However, GR may be violated in some other manner, including a way
that is yet to be envisaged. This makes it imperative to develop methods that can search for
generic deviations from GR.

1The designations ‘massive gravity’ and ‘massive graviton’ originate from Blanchet et al. [81] where only
the effect of a modified dispersion relation, or a wavelength dependent propagation speed has been taken
into account. While it is attractive to ascribe such a modification to a graviton mass, a modification of the
dispersion relation can be a more general effect, and moreover, endowing the graviton with a mass introduces
additional deviations from GR than a mere modified dispersion relation. See e.g. the original work by Van
Dam and Veltman [56] and the recent work by Rham et al. [57] for a thorough discussion of the issues related
to massive gravity models.
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Generic searches

Recently, more generic tests of GR through the measurement of GWs have been proposed.
One of such tests is due to Arun et al. and exploits the fact that, at least for binaries where
neither component has spin, all coefficients ψi in the PN expansion of the inspiral phase,
given by Eq. (2.89), depend only on the component masses. In that case, only two of the
ψi are independent. A consistency test of GR can then be constructed by measuring these
phase coefficients as extra independent parameters and by comparing any three of them
[92–94]. Such a method would be very general, in that one does not have to look for any
particular way in which gravity might deviate from GR. Instead, it allows generic failures of
GR to be searched for. However, so far its viability was only explored by means of Fisher
matrix calculations. Recently, the same philosophy of a consistency check was applied to the
quasi-normal modes, and constitute a test of the BH uniqueness theorem [67].

Another proposal is due to Yunes and Pretorius and has been named the parameterised
post-Einsteinian (PPE) formalism [95]. The PPE waveform extends the GR predicted wave-
forms in the frequency domain with extra amplitude and phase terms. The coefficient and
the power of the frequency of the extra terms are left as free parameters. Popular alternative
theories are then, up to leading order, cast into the PPE waveform and assigned appropriate
values for the PPE parameters [80, 91, 95–101]. A real measurement of the PPE parameters
could then reveal the nature of the alternative theory.

In Ch. 3, it was already mentioned that parameter estimation is not the correct framework
to test physical theories. Even if the method by Arun et al. or the PPE formalism measures
a value of a parameter that conflicts with GR, it does not mean that an alternative theory
is more plausible than GR. To answer that question, one needs the framework of model
selection. For that, one needs to define two competing hypotheses. One of the hypotheses
is the GR hypothesis, which simply states that the observed signal is as predicted by GR.
However, the definition for the other hypothesis, in the case of a generic search for GR, is a
more challenging task.

6.5 Test Infrastructure for GEneral Relativity (TIGER)

As with any test of a physical law, each of the proposed tests will inevitably have its problems
and limitations. For instance, targeted searches will be limited in their testing power as one
has to choose the alternative a priori. With the variety of alternatives available, this will
prove to be a daunting task.

Generic searches, such as the consistency test by Arun et al., will indeed be a very
generic test of the validity of GR, but has limited power to discriminate between different
alternatives. Furthermore, the measurement of multiple extra parameters will inevitably
diminish one’s ability to infer parameters such as the component masses. Especially in the
Advanced detector era, where SNRs are expected to be low, poor parameter estimation could
be a severe problem. Moreover, it is not immediately clear how one combines information
from multiple sources in the case of generic searches such as the consistency test by Arun
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et al.. To illustrate, suppose we find that for five out of a hundred signal, the signals are
inconsistent with GR. Would we assign a five percent probability that GR is violated? What
if the five signals show large deviations from GR? Indeed, in the way these generic searches
are set up, it is not possible to combine information from multiple sources.

In a search for alternative theories through the measurement of free parameters, one can
also be led to an erroneous conclusion if the form of the extension does not exactly model
the deviation. This is sometimes referred to as the fundamental bias [95]. Unfortunately, no
certainty can be obtained unless all functional forms of the extension are tested and compared
to one and another. Even if one were to have modelled the deviation in an exact manner,
the issue of poor parameter estimation, as explained above, can severely limit the confidence
one can assign to a specific alternative theory.

What is called for is a new inference framework which avoids the aforementioned problems,
while still being exhaustive in its use of the deviations allowed by the model waveforms. Such
a framework should comply to the following.

• Be able to test the validity of GR in a generic way.

• Based on hypothesis testing instead of parameter estimation.

• Usable with any waveform approximation or parameterisation of the waveform.

• Avoid explicit and simultaneous estimation of a large set of free parameters, i.e. suitable
in the low SNR regime.

• Coherently analyse information from multiple sources.

In what follows, we present Test Infrastructure for GEneral Relativity (TIGER), a frame-
work that incorporates all these restrictions. The method is loosely based on the proposal
by Arun et al., in the sense that the framework asks whether coefficients predicted by GR
are consistent with the data. However, we start with the application of Bayesian hypothesis
testing, in which we try to compare the hypothesis that GR is correct with the hypothesis
that GR is incorrect.

In Ch. 7, we will introduce the theoretical framework behind TIGER, and show how one
can construct a generic test of GR using Bayesian hypothesis testing. In Ch. 8, we will
put the theoretical framework of TIGER to the test through comprehensive simulations of
Advanced LIGO/Virgo data. These simulations give insight into the efficiency of TIGER to
detect arbitrary deviations from GR. Finally, in Ch. 9, we discuss the results and compare
them to existing results in the literature.
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CHAPTER 7

TEST INFRASTRUCTURE FOR GENERAL
RELATIVITY (TIGER)

We will now proceed to introduce TIGER. As was mentioned before, TIGER seeks to test
GR by finding the answer to the question “is the measured waveform consistent with GR?”.
In Ch. 4, we have seen that we need to apply the framework of hypothesis testing in order
to answer this question.

As the GW phase is predominantly given by twice the orbital phase of the binary, cf.
Sec. 1.6 and Sec. 2.6, it is particularly sensitive to the underlying laws that govern the
dynamics of binary systems. This suggests that if GR were to be incorrect, imprints of the
alternative theory can be found in the phase of the GW. As it turns out, the advanced
detectors are not sensitive to the subdominant contributions to the amplitude [66, 102].
Without loss of generality, we will therefore consider the phase to be the only possible location
of a deviation. However, it is important to bear in mind that TIGER can be applied to any
parametrisable part of the waveform e.g. the amplitude in Eq. (2.72), the orbital energy in
Eq. (2.65) or luminosity Eq. (2.66). Indeed, an exhaustive test ought to consider deviations
in all measurable aspects of the GW.

7.1 Defining the odds ratio

The central quantity in hypothesis testing is the odds ratio, given by Eq. (4.32). In order to
evaluate the odds ratio, we need to define the hypotheses that are to be compared. The two
hypotheses we would like to consider are “the waveform has a functional dependence as pre-
dicted by GR”, denoted by HGR, and “the waveform does not have a functional dependence
as predicted by GR”, denoted by HmodGR. The relevant odds ratio is then given by

OmodGR
GR ≡ P (HmodGR|d, I)

P (HGR|d, I)
. (7.1)
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To compare these hypotheses, it will be sufficient to look for a limited set of possible
deviations. The set of deviations will depend on the waveform approximation being applied
to the method. For this work, we consider the waveforms of the PN approximation in Sec. 2.6
and in particular, the TaylorF2 waveform, described in Sec. 2.6.6. This waveform is used
because of its computational speed as well as its agreement with time domain waveforms
for BNS systems [27]. Therefore, we take the set of deviations only to be within the known
phase coefficients {ψ0, ψ1, . . . , ψN}, given by Eq. (2.89). If the set of phase coefficients has
N members, there are 2N − 1 ways in which the deviation can occur, corresponding to all
possible subsets of the set of phase coefficients.

Before we define and describe the hypotheses HGR and HmodGR, it is instructive to first
define the so-called sub-hypotheses, denoted by Hi1i2...ik , which are related to the possible
deviations in the phase coefficients {ψ0, ψ1, . . . , ψN}, to be

“Hi1i2...ik is the hypothesis that the phasing coefficients ψi1 , . . . , ψik do not have
the functional dependence on the system parameters as predicted by GR, but all
other coefficients ψj, j /∈ {i1, i2, . . . , ik} do have the dependence as predicted by
GR.”

Thus, for example, H12 is the hypothesis that ψ1 and ψ2 do not have the functional de-
pendence on the system parameters as predicted by GR, but all other coefficients do. As
spins are considered to be negligible for NSs [103], we consider the non-spinning TaylorF2
waveform, for which the phase coefficients depend only on the two mass parameters. It is
also important to note that, by definition of the sub-hypotheses Hi1i2...ik , they are mutually,
logically disjoint, i.e. Hi1i2...ik ∧ Hj1j2...jl is always false for {i1, i2, . . . , ik} 6= {j1, j2, . . . , jl}.
For example, H1 ∧ H2 is always false, as H1 assumes that ψ2 is in accordance with GR,
whereas H2 assumes that it is not. This will prove to be useful when the main hypotheses
are split up into sub-hypotheses.

7.1.1 Defining the GR hypothesis

Because the two body problem has no analytical solution in GR, GWs can only be computed
in an approximate fashion. The approximation can be in the form of a perturbative series
or the approximation can be in the finite step size when solving the differential equations
numerically. A true test of GR would therefore be difficult to implement in practice. However,
one can still test GR to the precision (the PN order in this case) that is currently known.
With this restriction in mind, the GR hypothesis, HGR, can be defined as

“HGR is the hypothesis that the GW has a functional form and coefficients that
are exactly as predicted by the chosen approximation to GR.”

It should be noted that this definition of HGR is only valid within the scope of a specific
waveform approximation. In the case of the PN formalism, HGR is the hypothesis that the
waveform has the functional form as described in e.g. Eq. (2.86). For BNS systems, we do
not expect such a truncation to have a significant effect, as the TaylorF2 waveform family
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(known up to the 3.5PN order in phase) is known to be in good agreement with numerical
simulations [27].

7.1.2 Defining the modGR hypothesis

Because deviations from GR can be parameterised in an infinite number of ways, testing a
hypothesis of all possible deviations is not feasible. Instead, we ask the question whether or
not a GW signal adheres to the hypothesis HGR, defined above. With this in mind, we define
the hypothesis HmodGR to be

“HmodGR is the hypothesis that one or more of the phase coefficients {ψ0, ψ1, . . . , ψN}
in the waveform do not agree with the prediction made by GR. ”

However, the hypothesis HmodGR stated in this form cannot be tested because it is not a
generative model. In other words, we do not know how to generate a waveform for which we
do not know in which of the phase coefficients the deviations are located. Instead, we can
express the hypothesis HmodGR in terms of the sub-hypotheses Hi1i2...ik , defined on p. 96, and
write

HmodGR =
∨

i1<i2<...<ik;k≤N
Hi1i2...ik . (7.2)

Therefore, for a signal to be inconsistent with GR, we require that one or more phase coeffi-
cients deviate from GR. In terms of hypotheses, we are thus interested in the disjunction of
the sub-hypotheses Hi1i2...ik .

To date, the TaylorF2 phase has ten known phase coefficients, namely ψ0, . . . , ψ7 and two
additional coefficients ψ(l)

5 and ψ(l)
6 , associated with logarithmic contributions (see Eq. (2.89)).

In this thesis, we will not use ψ0 as a variable coefficient, since it has been tested by binary
pulsars measurements (see Lorimer [104] for an overview). Even so, if one were to consider
all the subsets of the set of remaining coefficients, one would have to take into account the
29 − 1 = 511 ways in which a deviation can occur. Apart from this being computationally
demanding, we do not expect advanced detectors to be sensitive to the highest-order coeffi-
cients. Therefore, it makes sense to limit oneself to all the subsets of the testing coefficients

{ψ1, ψ2, . . . , ψNT } , (7.3)

where NT is the number of these testing coefficients one chooses to consider. We thus allow
one or more of the coefficients in the set {ψ1, ψ2 . . . , ψNT } to vary freely, instead of following
the functional dependence on the component masses as predicted by GR. The choice of
NT will in part be influenced by the required generality of the test, measurability of phase
coefficients and computational limitations.
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7.1.3 Odds ratio for a single source: a 2 testing coefficient example

Suppose that only two coefficients, ψ1 and ψ2, are chosen to be our testing coefficients. Then,
the hypothesis HmodGR in Eq. (7.2) can be written as

HmodGR = H1 ∨H2 ∨H12. (7.4)

In this example, the odds ratio of interest, which is defined in Eq. (7.1), can be written as

(2)OmodGR
GR = P (H1 ∨H2 ∨H12|d, I)

P (HGR|d, I)
, (7.5)

where the superscript (2) reminds us that only two of the phase coefficients are being used
as testing coefficients.

An important observation is that the sub-hypotheses H1, H2, H12 are mutually, logically
disjoint, i.e. the conjunction of any two of them is always false. Indeed, in H1, ψ2 takes the
value predicted by GR, but in H2 it differs from the GR value, as it does in H12. Similarly,
in H2, ψ1 takes the GR value, but in H1 it differs from the GR value, and the same in H12.
This means that the odds ratio is simply given by

(2)OmodGR
GR = P (H1|d, I)

P (HGR|d, I)
+ P (H2|d, I)
P (HGR|d, I)

+ P (H12|d, I)
P (HGR|d, I)

. (7.6)

Using Bayes’ theorem in Eq. (4.31), this can be written as

(2)OmodGR
GR = P (H1|I)

P (HGR|I)
B1

GR + P (H2|I)
P (HGR|I)

B2
GR + P (H12|I)

P (HGR|I)
B12

GR. (7.7)

Here, B1
GR, B2

GR, B12
GR are the Bayes factors of the sub-hypotheses against GR (cf. Eq. (4.33)),

given by

B1
GR = P (d|H1, I)

P (d|HGR, I)
, B2

GR = P (d|H2, I)
P (d|HGR, I)

, B12
GR = P (d|H12, I)

P (d|HGR, I)
, (7.8)

and P (H1|I)/P (HGR|I), P (H2|I)/P (HGR|I) and P (H12|I)/P (HGR|I) are ratios of prior odds.
Now, upon calculating the Bayes factors for each sub-hypothesis, we would like to com-

bine these measurements into an overall odds ratio between the GR hypothesis and any
of the competing hypotheses in Eq. (7.7). In order to do this, we must specify the prior
odds for each sub-hypothesis against GR, i.e. P (H1|I)/P (HGR|I), P (H2|I)/P (HGR|I) and
P (H12|I)/P (HGR|I). Here one might want to let oneself be guided by, for example, the ex-
pectation that a violation of GR will likely occur at higher PN order, and give more weight
to H2 and H12. Or, if one expects a deviation to happen only in a particular phase coefficient
(such as ψ2 in the case of ‘massive gravity’), one may want to downweigh the most inclusive
sub-hypothesis, in this example H12. In reality, we will not know beforehand what form a
violation will take. In particular, it could affect all the PN coefficients. For the purposes of
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this analysis, we invoke the principle of indifference among all sub-hypotheses, i.e. taking
no one to be preferable to any other. This imposes the condition that the prior odds of each
against GR are equal. When combining the Bayes factors into the odds ratio, we therefore
assume

P (H1|I)
P (HGR|I)

= P (H2|I)
P (HGR|I)

= P (H12|I)
P (HGR|I)

. (7.9)

By invoking the principle of indifference, we can factorise out the prior odds ratios. However,
we are still left to specify the values for these prior odds ratios. Equivalently, we can do this
by assigning a value to the overall prior odds ratio, given by

P (HmodGR|I)
P (HGR|I)

= P (H1 ∨H2 ∨H12|I)
P (HGR|I)

= α, (7.10)

where we do not yet specify the value for α. As it turns out, it will end up being an overall
scaling of the odds ratio. This, together with Eq. (7.9) and the logical disjointness of the
sub-hypotheses H1, H2 and H12 implies that

P (H1|I)
P (HGR|I)

= P (H2|I)
P (HGR|I)

= P (H12|I)
P (HGR|I)

= α

3 . (7.11)

The final expression for the odds ratio for a modification of GR versus GR, in the case where
two phase coefficients are used as our testing coefficients, is given by

(2)OmodGR
GR = α

3
[
B1

GR +B2
GR +B12

GR

]
. (7.12)

Therefore, up to the overall scaling factor α, the odds ratio is simply the average of the Bayes
factors.

7.1.4 Odds ratio for a single source: the general case

Next, we can generalise the expression of the odds ratio for NT testing coefficients as

(NT )OmodGR
GR = P (HmodGR|d, I)

P (HGR|d, I)

=
P (∨i1<i2<...<ik;k≤NT Hi1i2...ik |d, I)

P (HGR|d, I)
. (7.13)

By using the fact that the sub-hypotheses are mutually, logically disjoint, one can write

P (
∨

i1<i2<...<ik;k≤NT
Hi1i2...ik |d, I) =

NT∑
k=1

∑
i1<i2<...<ik

P (Hi1i2...ik |d, I). (7.14)
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Similar to Eq. (4.32), we can rewrite the odds ratio as

(NT )OmodGR
GR =

NT∑
k=1

∑
i1<i2<...<ik

P (Hi1i2...ik |I)
P (HGR|I)

Bi1i2...ik
GR , (7.15)

where P (Hi1i2...ik |I)/P (HGR|I) denote the prior odds ratios and

Bi1i2...ik
GR = P (d|Hi1i2...ik , I)

P (d|HGR, I)
(7.16)

are the Bayes factors for the sub-hypotheses against GR. At this point, one has to set the
values for the relative prior probabilities, P (Hi1i2...ik |I)/P (HGR|I). Once again, we invoke the
principle of indifference and assign to each an equal weight, i.e.

P (Hi1i2...ik |I)
P (HGR|I)

= P (Hj1j2...jl |I)
P (HGR|I)

for any k, l ≤ NT . (7.17)

We can further specify the prior odds by considering the overall prior odds,

P (HmodGR|I)
P (HGR|I)

=
P (∨i1<i2<...<ik;k≤NT Hi1i2...ik |I)

P (HGR|I)

=
NT∑
k=1

∑
i1<i2<...<ik

P (Hi1i2...ik |I)
P (HGR|I)

. (7.18)

The overall prior odds describes the relative prior belief between HGR and HmodGR, and can
be seen as an overall normalisation factor. As the choice of this quantity depends in essence
on the definition of the background information, we write

P (HmodGR|I)
P (HGR|I)

= α, (7.19)

and leave the assignment of the overall prior odds ratio to the reader’s choice. As will become
apparent, the overall relative prior will end up being an overall scaling of the odds ratio, and
is unimportant when one considers the method in light of signals embedded in noise.

The equalities (7.18) and (7.19), together with (7.17), imply

P (Hi1i2...ik |I)
P (HGR|I)

= α

2NT − 1 . (7.20)

In terms of the sub-hypotheses Hi1i2...ik , the odds ratio can be written as

(NT )OmodGR
GR = α

2NT − 1

NT∑
k=1

∑
i1<i2<...<ik

Bi1i2...ik
GR . (7.21)

Up to an overall prefactor, the odds ratio is thus a straightforward average of the Bayes
factors from the 2NT − 1 individual sub-hypotheses.
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7.1.5 Odds ratio for multiple sources

Although the detection rate for CBC sources is still rather uncertain, we expect advanced
detectors to detect several events per year [105]. It is therefore important to take advantage of
multiple detections to provide tighter constraints on the validity of GR. Bayesian hypothesis
testing provides a natural extension of the odds ratio from a quantity stemming from a single
measurement to a quantity which takes a catalogue of sources into consideration.

Consider N independent data sets, denoted by {d1, d2, . . . , dN}, corresponding to N in-
dependent GW events. We do not assume that deviations from GR are necessarily the same
between events, but rather that they can vary from source to source. For example, the
deviation from GR could depend on the masses or even on unknown additional charges in
alternative theories. One can write down an odds ratio for a catalogue of sources as

(NT )OmodGR
GR = P (HmodGR|d1, . . . , dN , I)

P (HGR|d1, . . . , dN , I)

=
∑NT
k=1

∑
i1<i2<...<ik P (Hi1i2...ik |d1, . . . , dN , I)
P (HGR|d1, . . . , dN , I)

=
NT∑
k=1

∑
i1<i2<...<ik

P (Hi1i2...ik |I)
P (HGR|I)

(cat)Bi1i2...ik
GR , (7.22)

where the catalogue Bayes factors are given by

(cat)Bi1i2...ik
GR = P (d1, . . . , dN |Hi1i2...ik , I)

P (d1, . . . , dN |HGR, I)
. (7.23)

Assuming that the events d1, . . . , dN are all independent, one has

(cat)Bi1i2...ik
GR = P (d1, . . . , dN |Hi1i2...ik , I)

P (d1, . . . , dN |HGR, I)

= P (d1|Hi1i2...ik , I)
P (d1|HGR, I)

P (d2, . . . , dN |d1, Hi1i2...ik , I)
P (d2, . . . , dN |d1,HGR, I)

= P (d1|Hi1i2...ik , I)
P (d1|HGR, I)

P (d2, . . . , dN |Hi1i2...ik , I)
P (d2, . . . , dN |HGR, I)

...

=
N∏
A=1

P (dA|Hi1i2...ik , I)
P (dA|HGR, I)

=
N∏
A=1

(A)Bi1i2...ik
GR , (7.24)

where (A)Bi1i2...ik
GR is the Bayes factor for event A.
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To evaluate the combined odds ratio of the catalogue, we choose once again to invoke
indifference (as in Eq. (7.17)) and set the individual prior odds ratios equal to each other, so
that

P (Hi1i2...ik |I)
P (HGR|I)

= α

2NT − 1 . (7.25)

Together with Eq. (7.22) and Eq. (7.24), this leads to

(NT )OmodGR
GR = α

2NT − 1

NT∑
k=1

∑
i1<i2<...<ik

N∏
A=1

(A)Bi1i2...ik
GR , (7.26)

which, up to an overall prefactor, amounts to taking the average of the catalogue Bayes
factors, given in Eq. (7.24).

The expression in Eq. (7.26) shows that the odds ratio for a catalogue of sources can be
constructed as a linear combination of the product of the Bayes factors from single sources.
As a consequence, one can analyse sources individually without losing the ability to construct
the Bayes factor for a catalogue. Furthermore, the odds ratio can be computed as a parallel
process, which greatly decreases the computational time.

Alternatively, one may prefer not to make any assumptions about the prior odds ratios
P (Hi1i2...ik |I)/P (HGR|I) at all, and focus on the catalogue Bayes factors (cat)Bi1i2...ik

GR separately
and individually. Although only the odds ratio can tell us whether GR or some alternative is
preferred, the Bayes factors can be a powerful tool in analysing the performance of TIGER.

It should be pointed out that the seemingly trivial extension of the odds ratio for a
single source to one for a catalogue of sources is cardinal. A careful look at the components
making up the odds ratio reveals that this quantity is solely dependent on the sub-hypotheses
themselves. In other words, the odds ratio has no explicit dependence on the value of any
parameters and depends only on the data and the background information.

This, however, is not generally true when a test is performed by measuring coefficients
alone. Consider an alternative theory that causes deviations from GR that are mass depend-
ent. Combining posteriors on the measured parameters is then impossible unless one knows
the functional dependence of the deviations on the masses, a priori. Only in the case in
which the deviation from GR is governed by constants can one combine information from
multiple sources. Therefore, a test of GR is more versatile and robust if it compares hypo-
theses instead of measuring coefficients. To make an even stronger statement: an alternative
theory ought not to be interpreted as to be favoured over GR unless the odds ratio shows
such indication.

7.2 Quantification of noisy measurements

From a theoretical point of view, the data favour the hypothesis HmodGR over to the hypo-
thesis HGR when OmodGR

GR > 1, cf. Eq. (7.13) and Eq. (7.22). The relative degree of belief
in the two hypotheses is encapsulated in the magnitude of the odds ratio. However, in the
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case of advanced detectors, the signals will be buried deep inside the noise. This introduces
the problem that the noise itself can mimic the effects of a deviation from GR that is non-
negligible. Hence, we need to develop the tools to correctly account for the presence of noise
in our detectors.

7.2.1 False alarm probability

To gauge the influence of noise in the detectors on our interpretation of the odds ratio, one
constructs a distribution of odds ratios from simulated signals, collectively denoted by κ,
that are consistent with HGR, but are also embedded within noise. This is the so-called
background distribution, P

(
ln (NT )OmodGR

GR |κ,HGR, I
)
, where we have used the logarithm of

the odds ratio to account for its dynamical range. In the advanced-detector era, one will only
have access to a single catalogue of events and therefore a single measured odds ratio, denoted
by (NT )OmodGR

GR . This measured odds ratio can be compared to the simulated background
distribution to assign a false alarm probability (FAP), denoted by β, given by

β =
∫ ∞

lnOmodGR
GR

P (lnOmodGR
GR |κ,HGR, I) d lnOmodGR

GR . (7.27)

Conversely, one can also establish a threshold, which the odds ratio of a given catalogue
must overcome in order that a violation of GR becomes credible. Given a maximum FAP
βmax, a threshold for the odds ratio, denoted by lnOβ, can be set as

βmax =
∫ ∞

lnOβ
P (lnOmodGR

GR |κ,HGR, I) d lnOmodGR
GR . (7.28)

A schematic example of the background distribution and FAP is shown in Fig. 7.1. Shown
in dotted and filled areas (blue) is background distribution P

(
lnOmodGR

GR |κ,HGR, I
)
. The

dashed line (red) represents the measured odds ratio ln (NT )OmodGR
GR or the threshold lnOβ.

The region making up the FAP is the filled region of the background distribution (blue).
Note that the FAP is invariant under the choice of the overall prior odds ratio α, given

by Eq. (7.19). Suppose we rescale the overall prior odds ratio α with a factor γ, i.e.

α→ α′ = γα

lnOmodGR
GR → lnO′modGR

GR = ln γOmodGR
GR

= ln γ + lnOmodGR
GR

d lnO′modGR
GR = d lnOmodGR

GR . (7.29)

Now let P ′(lnO′modGR
GR |κ,HGR, I) and P (lnOmodGR

GR |κ,HGR, I) be the distributions of lnO′modGR
GR

and lnOmodGR
GR , respectively. These two distributions are related by

P ′(lnOmodGR
GR + ln γ|κ,HGR, I) = P (lnOmodGR

GR |κ,HGR, I). (7.30)
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Figure 7.1 – The dotted distribution (blue) depicts the background distribution obtained by ana-
lysing a collection κ of signals that satisfy the hypothesis HGR and are embedded in detector noise,
given by P

(
lnOmodGR

GR |κ,HGR, I
)
. The dashed line (red) and shaded area (blue) of the background

distribution depict the measured odds ratio lnOmodGR
GR and the associated FAP β, or the threshold

lnOβ for a maximum FAP βmax.
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Then, the FAP transforms as

β → β′ =
∫ ∞

lnO′modGR
GR

P ′(lnO′modGR
GR |κ,HGR, I) d lnO′modGR

GR

=
∫ ∞

lnO′modGR
GR −ln γ

P ′(lnOmodGR
GR + ln γ|κ,HGR, I) d lnOmodGR

GR

=
∫ ∞

lnOmodGR
GR

P (lnOmodGR
GR |κ,HGR, I) d lnOmodGR

GR

= β (7.31)

Therefore, the FAP stays invariant under the choice of the overall prior. This is because
both the background and the measured odds ratio are only translated and the integral in
Eq. (7.27) remains unchanged.

7.2.2 Efficiency in detecting a particular deviation

In the absence of readily available signals, a real catalogue cannot yet be analysed and
compared to the background. However, one can still make the assessment of how likely it
will be to get a certain odds ratio for a specific deviation from GR. In order to do that, one
constructs the so-called foreground, P (lnOmodGR

GR |κ′,Halt, I), by calculating the distribution of
odds ratios assuming a collection of signals, denoted by κ′, for which some specific alternative
theory, denoted byHalt, is correct. By direct comparison of the foreground to the background,
one can infer the probability that a specific alternative theory can cause a deviation that is
more significant than the deviations induced by the noise.

