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Abstract

A method is presented to characterize the surface defects of Virgo mirrors via the power
spectral density. The method is then applied to generate random surfaces which simulate the
defects of real surfaces. This has been implemented in SIESTA for both modal and FFT-based
simulations.

1 Context

The SIESTA simulation program, up to version 4, contained a card called MIrugo for the
simulation of flatness defects of a mirror surface [5]. The code was based on the model
developed in [2], and was intendend for modal simulations only. It has been modified by the
author in order to be used in FFT-based simulations as well (available in SIESTA v5r01).
This has brought to a re-evaluation of the model, in view of the mirror phase maps now
available for the Virgo and Virgo+ mirrors.
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Figure 1: Surface map of the Virgo+ North input mirror (VIM05); the flatness is 4.1 nmRMS.

1.1 Terminology

In order to clarify the terms employed in this note:

micro-roughness is the short-range deviation from the ideal surface (spatial frequencies
above 103 m−1)

flatness defect is the long-range deviation from the ideal surface (spatial frequencies below
103 m−1)

The difference is somewhat more practical than conceptual, being related to the methods
and instruments employed to measure the defects. In this note the two terms will be kept
distinct; ‘flatness’ is preferred instead of ‘roughness’ (as used for instance in the Advanced
Ligo specifications) because less ambiguous1.

Consider a typical situation when running FFT simulations: grid size ∼ 500mm, number
of grid points between 128 and 512. The grid pixel size is therefore ∼ 1mm or more. In terms
of spatial frequencies, this means covering a band between 1 and 103 m−1. We are therefore
dealing with surface flatness: micro-roughness is too small-scaled for FFT simulations, and
will not be taken into account in the following considerations.

2 Modeling flatness defects

Figure 1 shows, as an example, the surface map of the mirror VIM05, currently installed as
input test mass in Virgo+ North arm. In order to give a statistical description of such a

1In many works about Virgo ‘roughness’ is used as a generic term for the surface defects, whatever their
spatial frequency. SIESTA actually employs the more exotic ‘rugosity’.
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surface, we follow the method employed in [1, 2, 4]. Briefly, surface defects are described by
means of a two-dimensional power spectral density (PSD) of the form:

S2(fx, fy) =
Kn

2πfr
n+1 (1)

where fx, fy are the spatial frequencies along the x and y axes, fr =
√

fx
2 + fy

2 is the
radial spatial frequency, n is an empirical parameter, and Kn a normalization constant. Since
the model assumes the PSD to depend only on the radial frequency fr, we can conveniently
employ the radial 1-D power spectral density:

S1(fr) =
∫ 2π

0
S2(fr, φ)fr dφ (2)

where φ is the angular coordinate in the frequency plane. In our case, S1 simply equals
2πfrS2:

S1(fr) =
Kn

fr
n (3)

The normalization constant can be determined if the rms flatness is given, knowing that:

σ2 =
∫ ∞

0
S1(fr) dfr (4)

3 Analysis of Virgo and Virgo+ mirror maps

3.1 Rms flatness

For a given map, the rms flatness is easily computed by directly taking the standard deviation
of the map. The value of the rms flatness depends necessarily on the pixel resolution and on
the area over which it is computed: the variance being the integral of the PSD (eq. 4), the
integration low limit is determined by the diameter of the considered area, and the integration
high limit is determined by the spatial resolution. Therefore, the computed rms flatness is
larger for larger areas and smaller resolutions.

Table 1 resumes the characteristics of the surface maps for the mirrors of Virgo and
Virgo+. The maps have been obtained by measuring the mirror surface with a Fizeau inter-
ferometer, and subsequently subtracting piston, tilt, and curvature (Zernike polynomials Z0

0,
Z1

−1, Z1
1, Z2

0).