We can quantify the probability that a specific alternative theory will be detected with a
FAP smaller than a given βmax, by means of an efficiency ζ, defined as

ζ =
∫ ∞

lnOβ
P (lnOmodGR

GR |κ′,Halt, I) d lnOmodGR
GR , (7.32)

where lnOβ is the threshold defined in Eq. (7.28). Note that the hypothesis Halt should not
be confused with the hypothesis HmodGR. The hypothesis Halt refers to a specific alternative
theory, e.g. Brans-Dicke theory, which is tested by the calculation of the foreground. On the
other hand, the hypothesisHmodGR is used for the calculation of the odds ratio in Eq. (7.21) or
Eq. (7.26) and refers to the hypothesis that at least one of the phase coefficients in Eq. (2.89)
does not have the functional dependence as predicted by GR.

A schematic example of the efficiency ζ is shown in Fig. 7.2. In this figure, the background
is shown as the dotted distribution (blue), the foreground as the dashed distribution (red),
and the threshold lnOβ and efficiency ζ for a given maximum FAP βmax are depicted as the
dashed line (black) and the shaded part (red) of the foreground, respectively.

Just like the FAP, the efficiency is also invariant under the transformation α→ α′ = γα.
Since the FAP stays invariant under this transformation (see Eq. (7.31)), we can deduce that
the threshold transforms as

lnOβ → lnO′β = lnOβ + ln γ. (7.33)
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Figure 7.2 – The blue distribution depicts the background distribution, given by
P
(
lnOmodGR

GR |κ,HGR, I
)
, obtained by analysing a collection κ of signals that satisfy the HGR hy-

pothesis and are embedded in detector noise. The red distribution is the foreground, given by
P (OmodGR

GR |κ′,Halt, I), obtained by analysing a collection κ′ of signals that follows some alternative
theory Halt. The efficiency ζ, shown as the shaded area (red) of the foreground, is the fraction of
foreground above the threshold lnOβ, depicted by the dashed line (black), from a given maximum
FAP βmax.
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Therefore, under the transformation given in Eq. (7.29), the efficiency transforms as

ζ → ζ ′ =
∫ ∞

lnO′β
P ′(lnO′modGR

GR |κ′,Halt, I) d lnO′modGR
GR

=
∫ ∞

lnO′β−ln γ
P ′(lnOmodGR

GR + ln γ|κ′,Halt, I) d lnOmodGR
GR

=
∫ ∞

lnOβ
P (lnOmodGR

GR |κ′,Halt, I) d lnOmodGR
GR

= ζ. (7.34)

It is evident that, under the transformation shown in Eq. (7.29), both the background and
foreground shift by an equal amount, making the value of the overall prior odds ratio un-
important if one is interested in the plausibility of detecting the deviation from a specific
alternative theory that is more significant than the background distribution.

7.3 Implementation

A few remarks have to be made regarding the implementation of TIGER. Firstly, we need to
explain the implementation of the sub-hypotheses on p. 96. The generative models Hi1i2...ik

state that the phase coefficients ψi1 , . . . , ψik do not have the functional dependence on the
system parameters as predicted by GR, but all other phase coefficients ψj, j /∈ {i1, i2, . . . , ik}
do. This is treated by allowing the relevant phase coefficients to vary from the GR predicted
functional form by adding a freely varying fractional shift. This modification to the phase
coefficients ψi can be written as

ψi = ψGR
i (M, η) [1 + δχi] , (7.35)

where ψGR
i (M, η) is the functional form of ψi according to GR (given by Eq. (2.89)), and the

dimensionless δχi is a fractional shift in ψi. However, the 0.5PN phase coefficient, given by
ψ1, is identically zero and cannot be implemented in a similar fashion. Instead, deviations
from ψGR

1 are modelled as

ψGR
1 (M, η) = 0→ 3

128η (πM)−4/3δχ1, (7.36)

and the interpretation of a fractional shift is not adequate. Instead, δχ1 is related to the
magnitude of the deviation itself.

Secondly, in order to construct the odds ratio in Eq. (7.21) or Eq. (7.26), we need to
calculate the evidence associated to the various sub-hypotheses Hi1i2...ik , given by

P (d|Hi1i2...ik , I) =
∫
dθ dδχi1 . . . dδχik P (d|θ, δχi1 , . . . , δχik , Hi1i2...ik , I)

× P (θ|Hi1i2...ik , I)P (δχi1 , . . . , δχik |Hi1i2...ik , I), (7.37)
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where θ denotes the regular GW parameters, and we assume that the prior on the GW
parameters θ is independent of the prior on deviations {δχi1 . . . δχik}. Furthermore, we need
to calculate the evidence for the hypothesis HGR, given by

P (d|HGR, I) =
∫
dθ P (d|θ,HGR, I)P (θ|HGR, I). (7.38)

These integrals can be conveniently evaluated by using the Nested Sampling algorithm, de-
scribed in Sec. 5.4. More specifically, an implementation tailored to ground-based observa-
tions of CBC systems by Veitch and Vecchio [106–108] in the LIGO Algorithms Library (LAL)
[109] was used. The Nested Sampling algorithm gives us the Bayes factors for the various sig-
nal hypotheses (either Hi1i2...ik or HGR) against the noise-only hypothesis HN (cf. Sec. 5.4.4),
given by

Bi1i2...ik
N = P (d|Hi1i2...ik , I)

P (d|HN , I)
,

BGR
N = P (d|HGR, I)

P (d|HN , I)
. (7.39)

These can be combined to give the Bayes factors of Eq. (7.16) through

Bi1i2...ik
GR = Bi1i2...ik

N

BGR
N

. (7.40)

At this point it is worth commenting on the mutual relationships of the hypothesesHi1i2...ik

among each other, and with HGR. As an example, let us discuss the relationship between H1
and HGR. Consider the numerator of the Bayes factor B1

GR, given by

P (d|H1, I) =
∫
dθ dχ1P (d|θ, δχ1, H1, I)P (θ|H1, I)P (δχ1|H1, I). (7.41)

The parameter space {θ} of the GR waveforms has a natural embedding into the parameter
space {θ, δχ1} of the waveforms associated to H1, i.e. it can be identified with the hypersur-
face δχ1 = 0. We could have explicitly excluded this hypersurface from {θ, δχ1} by setting
a prior on δχ1 of the form P ′(δχ1|H1, I) = 0 if δχ1 = 0 and P ′(δχ1|H1, I) = const otherwise.
However, this would not have made a difference in the integral above. Indeed, with respect
to the integration measure induced by the prior probability density on {θ, δχ1}, the surface
δχ1 = 0 constitutes a set of measure zero.

Now look at the denominator in the expression for B1
GR, which is the evidence for the GR

hypothesis, given in Eq. (7.38). Despite the fact that the GR waveforms form a set of measure
zero within the set of waveforms associated to the sub-hypothesis H1, the above integral is
clearly not zero. It is the evidence for a qualitatively different hypothesis, whose parameter
space {θ} carries a different integration measure with respect to which the marginalisation of
the likelihood is carried out. Thus, a sharp distinction should be made between probability
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densities on parameter spaces, and probabilities related to hypotheses. Similarly, although
the parameter spaces associated with sub-hypotheses Hi1i2...ik and Hj1j2...jl may have para-
meters in common, in each of these spaces the common hypersurface has measure zero unless
Hi1i2...ik = Hj1j2...jl , hence it has no bearing on the calculation of evidences and Bayes factors.
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CHAPTER 8

RESULTS

Now that we have defined the details of TIGER, we are in a position to express the goals in
Sec. 6.5 more concretely. The first goal is the ability to test the validity of GR in a generic
fashion. If we look at the definition of the hypotheses HGR and HmodGR, given on p. 96 and
p. 97 respectively, we can deduce that our hypotheses test whether GR is correct or not.
This therefore constitutes a generic test of the validity of GR. Simulations will have to show
the applicability of TIGER.

The second goal is to cast the problem in the form of Bayesian hypothesis testing. In
Sec. 7.1, we showed that through the appropriate definition of the hypotheses, the problem
can be expressed as a hypothesis testing problem. On the practical side, simulations will
have to show that the odds ratio, given in Eq. (7.21) for individual sources and Eq. (7.26)
for catalogues of sources, is an informative quantity in our search for departures from GR.
In Sec. 8.2 we show that the odds ratio is indeed a powerful discriminator between GR being
the correct theory or not.

The third goal is to construct a method that is not only generic in its ability to detect
possible deviations from GR, but also generic in its use of waveforms and accuracy. Although
we have used the phase as an example in the derivation of TIGER, it should be stressed that
deviations in any parameterizable part of the waveform can be considered (e.g. amplitude,
energy or luminosity). TIGER is also generic in the sense that the ‘testing coefficients’ are
left to the choice of the user. This choice will be influenced by the kind of precision one
seeks, as well as the computational cost. Parameters which can not be measured in the
specific setting (e.g. advanced detectors) can be left out of the test, without destroying the
applicability of TIGER. The choice of the number of testing coefficients will be discussed in
Sec. 8.4.

In dealing with data from the advanced detectors, we expect to mainly see sources with
a low SNR. The fourth goal of TIGER is to avoid a framework which requires excessive
use of free parameters. Not only does the inclusion of extra free parameters degrade the
measurability of other (correlated) parameters, it will run the risk of being disfavoured due to
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Occam’s razor, described in Sec. 4.3.2. By splitting HmodGR into the sub-hypotheses Hi1i2...ik ,
we tackle this problem whilst remaining as general as possible. Most sub-hypotheses only
pertain to a small subset of the set of testing coefficients, making them more sensitive at
low SNR. Yet, we combine all the sub-hypotheses into a statement which is as general as
the number of sub-hypotheses considered. The pivotal thing to show in the simulations is
that the odds constructed in Eq. (7.21) and Eq. (7.26) has a better performance than the
most inclusive sub-hypothesis, i.e. having all phase coefficients simultaneously free. In other
words, the disjunction of the propositions “the phase coefficient ψi is not as predicted by
GR” should perform better than the more restricted conjunction of these propositions. In
Sec. 8.2, examples are shown that this is indeed the case.

Finally, the last goal is to have a framework that allows one to coherently analyse in-
formation from different sources. Sec. 8.3 shows that increasing the number of sources in a
catalogue does indeed increase our confidence in a deviation, if there is one to be found.

8.1 Simulation Details

In Sec. 7.3, we have already seen that the odds ratio in Eq. (7.21) or Eq. (7.26) can be
obtained by using the Nested Sampling algorithm (see Sec. 5.4) to calculate the evidence
integrals in Eq. (7.37) and Eq. (7.38). The form of the likelihood is specified in Eq. (5.67).
To construct the data s, we must simulate the noise n and the signal waveform hS (cf.
Eq. (5.65)). Furthermore, we must specify the prior on the model parameters associated
to HGR and Hi1i2...ik , given by P (θ|HGR, I) and P (θ, δχi1 , . . . , δχik |Hi1i2...ik , I) respectively.
Finally, in order to calculate the relevant statistics, i.e. the FAP in Eq. (7.27) and the
efficiency in Eq. (7.32), we must specify the simulation population κ for GR signals and the
simulation population κ′ for a specific alternative theory Halt.

8.1.1 Source distribution

Firstly, we specify the source distribution for the signal parameters θS, associated to both
κ and κ′. As suggested by Fisher matrix calculations, such as those of Mishra et al. [94],
methods based on measuring phase coefficients will be the most accurate at low total mass.
That is why we limit ourselves to BNS sources, for which spin will be negligible [103], as
well as sub-dominant signal harmonics [66, 102]. Since we will assume a network of advanced
detectors, the merger and ringdown signals (see Sec. 3.3.1) are not in the sensitive region of
the detector and therefore will not have a large impact on our inference [110]. Consequently,
we only consider the inspiral part of the waveform.

The BNS systems are distributed uniformly in volume, with random sky positions and
orientations, and their total number is taken to be on the conservative side of the ‘realistic’
estimates for the number of detectable sources in a one-year time span [105]. We take the
individual NS masses to lie uniformly between 1 and 2 M�, in accordance with the range
of the NS mass distribution [111]. The distance interval is between 100 Mpc and 400 Mpc;
the former number being the radius within which one would expect ∼ 0.5 BNS signals per
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year, and 400 Mpc being the approximate maximum distance that Advanced LIGO/Virgo
can probe, given a network SNR threshold of 8, which corresponds to the detection threshold
set by the LIGO-Virgo collaboration [112]. The corresponding signals are added coherently
to simulated noise (assumed to be stationary and modelled by a Gaussian stochastic process)
for the Advanced Virgo interferometer and the two Advanced LIGOs (see Fig. 3.4 for their
PSDs). A summary of the source distribution is shown in Table 8.1.

Variable Form Range Motivation
Mass 1, m1 const [1, 2]M� Neutron star
Mass 2, m2 const [1, 2]M� Neutron star
Distance, Dl ∝ D2

l [100, 400] Mpc Uniform in volume 1

Orbital inclination, ι ∝ cos ι [0, π] Uniform in orientation
Polarisation, ψ const [0, 2π] Uniform in orientation
Latitude, θ ∝ cos θ [0, π] Uniform in sky
Longitude, φ const [0, 2π] Uniform in sky
Coalescence phase, φc const [0, 2π] Uniform in phase

Table 8.1 – Summary of the source distribution used to obtain the results in Secs. 8.2–8.4.

Furthermore, we impose a lower cut-off of ρnet = 8 on the network SNR given in Eq. (3.27).
This threshold is consistent with the threshold to claim a detection of a GW, set by the
LIGO/Virgo collaboration [113]. The analysis of the surviving signals is performed with an
appropriately modified version of the Nested Sampling code available in LAL, as described
in Sec. 7.3.

Finally, we take the signal waveform to be TaylorF2 with the phase up to only 2PN
order. Despite its simplicity, TaylorF2 is known to be in good agreement with waveforms
that in turn closely match numerical simulations (cf. Fig. 3 and Fig. 4 in Buonanno et al.
[27]). Future development might include more accurate waveforms in order to perform a
more accurate test of GR. However, due to its good accordance with numerical relativity for
the inspiral part of the waveform, the results shown here can be viewed as a good indication
of the sensitivity to deviations from GR in the advanced-detector era.

8.1.2 Method parameters

Similar to the signal waveform, our model waveforms are also chosen to be in the TaylorF2
family with the phase up to only 2PN order. As an example, we consider the case of NT = 3
testing coefficients, given by ψ1, ψ2 and ψ3. TIGER thus requires the calculation of 23−1 = 7

1Dl = 1000Mpc corresponds to z = 0.21. For such redshifts, we approximate space as Euclidean and
therefore the volume scales as ∝ D2

l . For greater redshifts, this relationship breaks down and a prior
proportional the co-moving volume ought to be considered instead.
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Bayes factors, i.e. B1
GR, B2

GR, B3
GR, B12

GR, B13
GR, B23

GR, and B123
GR. These can be combined to

form the odds ratio given in Eq. (7.21) or Eq. (7.26).
Next, we need to assign the priors on the model parameters. For theHGR hypothesis, these

are the GW parameters θ, cf. Eq. (2.72) and Eq. (3.1). The HmodGR hypothesis (composition
of the sub-hypotheses) has, besides the source parameters θ, also the parameters associated
to the permitted deviations, given by δχi.

For the distributions of the GW parameters, we use the same functional forms and limits
as given in Veitch and Vecchio [108], except for the distance being allowed to vary between
1 and 1000Mpc. Specifically, for the sky location and the orientation of the orbital plane
we choose uniform priors on the corresponding unit spheres. For the phase at coalescence φc
we choose a flat prior with φc ∈ [0, 2π], and the time of coalescence tc is restricted to a time
interval of 100 ms, accommodating for the largest difference between the time of arrival of
the GW in different detectors. The prior on η is flat on the interval [0, 0.25]. For chirp mass
we use an approximation to the Jeffreys prior which gives p(M|I) ∝M−11/6 (see Veitch and
Vecchio [108] for motivation). In addition, component masses are restricted to the interval
m1,m2 ∈ [1, 34]M�, which is the mass range which stellar mass BHs are believed to be in
[114]. Especially for BNS, which are the sources we consider in our simulations, this range
of the component masses is sufficient. Also, this interval is in accordance with the definition
of ‘low mass’ in standard CBC search pipelines (see e.g. [115]). For the deviations δχi, we
take the priors to be flat and centred on zero, with a total width of 0.5. This will be much
larger than the deviations we will use for the simulated signals and hence suffices to illustrate
TIGER. For real measurements, one may want to choose a still wider prior in order to achieve
a greater level of generality. The choice of priors is summarised in Table 8.2.

Variable Form Range Motivation
Chirp mass,M ∝M−11/6 [0.87, 29.60]2 Jeffreys prior
Symmetric mass ratio, η const [0, 0.25] indifference
Distance, Dl ∝ D2

l [1, 1000] Mpc uniform in volume 3

Orbital inclination, ι cos ι [0, π] uniform in orientation
Polarisation, ψ const [0, 2π] uniform in orientation
Latitude, θ cos θ [0, π] uniform in sky
Longitude, φ const [0, 2π] uniform in sky
Coalescence phase, φc const [0, 2π] indifference
Coalescence time, tc const [−50, 50] ms 4 coincidence window
Deviation, δχi const [−0.25, 0.25] indifference

Table 8.2 – Summary of the priors for the model waveforms used in all the simulations shown in
Ch. 8

2based on component masses in the range m1,m2 ∈ [1, 34]
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As shown in Sec. 7.2.1 and Sec. 7.2.2, both the FAP and the efficiency are invariant under
the choice of α. Therefore, for the purpose of presenting the results, the factor α in Eq. (7.21)
and Eq. (7.26) will be set to unity.

8.1.3 Example deviations

Finally, in order to gauge TIGER’s performance, we must specify some particular deviation
from GR, denoted by the hypothesis Halt. The deviations considered in this work can be
divided into two categories. The first consists of deviations in one of the phase coefficients
characterising the TaylorF2 waveform. The deviations were inserted in a similar fashion as
the deviations allowed by our sub-hypotheses, i.e. Eq. (7.35) and Eq. (7.36). Examples will
be shown with shifts in ψ3 and ψ4. These correspond to the first order in which the dynamical
non-linearities of GR are visible [116, 117], and the PN order at which the corrections to the
phase due to a modified Einstein-Hilbert action containing terms that are quadratic in the
Riemann tensor are visible [96, 100, 101], respectively. The deviation in ψ3 also corresponds
to a basic test in which the deviation is in one of the testing coefficients. This example will
give us the idealised case in which the deviation can be accommodated for by some of our
model waveforms. The deviation in ψ4 is an example in which the deviation is in a PN order,
but one that cannot be accounted for by our model waveforms. We show that deviations
in the phase coefficients, whether they are included in the testing coefficients or not, can be
detected by TIGER, provided the magnitude of the deviation is sufficiently large.

The second category contains two examples of deviations that cannot be attributed to a
deviation in any of the PN coefficients. In the first example, we insert a deviation between
successive PN orders. The second example is one in which the deviation not only has a mass
dependent coefficient (as with the coefficients of the PN expansion), but the deviation also
has a frequency dependence that is a function of the total mass. This category exemplifies
the potentially very complex way in which deviations from GR may occur and serves to
illustrate the true generality of TIGER. We show that the effects of both of these general
examples can be detected, provided that the phase shift induced is large enough (later on we
will quantify what large means in this context).

A summary of the deviations considered in this work can be seen in Table 8.3. This table
shows the deviations, the form of the deviations, corresponding coefficients and the relevant
subsection in which these examples are considered.

8.2 Odds Ratios & Bayes Factors

8.2.1 Constructing the background

Before a specific deviation can be considered, it is necessary to construct the background
distribution by analysing the odds ratios for a collection of sources, κ, that correspond to

3See footnote on p. 113.
4Assuming that the coalescence time is chosen to be tc = 0.
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Class Functional form Coefficient Section

PN term Eq. (7.35)
δχ3 = 0.1 8.2.2
δχ3 = 0.025 8.2.3, 8.3, 8.4
δχ4 = 0.2 8.2.4

non PN term
3

128ηδχA(πMf)−5/6 δχA = −2.2 8.2.5
3

128ηδχA2(πMf)−2+ M
(3M�) δχA2 = 1 8.2.6

Table 8.3 – Summary of the deviations considered, their forms, corresponding coefficients and the
relevant subsections in which these deviations are considered.

the GR hypothesis, HGR. Sources were distributed according to Table 8.1 and their signals
were embedded in the simulated Gaussian and stationary noise, according to the Advanced
LIGO/Virgo noise curves, as shown in Fig. 3.4 . The odds ratios for both individual sources
as well as catalogues of 15 sources are shown in Fig. 8.1.

For individual sources, as shown in Fig. 8.1a, the distribution has a peak value at
lnOmodGR

GR < 0. This means that for GR signals, the GR hypothesis is indeed favoured.
We also see that the distribution does extend beyond lnOmodGR

GR = 0, showing that noise
can indeed push the odds ratio to favour HmodGR. Therefore, a proper interpretation of the
measured odds ratio will always have to take the background into account. The distribu-
tion of the log odds ratio for the catalogues of 15 sources, shown in Fig. 8.1b, has the same
characteristics, albeit that there is more confidence towards HGR.

Associated with this background and a maximum FAP of βmax = 0.05 is a threshold for
single sources of lnOβ = 2 and a threshold for a catalogue of 15 sources of lnOβ = 7. The
measured odds ratio will therefore have to exceed these numbers in order for a detection to
be claimed with a FAP of at most 5%.

Furthermore, this background will be crucial in assessing the efficiencies, defined in
Eq. (7.32), for the various example deviations in Secs. 8.2.2–8.2.6. The reader will thus
see this background re-appear in most of the sections to come.

8.2.2 Constant 10% shift in ψ3

Having constructed the background in Fig. 8.1, we are in a position to analyse specific de-
viations, associated to Halt. We start with signals that have a deviation in ψ3, one of the
three testing coefficients, i.e. {ψ1, ψ2, ψ3}, we consider. Fisher matrix calculations suggest
that the error on ψ3 is in the order of a percent (see Fig. 4 of Mishra et al. [94]). Bearing in
mind that a Fisher matrix gives us the lower bound on the error, as shown in Eq. (5.24), the
deviation imparted on the waveforms were chosen to be δχ3 = 0.1, i.e. a 10% shift in ψ3.

We first compute the odds ratios for individual sources, (NT )OmodGR
GR , according to Eq. (7.21),

with NT = 3. Next we divide these up randomly into catalogues of 15 sources each and com-
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Figure 8.1 – Normalised log odds distributions for a collection of sources associated to the GR
hypothesis and distributed according to Table 8.1. These distributions are the so-called ‘background’
distributions and will be used to compare the odds ratio obtained from sources which deviate from
GR. (a) Log odds ratio distribution for individual sources. For a maximum FAP of βmax = 0.05, the
threshold is lnOβ = 2. (b) Log odds ratio distribution for catalogues of 15 sources. For a maximum
FAP of βmax = 0.05, the threshold is lnOβ = 7.
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pute the combined odds ratios, (NT )OmodGR
GR , as in Eq. (7.26). Fig. 8.2 shows normalised

distributions (red, dashed) of the log odds ratios, both for individual sources and for cata-
logues of 15 sources each. The background distribution from Fig. 8.1 (dotted, blue) is also
shown for comparison.

The efficiencies are found to be ζ = 0.58 and (cat)ζ = 1.0 for single sources and catalogues
of 15 sources respectively. This means that for a single source, the probability of GR found
to be incorrect with a maximum FAP of βmax = 0.05 is about ∼ 60%. It is evident that
combining the odds ratios for sources within a catalogue will strongly boost our confidence
in a violation of GR if one is present at the given level. The probability of finding a violation
of this magnitude with a catalogue of 15 sources is 100%. Although the measured FAP can
be zero due to the discreteness of the data, the real FAP will always be greater than zero.

Although the results in Fig. 8.2 look promising, it is instructive to have a closer look at
the distribution of odds ratios. To aid our understanding, let us look at the (log) odds ratios
for individual sources, as a function of SNR. This is shown in Fig. 8.3. The overwhelming
majority of signals has an SNR between 8 and 15, which is consistent with our SNR threshold
and the placement of sources uniformly in volume up to 400 Mpc. Even for an SNR as low
as ∼ 12, there is a separation between the GR signal waveforms and the signal waveforms
with a modified ψ3. This is thus an example that TIGER is indeed sensitive at low SNR. As
one would expect, the separation becomes much clearer with increasing SNR.

Next, we want to investigate the effects of the use of the multiple sub-hypotheses Hi1i2...ik .
It is useful to look at which of the Bayes factors of the sub-hypotheses tend to give the
largest contribution to the odds ratio. In Fig. 8.4, we show the cumulative frequency that
a particular Bi1...ik

noise is the largest, as a function of SNR. The results shown in Fig. 8.4 are
entirely as expected, considering that the injected waveform has a shift in ψ3 only. The Bayes
factor B3

noise, corresponding to the sub-hypothesis H3, is most often the highest. This signifies
that the model H3 is most likely to be favoured, which is exactly the deviation imposed on
the signals. Furthermore, Bayes factors Bi1...ik

noise corresponding to sub-hypotheses that involve
ψ3 being non-GR, i.e. B3

noise, B13
noise, B23

noise and B123
noise, tend to outperform those that do

not. Therefore, sub-hypotheses that allow for deviations of the same functional form as the
deviation in the signals are favoured over those sub-hypotheses that do not. The model that
is ultimately favoured is the model which accounts for the deviations in the signal with the
minimum number of parameters, which is consistent with Occam’s razor (see Sec. 4.3.2).

Another important point is that most sub-hypotheses perform worse than the GR hypo-
thesis. These sub-hypotheses have extra parameters that do not describe the signal waveform
better than the GR hypothesis and are therefore penalised by Occam’s razor. For example,
if one were to test only with the sub-hypothesis H2, as a targeted search for a ‘massive grav-
iton’ would have prescribed, we would have concluded that GR described the signal waveform
better. This goes to show that the combination of the sub-hypotheses is important when the
nature of the deviation is not known a priori.

We complete the description of this specific deviation from GR by showing two examples
of the build-up of Bayes factors and odds ratio within individual catalogues. Fig. 8.5 shows
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Figure 8.2 – Normalised distributions of log odds ratios for signal with a 10% shift in ψ3 (red,
dashed). This distribution is compared to the background distribution shown in Fig. 8.1 (blue,
dotted). (a) Log odds ratio distribution for individual sources. The efficiency for individual sources
is ζ = 0.58 for a maximum FAP of βmax = 0.05. (b) Log odds ratio distribution for catalogues of 15
sources. The efficiency in this case is (cat)ζ = 1.0 for βmax = 0.05. It is evident that the combination
of sources greatly improves the ability to find a deviation from GR. A deviation of this form and
magnitude can be detected with great confidence if 15 sources are considered.
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Figure 8.3 – Log odds ratios for individual sources as a function of the SNR. Blue crosses represent
signals associated with GR waveforms (background), the red circles represent signals with a constant
10% relative offset in ψ3 (foreground). A separation between the two is visible already for SNR
& 12 and becomes more pronounced as the SNR increases.

the cumulative Bayes factor for individual sub-hypotheses and the odds ratio as sources with
increasingly higher SNR are added to the catalogue.

Both examples show the gradual increase of the Bayes factors as sources are added to
the catalogue. This shows that the Bayes factors are not dominated by the most informative
source, but instead are built up as sources are added to the catalogue. The first example,
shown in Fig. 8.5a, has non-informative sources at low SNR, but as sources with higher
SNR are added, the Bayes factors and odds ratio increase. The second example, shown in
Fig. 8.5b, shows a similar behaviour except for two things. Firstly, at low SNR, the Bayes
factors and odds ratio fall below zero. This is an indication that there are sources for which
the GR hypothesis is favoured. This behaviour is related to the fact that the GR hypothesis
is occasionally the dominant hypothesis, as shown in Fig. 8.4, and therefore causes negative
log Bayes factors and odds ratio. Secondly, the two highest SNR sources do not contribute
significantly to the Bayes factors. This can be understood by considering odds ratios for
individual sources as a function of SNR, as shown in Fig. 8.3. As the SNR increases, so does
the envelope within which the odds ratio is located. Nevertheless, the SNR is distributed
within this envelope due to the presence of noise, and a high SNR only gives, on average, a
high odds ratio.

Finally, because of the conclusions above, one may be tempted to assign different prior
odds to the various sub-hypotheses instead of setting them all equal to each other, as was
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Figure 8.4 – (a) Curves and left vertical axis: For a given SNR, the cumulative frequency that the
Bayes factor against noise for a particular sub-hypothesis is the largest, for signals with δχ3 = 0.1.
All 1471 simulated sources are included. As expected, B3

noise dominates, and Bayes factors for
sub-hypotheses that let ψ3 be non-GR, tend to outperform those that do not. The GR model
outperforms the sub-hypothesis with the largest number of free parameters. Histogram and right
vertical axis: Number of sources per SNR bin. (b) The same as above, but restricted to sources
with SNR < 12. Similar behaviour as for the full set of 1471 sources is observed. Note that already
at SNR close to threshold, the GR hypothesis is more likely to be disfavoured.
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Figure 8.5 – Examples of the cumulative Bayes factors against GR for individual sub-hypotheses
within a single catalogue with δχ3 = 0.1. (a) The Bayes factors and the odds ratio gradually grows
as the sources with increasingly higher SNR are added. The sub-hypothesis H3, which matches the
nature of the specific deviation from GR, is the most informative sub-hypothesis. (b) Same as panel
(a), but the Bayes factors and odds ratio initially falls below zero. This happens when the GR
hypothesis is favoured, which causes negative log Bayes factors and log odds ratio. Furthermore,
the sources with the highest SNRs do not contribute to the odds ratio. Indeed, a high SNR source
only gives, on average, high Bayes factors and odds ratio.
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done in Sec. 7.1. For instance one might consider downweighing the most inclusive sub-
hypothesis, H123, by explicitly invoking Occam’s razor. However, the violation of GR we
assume here is of a rather special form. In reality one will not know beforehand what the
nature of the deviation is. In particular, its effect may not be restricted to a single phase
coefficient. It is possible that all coefficients are affected, in which case one would not want
to deprecate H123 a priori. In what is to follow, examples will be given that argue that the
assignment of different priors to different sub-hypotheses can in fact be detrimental for the
outcome of the method.

8.2.3 Constant 2.5% shift in ψ3

It is clear that, if signals arriving at the Advanced LIGO/Virgo network would have a (con-
stant) fractional deviation in ψ3 as large as 10%, then, at least under the assumption of
Gaussian noise, we would have no trouble in discerning this violation of GR, even if only
15 events were ever recorded. Under such easily detectable deviations, TIGER is shown to
behave as expected from Bayesian inference. However, such behaviour might not be present
when the deviation is smaller and the violation of GR not completely detectable. It is there-
fore of interest to consider a smaller deviation in ψ3; say, 2.5%.

In Fig. 8.6 we show normalised distributions of the log odds ratio for individual sources,
and for catalogues with 15 sources each. For individual sources, the distributions are more
or less on top of each other and the efficiency is only ζ = 0.11. The picture is somewhat
different for the catalogues. If a catalogue with δχ3 = 0.025 happens to contain one of the
sources with a high log odds ratio, visible in Fig. 8.6a, then it can boost the combined odds
ratio for the catalogue. It therefore comes as no surprise that the efficiency for catalogues of
15 sources is (cat)ζ = 0.27.

We now have an example at hand for which the deviation is not as strong as the example
considered in Sec. 8.2.2. The interesting question is then whether or not TIGER still works at
low SNR, as was the case for δχ3 = 0.1. In Fig. 8.7 we plot the log odds ratios for individual
sources against SNR, both for signals with GR waveforms and signals with δχ3 = 0.025.
This time the two distributions largely coincide, although there are some sources with a
high log odds ratio, which could boost the combined odds ratio when they are present in
a catalogue of sources. However, for this example, the separation between background and
foreground occurs at SNR ∼ 15, which is somewhat larger than the δχ3 = 0.1 case, for
which the separation comes in at SNR ∼ 12. We can conclude, as one expects, that as the
deviation becomes more difficult to detect, one needs larger SNRs to increase the confidence
in a deviation. The more the signal is buried inside the noise, the harder it gets to distinguish
small effects.

To gain more insight, we investigate the behaviour for the various sub-hypotheses. Once
again, we show, in Fig. 8.8, the cumulative frequency that a particular Bi1...ik

noise is the largest, as
a function of SNR, for the case where the signals have δχ3 = 0.025. Unlike for the δχ3 = 0.1
case in Fig. 8.4, HGR is most often favoured. This means that deviations of GR will rarely
be seen if the deviation is of such a magnitude. Furthermore, none of the sub-hypotheses has
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Figure 8.6 – Normalised distributions of odds ratios for sources with δχ3 = 0.025 (red, dashed)
and sources in accordance with GR (blue, dotted). (a) Normalised distribution of log odds ratios
for individual sources. The efficiency in this case is ζ = 0.11, and this particular deviation from
GR would be barely detectable. (b) Normalised distribution of log odds ratios for catalogues of
15 sources each. The efficiency is (cat)ζ = 0.27, which is an improvement over the efficiency for
individual sources. Nevertheless, this specific deviation remains weakly detectable.
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Figure 8.7 – The log odds ratios for individual sources as a function of the SNR. The blue crosses
represent GR signals, the red circles are from signals with a constant 2.5% relative offset in ψ3. A
separation between the two is marginally visible at SNR & 15. Therefore, a deviation of this form
and magnitude will be difficult to observe.

a better performance than another. If the deviation is weakly detectable, none of the sub-
hypotheses perform particularly well, arguing that all sub-hypotheses are needed in order to
achieve the best sensitivity.

To further illustrate the necessity of combining all sub-hypotheses, we show the build-up of
Bayes factors and odds ratio of a representative catalogue with ln (3)OmodGR

GR > 0. In Fig. 8.9a
we show the build-up of the log Bayes factors for the various sub-hypotheses against GR, as
well as the odds ratio itself. Several interesting features can be seen in Fig. 8.9a. Firstly, a
catalogue consist of informative sources that increase the odds ratio and the Bayes factors,
as well as non-informative sources that decrease the odds ratio and the Bayes factors. A
high SNR is not predeterminate of an informative source in the case where the deviation is
weakly detectable. However, if the source is confidently detectable, we do see from Fig. 8.3
that its confidence increases with SNR. Another thing to note in Fig. 8.9a is the separation
of Bayes factors above and below lnOmodGR

GR = 0. For example, if one were to test only with
the most inclusive sub-hypothesis, i.e. H123, one would have come to the conclusion that
HGR is the favoured model. The same is true if we had only tested H2, as one would do
when specifically looking for a ‘massive graviton’. However, considering all sub-hypotheses
together, the opposite is true. Another feature worth pointing out is that the sub-hypothesis
H3 is not the most favoured one; instead, it is H1. Indeed, not knowing beforehand what the
precise nature of the GR violation will be, it can be pivotal to combine all sub-hypotheses
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Figure 8.8 – (a) Curves and left vertical axis: For a given SNR, the cumulative frequency that the
Bayes factor against noise for a particular sub-hypothesis is the largest, for signals with δχ3 = 0.025.
All 1296 simulated sources were used. As opposed to the δχ3 = 0.1 case, BGR

noise dominates. None
of the sub-hypotheses outperforms the other, showing that the inclusion of all sub-hypotheses is
crucial in the case where the deviation is only weakly detectable. Histogram and right vertical axis:
The number of sources per SNR bin. (b) The same as above, but restricted to sources with SNR
< 12. Similar behaviour as for the full set of 1296 sources is observed.
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Figure 8.9 – The build-up of cumulative Bayes factors against GR for individual sub-hypotheses,
and the odds ratio, for a typical catalogue with δχ3 = 0.025. (a) A catalogue that has lnOmodGR

GR >
0. Note that on the basis of the Bayes factor against GR of the most inclusive sub-hypothesis,
i.e. H123, alone, one would have concluded that the GR model is in fact the favoured one. Even
the log Bayes factor for H23 ends up being negative. Additionally, the sub-hypothesis with the
largest Bayes factor is not H3 but H1. This illustrates that it is necessary to include as many
sub-hypotheses as possible in the analysis. (b) A representative catalogue with lnOmodGR

GR < 0.
Note the single source at SNR∼ 12 that causes a sudden rise. Although this source can be singled
out as a possible signature of a deviation, its result is inconsistent with the remaining sources in
the catalogue, causing the catalogue odds ratio to favour the GR hypothesis.127
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instead of considering individual sub-hypotheses.
Finally, in Fig. 8.9b, we also look at a representative catalogue for which the GR hypo-

thesis is favoured, i.e. lnOmodGR
GR < 0. In this example, all sources have a negative log Bayes

factors, except for a single source at SNR∼ 12 that causes a sudden rise. Although such a
signature would be a justification for a follow-up investigation into this specific source, the
reader is reminded that this single source is inconsistent with the remaining 14 sources in this
catalogue. Indeed, the catalogue odds ratio is a statement from all sources in the catalogue.

8.2.4 Constant 20% shift in ψ4

In the two previous examples, the deviations were in one of the testing coefficients. The ability
to discern a deviation from GR might therefore not surprise the reader, as a significant subset
of the sub-hypotheses have a channel through which the deviation can be modelled exactly.

In the next example we aim to investigate a case in which the deviation cannot be modelled
exactly by one of the sub-hypotheses. Therefore, we choose the deviation to be in a higher
order coefficient than our testing coefficients allow for. In this example, we choose the
deviation to be in ψ4, which is one PN order beyond the highest order that is considered
in the testing coefficients. In order to be confident in a detection, we choose the magnitude
to be such that the phase shift induced by the deviation at the most sensitive frequency of
the Advanced LIGO/Virgo detectors (f ∼ 150 Hz, see Fig. 3.4) is comparable to the case
in which δχ3 = 0.1. For the shift in ψ4, this amounts to the relative shift being δχ4 = 0.2.
Physically, a deviation in ψ4 can be an indication of models in which the Einstein-Hilbert
action includes quadratic curvature terms [96, 100, 101].

In Fig. 8.10 we show the odds ratio for individual sources and for random catalogues with
15 sources each. For individual sources, the efficiency is ζ = 0.45, so that the separation
between the background and the foreground is present. However, when one assumes random
catalogues of 15 sources each, the efficiency increases to (cat)ζ = 0.97 and the separation
becomes very significant. This further illustrates the importance of combining information
from multiple sources.

Fig. 8.11 shows the odds ratio as a function of the optimal SNR, both for GR injections
and signals with δχ4 = 0.2. Similar to Fig. 8.3 for the δχ3 = 0.1 case, the separation
between the background and foreground becomes apparent at SNR ∼ 12. However, the odds
ratio for the δχ4 = 0.2 case only reaches up to lnOmodGR

GR ∼ 60, whereas for δχ3 = 0.1, it
reaches up to lnOmodGR

GR ∼ 350. Clearly, this can be attributed to the fact that the deviation
cannot be modelled exactly by the waveforms associated to the sub-hypotheses. We therefore
conclude that although the efficiency is an informative quantity, there is also information in
the magnitude of the separation between background and foreground.

Now that the deviation cannot be accounted for by one of the sub-hypotheses, it will be
interesting to see which of the sub-hypotheses provides the dominant contribution to the odds
ratio. Therefore, we show, in Fig. 8.12, the cumulative frequency that a given sub-hypothesis
has the highest Bayes factor, as a function of the SNR. Looking at Fig. 8.12, we come across
a curious behaviour for the contributions from the various sub-hypotheses. Up to about SNR
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Figure 8.10 – Normalised distributions of odds ratios for sources with δχ4 = 0.2 (red, dashed)
and sources in accordance with GR (blue, dotted) (a) Normalised distribution of log odds ratios
for individual sources. The efficiency in this case is ζ = 0.45, and already shows good performance
for individual sources. (b) Normalised distribution of log odds ratios for catalogues of 15 sources
each. The efficiency is (cat)ζ = 0.97, which shows that such a deviation can be detected with near
certainty.
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Figure 8.11 – Log odds ratios for individual sources as a function of the SNR. The blue crosses
represent signals from GR, the red circles come from signals with a constant 20% relative offset in
ψ4. A separation between the two is visible for SNR & 12 and becomes more pronounced as the
SNR increases.

∼ 25, the GR hypothesis is favoured over all the other sub-hypotheses. But from Fig. 8.11,
we can see that the separation sets in at about SNR ∼ 12. These two pieces of information
tell us that although it is more probable to favour the GR hypothesis for SNR< 25, the odds
ratio is more significant for the limited cases for which HmodGR is favoured.

What does a 20% shift in the ψ4 mean in terms of physical limits? Current constraints
from binary pulsars yield δχ4 < 107 [97]. It is evident from Fig. 8.10 that if no deviation is
to be found in Advanced LIGO/Virgo, a constraint of δχ4 . 10−1 can be placed. Therefore,
direct measurement of CBC systems can constrain theories of this kind to precisions that
have not been seen before.

8.2.5 Non-PN frequency contribution; case one

The aim of Sec. 8.2.2 to 8.2.4 was to get an impression of the sensitivity of TIGER to
deviations in PN coefficients. In order to gauge this, we assumed a constant relative offset in
the physically interesting PN coefficients ψ3 and ψ4. However, we stress once again that we
do not expect a violation of GR to manifest itself as a simple constant relative shift in one
of the PN coefficients.

Even if modifications are confined to the PN coefficients, the δχi in the signals can be
dependent on (M, η), in addition to whatever charges and coupling constants may be present
in alternative theories of gravity. Moreover, a deviation from GR could introduce terms in
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Figure 8.12 – (a) Curves and left vertical axis: For a given SNR, the cumulative frequency that the
Bayes factor against noise for a particular sub-hypothesis is the largest, for signals with δχ4 = 0.2.
All 1004 simulated sources were used. Histogram and right vertical axis: The number of sources
per SNR bin. (b) The same as above, but restricted to sources with SNR < 12. Similar behaviour
as for the full set of 1004 sources is observed. In terms of frequency, GR is the favoured model
until SNR∼20. However, from Fig. 8.11, we see that in terms of the magnitude of the odds ratio,
the separation already occurs around SNR ∼ 12. It should be stressed that it is the magnitude of
the odds ratio that quantifies our (dis)believe in GR, and not the frequency that a hypothesis is
preferred.
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the phase with frequency dependences that do not correspond to any of the PN contributions.
We now show that TIGER can also be sensitive to violations of that kind, even though the
model waveforms we use in our analyses only have deformations of PN terms. Let us give a
heuristic example where the phase of the simulated signals contains a term with an non-PN
frequency dependence in between that of the 1PN and 1.5PN contributions. Specifically, the
shift is assumed to take the form

3
128η (πM)−5/6δχAf

−5/6. (8.1)

We note that the 1PN term goes like f−1 and the 1.5PN term like f−2/3, and therefore,
the deviation introduced here could be dubbed ‘1.25PN’. However, for the use of the Nested
Sampling algorithm, we will continue to use the same model waveforms as before, which can
only have shifts in the phase coefficients at 0.5PN, 1PN, and 1.5PN. Our aim is to show that
they will nevertheless allow us to find a deviation in the signal of the form shown in Eq. (8.1).

We now need to make a choice for δχA. We aim to show that even if there is a deviation in
the phase that is not represented in any of our model waveforms, it can be detected provided
that, near the most sensitive area of the noise curve (f ∼ 150 Hz), the amount by which
it affects the phase is comparable to a shift in the 1.5PN coefficient by more than a few
percent. For definiteness, let us take δχA to be constant, and such that at f = 150 Hz and
for a system with m1 = m2 = 1.5M�, the contribution to the phase given by Eq. (8.1) is
equal to the change caused by a shift in the 1.5PN contribution with δχ3 = 0.1. This yields

(π3M�)−5/6δχA(150Hz)−5/6 = −16π × (π3M�)−2/3 × 0.1× (150Hz)−2/3, (8.2)

leading to δχA = −2.2. The phase shift at f = 150Hz is ∼ 5 radians.
Firstly, we show normalised distributions of the log odds ratios, both for individual sources

and for catalogues of 15 sources each in Fig. 8.13. The efficiencies are ζ = 0.71 and (cat)ζ = 1.0
for individual sources and for catalogues of 15 sources respectively. As expected, there is an
excellent separation for catalogues of sources between the background and the foreground.

As before, we also show the odds ratios of individual sources as a function of SNR in
Fig. 8.14. We see that even at small SNR, there is already a good separation between
background and the foreground.

In Fig. 8.15, we show the cumulative frequency that the Bayes factor against noise for
a particular sub-hypothesis is the largest, arranged with increasing SNR. From SNR ∼ 15,
the Bayes factor B2

noise starts to dominate, followed by B23
noise and B3

noise, with the latter two
crossing over between SNR ∼ 20 and SNR ∼ 25. As the deviation in Eq. (8.1) resides
between the PN coefficients ψ2 and ψ3, we indeed expect the sub-hypotheses that contain
these coefficients to perform the best. Furthermore, already at SNR ∼ 9, all of the Bi1i2...ik

noise
dominate the Bayes factor BGR

noise for the GR hypothesis. However, near the SNR threshold,
no single sub-hypothesis dominates clearly, which again shows that as many sub-hypotheses
as possible should be included in the analysis.

We can further justify the inclusion of all sub-hypotheses by comparing Fig. 8.15 to the
similar plot for the δχ3 = 0.1 case, shown in Fig. 8.4. The main difference is that for
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Figure 8.13 – Normalised distributions of odds ratios for sources with a deviation of the form
given by Eq. (8.1) and a coefficient δχA = −2.2 (red, dashed) and sources in accordance with GR
(blue, dotted) (a) Normalised distribution of log odds ratios for individual sources. The efficiency
in this case is ζ = 0.71, and already shows good performance for individual sources. (b) Normalised
distribution of log odds ratios for catalogues of 15 sources each. The efficiency is (cat)ζ = 1.0. It is
evident that TIGER can discern deviations from GR that are not present in one of the PN orders.
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Figure 8.14 – Log odds ratios for individual sources as a function of the SNR. The blue crosses
represent signals from GR, the red circles come from signals with a deviation of the form given by
Eq. (8.1) and a coefficient δχA = −2.2. A separation between the two is visible for SNR & 12 and
becomes more pronounced as the SNR increases.

the δχ3 = 0.1 case, where the deviation can be modelled exactly by a subset of the sub-
hypotheses, only a few sub-hypotheses perform better than the GR hypothesis. On the other
hand, when the deviation cannot be modelled exactly, all sub-hypothesis perform better than
the GR hypothesis. Therefore, if one does not know the alternative theory to GR a priori,
it is crucial to include all available sub-hypotheses.

Especially in this case, it is interesting to look at the growth of cumulative Bayes factors
against GR for individual sub-hypotheses, as well as of the odds ratio, as sources with in-
creasing SNR are being added within catalogues of 15 sources. This is shown for two example
catalogues in Fig. 8.16.

Together with Fig. 8.15, we can conclude that which sub-hypothesis comes out on top
will vary from one catalogue to another. In the examples of Fig. 8.16, we see that either
H12 or H23 gives the largest contribution. However, examples can be found where any of
the other sub-hypotheses contributes the most. In the catalogue shown in Fig. 8.16b, if one
were to favour particular (subsets of) sub-hypotheses a priori, the log odds ratio could be
lowered by as much as 100. This could have a large effect on the FAP (cf. Fig. 8.13). These
are again arguments for using as many sub-hypotheses as possible, and giving them equal
relative prior odds.
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Figure 8.15 – (a) Curves and left vertical axis: For a given SNR, the cumulative frequency that the
Bayes factor against noise for a particular sub-hypothesis is the largest, for signals with a deviation
of the form given by Eq. (8.1) and a coefficient δχA = −2.2. All 854 simulated sources were used.
The sub-hypotheses allowing for deviations in the PN orders which are the closest to the shift, i.e.
1PN and 1.5PN, are favoured. Histogram and right vertical axis: The number of sources per SNR
bin. (b) The same as above, but restricted to sources with SNR < 12. Similar behaviour as for the
full set of 854 sources is observed.
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Figure 8.16 – Two examples of how cumulative Bayes factors against GR for individual sub-
hypotheses and the odds ratio, grow as sources with increasing SNR are being added within cata-
logues of 15 sources in total, for a phase shift given in Eq. (8.1) and δχA = −2.2. Note the large
differences in contributions from different sub-hypotheses, and in the ordering of Bayes factors,
between these two catalogues. (a) A catalogue where H12 is the most informative sub-hypothesis.
(b) A catalogue where H12 is the least informative sub-hypothesis. In this case, the difference
between H12 and the most informative sub-hypothesis, H23, is significant.
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8.2.6 Non-PN frequency contribution; case two

In our final example, we want to take the generality of the deviation a step further than was
done in Sec. 8.2.5. The signals are given, besides the usual mass dependent magnitude (e.g.
Eq. (8.1)), a deviation in the phase that has a mass dependent frequency power. Assuming
that the deviations are determined only by the component masses, this would constitute the
most general case. Specifically, the deviation is of the form

ΨGR(M, η; f)→ ΨGR(M, η; f) + 3
128η (πMf)−2+ M

3M� . (8.3)

We note that, at f = 150 Hz and for a system with component masses in the middle of our
range, i.e. m1 = m2 = 1.5M�, the change in phase is about the same as for a 10% shift in
ψ3. Furthermore, in the total mass interval considered in these simulations, the PN order of
the deviation ranges effectively from 0.5PN for the least massive systems to 1.5PN for the
most massive systems.

In Fig. 8.17, the odds ratios for both individual sources and for catalogues of 15 sources
with a deviation as in Eq. (8.3) are again compared to the background distribution from
Fig. 8.1. The efficiencies are ζ = 0.91 and (cat)ζ = 1.0 for individual sources and catalogues
respectively. Given the examples in Sec. 8.2.2 and 8.2.5, it should come as no surprise that
the deviation can be found with both single sources and catalogues of 15 sources. We would
once again argue that even for the most general mass dependent deviations, TIGER can
detect deviations as long as the induced phase shift is comparable to a few percent shift in
ψ3 at the most sensitive region of the advanced detectors (f ∼ 150 Hz).

Next, we show the distribution of odds ratio as a function of the SNR in Fig. 8.18. The
separation, as expected, becomes pronounced close to the threshold value of the SNR.

Furthermore, we can study the behaviour of the Bayes factors for individual sub-hypotheses.
Firstly, in Fig. 8.19, we show the cumulative frequency that a particular sub-hypothesis has
the highest Bayes factor, as a function of the SNR. For this particular deviation, the most in-
clusive sub-hypothesis H123 is the most informative, but only for SNR& 17. We can interpret
this as a manifestation of Occam’s razor. When the signal is weak compared to the noise,
the sub-hypothesis H123 is penalised by Occam’s razor because of it has added complexity
compared to the other sub-hypotheses, yet it does not describe the signal significantly better.
However, once the signal is strong enough, the sub-hypothesis H123 can describe the signal,
on average, significantly better than the other sub-hypotheses, and therefore has a higher
Bayes factor despite Occam’s razor.

Finally, we show two examples of the build-up of Bayes factors for the individual sub-
hypotheses and the odds ratio in Fig. 8.20. Both examples show the expected gradual increase
in Bayes factors as more sources are added to the catalogue. In Fig. 8.20a, we see an example
catalogue where a single source separates the Bayes factors for different sub-hypotheses. This
source separates the sub-hypotheses with multiple free coefficients from the sub-hypotheses
that only have a single free phase coefficient. The complex behaviour of the phase shift in
Eq. (8.3) cannot be accurately described by a single free phase coefficient, and the relevant
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Figure 8.17 – Normalised distributions of odds ratios for sources with a deviation of the form
given by Eq. (8.3) (red, dashed) and sources in accordance with GR (blue, dotted). (a) Normalised
distribution of log odds ratios for individual sources. The efficiency in this case is ζ = 0.91, and
already shows good performance for individual sources. (b) Normalised distribution of log odds
ratios for catalogues of 15 sources each. The efficiency is (cat)ζ = 1.0. It is evident that TIGER can
even discern deviations that have a mass dependent frequency power.
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Figure 8.18 – Log odds ratios for individual sources as a function of the SNR. The blue crosses
represent signals from GR, the red circles come from signals with a deviation of the form given by
Eq. (8.3). A separation between the two is visible for SNR & 12 and becomes more pronounced as
the SNR increases.

sub-hypotheses are penalised for this. In Fig. 8.20b, we see an example catalogue where the
sub-hypothesis H123 start off being the least informative sub-hypothesis. But as sources with
increasing SNR are added, the sub-hypothesis H123 becomes more favoured compared to the
other sub-hypotheses. This is to be compared with what is shown in Fig. 8.19.

8.3 Effect of the catalogue size

Consider the example with δχ3 = 0.025, given in Sec. 8.2.3. For a maximum FAP of βmax =
0.05 and 15 sources per catalogue, we have an efficiency of (cat)ζ = 0.27. For such an efficiency,
we would consider this specific deviation from GR to be hardly detectable. However, the
number of sources per catalogue, 15 in the examples shown so far, and the chosen maximum
FAP, βmax = 0.05, are somewhat arbitrary. In reality, the size of the catalogue will depend on
the number of detected sources, and the FAP is set according to the required confidence. It
is therefore of interest to investigate the effects of both of these factors. In Fig. 8.21 we show
the behaviour of the efficiency as a function of the catalogue size and the maximum FAP. To
account for the arbitrariness in which the sources are combined to form catalogues, we show
the median (central curve) and 68% confidence interval (error bars) of the efficiencies from
5000 different ways in which the sources were ordered into catalogues. Results are shown for
βmax ∈ {0.05, 0.01}.
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Figure 8.19 – (a) Curves and left vertical axis: For a given SNR, the cumulative frequency that the
Bayes factor against noise for a particular sub-hypothesis is the largest, for signals with a deviation
of the form given by Eq. (8.3). All 1376 simulated sources were used. In this case, the most inclusive
sub-hypothesis, H123, is the most informative sub-hypothesis. The GR hypothesis rarely has the
highest Bayes factor, meaning that the deviation is significant in all sub-hypotheses. Histogram
and right vertical axis: The number of sources per SNR bin. (b) The same as above, but restricted
to sources with SNR < 12. For the low SNR sources, the sub-hypothesis H123 is not the best
performing sub-hypothesis. Instead, only for SNR& 17 does H123 become the most informative.
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Figure 8.20 – Two examples of how cumulative Bayes factors against GR for individual sub-
hypotheses and the odds ratio grow as sources with increasing SNR are being added within cata-
logues of 15 sources in total, for a phase shift given in Eq. (8.3). (a) An example catalogue in which
the sub-hypotheses with only one free phase coefficient are less favoured than sub-hypotheses that
have more than one phase coefficients free. Such a catalogue could be an indication that the true
nature of the deviation is not solely within a single phase coefficient. (b) An example catalogue for
which the sub-hypothesis H123 starts off having a lower Bayes factor than the other sub-hypotheses,
due to Occam’s razor. But as the SNR increases, it turns out that the sub-hypotheses H123 does
describe the data better, and its Bayes factor increases faster than for the other sub-hypotheses.
This behaviour can also be seen in Fig. 8.19. 141
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Figure 8.21 – The efficiency of detecting a GR violation for sources with δχ3 = 0.025, as a function
of catalogue size for maximum FAPs βmax ∈ {0.05, 0.01}. The median and the 68% confidence
interval from 5000 random catalogue orderings are shown as the central curve and the error bars,
respectively. The efficiency increases as a function of catalogue size, once again underscoring the
benefit of combining all available data.
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8.4. EFFECT OF THE NUMBER OF TESTING COEFFICIENTS

As is evident from Fig. 8.21, the efficiency rises as a function of the catalogue size. This
highlights the importance of combining all available sources in the advanced-detector era,
when one looks for deviations from GR. The maximum catalogue size shown is comparable
to the ‘realistic’ estimates of the number of detections of BNS inspirals in the span of a year
[105].

We see that δχ3 = 0.025 is a borderline case in terms of discernability of a GR violation.
Later on, when we show posterior PDFs, it will become evident that indeed, δχ3 can be
measured typically with an accuracy of this order.

8.4 Effect of the number of testing coefficients

Similar to the number of sources per catalogue, the number of sub-hypotheses is also subject
to the user’s choice. It is therefore of interest to see what would have happened if we had used
a smaller number of testing coefficients, for example {ψ1, ψ2}, so that the sub-hypotheses to
be tested are H1, H2, and H12. In the example with δχ3 = 0.025, the PN order where the
deviation occurs, namely 1.5PN, would then be higher than the PN orders associated with
our testing coefficients, which are 0.5PN and 1PN.

In Fig. 8.22, the following two things are shown.

• In the case where only {ψ1, ψ2} are testing coefficients, we compute the thresholds
ln (2)Oβ corresponding to maximum FAPs of βmax ∈ {0.05, 0.01}. Next, we re-calculate
the FAPs for the same thresholds, but now for the case where there are three testing
coefficients, {ψ1, ψ2, ψ3}, and show the difference in FAPs in Fig. 8.22a.

• On the other hand, one can compare the efficiencies (2)ζ and (3)ζ for the two- and
three-testing-coefficients cases, for fixed maximum FAPs of βmax ∈ {0.05, 0.01}. This
is shown in Fig. 8.22b.

As expected, in the first case (fixed thresholds for the odds ratios), the FAP increases in
going from two to three testing coefficients, but only moderately so. On the other hand, for
fixed maximum FAPs, there is no appreciable change in efficiency. Indeed, the spread in the
GR ‘background’ will increase with an increase in sub-hypotheses to be tested against GR;
yet, having more sub-hypotheses does not really hurt us in terms of our ability to detect a
deviation from GR.

Fig. 8.22 indicates the typical behaviour for catalogues with a specific deviation from GR,
in this case δχ3 = 0.025. It is worth repeating, however, that especially when there is only
marginal evidence for a GR violation, it is important to use as many sub-hypotheses as is
computationally feasible, cf. Fig. 8.9a. Also, we will obviously not know beforehand what
the nature of the true GR violation is, if any.

One may nevertheless wonder how our three-testing-coefficients case would compare to
a ‘targeted search’ that only looks for a deviation in ψ3, which in this example happens to
be where the deviation actually is. With our choice of α = 1, this corresponds to setting
OmodGR

GR = (cat)B3
GR. Fig. 8.23 shows the change in FAPs in going from testing only H3 to
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Figure 8.22 – (a) The change in FAPs in going from two to three testing coefficients, but keeping
the odds ratio thresholds fixed. (b) The change in efficiencies when keeping the maximum FAPs
fixed. The plots shown are for the case where the signals have δχ3 = 0.025. We see that increasing
the number of testing coefficients has only a moderate effect on the FAPs, while for fixed maximum
FAPs, the efficiencies do not change appreciably. Note, however, that when the evidence for a
deviation from GR is marginal, the use of as many sub-hypotheses as possible can be pivotal in
finding the violation (see Fig. 8.9, and also Fig. 8.16).
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the full test for fixed log odds ratio thresholds, as well as the change in efficiencies for fixed
maximum FAPs. The results are as follows.

• The change in FAPs for fixed log odds ratio thresholds is minor.

• However, especially for a large number of sources per catalogue, the efficiencies show a
clear rise. This can be accounted for by the fact that, for a small violation of GR, it
will not always be the case that the Bayes factor against GR for H3 is the largest, but
TIGER is able to compensate for that.

We conclude that for this particular example, TIGER with NT = 3 testing coefficients will
tend to outperform a ‘targeted search’ that happens to look for the violation actually present.
However, we do not expect this to be true for more complicated deviations from GR.

8.5 Posteriors

Finally, let us look at some posterior PDFs for the δχi. We stress that unlike Bayes factors,
the PDFs cannot be combined across sources since we should not expect the δχi to be
independent of the component masses; they can differ from source to source. Even looking at
the PDFs for a single source may then be misleading, because even if the deviation is exactly
in one or more of the PN coefficients, a given source will have values for the δχi that are
representative just for the (M, η) of that source, and possibly also for the values of additional
charges that may appear in an alternative theory of gravity. In a given catalogue, there may
be only one source with sufficient SNR to allow for accurate parameter estimation, in which
case the posteriors will not tell us much even if they are strongly peaked. More generally,
the deviation from GR may manifest itself by the appearance of terms in the phase that do
not have the frequency dependence of any of the PN contributions. However, in the event
that the log odds ratio and Bayes factors strongly favour the GR hypothesis, posterior PDFs
will allow us to constrain deviations in the PN coefficients, thereby adding further support
that GR is the correct theory. Hence we start with an analysis of pure GR injections.

8.5.1 GR injection

Let us first look at a GR source with (M, η,D) = (1.31M�, 0.243, 131Mpc), and an Advanced
LIGO/Virgo network SNR of 23.0. The Bayes factors for the various sub-hypotheses against
GR are

lnB1
GR = −2, lnB2

GR = −2, lnB3
GR = −2,

lnB12
GR = −3, lnB13

GR = −1, lnB23
GR = −1,

lnB123
GR = −2.

(8.4)
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Figure 8.23 – (a) The difference of FAPs, (3)β − (target)β, for fixed log odds ratio thresholds and
signals having δχ3 = 0.025, between our three-testing-coefficients case and a ‘targeted search’ which
only looks for a deviation in ψ3, i.e., only tests the sub-hypothesis H3 against GR. We see that
the difference is minor. (b) More important is the difference in efficiencies, (3)ζ − (target)ζ, for fixed
maximum FAPs. Especially for a large number of sources per catalogue, our three-testing coefficient
case is actually more efficient than the ‘targeted search’, at least for this particular example. This is
because the Bayes factor against GR for H3 will not be the largest in every catalogue, but TIGER
naturally compensates for that. Of course, we do not expect TIGER to outperform a targeted
search in the case of a more complicated deviation from GR.
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The GR hypothesis is favoured in all cases. We can also look at the Bayes factors for all of
the sub-hypotheses against noise. This yields

lnBGR
noise = 211,

lnB1
noise = 209, lnB2

noise = 209, lnB3
noise = 209,

lnB12
noise = 208, lnB13

noise = 210, lnB23
noise = 210,

lnB123
noise = 209.

(8.5)

Hence the signal is picked up very well by the waveforms of all of the sub-hypotheses, with
the GR waveform doing slightly better.

Let us now look at some posterior PDFs. In Fig. 8.24, we show the PDFs for δχ1, δχ2,
and δχ3, respectively for the waveforms that have free parameters {θ, δχ1}, {θ, δχ2}, and
{θ, δχ3}, with θ being the parameters of the GR waveform. We see that the distributions
are all narrowly peaked around the correct value of zero.

8.5.2 Signal with δχ3 = 0.1.

We now consider an example with (M, η,D) = (1.18M�, 0.244, 196Mpc), with a non-zero
relative shift in ψ3 of δχ3 = 0.1, and network SNR of 23.2. The Bayes factors in this case are

lnB1
GR = 117, lnB2

GR = 124, lnB3
GR = 124,

lnB12
GR = 123, lnB13

GR = 124, lnB23
GR = 125,

lnB123
GR = 114. (8.6)

This time the GR hypothesis is very much disfavoured. However, we note that the Bayes
factor for the sub-hypothesis that only ψ3 differs from its GR value is not the largest. In
fact, all the Bayes factors except for B1

GR and B123
GR are rather similar in magnitude, and no

clear conclusions can be drawn from them regarding the underlying nature of the deviation
from GR.

When looking at the Bayes factors against noise, we see that the signal is clearly detected
for all sub-hypotheses. We have

lnBGR
noise = 128,

lnB1
noise = 245, lnB2

noise = 252, lnB3
noise = 252,

lnB12
noise = 251, lnB13

noise = 252, lnB23
noise = 253,

lnB123
noise = 242.

(8.7)

Now let us consider posterior PDFs. We expect the PDF of δχ3 for the sub-hypothesis
H3, where only {θ, δχ3} are allowed to vary, to be peaked at the injected value of 0.1, and
this is the case with very good accuracy, as is shown in Fig. 8.25c.
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Figure 8.24 – Posterior PDFs for a GR injection. (a) δχ1 measured with a waveform that has
{θ, δχ1} as free parameters. (b) δχ2 measured with a waveform that has {θ, δχ2} free. (c) δχ3
measured with a waveform that has {θ, δχ3} free. In each case the distribution is tightly centred
on zero, with standard deviations of 0.014, 0.015, and 0.019, respectively.
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Figure 8.25 – Posterior PDFs for an injection with δχ3 = 0.1. (a) δχ1 measured with a waveform
that has {θ, δχ1} as free parameters; (b) δχ2 measured with a waveform that has {θ, δχ2} free. (c)
δχ3 measured with a waveform that has {θ, δχ3} free. As expected, the PDF in panel (c) is sharply
peaked at the correct value of δχ3 = 0.1, with a standard deviation of 0.012. For panels (a) and (b),
the one test coefficient that is used differs from the coefficient in the signal that has the shift. The
parameters in the waveform will rearrange themselves such as to best accommodate the properties
of the signal. Both δχ1 and δχ2 end up being sharply peaked, but not at the correct value of zero.
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In Fig. 8.25a and 8.25b, the PDFs of δχ1 for the sub-hypothesis H1, and of δχ2 for the
sub-hypothesis H2 are shown. In these cases, the parameter in the signal that has the shift is
now not represented; in the first case only δχ1 is allowed to vary on top of the parameters θ
of GR, and in the second case only δχ2. In the Nested Sampling process, the waveform will
still try to adapt itself to the deformation in the signal. The result is that δχ1 and δχ2 are
strongly peaked, but away from the correct values δχ1 = δχ2 = 0. Thus, if one were to study
the data only with waveforms from a specific alternative theory of gravity (e.g. a ‘massive
graviton’ model with a deviation in ψ2 only), one might find a violation of GR but it may
lead to the wrong conclusions about the nature of the deviation.

We can also look at the PDFs for the sub-hypothesis H123, where the waveforms have
δχ1, δχ2, δχ3 free, shown in Fig. 8.26. Once again the peaks for δχ1, δχ2 and δχ3 are more
or less at the correct value, but we now have a much larger spread. This too is as expected,
as parameter estimation degrades if one tries to measure too many parameters at once.

8.5.3 Signal with δχ3 = 0.025

Let us consider an example with (M, η,D) = (1.14M�, 0.242, 216Mpc), δχ3 = 0.025, and a
network SNR of 20.6. As expected, the Bayes factors for the sub-hypotheses against GR are
considerably smaller than in the case of δχ3 = 0.1, but GR is still disfavoured:

lnB1
GR = 11, lnB2

GR = 12, lnB3
GR = 12,

lnB12
GR = 10, lnB13

GR = 11, lnB23
GR = 11,

lnB123
GR = 11. (8.8)

Also as expected, the signal is easily found by all of the model waveforms:

lnBGR
noise = 186,

lnB1
noise = 197, lnB2

noise = 198, lnB3
noise = 198,

lnB12
noise = 196, lnB13

noise = 197, lnB23
noise = 197,

lnB123
noise = 197. (8.9)

As before, we look at the posterior PDF of δχ3 for the sub-hypothesis H3, where only
{θ, δχ3} are allowed to vary, as shown in Fig. 8.27c. The distribution is peaked near the
correct value and stays away from zero; however, one should not expect the same to happen
for lower-SNR sources. Let us also look at the PDF for δχ1 when {θ, δχ1} are free parameters,
and of δχ2 when {θ, δχ2} are free, as shown Fig. 8.27a and 8.27b. As before, δχ1 and δχ2
are not peaked at the right values of δχ1 = δχ2 = 0.

8.5.4 Signal with non-PN frequency dependence in the phasing

We now look at a signal with a frequency dependence between 1PN and 1.5PN, as in Eq. (8.1).
In the example we use here, we have (M, η,D) = (1.29M�, 0.250, 208Mpc), with a network
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Figure 8.26 – The posterior PDFs of (a) δχ1, (b) δχ2 and (c) δχ3, for an injection with δχ3 = 0.1,
recovered with waveforms where {θ, δχ1, δχ2, δχ3} are all free. The peak for δχ3 is near the correct
value of δχ3 = 0.1 (with a median of 0.083), but this time the spread is considerably larger (with a
standard deviation of 0.055), as we are trying to measure more parameters at the same time. Both
δχ1 and δχ2 are also peaked around their correct values of δχ1 = δχ2 = 0, but with larger spreads
compared to the PDFs when only a single parameter is free.
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Figure 8.27 – The posterior PDFs for (a) δχ1, (b) δχ2, and (c) δχ3, for an injection with δχ3 =
0.025, recovered with waveforms where {θ, δχ1}, {θ, δχ2}, and {θ, δχ3} are free, respectively. Again
δχ3 is peaked at close to the correct value, with a median of 0.027 and a standard deviation of 0.0092,
but both δχ1 and δχ2 are peaked at incorrect values.
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SNR of 22.4. The Bayes factors for the sub-hypotheses against GR are

lnB1
GR = 91, lnB2

GR = 93, lnB3
GR = 89,

lnB12
GR = 92, lnB13

GR = 91, lnB23
GR = 92,

lnB123
GR = 91. (8.10)

Thus, also in this case, the GR hypothesis is very much disfavoured, despite the fact that
none of our model waveforms contains the non-PN frequency dependence which is present in
the phase of the signal. We can also look at the Bayes factors against noise. This yields

lnBGR
noise = 148,

lnB1
noise = 239, lnB2

noise = 241, lnB3
noise = 237,

lnB12
noise = 240, lnB13

noise = 239, lnB23
noise = 239,

lnB123
noise = 239. (8.11)

It is interesting to look at the posterior PDF of δχ3 for the case where {θ, δχ3} are allowed
to vary, as shown Fig. 8.28c. The distribution looks uncannily like the analogous one for a
signal with δχ3 = 0.1, shown in Fig. 8.25c. We can also look at the PDF of δχ1 in the case
where {θ, δχ1} are free parameters, and the PDF of δχ2 when {θ, δχ2} are free, as shown in
Fig. 8.28a and 8.28b. Here too there is an interesting resemblance to Fig. 8.25a and 8.25b,
for an injection with δχ3 = 0.1.

In conclusion, trying to find the specific form of the deviation by looking at the posterior
distributions can ultimately be misleading. Indeed, the posteriors can ‘masquerade’ as de-
viations in one of the PN coefficients. Now, one could imagine looking for patterns in the
PDFs to see what information can be extracted about the nature of the deviation. However,
this is outside the scope of this work and would also be somewhat premature. Indeed, the
behaviour would not only depend on the precise nature of the GR violation, but also on the
waveform used. In the future, we may want to use time domain waveforms, e.g. numeric-
ally evolved by using a Hamiltonian, and then construct model waveforms by introducing
deviations directly in that Hamiltonian. Whatever patterns may emerge depending on the
GR violation will then pertain to the associated coefficients, which would be more directly
related to the physics of coalescence than the phasing coefficients. We leave this issue for
future work.

153



RESULTS

−0.2 −0.1 0.0 0.1 0.2
δχ1

0

10

20

30

40

50

60

P
(δ
χ

1
|d
,H

1
,I

)

Inj
pdf

(a)

−0.2 −0.1 0.0 0.1 0.2
δχ2

0

5

10

15

20

25

P
(δ
χ

2
|d
,H

2
,I

)

Inj
pdf

(b)

−0.2 −0.1 0.0 0.1 0.2
δχ3

0

5

10

15

20

25

30

35

P
(δ
χ

3
|d
,H

3
,I

)

Inj
pdf

(c)

Figure 8.28 – The posterior PDFs for an injection with a deviation of the form Eq. (8.1), recovered
with waveforms where, respectively, (a) {θ, δχ1}, (b) {θ, δχ2} and (c) {θ, δχ3} are free. The dis-
tribution of δχ3 has its median at 0.11 and a standard deviation of 0.017. Note the remarkable
resemblance with Fig. 8.25, where the signal had δχ3 = 0.1. Also for δχ1 and δχ2, the distributions
are very similar to the ones for a signal with δχ3 = 0.1.
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CHAPTER 9

DISCUSSION

We have developed TIGER, a general framework to search for deviations from GR by using
signals from CBC events. To this end, we constructed an odds ratio OmodGR

GR , which is the
posterior probability that there is a deviation from GR, versus GR being correct. This odds
ratio can be written as a linear combination of Bayes factors Bi1i2...ik

GR for sub-hypotheses
Hi1i2...ik , in each of which one or more of the phase parameters ψi is assumed to deviate from
the GR value, without actually assuming any specific dependence on the frequency and/or
physical parameters pertinent to a given theory. Since this includes sub-hypotheses where
only a single one of the ψi is non-GR, our method will be particularly well-suited in low-SNR
scenarios, which we expect to be relevant for the upcoming advanced-detector network. We
also showed that information from multiple sources can be combined to arrive at an odds
ratio OmodGR

GR for the ‘catalogue’ of all observed events. Furthermore, we showed that an
observed odds ratio can be interpreted through the comparison with a distribution of the
odds ratio originating from simulated GR signals embedded in noise, the so-called ‘back-
ground’ distribution. A measured odds ratio can then be assigned a ‘false alarm probability’,
quantifying our confidence in a deviation. Finally, in the absence of real detections, we show
how one can assess the probability of detecting a specific deviation from GR. This is done
through the construction of the foreground, which is the distribution of the odds ratio when
the signals are given a specific deviation and are embedded in noise. The quantity ‘efficiency’
is subsequently defined to quantify the fraction of the foreground above a certain threshold,
set by a given false alarm probability.

In order to gauge the performance of the method, we have analysed two classes of devi-
ations. The first class involved deviations which are in one of the phase coefficients. In the
second category of deviations, we move away from this restriction and allow the deviation to
manifest itself in arbitrary locations. Although these examples were heuristic, they allowed
us to investigate the performance of the method for waveforms with deviations from GR that
cannot be accounted for by a simple shift in one of the phase coefficients.

We first considered signals with a constant fractional deviation in the 1.5PN coefficient ψ3.
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This coefficient is of particular interest, since it incorporates the so-called ‘tail effects’ [116,
117] (as well as spin-orbit coupling [81], although we did not consider spin here), which are
not empirically accessible with binary pulsar observations and can only be studied through
direct detection of gravitational waves. When considering catalogues of only 15 BNS sources,
we saw that a deviation in ψ3 at the 10% level would easily be detectable. In fact, even a
deviation at the few per cent level can be discernible. This is confirmed by posterior PDFs
for ψ3 in the case where this is the only parameter that is assumed to deviate from its GR
value.

We further showed results for signals with a shift in the 2PN phase coefficient, ψ4. Setting
δχ4 = 0.2, the induced change in phase at f = 150 Hz is comparable to a constant shift
δχ3 = −0.035 in the 1.5PN coefficient. The choice of a modification at the 2PN coefficient
was inspired by corrections to the phase if one considers a modified Einstein-Hilbert action
containing terms that are quadratic in the Riemann tensor [96, 100, 101]. As we have shown,
direct detection of GWs analysed with TIGER can constrain theories of this kind to precisions
that cannot be achieved by binary pulsar observations.

We also considered a deviation in the phase with a frequency dependence that does not
match any of the PN coefficients, and hence is not present in any of the model waveforms that
we used. More precisely, we looked at signals whose phase has an additional contribution,
which has a frequency dependence in between that of the 1PN and 1.5PN terms (‘1.25PN’).
The magnitude of the deviation was chosen such that near f ∼ 150 Hz, where the detectors
are the most sensitive, the change in phase is roughly the same as the change caused by a 10%
shift in the 1.5PN coefficient. The deviation was clearly detectable in the log odds ratios, the
Bayes factors, and the posterior PDFs. We expect this to be an instance of a more general
fact. Namely, even if there is a deviation in the phase which the model waveforms technically
do not allow for, it will typically be observable, on condition that near the sensitive region
of the detector, it causes a change in the phase that is comparable to the effect of a shift in
the (low order) PN phase coefficients of more than a few per cent.

In the last example, signals were studied that have a deviation in the phase with a mass
dependent power of frequency, effectively ranging from 0.5PN to 1.5PN as the total mass is
varied from the lowest to the highest value we consider. The magnitude of the effect was
such that at f = 150 Hz, the change in phase was the same as that induced by a constant
relative shift δχ3 = 0.1. One concludes that even a fully mass dependent deviation (i.e.
in both the magnitude and the frequency dependence) will be detectable with our method.
This strengthens our belief that any deviation, regardless of its form, can be found through
TIGER, as long as the induced phase shift is of a detectable magnitude.

9.1 Comparison with existing methods

Having seen the results in Ch. 8, it is instructive to compare and contrast our findings with
the tests of GR from the existing literature (see Sec. 6.4).

A direct comparison with the proposal by Arun et al. can only be made at the level of
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the posteriors. Before doing so, it should be stressed again that TIGER is not based on the
posteriors but on the odds ratio. Posteriors in Sec. 8.5 are merely shown as a sanity check
and to argue that a method based on posteriors can lead to a severe misconception about
the underlying nature of the deviation from GR.

As shown in Fig. 8.25, 8.26 and 8.27, the precision of the measurements of ψ3 is in the
order of 10−2. This is in accordance with results from Fisher matrix calculations. In addition,
our results show that, as a by-product, the systematic effects are negligible compared to the
statistical errors. One can thus conclude that the proposal by Arun et al. can be successfully
implemented.

Nevertheless, the method by Arun et al. still suffers from a major drawback. By looking
at posteriors, it is only possible in limited cases to combine information from multiple sources.
Consider a theory that modifies some phase coefficient, ψi, but does this in a non-constant
way. A simple example would be that the deviation depends on the compactness of the
system and therefore ultimately depends on the masses of the system. Measurements of the
ψi parameter can then not be combined across sources with different masses. The exception
is when one knows what the dependence of the shift is in terms of the masses. However, this
would go against the generality that TIGER seeks. Furthermore, one has to compute the
predicted functional forms and analyse the data for each alternative theory.

Further comparison on the parameter estimation side can be done with the work by Del
Pozzo et al. [86]. In this work, the authors considered a direct search in a Bayesian setting
for the massive graviton with a simplified waveform derived by Will [82]. Del Pozzo et al.
showed that the Compton wavelength, λg, can be bounded to λg > 6 × 1015 m, which is a
slight improvement over the λg > 2.8 × 1015 m derived from solar system tests [82]. Such a
bound can be compared to Fig. 8.24, in which we also analyse the posteriors for the case in
which the signal was in accordance with GR. Assuming the simplified waveform as shown by
Will [82], the measurement of δχ2 can be directly translated into the Compton wavelength,
as both occur as a shift in the 1.0PN phase coefficient. As shown in Fig. 8.24, the limit on
the massive graviton from a single measurement is about δχ2 ∼ 0.05, which translates into
λg > 3 × 1015 m. Although this example only considers a single instance, it is evident that
the resulting posteriors on δχ2 are comparable to the results of Del Pozzo et al., increasing
our confidence in the implementation of TIGER.

A comparison can also be made with work related to PPE [65, 80, 91, 95–97, 99–101]. As
the main goal of PPE is to pinpoint the nature of the deviation from GR through the inference
of extra free parameters, this approach suffers, like any approach that considers explicit
deviations, from severe drawbacks. Firstly, parameter estimation significantly degrades if one
includes many free coefficients. Secondly, the model waveform needs to be able to account for
the deviation exactly, in order to avoid being misinformed by systematic errors. An example
of this can be seen by comparing Fig. 8.25 to Fig. 8.28. In this example, we show that a
deviation that cannot be accounted for by the model waveform can still behave as if it were
a deviation that is accounted for by the model waveform.

However, in their recent work, Cornish et al. [98] implemented the PPE waveform into
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a Bayesian analysis. This approach allows for Bayes factors to be calculated and therefore
the PPE hypothesis to be compared to the GR hypothesis. A few words of caution are in
place before we compare their results to ours. Firstly, the calculations in Cornish et al. were
performed in the absence of noise. As can be seen in Fig. 8.1, noise can indeed produce a
non-negligible odds ratio and a proper treatment of noise ought to be performed along the
lines of Sec. 7.2. Furthermore, Cornish et al. consider sources with an SNR of 20. Such
an event would be considered relatively rare in the advanced-detector era, as most sources
are expected to be near threshold (SNR = 8). Our work considers a more realistic (albeit
speculative) noise contribution and the SNR of sources are taken as low as the threshold for a
detection claim. As the specific form of the deviation was not considered in Ch. 8, we instead
compare the odds ratio for a similar shift in magnitude of the phase induced by the deviation
at f = 150 Hz. Despite performing under more challenging circumstances (including noise
and considering sources down to SNR of 8), the results are found to be comparable. This
gives us confidence that TIGER is more efficient than other generic tests applicable to CBC
signals.

9.2 Outlook

The preliminary results presented here motivate the construction of a full data analysis
pipeline for testing or constraining GR. A test of GR on Advanced LIGO/Virgo data could
be implemented along the following lines.

• Starting from particular GR waveforms, introduce parameterised deformations, leading
to disjoint sub-hypotheses like our Hi1i2...ik , which together form HmodGR.

• Use many injections of GR waveforms in real or realistic data, to investigate the back-
ground distribution of the odds ratio, P

(
lnOmodGR

GR |κ,HGR, I
)
. Use the background

together with choices for the maximum false alarm probability to set thresholds, lnOβ,
for the measured odds ratio and Bayes factors to overcome.

• Apply TIGER to the catalogue of sources actually found by the detectors. If the
measured odds ratio OmodGR

GR is below threshold, then there is no real reason to believe
that a deviation from GR is present. The posterior PDFs for the free phase and
amplitude coefficients in the model waveforms, taken from the highest-SNR sources,
could provide (potentially very strong) constraints on these parameters.

• If the measured odds ratio is above threshold, then a violation of GR is likely. As we
have seen, Bayes factors and PDFs can be misleading in trying to find out what the
precise nature of the deviation may be. However, one may be able to follow up on
the violation by again using TIGER, this time with waveforms with more complicated
deformations and a larger number of free parameters, inspired by particular alternative
theories of gravity, similar to what is done in PPE [95].
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Waveform approximant

We note that TIGER is not tied to any particular waveform approximant. Moreover, the
deformations need not be in the phase. Indeed, in the future one would presumably want
to use time domain waveforms, for which it may be more convenient (and physically more
appropriate) to introduce parameterised deformations directly in coefficients appearing in,
e.g., a Hamiltonian used to evolve the inspiral part of the waveform. Irrespective of the
parameterisation, one would still be able to associate with it an exhaustive set of logically
disjoint sub-hypotheses Hi1i2...ik , and calculate the corresponding odds ratio.

For BNS systems, the TaylorF2 approximation might turn out to be sufficiently accurate
in the inspiral regime to find deviations from GR, as it seems to have a good match with
numerical simulations in the inspiral regime [27]. Although neutron stars are extended ob-
jects and the TaylorF2 waveform is only valid in the point-object limit, calculations on the
corrections from finite-size effects suggest that up to f = 400 Hz, these contributions can
be neglected [10]. Therefore, by only testing the inspiral regime up to a given frequency,
even the finite-size effects can be ignored. In addition, considering that spin corrections [103]
and higher order contributions to the amplitude [66, 102] can be neglected in the case of
BNS systems and advanced detectors, the analyses shown in this work can be viewed as the
forerunner of a future data analysis pipeline.

Sources

Finally, the theoretical concepts of TIGER are not bound to BNS systems, but can be applied
on a much broader range of sources, such as BBH systems or BHNS systems. Indeed, the
extension of the present work to include a broader range of sources is part of an ongoing effort
by the author and his collaborators. For these sources, one will need to use TIGER with
more sophisticated GR waveforms compared to the TaylorF2 waveforms. Such waveforms
ought to include as many effects as possible that GR predicts, such as merger and ringdown,
higher harmonics both in the inspiral and ringdown parts, dynamical spins, and residual
eccentricity. The development of such waveforms, with input from numerical simulations, is
currently a subject of intense investigation [118–128].

One of the challenges of extending TIGER to BHNS and BBH is to include spin. Although
spinning waveforms do exist (e.g.[124, 127, 128]), they are computationally too expensive to
analyse thousands of simulated sources required to construct a background (see Secs. 7.2
and 8.2.1). Speeding up waveform calculations and computational advances are therefore
necessary before TIGER can be applied to BHNS and BBH sources.

Another challenge is that for BHNS and BBH systems, the merger and ringdown sig-
nals are in the sensitive region of the detector (the last stable orbit occurs at f ∼ 400Hz
for BHNS systems and f ∼ 200Hz for BBH systems). Although some phenomenological
waveforms model the entire inspiral, merger and ringdown signal (e.g. [118–120, 126]), their
correspondence to GR is yet not sufficient to use these waveforms to perform tests of GR.
Waveforms that can model the entire evolution of binary systems are therefore needed before
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TIGER can be applied to BHNS and BBH systems.

Finally, although much work remains to be done to ensure readiness at the start of the
advanced-detector era, the work presented in this thesis shows the skeleton of a very general
method for testing GR with CBC events to be detected by the upcoming Advanced LIGO
and Advanced Virgo observatories.
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Inferring the large-scale structure of the
Universe





CHAPTER 10

INTRODUCTION

In Part II, we used GR to describe the high compactness regime, where the typical distance
is small compared to the total rest mass of the system. Assuming a uniform distribution of
stellar objects, the total rest mass scales as r3, where r is some distance. Therefore, as r
increases, one must reach a point where the compactness GM/c2r is high again. This high
compactness regime is described by the field of cosmology, i.e. the study of the large scale
behaviour of the Universe.

To be a physical description of the large scale behaviour of the Universe, GR must be
able to explain current cosmological observations. A few of these observations are key to
our understanding of cosmology. In 1964, Penzias and Wilson discovered a thermal radiation
with a near uniform temperature coming from all directions of the sky, commonly known as
the cosmic microwave background (CMB) [129]. This remarkable uniformity suggests that
the Universe is isotropic on large scales, i.e. uniform in all spatial directions. Subsequent
measurements of the CMB have all confirmed the isotropy of the CMB temperature [130,
131].

Observations of large clusters of stars, known as galaxies or nebulae, and even large
clusters of galaxies suggest that the Universe contains well defined structures. However, as
we observe the galaxy or galaxy cluster distributions on even larger scales (& 150 Mpc), we
find that the Universe is remarkably homogeneous, i.e. it has uniform physical conditions at
any position [132].

Finally, both Lemaître in 1927 and Hubble in 1929 found that all galaxies seem to be
moving away from Earth. Moreover, the radial velocity with which galaxies appear to be
receding from us is proportional to the distance to the galaxy [133, 134]. This behaviour is
now referred to as Hubble’s law, and suggests that the Universe is uniformly expanding.
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10.1 Content of the Universe

On a cosmological scale we can view galaxies and galaxy clusters as mere particles in a gas.
We further assume a negligible interaction between the ‘particles’ such that the content of the
Universe can be modelled by a perfect fluid. A perfect fluid can be described by a 4-velocity
uµ (which is the 4-velocity of an observer who sees the fluid with no mean motion), a total
energy density ρtot (the energy density as seen by an observer with a 4-velocity uµ) and the
total pressure ptot (the kinetic pressure of the ‘particles’ perpendicular to the boundary of
the fluid). This 4-velocity is the same as the mean 4-velocity of the nearby galaxies, and
is the 4-velocity necessary to observe an isotropic CMB. Consequently, the stress-energy
tensor describing the fluid consisting of galaxies, globular clusters, etc. – also known as the
“cosmological fluid” – can be written as

Tµν = (ρtot + ptot)uµuν + ptotgµν , (10.1)

where gµν is the metric tensor. There are several contributions to the total content of the
Universe, each with their own characteristic behaviour. We will list the most widely accepted
contributions.

Matter

In this context, matter refers to particles that have non-relativistic velocities. Matter there-
fore has negligible pressure compared to the energy density and can be approximated to
have

pM ≈ 0. (10.2)

Matter in this category includes baryonic matter and cold dark matter. The density of matter
is denoted by ρM .

Radiation

Radiation comprises all massless (e.g. photons) or relativistic particles (e.g. neutrinos). For
photons, the stress-energy tensor is given by

T µν = 1
µ0

(
F µαF να − 1

4g
µνFαβF

αβ
)
, (10.3)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field, Aµ is the electromagnetic potential,
and µ0 is the permeability of free space. From Eq. (10.3), it follows that the pressure is
related to the energy density through

pR = 1
3ρR, (10.4)

where energy density for radiation is denoted by ρR. The result in Eq. (10.4) holds for all
massless particles, and is approximately true for relativistic particles.
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Dark Energy

Dark energy is a hypothetical energy source which behaves differently than ordinary matter
or radiation does: it has a positive energy density but a negative pressure. Dark energy is
postulated to describe the accelerated expansion of the Universe, as inferred from type SNIa
supernovae observations [135, 136]. As the characteristics of this hypothetical energy form
are unknown, a first attempt is to model it as a perfect fluid with an equation of state given
by

pDE = wρDE. (10.5)

To account for the accelerated expansion of the Universe, the equation of state parameter
has to be w < 0. As it turns out, dark energy is equivalent to having a cosmological constant
in the EFE (cf Sec. 10.3) for the value w = −1. In general, the equation of state parameter
can be a function of time, corresponding to an evolving equation of state.

10.2 Topology of the Universe

Given the observational evidences for isotropy, homogeneity, and uniform expansion, a nat-
ural starting point to describe the Universe on large scales is to postulate isotropy, homo-
geneity and uniform expansion. These postulates are in agreement with the Copernican
principle, i.e. humans are not privileged observers of the Universe.

Before we describe the Universe using GR, we must first clearly define the meanings of
homogeneity and isotropy. Homogeneity of the Universe means that through each event in the
Universe there passes a spacelike hypersurface on which the physical conditions (e.g. energy
density, pressure, curvature) are identical. Isotropy of the Universe means that an observer
who moves with the cosmological fluid cannot distinguish any preferred spatial direction by
any local measurements. Therefore, isotropy guarantees that the world line of any observer
that moves with the cosmological fluid is orthogonal to the hypersurface of homogeneity.

10.2.1 Comoving coordinate system

Next, we want to write down a generic metric that satisfies all these postulates, by using a
coordinate system that make these properties apparent. Suppose we have a hypersurface of
homogeneity, denoted by SI . On this spacelike hypersurface, we impose a spatial coordinate
system, where each event is assigned the spatial coordinate (x1, x2, x3) and we assign a
specific coordinate time, denoted by tI . Then, we allow this hypersurface of homogeneity
to evolve throughout spacetime by letting each observer on this hypersurface to move with
the cosmological fluid. However, we impose that all events on the world line of a specific
observer that intersects the surface SI at (x′1, x′2, x′3) remains on the same spatial coordinates
(x′1, x′2, x′3). Therefore, an observer that moves with the cosmological fluid is at rest with
respect to these coordinates, which are commonly referred to as comoving coordinates. The
time coordinate can be defined according to the lapse of proper time between event Pi on
the hypersurface SI and an event Pe on the world line of an observer that moves with the
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cosmological fluid, plus the coordinate time associated to the surface SI , denoted by tI . In
other words, the comoving coordinate time can be defined as

t = tI +
∫ τ(Pe)

τ(Pi)
dτ, (10.6)

where τ is the proper time.
For an event P , the basis vectors ∂/∂xi are tangent to the hypersurface of homogeneity

that goes through P and that the basis vector ∂/∂t is tangent to the world line going through
P . Therefore, ∂/∂t is orthogonal to ∂/∂xi, i.e.

∂

∂t
· ∂
∂xi

= 0 for i = 1, 2, 3. (10.7)

By noting that the comoving coordinate time also measures the lapse of proper time, we can
write ∂/∂t = u, where u denotes the 4-velocity of the cosmological fluid, so that

∂/∂t · ∂/∂t = −1. (10.8)

Using Eq. (10.7) and Eq. (10.8), we can therefore write the line element as

ds2 = −dt2 + gijdx
idxj. (10.9)

10.2.2 Hypersurface of homogeneity

Next, we take a closer look at the spatial components of the metric, gij. In particular, we
look at how the 3-metric of hypersurfaces of homogeneity evolve from an arbitrary initial
hypersurface, and at the nature a hypersurface of homogeneity.

Suppose that two adjacent world lines of observers that move along the cosmological fluid
are separated by the proper distance

∆σ(tI) =
√
gij(tI , xk)∆xi∆xj, (10.10)

where tI is the initial co-moving time, gij(tI , xk) the metric at time tI and spatial position xk,
and ∆xi is the coordinate separation in the ith direction. At some later time t, the spatial
separation is given by ∆σ(t), so that the fractional change of the proper distance between
the two world lines is given by the so-called scale factor,

a(t) ≡ ∆σ(t)
∆σ(tI)

. (10.11)

By using the assumption of isotropy and homogeneity, this scale factor can be shown to be
independent of the direction between the two world lines and the spatial location on the
hypersurface of homogeneity. Therefore, we can write the line element as

ds2 = −dt2 + a2(t)γij(xk)dxidxj. (10.12)
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The factor γij(xk) not only describes the geometry of some initial hypersurface, but also the
geometry of all other hypersurfaces of homogeneity, as the evolution from one hypersurface
to another is completely governed by the scale factor.

Again by assuming isotropy and homogeneity, we can further impose conditions on the
factor γij(xk). In particular, on surfaces of homogeneity, we can impose an origin and γij(xk)
must be spherically symmetric around this origin. The factor γij(xk) can then be expressed
by the most general spherically symmetric form, i.e.

γij(xk)dxidxj = e2Λ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (10.13)

where r is some radial distance coordinate, and θ and φ are angular coordinates similar to
the azimuth and altitude. The Ricci scalar for such a metric is given by

R = 2
r2

d

dr

[
1−

(
e−2Λ

)]
. (10.14)

Homogeneity further imposes that the Ricci scalar should be independent of the spatial
location. Setting R to some constant k, we can integrate Eq. (10.14) to give

γrr = e2Λ

= 1
1− 1

6kr
2 − A

r

, (10.15)

where A is an integration constant. Demanding local flatness, i.e. γrr(r = 0) = 1, we have
A = 0. Finally, redefining k by absorbing the factor of 1

6 into k, we can write

γrr = 1
1− kr2 , (10.16)

which completes our description of the hypersurfaces of homogeneity.

10.2.3 Friedmann-Lemaître-Robertson-Walker metric

Plugging Eqs. (10.13) and (10.16) into Eq. (10.12), we arrive at the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2
(
dθ2 + sin2 θdφ2

)]
. (10.17)

We can rewrite this metric by defining the coordinate χ(r) such that

dχ2 = dr2

1− kr2 , (10.18)

so that one can also write the FLRW metric as

ds2 = −dt2 + a2(t)
[
dχ2 + Sk(χ)2

(
dθ2 + sin2 θdφ2

)]
, (10.19)
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where Sk(χ) is given by

Sk(χ) ≡


k−1/2 sin(χ

√
k) : k > 0
χ : k = 0

|k|−1/2 sinh(χ
√
k) : k < 0.

(10.20)

The three cases for k represent three different properties of the spatial hypersurfaces of the
Universe. The k = 0 case corresponds to a flat Euclidean space, k > 0 corresponds to space
described by a 3-sphere and finally, k < 0 corresponds to space described by a 3-hyperboloid.

This seemingly simple metric will be sufficient to describe the topology of the Universe
within the assumptions of isotropy, homogeneity and uniform expansion.

10.2.4 Redshift

When a wave is either moving towards or away from an observer, he/she will see the
wavelength to be shorter or longer respectively (Doppler shift). This phenomenon is either
referred to as blueshift (approaching source) or redshift (receding source). As the Universe
is expanding, we will mostly deal with cosmological redshift, which is defined to be

z ≡ λob − λem

λem
, (10.21)

where the subscript ‘ob’ refers to the observer and the subscript ‘em’ refers to the emitter. In
the comoving coordinate system, the redshift due to the expansion of the Universe is given
by

z = a(tob)− a(tem)
a(tem) . (10.22)

Using the FLRW line element in Eq. (10.17), we can relate the redshift to time between
successive wave crests. Consider a source at a comoving distance r from an observer. The
source emits two successive wave crests at tem and tem + δtem radially to an observer. This
observer will see the wave crests arrive at tob and tob + δtob. Assuming the wave travels at
the speed of light, we have ds2 = 0 and therefore∫ tob

tem

dt

a(t) =
∫ χob

χem
dχ (first crest), (10.23)∫ tob+δtob

tem+δtem

dt

a(t) =
∫ χob

χem
dχ (second crest). (10.24)

Since the comoving distance of the source χ is a constant in the comoving coordinate system,
the LHSs of Eqs. (10.23) and (10.24) are equal. This gives us∫ tob

tem

dt

a(t) =
∫ tob+δtob

tem+δtem

dt

a(t) . (10.25)
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To leading order in δtob and δtem, we obtain the relationship

δtob

δtem
= a(tob)
a(tem)

= 1 + z. (10.26)

Therefore, according to an observer, a clock at the source appears to be a factor (1 + z)
slower, i.e.

δtob = δtem (1 + z) . (10.27)

As a consequence the observed frequency of the source is ‘redshifted’ according to

fob = fem

1 + z
, (10.28)

and the energy of the wave, given by E = hf , is redshifted according to

Eob = Eem

1 + z
. (10.29)

10.3 Standard model of cosmology

With both the content and the topology specified, we are now in the position to use the EFE,

Gµν = 8πTµν , (10.30)

to link the evolution of the Universe to its content. Using the EFE together with Eq. (10.19)
and Eq. (10.1), we can obtain two independent equations relating the scale factor, a(t), to the
Universe’s content. These two equations are called the Friedmann equations and are given
by

H2 ≡
(
ȧ

a

)2
= 8π

3 ρtot + k

a2 , (10.31)
ä

a
= −4π

3 (ρtot + 3ptot) , (10.32)

where the overdot denotes the derivative with respect to the co-moving coordinate time.
These two equations give us the evolution of the scale factor a(t). They can also be combined
to give the ‘fluid equation’,

ρ̇tot = −3 ȧ
a

(ρtot + ptot) , (10.33)

which governs the evolution of the energy density, ρ(t). Before we continue with the evolution
of the scale factor, we can have a closer look at the individual energy contributions and their
relation to the scale factor.
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Matter

The matter content is characterised by its negligible pressure compared to the energy density.
The fluid equation for matter then becomes

˙ρM = −3 ȧ
a
ρM . (10.34)

This equation has the solution

ρM = ρm,0a
−3, (10.35)

where the subscript 0 denotes the value at the current epoch.

Radiation

For radiation, the pressure is given by pR = 1
3ρR and the fluid equation becomes

ρ̇M = −4 ȧ
a
ρM , (10.36)

Therefore, the evolution of the energy density of radiation is given by

ρR = ρr,0a
−4. (10.37)

Dark energy

For dark energy, the equation of state is given by pDE = wρDE. The fluid equation gives

ρ̇DE = −3 ȧ
a
ρDE (1 + w(a)) , (10.38)

where w = w(a) can be a general function of the scale factor. The solution to the fluid
equation is given by

ρDE = ρDE,0E(a, w), (10.39)

where E(a, w) is given by

E(a, w) = e
−3
∫ a(tob)
a(tem)

da′
a′ (1+w(a′)) (10.40)

If the equation of state parameter is w = −1, we see that ρDE = ρDE,0 and the energy density
of dark energy is simply a constant throughout the evolution of the Universe. This would be
equivalent to having a cosmological constant in the EFE,

Gµν = 8πTµν − Λgµν , (10.41)
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with the identification that 8πρDE,0 = Λ (cf. Eq. (10.1)).
In the absence of knowledge about the time dependence of w(a), one can attempt to

model it with a series expansion. A commonly used approach [137] is to expand w(a) as a
series and terminate the expansion at first order, i.e.

w(a) = w0 + (1− a)wa + . . .

' w0 + z

1 + z
wa. (10.42)

This expansion has advantages compared to a Taylor expansion around z = 0. Firstly, for
small z, which is the epoch where we expect dark energy to manifest itself most prominently,
this expansion reduces to a Taylor expansion around z = 0. However, for large z, the
behaviour of this expansion is bounded. With the expansion in Eq. (10.42), we can write
E(a, w) as a function of the redshift and two dark energy parameters, w0 and wa (setting
z = 0 at the current epoch), i.e.

E(a, w) ≈ E(z;w0, wa) = (1 + z)3(1+w0+wa) e−3waz/(1+z). (10.43)

10.3.1 Cosmological parameters

The total energy density can now be written in terms of the individual components

ρtot =
∑
i

ρi

= ρM + ρR + ρDE

= ρm,0a
−3 + ρr,0a

−4 + ρDE,0E(a, w). (10.44)

Inserting this into the first Friedman equation, Eq. (10.31), we get the following expression
for the so-called Hubble parameter,

H2(a) = 8π
3
(
ρm,0a

−3 + ρr,0a
−4 + ρDE,0E(a, w)

)
+ k

a2 . (10.45)

The Hubble parameter at the current epoch (a(t0) = 1) is thus given by

H2
0 = 8π

3 (ρm,0 + ρr,0 + ρDE,0) + k. (10.46)

By defining the fractional energy densities

ΩM ≡
8πρM,0

3H2
0
, (10.47)

ΩR ≡
8πρR,0
3H2

0
, (10.48)

ΩDE ≡
8πρDE,0

3H2
0

, (10.49)

Ωk ≡ −
k

H2
0
, (10.50)
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we can write the Hubble parameter as

H2 = H2
0

[
ΩMa

−3 + ΩRa
−4 + Ωka

−2 + ΩDEE(a, w)
]
. (10.51)

Evaluating Eq. (10.51) at the current epoch, we obtain the constraint

ΩM + ΩR + Ωk + ΩDE = 1. (10.52)

The Hubble parameter can also be written in terms of the redshift as

H2 = H2
0

[
ΩM (1 + z)3 + ΩR (1 + z)4 + Ωk (1 + z)2

+ΩDE (1 + z)3(1+w0+wa) e−3waz/(1+z)
]
. (10.53)

The scale factor and therefore the evolution of the Universe is determined by a set of cosmo-
logical parameters such as {H0,ΩM ,ΩR,Ωk,ΩDE, w0, wa}.

10.4 Distance and volume measures

In Eq. (10.17) we have seen how distances are given as a function of the cosmic scale factor
a(t). Furthermore, we have seen in Eq. (10.51) how this scale factor relates to the energy
content of the Universe via the Hubble parameterH ≡ ȧ

a
. It is therefore evident that distance,

area and volume measures carry with them an imprint of the cosmological parameters. In
this section, we aim to make the relationship between distance measures, redshift and the
cosmological parameters explicit.

10.4.1 Comoving distance

The first useful distance measure to define is the comoving distance. The comoving distance
is the distance between two observers that move along with the cosmological fluid, meas-
ured along the null geodesic. The comoving distance therefore does not change due to the
expansion of the Universe. The proper distance can be obtained by multiplying the comov-
ing distance by the scale factor a(t). Two types of comoving distances commonly used in
cosmology are the radial and the transverse comoving distance.

Radial comoving distance The radial comoving distance, DC , is obtained by setting
dθ = dφ = 0, and integrating the remaining distance element dχ, i.e.

DC =
∫ χ

0
dχ′

=
∫ 0

t

dt′

a(t′) (10.54)
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We can change the integration to be over the redshift instead of the comoving time by noting
that from Eq. (10.26), we can write

z(t) = a(t0)
a(t) − 1, (10.55)

where we have set the observer time to be tob = t0 and the emitter time to be tem = t.
Subsequently, we have

dz = −a(t0) ȧ
a2dt. (10.56)

Substituting Eq. (10.56) into Eq. (10.54), we have

DC = −a(t0)
∫ 0

z

a

ȧ
dz′

= a(t0)
∫ z

0

1
H(z′)dz

′. (10.57)

Transverse comoving distance The comoving distance of two objects that are at the
same radial comoving distance, but separated on the sky by an angle δα, is given by DMδα.
The transverse comoving distance is then given by DM . Without loss of generality, we can
obtain the transverse comoving distance by setting dφ = dχ = 0. Then, from Eq. (10.19),
the transverse comoving distance is given by Sk(χ), defined in Eq. (10.20). Filling in the
appropriate factors for χ = DC , k = −ΩkH

2
0 and defining DH ≡ H−1

0 , we arrive at

DM =


DH√

Ωk
sinh

(
DC
DH

√
Ωk

)
for Ωk > 0

DC for Ωk = 0
DH√
|Ωk|

sin
(
DC
DH

√
|Ωk|

)
for Ωk < 0

(10.58)

10.4.2 Luminosity distance

The luminosity distance is a widely used distance measure in cosmology, because it links
together two physical quantities, the bolometric flux F and the bolometric luminosity L.
The flux is the measure of the energy received per unit time per unit area and the luminosity
gives the total energy emitted by an object, per unit time. The two are related through

F = L
4πD2

L

. (10.59)

This equation can be seen as the definition of the luminosity distance, i.e.

DL ≡
√
L

4πF . (10.60)
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We can now relate the luminosity distance to the comoving distance. Consider the flux
measured by an observer, which is given by

F = dEob/dtob

A
, (10.61)

where dEob/dtob is the measured luminosity and A is the proper area of the sphere for which
all points lie at a fixed proper radial distance. This area A can be found upon inspection of
the line element in Eq. (10.19), and is given by

A = a2(tob)D2
M

{
sin θdθdφ

= 4πa2(tob)D2
M . (10.62)

To relate the flux to the intrinsic luminosity, we can use Eq. (10.27) and Eq. (10.29) to write
dEob
dtob

in terms of the emitter’s coordinates:

dEob

dtob
= dEem

dtem

1
(1 + z)2

= L
(1 + z)2 . (10.63)

Finally, the flux can be written as

F = L
4πD2

M (1 + z)2 . (10.64)

Inserting Eq. (10.64) into Eq. (10.60), the luminosity distance is given by

DL = (1 + z) a(tob)DM

= (1 + z) a(tob)


DH√

Ωk
sin

(
DC
DH

√
Ωk

)
for Ωk > 0

DC for Ωk = 0
DH√
|Ωk|

sinh
(
DC
DH

√
|Ωk|

)
for Ωk < 0.

(10.65)

10.4.3 Comoving volume

Finally, we can also define the comoving volume, VC , in which the number density of objects
moving along with the cosmological fluid is constant with respect to the expanding Universe.
By inspection of the line element Eq. (10.19), we see that the comoving volume element is
given by

dVC = Sk(χ)2dχ sin θdθdφ

= D2
M

H(z)dz sin θdθdφ, (10.66)
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where we have performed a transformation from χ to z similar to Sec. 10.4.1. This volume
element can be integrated over the angular coordinates, and out to redshift z to give the
comoving volume [138]

VC =



4πD3
H

2Ωk

[
DM
DH

√
1 + Ωk

D2
M

D2
H
− Ω−1/2

k arcsinh
(√

Ωk
DM
DH

)]
for Ωk > 0

4π
3 D

3
M for Ωk = 0

4πD3
H

2Ωk

[
DM
DH

√
1 + Ωk

D2
M

D2
H
− |Ωk|−1/2 arcsin

(√
|Ωk|DMDH

)]
for Ωk < 0.

(10.67)

The distance and volume measures defined above are shown to be functions of the redshift
and the cosmological parameters. Therefore, by obtaining distance and redshift information
from multiple sources, we infer the cosmological parameters, shown in Sec. 10.3.

Ultimately, we look for the cosmological model that describes the data the best. This
could be a spatially flat de Sitter space (ΩM = 0, ΩDE = 1, Ωk = 0, w0 = −1, wa = 0), a
spatially flat Einstein-de Sitter model (ΩM = 1, ΩDE = 1, Ωk = 0, w0 = −1, wa = 0), or a
model with a dark energy that is not in the form of a cosmological constant (ΩM , ΩDE, Ωk,
w0, wa). Despite any possible theoretical preferences, it is the data that will inform us what
kind of universe we live in. It is therefore pivotal to have accurate and reliable measurements
of the cosmological parameters, so that we can put existing theories in front of empirical tests.
In Ch. 11, we will discuss the techniques available to infer the cosmological parameters.
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CHAPTER 11

COSMOGRAPHY

Distance measurements of stellar objects have always been of interest to astronomers and
astrophysicists. Nowadays, scientists are interested in distances to these objects because of
the potential to inform us about physics on cosmological scales. This was already hinted at
in Sec. 10.4, where we showed that the distance as a function of redshift is intimately linked
to the energy content and the topology of the Universe. Therefore, measuring the distance
and redshift of cosmological object allows one to infer the large scale characteristics of the
Universe, also known as cosmography.

In Sec. 11.1, we will briefly review the methods currently used to determine distances and
redshifts that are based on the measurements of electromagnetic (EM) waves. In Sec. 11.2, we
will discuss the potential of GW detections to shed a new light on the cosmological paradigm,
by measuring distances and redshifts independently.

11.1 Cosmography using electromagnetic waves

11.1.1 Measuring the luminosity distance

Cosmic distance ladder

If one were to know the intrinsic luminosity of a distant object, and one could measure its
flux here on Earth, one can infer its luminosity distance through Eq. (10.60). Objects that
have a known intrinsic luminosity are called standard candles. Unfortunately, unambiguous
standard candles have yet to be observed. Instead, astronomers use measurements of close-by
sources to calibrate the flux of distant objects. This process is repeated to reach increasingly
more distant objects. This technique is referred to as the cosmic distance ladder, and is the
main method to determine distances to astrophysical objects. We will consider a few ‘rungs’
of the cosmic distance ladder.
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Parallax The oldest method of measuring distance without the aid of some direct ruler
measurement is the use of parallax. Parallax is the apparent displacement of an object on
the sky as the observer moves. As nearby objects have larger parallax, the distance to an
object can be determined.

Astronomers use the concept of parallax to measure distances to nearby stars. In this
case, the star’s position on the sky compared to distant ‘background’ stars is measured as
the Earth orbits the Sun. Then, using (twice) the distance between the Earth and the Sun,
the angle with which the object seems to have moved compared to background stars can be
converted into a distance measurement to the object of interest.

Despite this simple concept, parallax plays an important role in calibrating the cosmic
distance ladder. Missions such as GAIA are scheduled to collect distance measures of about a
billion stars through the parallax method, providing a sturdy first rung of the cosmic distance
ladder (e.g. Turon et al. [139]). However, because of the limited distance between Earth and
Sun, stellar parallax can only be used up to hundreds of parsecs.

Main sequence fitting When the intrinsic luminosity of stars is plotted against their
effective temperature, a so-called Hertzsprung-Russell diagram, it is found that most stars
in their hydrogen-burning phase can often be found along a curve called the main sequence.
Therefore, measuring the effective temperature of stars through their spectral properties
allows one to infer its intrinsic luminosity. Pairing this with the measurement of the flux,
one can determine the distance to a star [140–142].

However, in order to construct the Hertzsprung-Russell diagram, we need to somehow
know the intrinsic luminosities of a number of stars. One way to do this is to use an alternative
technique, such as parallax, to obtain the distance of a star, and use the observed flux to
infer the intrinsic luminosity. This is an example of how each rung on the cosmic distance
ladder is intertwined with others.

Cepheid variable stars Cepheids variables are stars that have a strong relationship
between the intrinsic luminosity and the pulsation period [143]. These pulsations are argued
to arise from ionised helium acting as a valve for a heat engine, as He+ is more transparent
compared to He2+ [144]. As the star expands due to outward radiation pressure, the outer
envelope cools down and He2+ gets converted to He+. This conversion will cause the outer
layer to be more transparent, further cooling it and causing it to contract. But, due to the
contraction, the outer layer heats up again, converting He+ back into He2+, completing the
pulsation cycle.

The strong and measurable relationship makes the Cepheid Variables interesting stand-
ard candles, and they are widely used to calibrate other observations [145, 146]. However,
the relationship between the pulsation period and the intrinsic luminosity needs calibration
itself and depends on assumptions on stellar physics and environmental parameters. The
uncertainty in the physics and the phenomenology of Cepheid Variables is still a significant
contribution to the error budget of distance measurements.
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Type Ia supernovae Type Ia supernovae (SNIa) are among the most accurate standard
candles. They are believed to be produced by a binary system in which a massive star feeds
matter onto the accompanying white dwarf [147]. At critical conditions, a violent explosion
is triggered in the form of a supernova. The physics behind these events is believed to be
roughly independent of the epoch, making them suitable to be standard candles. Although
the intrinsic luminosity is not the same for each supernova, there is a phenomenological
relationship between the peak luminosity and the amount of fading after 15 days [148].
Exploiting this relationship, SNIa measurements have shown that the Universe appears to be
increasingly accelerating. This discovery earned Perlmutter [136], Riess [135] and Schmidt
[149] the 2011 Nobel prize in physics.

However, the phenomenological nature of the correlation between the peak luminosity
and fading characteristics is a potential seed of errors. For example, as Drell et al. [150]
show, a possible temporal evolution in the supernova physics is highly degenerate with effects
caused by the expansion of the Universe, adding systematic and statistical uncertainty to any
cosmological information obtained from SNIa measurements.

11.1.2 Measuring the redshift

The measurement of the redshift is also an important tool for astrophysicists to study stellar
objects. The emission spectra of stars can provide information about the composition of stars
and the dominant photon emission/absorption schemes. Furthermore, measurement of the
redshift is crucial to link distance measures to cosmological parameters. The measurement
of the redshift is predominantly done through two independent methods: spectroscopy and
photometry.

Spectroscopy

The measurement of the redshift through spectroscopy relies on the identification of known
spectral lines, such as lines from the Balmer series. The emission of such spectral lines is
associated to well understood physical processes and occurs at well defined frequencies. For
example, the Balmer spectral lines are a consequence of the n ≥ 3 to n = 2 transitions of a
hydrogen atoms, where n represents the principal quantum number. However, the frequencies
at which these spectral lines are observed depend on the Doppler effect. Therefore, by
comparing the observed frequency of specific spectral lines with their theoretical frequency,
the recession velocity, and thus the redshift, can be readily extracted.

As long as the identification of the spectral lines is successful, the redshift can be obtained
to accuracies of about σz ≈ 0.001 (e.g. Cohen et al. [151]). However, particularly in low
signal-to-noise ratios, the absence of clear characteristic spectral lines can lead to erroneous
measurement of the redshift. Nevertheless, spectroscopic redshift measurements are widely
used and trusted, especially for relatively bright sources.
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Photometry

Photometry is an independent way of extracting the redshift by using broad band spectral
energy information. The obtained spectral energy distribution is compared with (redshifted)
model or empirical spectra to obtain their redshift. Clearly, this photometry relies heavily on
understanding the underlying physical processes such as population synthesis and distortion
by the interstellar medium (e.g. Abrahamse et al. [152]). The accuracies of such methods
are therefore less compared to spectroscopic measurements, σz ∼ 0.1 (e.g. Hogg et al. [153])
on top of the potential systematic errors from mismodelling the physical processes.

The determination of the redshift from photometry can also serve as a potent cross-check
to spectroscopic measurements. Indeed, photometric measurements have found erroneous
redshift measurements by spectroscopic techniques (e.g. Fernandez-Soto et al. [154]). Fur-
thermore, for faint objects without strong spectral features such as distant galaxies or quasars,
photometry might be the only channel through which one can measure the redshift.

11.1.3 Direct measurement of the cosmological parameters

There are several methods that allow a direct measurement of the cosmological parameters.
Most of these methods require accurate knowledge of the physical processes underlying the
measured quantities. Nevertheless, some have proven to provide high quality inference of the
cosmological parameters, and others are quickly improving to achieve comparable bounds.
Of these techniques, we will only briefly discuss the measurement of the acoustic oscillations
in the early Universe, mass density contrast and gravitational lensing.

Acoustic oscillations in the early Universe

After the Big Bang, the Universe consisted of hot and dense plasma made up of interact-
ing photons, electrons and protons. In this plasma of photons and matter, small density
fluctuations existed due to quantum fluctuations. These fluctuations were subjected to two
competing interactions. On one hand, photon pressure drove the dispersion of these fluc-
tuations, and on the other, the gravitational pull tended to restore them. The interplay
between these interactions is the cause of the formation of oscillations similar to acoustic
oscillations [155, 156].

The most prominent feature of these acoustic oscillations is the so-called fundamental
mode. This fundamental mode is governed by the distance that a sound wave had trav-
elled until the epoch when photons decouple from matter (epoch of decoupling) ceased its
propagation, also known as the sound horizon

rs =
∫ td

0
csdt, (11.1)

where cs is the speed of sound in the baryon-photon plasma and td is the epoch of decoupling.
The speed of sound depends only on the baryon and radiation content, whereas the time
element depends on the entire geometry of the Universe. Therefore, measuring the imprints
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of these acoustic oscillations can provide us with a direct measurement of the cosmological
parameters. Such imprints can be found in the CMB and in the galaxy distribution.

Anisotropies in the cosmic microwave background Acoustic oscillations can be seen
as temperature fluctuations in the CMB, among others, on top of the isotropic radiation
at a temperature of T = 2.728 K and the dipole component due to the motion of the
Earth. The angular distribution of these fluctuations encodes information about the sound
horizon. In particular, acoustic oscillations cause temperature fluctuations on angular scales
corresponding to a half integer number of oscillations within the sound horizon.

Since these angular scales are both a function of the size of the Universe at the epoch of de-
coupling, and the evolution of the angular distance measure between the epoch of decoupling
and the current epoch, cosmological information can be extracted.

Baryon acoustic oscillations in galaxy distributions As mass overdensities are thought
to originate from the fluctuations in the baryon-photon plasma, imprints of the acoustic oscil-
lations are also visible in the galaxy distribution [157–159]. These imprints are called baryon
acoustic oscillations (BAO). By comparing the angular scales of the galaxy distribution with
the sound horizon from the CMB, one can infer the cosmological parameters.

Mass density contrast

Distance measures are not the only observables that can inform us about our cosmology. As
mentioned above, initial perturbations in the baryon-photon plasma are likely to be the seeds
of large-scale structure formation. Properties such as the probability for a structure to have
a given mass at a given redshift is governed by the content and the geometry of the Universe.
This is because overdense mass regions tend to increase the densities through gravitational
attraction, but the expansion of the Universe tends to decrease such densities.

To quantify this interplay, one looks at the so-called mass density contrast

δ = ∆ρM
ρM

(11.2)

where ρM is the background matter density and ∆ρM is the matter overdensity around the
background density. Then, in linear perturbation theory of GR, the mass density contrast in
a matter dominated universe follows the relationship (e.g. Peebles [160])

δ̈ + 2Hδ̇ = 3ΩMH
2
0

2a3 δ, (11.3)

where an overdot represents the time derivative. It can readily be seen that cosmological
parameters can be inferred by measuring the mass density contrast δ as a function of the
redshift. To probe the mass density contrast, one can measure the galaxy cluster distribution.
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Galaxy cluster counting Galaxy cluster counting measures the so-called ‘mass function’
N(M, z), where M is the mass of the cluster and z is the redshift, which is the cluster count
per unit comoving volume for a given mass and redshift. This mass function depends on the
mass density contrast δ(z) and the comoving volume element dV (z), which are both functions
of the cosmological parameters.

Gravitational lensing

When a wave passes through the gravitational field of a massive structure (e.g. cluster of
galaxies), the appearance of the source will be different. Thus, the phenomenon where a
massive structure acts as a lens for transient waves is the so-called ‘gravitational lens’ effect
[47]. The tidal component of the gravitational field can distort the shape of the source,
whereas the magnification will change the apparent brightness of the source. A detailed
review of gravitational lensing can be found in [161].

Strong gravitational lensing If the influence of the gravitational lens is large enough,
multiple ‘images’ can be observed. This is often referred to as “strong gravitational lensing".
Strong lensing can provide us with a distance measure by looking at the different arrival times
of spectral features of the individual apparent object [162]. Assuming the mass distribution
of the lens is known, this time difference will provide us with an absolute distance measure.
When this is combined with the redshift of both the source and the lens, the cosmological
parameters, mainly H0, can be measured.

This method depends heavily on one’s ability to map the mass distribution of the lens
system, which in itself can be a daunting task. But progress has been made over the years, up
to a point where studying strongly lensed systems can provide useful bounds on the Hubble
constant (e.g. [163, 164]).

Weak gravitational lensing When the lensing effect is weaker and only a single image is
visible, the effect is referred to as weak gravitational lensing. Weak lensing in the context of
cosmology is also called cosmic shear. From the principle of isotropy, galaxies are intrinsically
randomly orientated. However, cosmic shear introduces a net coherent ellipticity to a sample
of observed galaxies. When such an imprint can be obtained, the mass distribution of the
lens can be inferred.

Using this method, one can obtain the mass density distributions as a function of the
redshift, also known as ‘tomography’, and subsequently probe the cosmological parameters
through both the mass density contrast and the comoving volume. Indeed, measurements of
weak lensing signatures have placed bounds on the cosmological parameters [165–167].

Just as strong lensing, weak lensing measurements require an accurate knowledge of the
mass distribution of the lens. In the case of weak lensing, this is obtained through analysing
the coherence of the ellipticity of galaxies. In order to obtain accurate measurements of the
cosmic shear, one needs to correlate and average over many galaxies. Provided that large
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surveys will measure large numbers of galaxies, weak lensing can indeed become a powerful
probe of the cosmological parameters.

11.2 Cosmography using gravitational waves

In Sec. 2.6, we hinted that the measurement of CBC signals yields information about the
distance between the source and the observer. However, the distance r in Eqs. (1.106),
(1.107) and (2.72) is the distance in the harmonic gauge coordinates. Before we discuss
the measurement of distances and redshifts through GW detections, we will first show what
happens to the propagation of GWs on cosmological distances.

11.2.1 Propagation of gravitational waves on cosmological distances

In Sec. 1.3, we looked at the propagation of GWs in a flat space-time. For a FLRW spacetime,
Eq. (1.41) no longer describes the propagation of GWs. Instead, we consider the general
curved equivalent, given by

2hµν = 0, (11.4)

where 2 is the curved spacetime d’Alembertian, which in the case of Eq. (11.4) is given by

2 = 1√
−g

∂µ
(√
−ggµν∂ν

)
. (11.5)

To solve Eq. (11.4) in the FLRW metric, it is instructive to introduce the conformal time

η =
∫ t

0

dt′

a(t′) or dη = dt

a(t) . (11.6)

Consequently, we can rewrite Eq. (10.19) as

ds2 = a2(η)
[
−dη2 + dχ2 + S2

k(χ)dΩ2
]
. (11.7)

Assuming, for simplicity, a flat but expanding spacetime (i.e. k = 0), and replacing r = χ
we can express the line element as

ds2 = a2(η)
[
−dη2 + dr2 + r2dΩ2

]
. (11.8)

We are interested in the evolution of the spherically symmetric solution of the form

hµν = Aµν(η, r)/r, (11.9)

similar to Eqs. (1.106), (1.107) and (2.72). Therefore,

0 = ∂µ
(√
−ggµν∂ν

)
hαβ

= ∂r
[
a2r2∂rhαβ

]
− ∂η

[
a2r2∂ηhαβ

]
= ∂2

rAαβ − ∂2
ηAαβ − 2∂ηa

a
∂ηAαβ. (11.10)
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Anticipating the solution to fall off with physical distance instead of r, we further look for a
solution of the form Aαβ = Bαβ/a, so that

0 = ∂2
rBαβ − ∂2

ηBαβ +
∂2
ηa

a
Bαβ. (11.11)

As most gravitational wave sources that we can observe with the Advanced LIGO-Virgo
network are expected to originate from the matter dominated era, we see from Eq. (10.31)
that (

∂2
t a

a

)2

∝ ρM

∝ a−3, (11.12)

and subsequently

a(η) ∝ η2. (11.13)

Therefore, we have ∂2
ηa/a ∼ η−2. Furthermore, we have ∂2

ηBαβ ∼ ω2Bαβ, where ω2 is the
characteristic frequency of the GW. For GWs with wavelengths smaller than the Hubble
length DH , we have ω2Bαβ � η−2Bαβ. Therefore, we can write

0 ' ∂2
rBαβ − ∂2

ηBαβ. (11.14)

This is approximately a wave equation with the solution Bαβ(r, η) = Bαβ(η−r). The solution
therefore becomes

hαβ(r, η) ' Bαβ(η − r)
a(η)r . (11.15)

Compared to the solution of a static universe, the solution in an expanding universe can
therefore be obtained by replacing r with ra(η). We can normalise the conformal time so
that η = t at some time in the present epoch. But as a(η) only varies on cosmological
timescales, we can set the normalised conformal time to be η = t over the entire time-scale of
the GW observation. For the same reason, the scale factor a(η) can be written as a constant
factor a(t0), where t0 is the present epoch. Finally, we have

hαβ(r, t) ' Bαβ(t− r)
a(t0)r . (11.16)

In Sec. 10.2, we have seen various physical quantities being “redshifted” in an expanding
universe. Therefore, it is more natural to express such quantities in the expressions for GWs
in terms of their redshifted form. Firstly, by using Eq. (10.27) and Eq. (10.28), the orbital
phase, given by Eq. (2.69), becomes∫ tem

dt′emωem =
∫ tem(1+z) dt′obs

1 + z
ωobs(1 + z)

=
∫ tobs

dt′obsωobs, (11.17)
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so that the phase does not change when observing the GW in an expanding universe.
Secondly, the polarisation independent factor of the amplitude, which is given to leading
order in Eqs. (1.106) and (1.107), can be expressed as

hc = 4M5/3
c ω2/3

em
a(t0)r

= 4M5/3
c (1 + z)2/3ω

2/3
obs

a(t0)r

= 4M5/3
c (1 + z)5/3ω

2/3
obs

a(t0)r(1 + z)

=
4M5/3

c,z ω
2/3
obs

DL

, (11.18)

where we have defined the redshifted chirpmass to be

Mc,z ≡ (1 + z)Mc, (11.19)

and where we have used the definition of the luminosity distance from Sec. 10.4.2. We
can therefore see that for an expanding universe, the expressions keep the same leading
amplitude order form provided we make the substitution r → DL and Mc → Mc,z. For
higher amplitude orders, the same can be achieved by multiplying all masses by (1 + z) and
substituting the distance r by the luminosity distance DL.

11.2.2 Measuring the luminosity distance

As early as 1986, Schutz showed that it is possible to determine the Hubble constant from
GW observations, by using the fact that GWs from binary systems encode absolute distance
information [168]. The polarisation independent factor in Eq. (11.18) depends on the red-
shifted chirp mass and the luminosity distance. However, the redshifted chirp mass can be
determined through the GW phase (see Eq. (2.71)). This is in stark contrast with ‘conven-
tional’ EM distance measurements such as through type Ia supernovae, which depend heavily
on poorly understood physics. As GWs bear resemblance to audio signals, binary systems
are often referred to as standard sirens, by analogy with EM standard candles.

The use of standard sirens to perform cosmography is limited by several effects. Firstly,
weak gravitational lensing (cf. Sec. 11.1.3) will distort the measurement of the luminosity dis-
tance, obscuring the true loudness of the source. At redshift of z = 2, the root mean squared
magnification fluctuation can be as large as 20% [169]. Furthermore, the measurement of
the luminosity distance is limited by the detector sensitivity. The largest contribution to the
uncertainty in the distance is due to the limited direction and source orientation sensitivity
[170]. As interferometric detectors are sensitive to the strain in Eq. (3.1), there is a large cor-
relation between the distance, the sky position and orientation of the binary (cf. Eqs. (2.72)
and (3.1)), and consequently, the distance is also measured poorly.
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However, a network of detectors, by using triangulation, can provide some directional
guide and therefore allow for a measurement of the luminosity distance with a reasonable ac-
curacy. Through Fisher matrix calculations for a LIGO/Virgo network, Cutler and Flanagan
showed that the fractional error in the luminosity distance is about < 15% for ∼ 8% of the
sources and < 30% for ∼ 60% of the sources [171]. A more recent study by Nissanke et
al. further showed that the luminosity distance is strongly correlated with the inclination
angle of the binary, decreasing the sensitivity to both parameters [170]. This luminosity
distance-inclination degeneracy can be broken by, for example, partially disentangling the
two GW polarisations through measurements with multiple detectors, by using a prior on
the inclination angle of the observed binaries, or by observing some auxiliary channel, such
as a simultaneous detection of a beamed EM signal. The use of a coincident detection of an
EM signal will be further discussed in Sec. 11.2.3.

For a single ET, despite being composed of 3 detectors at a single location, triangulation
does not work because of the negligible distance between individual detectors. However, as
before, the distance-inclination degeneracy might be broken, if some prior assumptions are
made, or if some auxiliary channel is observed.

11.2.3 Measuring the redshift

Astrophysical systems do not posses the same characteristics to induce clear and consistent
spectral lines in the GW spectrum as they do in the EM spectrum. Consequently, the redshift
of an event cannot be obtained through the GW equivalent of spectroscopy. Instead, other
techniques have to be deployed to obtain the redshift from GW events.

Electromagnetic counterpart

One way to measure the redshift associated to a GW event is through the identification of
an accompanying EM signal. For example, the binary merger of a NS with either a NS or
BH is hypothesised to be the progenitor of a short and intense burst of γ-rays, a so-called
short short γ-ray burst (SGRB) [172]. An EM counterpart like a SGRB could provide the
necessary redshift information if the host galaxy of the event can be pinpointed. The error on
the redshift measurement in this case will be negligible compared to the error on the distance,
so that it is often assumed that the redshift is measured conclusively. Furthermore, as SGRBs
are believed to be strongly beamed phenomena [173–175], additional information about the
inclination angle of the binary can be obtained, breaking the luminosity distance-inclination
degeneracy.

Because of the small error in redshift, and the partial breaking of the luminosity distance-
inclination degeneracy, the assumption of an EM event accompanying a GW event is com-
monly used in studies on standard sirens and their ability to infer the cosmological paramet-
ers. For example, Nissanke et al. [170] used MCMC methods to show that with a network of
advanced detectors and 15 detected standard sirens, H0 can be constrained to a 5% accuracy.

For the 3rd generation detector ET, Monte Carlo simulations performed by Sathyaprakash
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et al. [176] showed that if H0 is assumed to be accurately known, then ΩM , ΩDE and a con-
stant w can be constrained to about 10-20%, despite weak lensing obscuring the distance
measurements. Furthermore, Fisher matrix calculations done by the author and his collab-
orators showed that standard sirens can improve the bounds on the dark energy parameters
w0 and wa (cf. Eq. (10.42)) obtained by the combination of future CMB, BAO and SNIa
measurements by 6% and 5% percent respectively [177].

The assumption that BNS or BHNS mergers are progenitors of SGRBs, and the sub-
sequent use of SGRBs to determine the redshift of a binary merger do suffer from drawbacks.
Firstly, despite our increasing knowledge on SGRBs (e.g. [174, 178]), there is no conclusive
evidence that binary mergers are indeed progenitors of SGRBs. Secondly, by comparing the
SGRB rate with evolutionary calculations of BNS formation, Belczynski et al. [179] found
that the fraction of BNS mergers that have the correct physical characteristics to produce
an SGRB, can be as low as 10−2. Thirdly, SGRBs are found to be strongly beamed phe-
nomena, with an opening angle of the jet being smaller than ∼ 20% [180]. Therefore, not all
SGRBs are observable here on Earth, decreasing the probability of observing the SGRB in
coincidence with the GW signal. Finally, it can occur that the host galaxy is not identified
correctly. For an advanced-detector network, the number of galaxies within the sky position-
luminosity distance confidence region can vary between a few (high SNR) to a few hundreds
(threshold SNR) [170, 181]. Nuttal and Sutton showed that in the advanced detector era, the
probability of finding the true host galaxy can range from ∼ 50% to ∼ 90%, depending on
whether the host-galaxy identification is done with a wide or narrow field-of-view telescope.

Galaxy catalogue

In his original paper on performing cosmography by using GW observations, Schutz proposed
the use of a galaxy catalogue, instead of a direct coincident observation of an EM signal [168].
The idea is to identify all the galaxies within the sky position-luminosity distance confidence
region as a potential host. Through the measurement of multiple standard sirens, potential
host galaxies that did not host the event can be statistically ruled out. The use of a galaxy
catalogue to obtain redshift information has been worked out by Del Pozzo for a network of
Advanced detectors and he shows that even with tens of standard sirens, the Hubble constant
can be measured to accuracies in the order of a few percent.

This technique also has several drawbacks. For example, simulations by Bloom et al.
[182] and Bulik et al. [183] showed that between 15% − 20% of the binary mergers are
expected to occur outside dwarf galaxies. If a significant portion of the standard sirens do
not originate from within a galaxy, the results could be significantly biased. Furthermore, this
technique relies on having a complete galaxy catalogue. The Sloan Digital Sky Survey (SDSS)
is assumed to have a complete galaxy coverage up to about z ∼ 0.1, which is suitable for
advanced detectors. However, for third generation detectors, the galaxy catalogues will have
to be extended to be complete up to z ∼ 4. This poses a significant challenge, even for future
missions such as the Large Synoptic Survey Telescope [184]. Furthermore, as GWs can be
detected at increasingly larger distance due to technological improvements, the number of
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potential host galaxies grows. The computational cost of having an enormous number of
potential host galaxies could prove to be the limiting factor for future GW detectors. Indeed,
as ET is expected to make observations at a rate as high as 107 yr−1 for BNS and BHNS
systems, and 108 yr−1 for BBH systems, the analysis of each source with many potential host
galaxies can become a daunting task.

Neutron star mass distribution

Next, we discuss the use of the NS mass distribution to estimate the redshift, originally
proposed by Markovic [185]. In Sec. 11.2.1, it was shown that the mass associated to the
GWs detected here on Earth is the redshifted mass m′ = m(1 + z). Suppose we know the
intrinsic mass distribution of NSs, e.g. through observations of (binary) pulsars. Then, by
inferring the redshifted mass, one can obtain direct redshift information.

This idea critically depends on the assumption that the distribution of the intrinsic mass
of the NSs in binaries is known. Current observations suggest that the mass for NSs in BNS
systems follows a Gaussian distribution with a mean of µ ≈ 1.35M� and a standard deviation
of σ ≈ 0.05 [111, 186]. However, an analysis of BNS observations by Schwab, suggest that
the mass distribution of NSs in BNS system could be a bimodal distribution [187]. The
two modes in this distribution is hypothesised to be associated to two distinct NS formation
scenarios.

The validity of this technique is explored by e.g. Chernoff and Finn [188], and Finn
[189] for LIGO/Virgo-like detectors, Taylor et al. [190] for an advanced-detector network,
and Taylor and Gair [190] for a network of 3rd generation detectors. For an advanced-
detector network, Taylor et al. show that, under the assumption of a flat universe (Ωk = 0),
the Hubble constant H0 can be determined with accuracies of about ∼ 10%. For a third
generation network, Taylor and Gair showed that the dark energy parameters w0 and wa can
be constrained to about 50% accuracy.

Although the idea is potent, its heavy dependence on a known and fixed NS mass dis-
tribution could severely bias the results. In partiular, we do not know whether our current
understanding of the NS mass distribution is obtained with a biased sample of (binary) NSs.
Examples of possible biases include a bias toward long-lived systems, and/or a bias towards
systems that have an observable EM signature (e.g. pulsars, x-ray binaries). Furthermore, for
events to be suitable, one the objects in the binary will have to be unambiguously identified
as a NS.

Tidal deformation of neutron stars

In a recent paper, Messenger and Read [191] showed that redshift information can also
be obtained directly from the inspiral signal, by considering the influence of the object’s
internal structure on the waveform. Specifically, the corrections to the GW waveform due to
finite size effects are a function of the equation of state of NS matter and the rest masses. A
measurement of these corrections would therefore yield information about both the redshifted
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and the rest mass, from which the redshift can be inferred. Current constraints on the NS
equation of state come from the simultaneous measurement of the mass and the radius of
NSs [192–195]. However, these measurements are prone to systematic errors as they are
heavily dependent on detailed modelling of the radiation mechanisms at the NS surface and
absorption in the interstellar medium.

The necessity of knowledge on the NS equation of state could be a major concern when
using this technique. However, GW measurements can provide an interesting solution to
this problem. Specifically, measurements of the influence of finite size effects in NSs can
also be used to probe the NS equation of state. Flanagan and Hinderer [9], and Hinderer
et al. [10] show that an advanced-detector network will have difficulties to constrain all but
some extreme cases, but ET does have the potential to constrain the NS equation of state.
A scenario can be envisaged that a subset of the detections will be used to obtain the NS
equation of state, whereas a different subset will be used to obtain redshift information. This
technique is yet to be investigated for its potential in cosmography, but Messenger and Read
show that the error on the redshift measurement can be as low as 10% [191].

189



COSMOGRAPHY

190



CHAPTER 12

ELECTROMAGNETIC COUNTERPART AS
REDSHIFT MEASUREMENT

12.1 Introduction

As mentioned in Sec. 11.2.3, a popular assumption on BNSs and BHNSs is that they are the
progenitors of SGRBs. To start our investigation into standard sirens as a cosmological tool,
we adopt this assumption as well.

The advantage of an EM counterpart in the form of an SGRB is twofold. Firstly, identi-
fying a SGRB allows for the host galaxy and subsequently its redshift to be determined.
Secondly, SGRBs are likely to be strongly beamed phenomena, which allows one to constrain
the inclination of the compact binary system, breaking the distance-inclination degeneracy.

For this investigation, we will work with ET (see Sec. 3.1.2) as the 3rd generation detector
of our choice. With its expected rate of O(103 − 107) BNS and BHNS detections per year
[28], Einstein Telescope is likely to give enough sources to perform precision cosmology, even
under the assumption of an EM counterpart.

12.2 Implementation

In this investigation, we follow a Monte Carlo approach similar to Sathyaprakash et al.
[176]. In particular, we simulate many GW detections according to the predicted rates
and distributions, and record the values and errors of luminosity distances and redshifts.
Then, the most likely cosmological parameters are inferred through a maximum likelihood
analysis of the catalogue of simulated sources. The distributions of measured values for
the cosmological parameters are obtained by simulating many catalogues of BNS or BHNS
systems.
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12.2.1 Simulated source distribution

Source parameters

The neutron star mass distribution was chosen to be uniform in the interval [1, 2]M�, inspired
by the current limits of the neutron star mass [111], and the black hole mass was chosen to
be uniform between [3, 10]M� [196]. The ratio between BNS and BHNS events is taken to
be 0.03, the same as predicted for Advanced LIGO-Virgo network[105].

Events were placed uniformly on the sky and in comoving volume. Furthermore, we
assume that the sources are distributed according to a local rate function, R(z), per unit
source time and unit co-moving volume. The redshift distribution of the sources as observed
here on Earth then takes the form

P (z) ∝ dVC
dz

R(z)
1 + z

∝ 4πD2
M(z)

H(z)
R(z)
1 + z

, (12.1)

where dVC is given by Eq. (10.66), DM is the transverse comoving distance defined in
Eq. (10.58), H(z) is the Hubble parameter given in e.g. Eq. (10.51) and the factor of 1 + z
is introduced to convert the local rate into the rate observed here on Earth. For the rate
function, R(z), we take

R(z) =


1 + 2z for z < 1
3
4 (5− z) for 1 < z < 5
0 for z > 5,

(12.2)

which is a piece-wise fit created by Cutler et al. [197], which is in turn based on estimates
obtained by using population synthesis models and the cosmic star formation history [198].
The distribution of redshifts z is shown in Fig. 12.1.

By only considering those sources that have an associated SGRB, we can make further
assumptions on the inclination, ι, and the polarisation, ψ, of the binary with respect to
the observer. Since it is expected that SGRB are strongly beamed [173–175], a coincident
observation of the SGRB implies that the binary was orientated nearly face-on, i.e. ι ≈ 0.
Even if the beam is as wide as 40◦ (corresponding to a maximal inclination of the orbital
plane with respect to the line of sight of the binary, ι = 20◦), the resulting area will only
cover 3% of the entire unit sphere, made up by the inclination and the orientation. Averaging
the Fisher matrix over the inclination ι and the polarisation ψ with the constrain ι < 20◦
will therefore be approximately the same as taking ι = 0. Therefore, we take ι = 0 and the
dependence for ψ subsequently drops out of the expression for the antenna pattern function
(cf. Eqs. (3.6) and (3.7)).
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Figure 12.1 – Simulated redshift distribution for GW events from Eq. (12.1).

Number of detectable sources

ET is expected to detectO(103−107) binary neutron star coalescences per year [28]. However,
from these, we expect only a small fraction (∼ 10−3) to satisfy the constraint that the GW
detection coincides with an observation of a SGRB. Assuming a detection rate in the middle
of the anticipated range of O(105), we expect to see O(102) events with an associated SGRB.
As this number is subject to great uncertainty, we will vary the observed number of sources
from 50 up to 103 in the results shown in Sec. 12.3.

Cosmological Model

For the simulations we have to chose our ‘true’ cosmological model. The model was chosen
to consist of the set (H0,ΩM ,Ωk,ΩDE, w0, wa). Because the radiation content is mainly due
to the CMB at T = 2.73 K, its energy density is Ωr ∼ 10−5 and will be ignored for simplicity.

The values of the cosmological parameters will not be essential in our simulation. What we
are interested in is the precision with which they can be measured. However, for consistency
with the current measurements of the cosmological parameters, we chose the cosmological
parameters to be

H0 = 72 km s−1 Mpc−1, ΩM = 0.27, Ωk = 0,
ΩDE = 0.73, w0 = −1, wa = 0. (12.3)

Therefore, the challenge is to recover the values in Eq. (12.3) from a set of measured lu-
minosity distances and redshifts. Having defined the ‘true’ cosmological parameters, the
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luminosity distance is uniquely determined given a redshift. The distribution of luminosity
distance given the redshift distribution in Eq. (12.1) is shown in Fig. 12.2.
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Figure 12.2 – Simulated distribution of luminosity distance given the redshift distribution in
Eq. (12.1) and the cosmological parameters in Eq. (12.3)

12.2.2 Simulating the luminosity distance measurement

In line with the SNR threshold currently used at LIGO/Virgo analyses, a GW detection is
claimed only when the three ET interferometers have a network SNR of ρnet > 8.0. We
will also assume non-spinning CBC systems, which can be characterised by nine parameters
(M, η, tc,Φc, θ, φ, ι, ψ,DL) (cf. Sec. 2.6). For binary neutron stars, the assumption of non-
spinning stars is legitimate [103]. However, there is evidence that black holes have significant
spin [199]. Considering the low fraction of BHNS systems compared to BNS systems, we
will assume spin-less black holes for simplicity. Furthermore, we will only use the leading
order in amplitude (see Sec. 2.6). The extra structure in the waveform due to the amplitude
correction can improve parameter estimation [66], so we are taking a conservative approach.

With the assumption of associated SGRBs, we can assume the location on the sky, i.e.
(θ, φ), to be pinpointed by observation of the EM counterpart. Furthermore, in the first
ET mock data challenge, Regimbau et al. showed that one can infer the mass parameters to
great accuracies [200]. We assume that the mass parameters are accurately determined and do
not have considerable correlation with other parameters. This leaves the set of parameters
(tc,Φc, ι, ψ,DL) to be estimated. As can be seen from the expression of the waveform in
Eq. (2.72), tc and Φc do not appear in the expression of the amplitude. Therefore, we assume
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that these parameters are largely uncorrelated with the amplitude parameters. Finally, we
are left with the set of parameters {ι, ψ,DL} that we need to consider in order to gauge the
ability of ET to estimate the luminosity distance.

Instrumental noise

To estimate the instrumental error on the measurement of the luminosity distance, we turn
to the Fisher information matrix (see Sec. 5.2). Suppose that the error on DL is uncorrelated
with the errors on the remaining GW parameters. The Fisher matrix is block diagonal in
that case, and one can obtain the Cramer-Rao bound for DL by immediate inversion of the
Fisher information matrix element, i.e.

σinst
DL

=
√
CDLDL

=
√

(Γ−1)DLDL
'
√

(ΓDLDL)−1

'

√√√√( ∂h

∂DL

∣∣∣∣∣ ∂h

∂DL

)−1

, (12.4)

where h represents the GW waveform. As h ∝ D−1
L , we have

∂h

∂DL

= − h

DL

. (12.5)

Plugging Eq. (12.5) into Eq. (12.4), the instrumental error of the luminosity distance is given
by

σinst
DL
'

√√√√ D2
L

(h| h) (12.6)

' DL

ρ
, (12.7)

where ρ denotes the signal-to-noise ratio. The signal to noise ratio is calculated using the
simulated values for GW parameters.

However, we are not in the situation where DL is uncorrelated with other parameters.
In particular, the expression Eq. (12.7) has ignored the correlation with the remaining GW
parameters, especially the inclination. To account for this correlation, we note that the
maximal effect of the inclination on the SNR is a factor of 2 (between the source being face-
on, ι = 0 and edge-on ι = π/2). Therefore, to account for the correlation between the DL

and ι, we double the estimate of the error on the luminosity distance, i.e.

σinst
DL
' 2DL

ρ
. (12.8)
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Weak lensing

Measurements of the luminosity distance are also affected by weak lensing. The dominant
effect is the change of the apparent brightness. This effect can either increase or decrease
the apparent brightness, making the inferred luminosity distance to be either smaller or
larger. Quantitatively, the effects of the magnification are given by the root mean square of
the magnification fluctuation [169]. The magnification fluctuation can be interpreted as an
additional error on the measurement of the luminosity distance. Guided by Bartelmann et
al. [169], we will approximate the error due to weak lensing to be

σlens
DL

= 0.09z. (12.9)

Total statistical error on the luminosity distance measurement

With the main sources of errors identified above, we can now write the total error on the
luminosity distance as

σtotDL =
√(

σinst
DL

)2
+
(
σlens
DL

)2

=

√√√√(2DL

ρ

)2

+ (0.09z)2. (12.10)

The distribution of luminosity distance errors following the source-parameter distribution
given in Sec. 12.2.1 is shown in Fig. 12.3.

Systematic error on the luminosity distance measurement

The final assignment of the measured luminosity distance is done by sampling a Gaussian
distribution where the mean is given by the simulated luminosity distance, calculated from
the simulated redshift (cf. Sec. 12.2.1) and the chosen value of the cosmological parameters,
and the standard deviation is set by Eq. (12.10).

12.2.3 Simulating the redshift measurement

To simplify the analysis, the redshift measurement by means of EM observations is assumed
to be free of any error. This approximation is based on the current errors of spectroscopic
redshift determination, which are negligible compared to the errors in the luminosity dis-
tance (cf. Sec. 11.1.2). Although photometric redshift measurements are not as accurate
as spectroscopic measurements, significant improvement can be expected by the time ET is
operational.

It could also happen that the host-galaxy identification of the EM signal (e.g. SGRBs)
is incorrect. This could happen in several cases. Firstly, it could happen that the unrelated
EM signal occurs at the exact same moment as the GW detection. In this case, the sky
location and the redshift can be completely arbitrary. However, considering that there about
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Figure 12.3 – Simulated distribution of luminosity distance errors given the source-parameter
distribution given in Sec. 12.2.1.

≈ 100 SGRBs observed in a year, and the timing resolution is of the order of 1 msec, we
do not expect to that the probability of an unrelated coincidence detection to be significant.
The other case is that the host galaxy of the SGRB is misidentified. In this case, the sky
position is still approximately correct, but the redshift determination might be off. In a
study of 20 SGRBs, Bloom et al. [182] showed that for most of these SGRBs, the probability
of misidentifying the host galaxy is about 1%. Therefore, we assume that the correct host
galaxy is found for all SGRBs.

12.2.4 Estimating the cosmological parameters

The goal of cosmography is to infer the cosmological parameters from a catalogue of obser-
vations. In the case presented here, the set of measurements consists of the redshifts, the
luminosity distances and the error on the luminosity distance

{
zi, DL

i
, σDL

i
}
. An example

catalogue is shown in Fig. 12.4.
From a set of N observed redshifts, luminosity distances, and the errors on the luminosity

distance, we can estimate the cosmological parameters through least-square fitting. Note that
least-square fitting is equivalent to finding the maximum of a likelihood that has the shape of
a multivariate Gaussian for each of the measurements (cf. Sec. 5.1). The residual to minimise
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Figure 12.4 – Example catalogue of redshifts, luminosity distances and errors on the luminosity
distance.

in this case is given by

χ2 =
N∑
i

DL
i −DL

(
zi; ~Ω

)
σDL

i

2

, (12.11)

where ~Ω represent the set of cosmological parameters. Finally, we use the Levenberg-
Marquardt algorithm (see Sec. 5.1) to minimise the residuals.

However, finding the maximum likelihood does not give information on the precision of
the inference of the cosmological parameters. To estimate the distribution of cosmological
parameters, we perform a Monte Carlo simulation of M realisations. The maximum likeli-
hoods for each of these realisations will then give a frequentist approach to the probability
of the cosmological parameters.

Measuring all the cosmological parameters at once is a significant challenge, even for the
most precise observations we have today. Furthermore, different types of experiments have
parameters to which they are more sensitive to, e.g. CMB measurements constrain H0, ΩM

and Ωk well, but they have poor accuracy when it comes to dark energy parameters [177].
Therefore, most experiments restrict the analyses to a subset of the cosmological parameters.
This amounts to having additional prior information that (strongly) favours specific values
for a set of cosmological parameters. In Sec. 12.3 we consider both the cases where some
parameters are assumed to be constrained, and the case where standard sirens alone provide
the constraints on the cosmological parameters.
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12.3 Results

12.3.1 Inferring the Hubble constant

The earliest measurement of the Hubble constant, H0, performed by Hubble in 1929, was
accomplished by comparing the distances of galaxies with their redshift [134]. The value found
was 500 km s−1 Mpc−1, which is about ten times bigger than the estimate we have now. With
increasing knowledge and technological advances, the value for the Hubble constant has seen a
sharp decrease. Current estimates come from an array of different experiments. The analyses
of SNIa supernovae gives a value of H0 = 74.2 ± 3.6 km s−1 Mpc−1[201]. The analysis of
the CMB anisotropies made by WMAP gives H0 = 71.0 ± 2.5 km s−1 Mpc−1 [202]. BAO
measurements give H0 = 68.2± 2.2 km s−1 Mpc−1 [203].

We calculate the median (black dots) and the 95% confidence interval (black error bars)
for H0 as a function of the number of sources (in steps of 50) for the set of free parameters
{H0,ΩM ,ΩDE}. These results, shown in Fig. 12.5, are compared to similar results from
WMAP, BAO and SNIa combined. From Fig. 12.5 we see that around 400 GW events are
needed to achieve an accuracy comparable to the WMAP, BAO and SNIa combined results.
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Figure 12.5 – 95% confidence interval (black lines) and the median (black dots) for H0 for a
variable number of GW events with an EM counterpart. The fiducial value is shown as the red
dashed line. For comparison, the current bound given by WMAP, BAO and SNIa combined for H0
is plotted in the blue shaded area [204]
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12.3.2 Matter density and cosmological constant

Next, we look at the ability of standard sirens to measure the energy densities. Despite tight
empirical constraints on the spatial flatness, i.e. −0.0133 < Ωk < 0.0084 [204], the great
promise of standard sirens is to provide an independent measurement. Therefore, we will not
assume spatial flatness when investigating the ability of standard sirens to measure the energy
densities of the universe. Following the constraint in Eq. (10.52), we take Ωk = 1−ΩM−ΩDE.

In Fig. 12.6, we show the 2σ-error ellipses on the (ΩM ,ΩDE) plane (black contours) for the
set of free parameters {H0,ΩM ,ΩDE}. We show contours for 50, 100, 200, 500 and 1000 GW
events. The results are compared with the current constraints put forward by the combined
measurements of WMAP, BAO and SNIa [205]
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Figure 12.6 – 2σ error ellipses in the ΩM −ΩDE plane (black solid) for a variable number of GW
events considered. These are compared with the current constraints by WMAP, BAO and SNIa
(blue area) [205].

Although the error ellipses for a 1000 GW events are bigger than the error ellipses given
by the combined measurements of WMAP, BAO and SNIa, Fig. 12.6 shows that the error
ellipses are oriented in different directions. This means that GW measurement can cut away
some part of the parameter space that has not been constrained yet. In particular, GW
measurements are more sensitive to ΩM .

12.3.3 Dark energy

Next we want to study the ability of standard sirens to infer the nature of dark energy. As the
nature of dark energy is still unknown, we adopt the widely used practice of expanding the
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equation of state parameter, w(z), as shown in Eq. (10.42). Here, the dark energy equation
of state is written in terms of two constants w0, wa.

We compare the accuracies on dark energy with optimistic1 forecasts for the methods
introduced in Secs. 11.1.1–11.1.3. The forecasts are based on proposed future missions such
as the Square Kilometre Array (SKA) [207], WFIRST (previously known as JDEM) [208]
and Euclid [209] which are equipped to study the cosmology through a variety of methods.

Pivot point

Although we measure two dark energy equation of state parameters, we are mainly interested
in the ability to measure the function w(z). As the error on w(z) is itself redshift dependent,
it is common practice [210, 211] to make the transform

{w0, wa} → {wp, wa} , (12.12)

where wp is defined to be the value of w(a) at the so-called ‘pivot’ scale factor ap, i.e.

wp = w0 + (1− ap)wa. (12.13)

The pivot scale factor is the scale factor at which the error on w(a) is minimal. Following
the linearised approximation of w(a), given in Eq. (10.42), the variance of the function w(a)
is given by

σ2
w = σ2

w0 + (1− a)2σ2
wa + 2(1− a)corr(w0, wa)σw0σwa , (12.14)

where σw0 and σwa are the standard deviations on w0 and wa, and corr(w0, wa) is the correl-
ation between w0 and wa. The minimum with respect to the scale factor a is given by

ap = 1 + corr(w0, wa)σw0

σwa
. (12.15)

This expression can then be turned into the pivot redshift, given by

zp = −
(

1 + σwa
corr(w0, wa)σw0

)−1

. (12.16)

Besides the equation of state parameters, dark energy is also characterised by its fractional
energy density ΩDE. To gauge the ability of an experiment to probe dark energy, it is
instructive to visualise the confidence intervals in the ΩDE − wp plane. The results for the
case where the set {ΩM ,ΩDE, w0, wa} is left free are shown in Fig. 12.7. These results are
compared to the optimistic (solid, coloured) and pessimistic (dashed, coloured) predictions
for BAO, cluster counting (CL), weak lensing (WL) and supernovae (SNIa) measurements
[206].

1For assumptions for the ‘optimistic’ scenarios of experiments mentioned, consult Albrecht et al. [206]
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Figure 12.7 – 2σ error ellipses on the ΩDE − wp plane (solid, black). These plots show the
potential for standard sirens to constrain the nature of dark energy. The results are compared to
the optimistic (solid, coloured) and pessimistic (dashed, coloured) forecast for BAO, supernovae
(SNIa), cluster counting (CL) and weak lensing (WL) for the future Square Kilometre Array or a
space-based Joint Dark Energy Mission (JDEM) [206]

Fig. 12.7 shows that ET can constrain dark energy comparable to future dark energy
probes. Assuming that Einstein Telescope observes more than 500 sources, ET even outper-
forms the optimistic predictions for BAO, supernovae and cluster counting measurements.
Only weak lensing has the potential to outperform Einstein Telescope in this case. We can
therefore conclude that ET can play a key role in characterising the nature of dark energy.

Dark energy figure of merit

The transformation shown in Eq. (12.12) also has the advantage that the parameters wp and
wa are uncorrelated. This can be shown as follows. As the transformation in Eq. (12.12) is
a linear transformation, the covariance matrix, Cij, is transformed according to

C ′ab =
∑
ij

∂pa
∂qi

Cij
∂pb
∂qj

. (12.17)

Evaluating the partial derivatives as

∂wp
∂w0

= 1, ∂wp
∂wa

= 1− ap,
∂wa
∂w0

= 0, (12.18)
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we can evaluate the covariance between wp and w0 as

Cwpwa = Cw0wa + (1− ap)Cwawa ,
= 0, (12.19)

where we have used the expression for ap in Eq. (12.15).
Because the parameters wp and wa are uncorrelated, the area of the error ellipse is simply

proportional to σwaσwp . Furthermore, as the transformation in Eq. (12.12) is only a change in
coordinate bases, the area of the error ellipse in the wp, wa plane is the same as the area of the
error ellipse in the w0, wa plane. In order to gauge the ability of an experiment to probe the
dark energy equation of state, it is common practice to introduce a figure of merit given by
the reciprocal of this area, i.e.

(
σwpσwa

)−1
. For this figure of merit, the larger this quantity

is, the more accurately we can measure the dark energy equation of state parameters.
The dark energy equation of state figure of merit for ET is shown as a function of the

number of sources for various sets of free parameters in Fig. 12.8. These results are compared
to the predicted range for the individual BAO, WL, CL and SNIa measurements [206], shown
as the shaded area. The upper bound of this shaded area is set by the optimistic predictions
from weak lensing measurements, whereas the lower limit is set by the pessimistic predictions
from cluster counting measurements. The optimistic and pessimistic predictions for the other
methods are between the upper and lower bound. It is evident from Fig. 12.8 that standard
sirens can provide constraints on dark energy that are comparable to future (∼ 2020) BAO,
WL, CL and SNIa experiments.

12.4 Discussion

Gravitational waves from coalescing binaries directly encode the luminosity distance. How-
ever, unlike EM measurements, the redshift is not readily measured. One way to obtain
the redshift of a GW event is to observe a coincident EM signal and measure its redshift.
Candidate EM signals are SGRB, that are hypothesised to be aftermaths of binary systems
with at least one neutron star. An additional advantage of observing an accompanying EM
signal is that it also encodes information about the sky location of the GW event, making
the inference on the other GW parameters more accurate.

We investigated the power of ET to infer cosmological parameters by simulating binary
systems that have accompanying EM signals. We assumed that the redshift and the sky
location are measured without error. We estimated the instrumental error on the luminosity
distance by using a Fisher matrix calculation. We also modelled the weak lensing errors
linearly in redshift and added this in quadrature to the instrumental error. The redshift and
the luminosity distance from a catalogue of sources were then used to infer the cosmological
parameters through a maximum likelihood analysis. To obtain statistics on the cosmological
parameters, we simulated multiple catalogues of GW events.

In this study, we considered the accuracies on the Hubble constant, the energy content of
the Universe, and the dark energy equation of state for various combinations of cosmological
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Figure 12.8 – Dark energy figure of merit
(
σwpσwa

)−1 as a function of the number of events for
various cases of free parameters. The results are compared future BAO, supernovae (SNIa) and
cluster counting (CL) experiments [206], shown as the shaded area. The upper bound of this shaded
area is set by the optimistic predictions from weak lensing measurements, whereas the lower limit is
set by the pessimistic predictions from cluster counting measurements. Only optimistic predictions
for weak lensing experiments have considerably better performances than standard sirens.
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parameters to be inferred. For the Hubble constant, ET needs ∼ 400 GW measurements to
compete with all current experiments combined. Similar results are obtained for the energy
density of matter and dark energy: one needs hundreds of sources to achieve the accuracy of
all current methods combined. Finally, we investigated the power of ET to probe the dark
energy equation of state. In particular, we showed that ET can put constraints on the dark
energy and its equation of state comparable to future EM measurements, provided that the
Hubble constant is known. One way to obtain constraints on the Hubble constant is to use
an independent set of close by standard sirens.

The results shown here only consider a single ET, which consist of three co-located GW
detectors. On top of the encouraging nature of the results, it should be stressed that it is
likely that there will be other 3rd generation detectors by the time ET will be operational.
Using multiple detectors at different locations increases the ability to infer the luminosity dis-
tance drastically, as shown for various advanced detector network configurations by Veitch
et al. [212]. This increased accuracy on the luminosity distance will heavily impact the
ability to infer the cosmological parameters. Indeed, using standard sirens to probe the cos-
mological parameters will provide an independent and complementary alternative to current
experiments.

Finally, observing an EM counterpart is not the only option to measure the redshift.
As discussed in Sec. 11.2.3, the redshift can also be obtained from the mass distribution of
neutron stars, the deformability of neutron stars and galaxy catalogues. In the realistic scen-
ario, these methods will be used in conjunction to improve the inference on the cosmological
parameters.
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CHAPTER 13

CONCLUDING REMARKS

The themes of this work are the questions: “What physical information can be extracted from
GWs emitted by CBC systems and how can it be extracted?”. To answer these questions, we
showed the theoretical models needed to compute CBC waveforms and some of the techniques
necessary to extract information from GW detections. We explored two applications in detail:
Testing the strong-field dynamics of GR and inferring the large-scale structure of the Universe.

13.1 Testing the strong-field dynamics of general relativity

In Part II, we presented a new theoretical framework called TIGER to test the consistency
of the GW signal with the prediction made by GR. This framework makes maximum use
of the information provided by applying the concepts of Bayesian hypothesis testing. The
novel aspect is the separation of the hypothesis “is the detection consistent with GR?” that
is inherently difficult to assess (i.e. one does not know how the signal looks like when GR is
not the correct theory), into logically disjoint subhypotheses that are readily assessed. Such
a set-up allows for a test of GR without prior knowledge on the specific way in which GR is
violated. In other words, TIGER is a generic test of GR.

Moreover, we implemented the TIGER framework into a data-analysis pipeline capable
of analysing LIGO/Virgo data. We performed comprehensive simulations of BNS detections
to test the concepts of the TIGER framework. The results seem to suggest that TIGER
can pick up arbitrary deviations from GR, even in the low SNR regime that is applicable to
advanced detectors. A comparison with efforts in the literature shows that TIGER is more
general and has better performance than existing methods.

For BNS sources, the author and his collaborators are currently expanding TIGER to
include waveforms with spin interactions. Furthermore, efforts are ongoing to quantify the
effects of possible detector-calibration errors, and to include an upper-frequency cut-off to
exclude matter effects such as the NS tidal deformability. For BHNS and BBH sources,
the author and his collaborators are currently investigating the possibilities to improve the
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waveform models. In particular, efforts are ongoing to perform numerical simulations of
BHNS and BBH systems by using the Tier 1 grid facility at Nikhef.

13.2 Inferring the large-scale structure of the Universe

GWs emitted by CBC systems directly encode the luminosity distance between the source and
the observer. The redshift of the source can be inferred from several methods such as using an
EM counterpart, a galaxy catalogue, the NS mass distribution, or the NS tidal deformability.
With the luminosity distance and redshift determined, one has enough information to use the
luminosity distance-redshift relationship to infer the parameters associated with the standard
model of cosmology.

In Part III, we investigated the ability of ET to infer the cosmological parameters. We
considered those CBC sources that can be associated with a redshift measurement from EM
counterparts such as SGRBs. For these sources, we calculated the accuracies with which
ET can measure the cosmological parameters, and compared them to current and future
accuracies from various (purely) EM methods such as the CMB and BAO measurements.
Finally, we showed that several hundred sources are needed to achieve accuracies that are
similar to EM methods. Since the expected rate for BNS or BHNS detections is O(103−107)
per year, measuring several hundreds of CBC systems that have an associated EM counterpart
can be assumed realistic. Therefore, we concluded that future GW observatories such as ET
can independently verify the current cosmological paradigm to comparable accuracies as EM
methods.

In this thesis, we have only considered the use of an EM counterpart to provide redshift
information. The author and his collaborators are currently investigating the use of the NS
tidal deformability to provide redshift information. Preliminary results show that constraints
on the cosmological parameters can be set using this method. Ongoing simulations will
soon give us an indication of the accuracy with which the cosmological parameters can
be measured. Ultimately, all methods of inferring the redshift (EM counterpart, galaxy
catalogue, NS mass distribution and NS tidal deformability) should be brought together
under a common data-analysis effort. Such a unified data-analysis tool is currently under
construction by the author and his collaborators.

13.3 A new window into the Universe

The two topics presented in this work are merely the tip of the iceberg of what physics
can be extracted from direct detections of GWs. For instance, GW measurements yield
information about the masses and the spins of BHs and NSs. These can be used to study
the stellar, galaxy and BH evolution models. Moreover, CBC and CW signals can shed light
on the physical processes that govern the interior of NSs. Bursts of GWs emitted during
a supernova can be used to probe its core dynamics. The detection of GWs could lead to
observations of speculative compact objects such as cosmic strings, boson stars or sub-solar
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mass BHs. Furthermore, the association of GWs with an EM transient could inform us about
the origin of the transient. For example, the observation of a CBC signal prior to a SGRB
will inform us about the physical processes underlying SGRBs.

Although the list of possible physics that can be extracted from GW detections seems
to vary across many topics, the procedure to extract the information is remarkably similar.
Firstly, one needs to model the expected GWs, similar to what was done in Chs. 1 and 2 for
CBC systems. The difficulty of this stage depends on the system considered. Systems such as
CBCs are mostly governed by GR, whereas supernovae require interactions from all corners
of physics. Next, these models are used as filters in a detection procedure such as matched
filtering (see Ch. 3), where the signal is extracted from the noise. Alternatively, one can
use generic filters such as sine-Gaussian filters. In either case, the result is the identification
of a GW detection. Finally, once a detection has been made, we can analyse the signal to
extract the targeted information. The extraction process can be done with the framework
and algorithms associated with Bayesian statistics (see Chs. 4 and 5). Therefore, the topics
covered in this thesis give insight into the intricate nature of how one arrives at physical
statements starting from the raw detector output.

The GW community is entering a critical phase as the upgrades to Advanced LIGO
and Advanced Virgo are soon to be completed. If the advanced detectors do not make any
detections, serious doubt about progenitor modelling or even the validity of GR might arise.
However, if detections are made by the advanced detectors, the possibilities of GW astronomy
could be endless. Indeed, the direct detection of GWs could invoke a revolution in astronomy,
similar to the one that was driven by the advances of telescopes in the 20th century.
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APPENDIX A
SYSTEMATIC MULTIPOLE EXPANSION

It is convenient to systematically decompose the multipole expansion of Eq. (1.88) into ir-
reducible representations of the rotation group SO(3). In particular, we will look into a
multipolar expansion by using the so-called STF harmonics [213, 214]. Before doing this, it
is useful to introduce some notation that will be used throughout the rest of this and next
chapter.

A.1 Notation

A tensor F with l (spatial) indices i1, i2, . . . , il will be compactly written by using L =
i1i2 . . . il, i.e.

FL ≡ Fi1i2...il . (A.1)

Similarly, FL−1 = Fi1i2...il−1 and GiL = Gii1i2...il . Derivative operators can also be compactly
written as ∂L = ∂i1∂i2 . . . ∂il . Furthermore, we write the product of vectors as

xL ≡ xi1xi2 . . . xil , (A.2)

and reserve ni = xi/r as the unit vector in the radial direction. Repeated upper case indices
imply the summation over all l indices, i.e.

FLGL =
∑
i1...il

Fi1...ilGi1...il . (A.3)

Also, superscripted integers n surrounded by round brackets denote the nth derivative with
respect to the retarded time u, i.e.

f (n)(u) ≡ dnf/dun. (A.4)
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One can obtain the STF part of a general tensor A in two steps. Firstly, one constructs the
symmetric part through

A(L) = 1
l!
∑
π

Aπ{k1...kl}, (A.5)

where the summation is over all permutations π of the indices k1 . . . kl and the round brackets
surrounding a capitalised index denote the symmetrisation in the included indices. Secondly,
one removes all traces from the symmetrised tensor SL = A(L) by

ÂL =
[l/2]∑
n=0

(−1)n l!(2l − 2n− 1)!!
(l − 2n)!(2l − 1)!!(2n)!!δ(k1k2 . . . δk2n−1k2nSk2n+1...kl)j1j1...jnjn

= A〈L〉, (A.6)

where a hat denotes the STF part of a tensor and is equivalent to writing angle brackets
surrounding indices. Also, [l/2] denotes the largest integer less than or equal to l/2. An STF
tensor with l indices has 2l+ 1 independent components and is therefore a representation of
dimension 2l+ 1 of the special rotation group SO(3). Furthermore, it can be shown that the
set of all STF tensors gives a complete set of representations of SO(3) [215].

A.2 Scalar fields

Before we look into a systematic multipole expansion for gravitational fields, it is instructive
to consider a scalar field φ that satisfies the wave equation

2φ = −4πρ (t, ~x) , (A.7)

where the source is localised within some distance d. Outside the source, the general solution
to the wave equation is given by

φ(t, ~x) =
∞∑
l=0

(−1)l
l! ∂L

[
FL(u)
r

]
, (A.8)

where FL is an arbitrary function of the retarded time u = t− r. This follows from

2

[
f(u)
r

]
= 0, (A.9)

for an arbitrary function f(u). Therefore, each term in the sum of Eq. (A.8) is a solution to
the wave equation. The solution in Eq. (A.8) turns out to be the most general solution to
Eq. (A.7) [215].

The wave equation can also be solved by using Green’s function. The solution can be
written as

φ(t, ~x) =
∫
d3~y

ρ(t− |~x− ~y|, ~y)
|~x− ~y|

, (A.10)
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which holds both inside and outside the source. By comparing Eq. (A.8) to Eq. (A.10), one
can obtain an expression for the multipole moments FL in terms of the source ρ(t, ~x) [216]

FL(u) =
∫
d3~y ŷL

∫ 1

−1
dz δl(z)ρ(u+ z|~y|, ~y), (A.11)

where the hat denotes the STF part shown in Eq. (A.6), and where δl(z) is defined as

δl(z) ≡ (2l + 1)!!
2l+1l! (1− z2)l. (A.12)

The integration over z can be expressed as
∫ 1

−1
dz δl(z)f(u+ z|~y|, ~y) =

∞∑
k=0

(2l + 1)!!
2kk!(2l + 2k + 1)!!

(
|~y| ∂
∂u

)2k

f(u, ~y), (A.13)

from which we can see that the integration over z takes the infinite series of derivatives into
account.

A.3 Gravitational fields

One can treat each component of the gravitational field as a scalar and therefore write the
general solution to Eq. (1.40) outside the source as

h̄00(t, ~x) = 4
∞∑
l=0

(−1)l
l! ∂L

[
FL(u)
r

]
, (A.14)

h̄0i(t, ~x) = 4
∞∑
l=0

(−1)l
l! ∂L

[
GiL(u)
r

]
, (A.15)

h̄ij(t, ~x) = 4
∞∑
l=0

(−1)l
l! ∂L

[
HijL(u)

r

]
. (A.16)

However, in this form, Eq. (A.15) and Eq. (A.16) are not STF under the exchange of i with
one of the indices in L. Therefore, one must further decompose GiL and HijL into complete
STF tensors by using the steps in Eq. (A.5) and Eq. (A.6). Ultimately, one can write the
gravitational field components as

h̄00(t, ~x) = 4
∞∑
l=0

(−1)l
l! ∂L

[
ML(u)
r

]
, (A.17)

h̄0i(t, ~x) = −4
∞∑
l=1

(−1)l
l! ∂L−1

M (1)
iL−1(u)
r

+ l

l + 1εiab∂a
(
SbL−1(u)

r

) , (A.18)

h̄ij(t, ~x) = 4
∞∑
l=2

(−1)l
l! ∂L−2

M (2)
ijL−2(u)
r

+ 2l
l + 1∂a

εab(iS(1)
j)bL−2(u)
r

 . (A.19)
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Similar to Eq. (1.88), one again has two families of moments, ML and SL, describing the
gravitational fields. Their explicit forms in terms of the stress-energy tensor are given by

ML(u) =
∫
d3~y

∫ 1

−1
dz

{
δl(z)ŷLσ −

4(2l + 1)δl+1(z)
(l + 1)(2l + 3) ŷiLσ

(1)
i

+ 2(2l + 1)δl+2(z)
(l + 1)(l + 2)(2l + 5) ŷijLσ

(2)
ij

}
(u+ z|~y|, ~y), (A.20)

SL(u) =
∫
d3~y

∫ 1

−1
dz εab〈il

{
δl(z)ŷL−1〉aσb −

(2l + 1)δl+1(z)
(l + 2)(2l + 3) ŷL−1〉acσ

(1)
bc

}
(u+ z|~y|, ~y),

(A.21)

where we have defined

σ ≡
(
T 00 + T ii

)
, σi ≡ T 0i, σij ≡ T ij. (A.22)

We will return to the use of the STF multipole expansion when we consider GWs in the full,
non-linear theory of GR.
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LIST OF ACRONYMS

BAO baryon acoustic oscillations

BBH binary black hole

BHNS black hole neutron star binary

BH black hole

BNS binary neutron star

CBC compact binary coalescence

CMB cosmic microwave background

CW continuous waves

EFE Einstein field equations

EM electromagnetic

ET Einstein Telescope

FAP false alarm probability

FLRW Friedmann-Lemaître-Robertson-Walker

GR general relativity

GW gravitational wave

LAL LIGO Algorithms Library

LHS left hand side

LIGO Laser Interferometer Gravitational Wave Observatory
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LIST OF ACRONYMS

LLF local Lorentz frame

LSO last stable orbit

MCMC Markov chain Monte Carlo

NS neutron star

PM post-Minkowskian

PN post-Newtonian

PPE parameterised post-Einsteinian

RHS right hand side

SDSS Sloan Digital Sky Survey

SGRB short γ-ray burst

SNR signal-to-noise ratio

SPA stationary phase approximation

STF symmetric trace-free

TIGER Test Infrastructure for GEneral Relativity

TT transverse-traceless

230



POPULAR-SCIENCE SUMMARY (EN)

Description of planetary motion throughout time

Humans have been watching the sky for thousands of years. In early times, humans tracked
the motion of the Sun and the Moon to make calendars and to associate it with Earthly
events such as tides and seasons. By tracking the motion of celestial objects, the early notion
of the orbit of the Sun, the Moon and the planets started to form. Building on earlier
work developed by Greek astronomers, Claudius Ptolemy (90–168) introduced an accurate
model of the planetary orbits by including the notion of a smaller circular orbit (epicycle)
augmenting the primary circular orbit.

During the Renaissance, our knowledge of the sky started to change. Johannes Kepler
(1571–1630) introduced three laws that described the planetary orbits as ellipses with the
Sun at the focus. Later, Isaac Newton (1642-1727) showed that Kepler’s laws of planetary
motion can be derived from a law that not only describes the motion of planets, but also
describes how all objects are attracted to each other. Newton’s law of universal gravitation
states that all objects “pull” on each other through the gravitational force, and the strength
of this force is determined by the masses of the two objects.

Despite the success of Newton’s law of universal gravitation, it could not account for
the shift in Mercury’s perihelion, the point in Mercury’s orbit that is closest to the Sun.
It was Albert Einstein (1879–1955) who refined Newton’s law of universal gravitation by
introducing the general theory of relativity. Einstein’s general theory of relativity states
that the curvature of space and time dictates the way in which matter flows through it, and
conversely, matter curves space and time around it. Einstein’s theory explained the shift in
Mercury’s perihelion, and so far seems to be the correct description of the motion of planets,
stars and even galaxies.

Gravitational waves: a new window into the Universe

The general theory of relativity does more than just predicting the motion of objects. It also
predicts a new type of radiation, known as gravitational radiation or gravitational waves.
Gravitational waves are ripples in the curvature of space and time, which propagate at the
speed of light. The effect of gravitational waves is the periodic expansion and contraction
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of space and time. The existence of gravitational waves has only been inferred indirectly
through the motion of two stars orbiting each other.

Large-scale physics experiments such as the United States-based LIGO and the Italy-
based Virgo aim to, for the first time in the history of mankind, detect the influences of
gravitational waves directly. LIGO and Virgo are set up to measure tiny changes in distances
of about one thousandth of the diameter of a proton. The characteristics of the gravitational
waves are intimately connected to the motion of the source. Where, traditionally, astronomers
needed telescopes to determine the motion of planets, stars and galaxies, the measurement of
gravitational waves can provide an additional window from which we can explore the secrets
of the Universe.

Testing Einstein’s general theory of relativity

From Ptolemy to Newton and from Newton to Einstein, history has taught us that our
laws of physics need continual refinement to describe Nature to ever increasing accuracy. No
exception should be made for Einstein’s general theory of relativity. In fact, Einstein’s theory
has never been tested in the vicinity of extremely dense objects such as neutron stars and
black holes. Neutron stars are stellar remnants that mainly consist of electrically-neutral
subatomic particles called neutrons. Neutron stars are so dense that they pack the mass of
the Sun in about the size of a city. Black holes are even more extreme objects. They are
stellar remnants that were once so dense that these stars could not counteract their own
gravitational pull and imploded into themselves. Black holes are given their distinct name
because their gravitational pull is so strong that not even light can escape if it comes too
close.

This thesis describes the Test Infrastructure for GEneral Relativity (TIGER) framework,
which provides a theoretical framework and a data-analysis algorithm to test the general
theory of relativity in a way that does not require any knowledge of a possible alternative
theory. TIGER compares the motion of two orbiting neutron stars to the prediction made
by the general theory of relativity and assigns a degree of plausibility to the question: “Are
the orbits consistent with the predictions from the general theory of relativity?” Such a test
is analogous to precisely measuring the orbit of planets, and comparing it to the prediction
made by Newton’s law of universal gravitation.

The TIGER framework was tested through computer simulations that used thousands of
computers spread all over the world. The results seem to suggest that the TIGER framework
can detect arbitrary deviations in the motion of the orbiting neutron stars. Furthermore, the
results show that by using the TIGER framework to analyse LIGO and Virgo data, one is
able to test the influence of gravitation to precisions that have yet been achieved.

If the TIGER framework manages to find a deviation from Einstein’s general theory of
relativity, then it will mean a new revolution in our understanding of gravitation. Scientists
will introduce new ideas to fill the gap left in our explanation of how all things in the Uni-
verse move. However, any potential new theory must be able to describe current and future
observations. The circle of theoretical models predicting observations, and observations con-
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firming theoretical models is likely to go on indefinitely, as humans continue to refine their
ability to describe and to predict what happens in the Universe.

Inferring the large-scale behaviour of the Universe

Since the time of Ptolemy and Newton, we have come to know more about the glittering
stars we see on the sky. For example, we have come to realise that the Milky Way is a large
group of stars bound by their gravitational interaction, also known as a galaxy. Moreover, it
turns out that some of the “stars” we see on the sky are actually galaxies. In fact, we now
know that there are more than a hundred billion galaxies in our vast Universe. Remarkably,
their collective motion, which seems to suggest that the Universe is undergoing an accelerated
expansion, can be described by the general theory of relativity. The study of this large-scale
behaviour of the Universe is called cosmology.

To determine the collective motion of galaxies, one needs to measure their distance from
Earth and their relative motion with respect to Earth. However, the farther an object
is, the more difficult it is to determine its distance. Scientists nowadays use a range of
techniques to determine the distance of increasingly remote objects. Each of these techniques
is calibrated to techniques used to determine the distance to closer objects. The series
of different techniques is called the cosmic distance ladder, where each rung of the ladder
represents a different distance-measurement technique. Such a setup is necessary because
little is currently known about the properties of distant stars and galaxies. However, the
cosmic distance ladder is rather error prone, as each rung depends on the results and accuracy
of the previous rung. A tiny error in the first rung could have devastating consequences for
the distance measurement of a remote object.

An alternative way of measuring cosmological distances that is less error prone than using
the cosmic distance ladder, is by measuring the gravitational waves of two orbiting neutron
stars or black holes. The general theory of relativity describes the way the intensity of
gravitational waves becomes weaker as the observer is farther away, just as a light source
appears to be fainter the farther you are from it. The ability to predict how the intensity of
gravitational waves decays as the observer is farther allows scientists to measure the distance
to an object directly, without the aid of the cosmic distance ladder.

This thesis explores the ability of future gravitational-wave detectors such as the Einstein
Telescope, to measure the distance to remote objects. We focus on the gravitational-wave
observations of two orbiting neutron stars or black holes. Those systems with at least one
neutron star are believed to also emit a light signal as the two stars collide in the final stages
of their dance around each other. We can measure the motion of the system relative to Earth
by determining the wavelength composition of the light. By measuring hundreds of these
orbiting neutron stars or black holes, scientists can map their collective behaviour.

Our results show that future gravitational wave detectors can map the large-scale beha-
viour of the Universe to the same accuracy as current and future telescopes. But the strength
of using gravitational waves is that it is free from possible errors introduced by the cosmic
distance ladder. Gravitational-wave measurements can provide an independent verification
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of the current cosmological paradigm, or they may refute it.

Future of gravitational-wave astronomy

The topics covered in this thesis are merely the tip of the iceberg of what we can learn
from direct gravitational-wave observations. From observations by telescopes we have clue
of what we might expect. Yet, much about the Universe remains unknown. For example,
the origin of about 96 percent of the content of the Universe is still unknown. All massive
objects can emit gravitational waves, including those that do not emit light. This means
that gravitational-wave observatories can study things that conventional telescopes cannot.
This opens the possibility of detecting phenomena that have yet to be envisaged. The first
detection of gravitational waves will usher in a new era of astronomy. Many scientists are
working hard to prepare for the coming of this era. The author hopes that the work in this
thesis will find a place in the scientific literature. Moreover, he hopes that in the near future,
he can apply his work onto real gravitational-wave detections.

Tjonnie G.F. Li
Amsterdam, 2013
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Beschrijving van de planetaire beweging door de tijd heen

De mensheid kijkt al duizenden jaren naar de hemel. In de oudheid volgde de mens de
bewegingen van de zon en de maan om kalenders te maken en om ze te associëren met aardse
gebeurtenissen zoals getijden en seizoenen. Door de beweging van hemelse objecten te volgen
ontstond de notie van de baan van de zon, de maan en de planeten. Claudius Ptolemaeus (90–
168) introduceerde, voortbouwend op eerder werk ontwikkeld door Griekse astronomen, een
nauwkeurig model van de planetaire banen door de invoering van een kleinere cirkelvormige
baan (epicykel) rondom de primaire cirkelvormige baan.

Tijdens de Renaissance begon onze kennis van de hemel te veranderen. Johannes Kepler
(1571–1630) introduceerde drie wetten die de planetaire banen beschreven door middel van
ellipsen met de zon in het brandpunt. Later toonde Isaac Newton (1642–1727) aan dat de
wetten van Kepler kunnen worden afgeleid uit een wet die niet alleen de beweging van plane-
ten beschrijft, maar ook beschrijft hoe alle objecten tot elkaar worden aangetrokken. Newtons
gravitatiewet stelt dat alle objecten tot elkaar worden aangetrokken door de zwaartekracht,
en dat de sterkte van deze kracht wordt bepaald door de massa van de twee objecten.

Ondanks het succes van Newtons gravitatiewet, kon deze de verschuiving in het peri-
helium van Mercurius, het punt in Mercurius’ baan dat het dichtst bij de zon staat, niet
beschrijven. Het was Albert Einstein (1879–1955) die Newtons gravitatiewet verfijnde door
de invoering van de algemene relativiteitstheorie. Einsteins algemene relativiteitstheorie stelt
dat de kromming van ruimte en tijd de wijze bepaalt waarop materie er doorheen stroomt,
en omgekeerd, dat materie de ruimte en tijd kromt. De theorie van Einstein verklaarde de
verschuiving in het perihelium van Mercurius, en lijkt tot dusver de juiste beschrijving te
zijn van de beweging van planeten, sterren en zelfs sterrenstelsels.

Gravitatiegolven: een nieuw venster op het heelal

De algemene relativiteitstheorie doet meer dan alleen het voorspellen van de beweging van
voorwerpen. Deze voorspelt ook een nieuw soort straling, bekend als zwaartekrachtstraling

235



POPULAIR-WETENSCHAPPELIJKE SAMENVATTING (NL)

of gravitatiegolven. Gravitatiegolven zijn rimpelingen in de kromming van ruimte en tijd
die zich voortplanten met de lichtsnelheid. Het effect van gravitatiegolven is de periodieke
uitdijing en inkrimping van de ruimte en tijd. Het bestaan van gravitatiegolven is slechts
indirect afgeleid door de beweging van twee om elkaar heen draaiende sterren.

Grootschalige fysica-experimenten, zoals LIGO in de Verenigde Staten en Virgo in Italië,
hebben het doel om voor het eerst in de geschiedenis van de mensheid de invloeden van
gravitatiegolven direct waar te nemen. LIGO en Virgo zijn opgezet om kleine veranderingen
in afstanden van ongeveer een duizendste van de diameter van een proton te meten. De
kenmerken van gravitatiegolven zijn nauw verbonden met de beweging van de bron die de
gravitatiegolven heeft uitgezonden. Waar astronomen tot op heden telescopen nodig hebben
om de beweging van planeten, sterren en sterrenstelsels te bepalen, kan het meten van gravi-
tatiegolven zorgen voor een extra venster van waaruit we de geheimen van het heelal kunnen
verkennen.

Het toetsen van de algemene relativiteitstheorie

Van Ptolemaeus tot Newton en van Newton tot Einstein, de geschiedenis heeft ons geleerd
dat onze wetten van de fysica voortdurend verfijning nodig hebben om de natuur met toene-
mende precisie te beschrijven. De algemene relativiteitstheorie van Einstein mag hierop geen
uitzondering zijn. De algemene relativiteitstheorie is echter nog nooit getoetst in de nabijheid
van extreem dichte objecten, zoals neutronensterren en zwarte gaten. Neutronensterren zijn
stellaire overblijfselen die hoofdzakelijk bestaan uit elektrisch neutrale subatomaire deeltjes
genaamd neutronen. Neutronensterren zijn zo dicht dat ze de massa van de zon bevatten
in ongeveer de grootte van een stad. Zwarte gaten zijn nog extremere objecten. Ze zijn
stellaire overblijfselen die ooit zo dicht waren dat deze sterren hun eigen zwaartekracht niet
konden tegenhouden en daardoor implodeerden. Zwarte gaten hebben hun unieke namen
gekregen omdat hun aantrekkingskracht zo sterk is dat zelfs licht niet kan ontsnappen als
het te dichtbij komt.

Dit proefschrift beschrijft een methode genaamd Test Infrastructure for GEneral Relati-
vity (TIGER), dat een theoretisch kader en een data-analyse algoritme omvat om de alge-
mene relativiteitstheorie te toetsen op een dusdanige manier dat kennis van een eventuele
alternatieve theorie niet vereist is. TIGER vergelijkt de beweging van twee om elkaar heen
cirkelende neutronensterren met de voorspelling van algemene relativiteitstheorie en wijst
een mate van aannemelijkheid toe aan de vraag: “zijn de banen in overeenstemming met de
voorspellingen van de algemene relativiteitstheorie?” Een dergelijke test is analoog aan het
nauwkeurig meten van de baan van planeten en deze te vergelijken met de voorspellingen de
gravitatiewet van Newton.

De TIGER-methode werd getoetst door middel van computersimulaties die gebruik maak-
ten van duizenden computers verspreid over de hele wereld. Het resultaat is de bevestiging
dat de TIGER-methode willekeurige afwijkingen in de baan van cirkelende neutronensterren
kan waarnemen. Bovendien blijkt uit de resultaten dat men door gebruik te maken van de
TIGER-methode voor de analyse van LIGO- en Virgo-data in staat is om de invloed van de
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zwaartekracht te toetsen met een precisie die nog niet is behaald.
Als de TIGER-methode een afwijking van de algemene relativiteitstheorie weet te vin-

den, dan zal dat een nieuwe revolutie betekenen in ons begrip van gravitatie. Wetenschappers
zullen nieuwe ideeën introduceren om het gat te vullen in onze kennis van hoe alle dingen
in het heelal bewegen. Een mogelijke nieuwe theorie moet echter in staat zijn om de hui-
dige en toekomstige waarnemingen te beschrijven. De cirkel van theoretische modellen die
de waarnemingen voorspellen en waarnemingen die de theoretische modellen bevestigen zal
waarschijnlijk onbeperkt doorgaan, zolang de mens zijn vermogen om gebeurtenissen in het
heelal te beschrijven en te voorspellen continu blijft verfijnen.

Het afleiden van het grootschalige gedrag van het heelal

Sinds de tijd van Ptolemaeus en Newton zijn we meer te weten gekomen over de fonkelende
sterren die we aan de hemel zien. We zijn gaan beseffen dat de Melkweg een grote groep
van sterren is die door hun gravitationele interactie gebonden zijn, ook wel een sterrenstelsel
genoemd. Bovendien blijkt dat sommige van de “sterren” die we aan de hemel zien eigenlijk
sterrenstelsels zijn. We weten nu dat er meer dan honderd miljard sterrenstelsels zijn in ons
uitgestrekte heelal. Opmerkelijk genoeg kan hun collectieve beweging, die doet vermoeden
dat het universum alsmaar sneller uitdijt, beschreven worden met behulp van de algemene
relativiteitstheorie. De studie van het grootschalige gedrag van het heelal wordt kosmologie
genoemd.

Een manier om de collectieve beweging van sterrenstelsels vast te stellen is om hun af-
stand van de aarde en hun relatieve beweging ten opzichte van de aarde te meten. Echter,
hoe verder een object zich bevindt, des de moeilijker het is om zijn afstand te bepalen. We-
tenschappers gebruiken tegenwoordig verschillende meettechnieken om de afstand te bepalen
van steeds verdere objecten. Elk van deze meettechnieken is gekalibreerd aan de hand van
meettechnieken die gebruikt worden om de afstand van objecten die dichterbij zijn te bepa-
len. De reeks van verschillende meettechnieken wordt de kosmische afstandsladder genoemd,
waarbij elke trede van de ladder een andere meettechniek voorstelt. Een dergelijke construc-
tie is noodzakelijk omdat op dit moment weinig bekend is over de eigenschappen van verre
sterren en sterrenstelsels. Echter, de kosmische afstandsladder is nogal gevoelig voor fouten,
aangezien elke trede afhankelijk is van de resultaten en de juistheid van de vorige trede. Een
kleine fout in de eerste trede kan desastreuze gevolgen hebben voor de afstandsmeting van
een ver gelegen object.

Een alternatieve manier om kosmologische afstanden te bepalen die minder gevoelig is
voor fouten dan het gebruik van de kosmische afstandsladder, is het meten van gravitatie-
golven van twee om elkaar heen cirkelende neutronensterren of zwarte gaten. De algemene
relativiteitstheorie beschrijft namelijk de manier waarop de intensiteit van gravitatiegolven
zwakker wordt naarmate de waarnemer verder weg is, zoals een lichtbron zwakker lijkt naar-
mate deze verder van je vandaan is. Het vermogen om te voorspellen hoe de intensiteit
van gravitatiegolven afneemt naarmate de waarnemer verder weg is, zorgt ervoor dat weten-
schappers de afstand tot een object direct kunnen meten, zonder de hulp van de kosmische
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afstandsladder.
Dit proefschrift onderzoekt de mogelijkheden van toekomstige gravitatiegolvendetectoren

zoals de Einstein Telescope, om de afstand tot ver gelegen objecten te meten. Wij richten
ons op de waarnemingen van de gravitatiegolven van twee cirkelende neutronensterren of
zwarte gaten. De systemen met tenminste één neutronenster worden verondersteld ook een
lichtsignaal uit te zenden wanneer de twee sterren botsen in de laatste fase van hun dans om
elkaar heen. Door de golflengtecompositie van het licht te bepalen kunnen we de beweging
van het systeem ten opzichte van de aarde meten. Door het meten van honderden van deze
cirkelende neutronensterren of zwarte gaten, kunnen wetenschappers het collectieve gedrag
ervan in kaart brengen.

Onze resultaten tonen aan dat toekomstige gravitatiegolvendetectoren de grootschalige
beweging van het heelal met dezelfde nauwkeurigheid als de huidige en toekomstige telesco-
pen in kaart kunnen brengen. Maar de kracht van het gebruik van gravitatiegolven is dat
het vrij is van mogelijke fouten door het gebruik van een kosmische afstandsladder. Metin-
gen van gravitatiegolven kunnen voor een onafhankelijke verificatie zorgen van de huidige
kosmologische paradigma.

Toekomst van de sterrenkunde met gravitatiegolven

De onderwerpen die in dit proefschrift zijn behandeld zijn slechts het topje van de ijsberg van
wat kan we kunnen leren van de directe waarnemingen van gravitatiegolven. Door middel van
waarnemingen met telescopen hebben we enig idee van wat we kunnen verwachten. Echter,
veel over het heelal is nog onbekend. Bijvoorbeeld, de oorsprong van ongeveer 96 procent van
de inhoud van het heelal is nog niet begrepen. Gravitatiegolven worden uitgezonden door
massieve voorwerpen, waaronder degene die geen licht uitzenden. Dit betekent dat waar-
nemingen van gravitatiegolven licht kan werpen op zaken die conventionele telescopen niet
kunnen waarnemen. Dit opent de mogelijkheid om verschijnselen waar te nemen waar men
nog nooit aan heeft gedacht. De eerste waarneming van gravitatiegolven zal een nieuw tijd-
perk van de astronomie inluiden. Veel wetenschappers werken hard aan de voorbereiding voor
de komst van dit tijdperk. De auteur hoopt dat het werk als beschreven in dit proefschrift
een plek zal vinden in de wetenschappelijke literatuur. Hij hoopt bovendien dat hij in de na-
bije toekomst zijn werk toe kan passen op daadwerkelijke waarnemingen van gravitatiegolven.

Tjonnie G.F. Li
Amsterdam, 2013
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