3.2 Power spectral densities

PSDs have been computed for all the surface maps listed in table 1. For the sake of com-
parison, all PSDs have been computed over a diameter of 150 mm. The procedure has been
coded in Octave and is largely inspired from the Matlab package MirrorShape by F. Bondu:

1. if the map is larger than 150 mm, a central circle of diameter 150 mm is cut

2. for the input mirrors, the Zernike polynomials Z0
0, Z1

−1, Z1
1 (piston and tilt) are

removed
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substrate coating map diameter rms flatness
Virgo NI VIM01 c02032 190 mm 2.6 nm ∅ 60 mm

3.2 nm ∅ 150 mm
Virgo WI VIM02 c02033 190 mm 2.5 nm ∅ 60 mm

2.8 nm ∅ 150 mm
Virgo NE VEM04 c01077 315 mm 3.8 nm ∅ 150 mm

14 nm ∅ 280 mm
Virgo WE VEM01 c02017 315 mm 3.4 nm ∅ 150 mm

8.9 nm ∅ 280 mm
Virgo+ NI VIM05 c09028/1 150 mm 2.2 nm ∅ 60 mm

4.1 nm ∅ 150 mm
Virgo+ WI VIM06 c09028/2 150 mm 2.9 nm ∅ 60 mm

4.1 nm ∅ 150 mm
Virgo+ NE VEM10 c09061 315 mm 3.1 nm ∅ 150 mm
Virgo+ WE VEM09 c09059 315 mm 5.1 nm ∅ 150 mm

Table 1: Virgo and Virgo+ mirror maps.

3. for the end mirrors, the Zernike polynomials Z0
0, Z1

−1, Z1
1, Z2

0 (piston, tilt, and
curvature) are removed

4. a Hann window of 150 mm width is applied to the map; the window is normalized in
such a way as to conserve the value of the rms flatness

5. the 2-D PSD is computed as the square modulus of the FFT of the windowed map

6. the 1-D PSD is computed by summing, for every radial spatial frequency fr, all the
contributing frequencies fx, fy such that fx

2 + fy
2 = fr

2

The square root of the PSDs for the eight considered mirror maps are plotted in figures 2–
5, where comparisons are made between Virgo mirrors, Virgo+ mirrors, all ITMs, and all
ETMs. It has been verified that the integral over all frequencies of the computed PSDs
equals the rms flatness.

It can be seen that, in the considered frequency range (approximately between 10 and
1000 m−1), the 1-D PSDs can roughly be represented by a 1/fn law2.

Figure 6 shows, as an example, the approximation of the PSD of the Virgo+ North input
mirror with such a law; it has been found empirically that for the Virgo and Virgo+ mirrors
n ≈ 2.3. This is quite different from the value 1.6÷1.8 found in [4] when characterizing small
samples.

4 Generation of random maps

The results of the previous section can be used to generated random maps that reproduce
the same distribution of defects (in terms of power spectral density) as the real mirror maps.
The parameters to be defined are: the slope n of the PSD; the rms flatness σ, computed over

2In [1], the author proposes to model the PSDs with different values of n in different frequency ranges.
For the Virgo mirrors, this is surely a better approximation than the one used here; however the aim of the
present work is to find a reasonably approximated but more general model, which could be used as well for
simulations of future detectors, as Advanced Virgo or Einstein Telescope.
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Figure 2: PSDs for the Virgo arm cavity mirrors; only the central area of diameter 150 mm has been used
for the computation of the PSD and the rms flatness.
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Figure 3: PSDs for the Virgo+ arm cavity mirrors; only the central area of diameter 150 mm has been used
for the computation of the PSD and the rms flatness.
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Figure 4: PSDs for the Virgo and Virgo+ ITMs; only the central area of diameter 150 mm has been used
for the computation of the PSD and the rms flatness.
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Figure 5: PSDs for the Virgo and Virgo+ ETMs; only the central area of diameter 150 mm has been used
for the computation of the PSD and the rms flatness.
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Figure 6: Approximation of the PSD of the Virgo+ North input mirror with a law ∼ f−n.
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a circle of radius Rσ (we recall that the rms flatness depends on the area over which it is
defined, see section 3.1). The procedure to generate a random map is the following:

1. A complex matrix M is created in the frequency plane whose modulus equals the square
root of the two-dimensional PSD: since S2(fx, fy) ∝ 1/fr

n+1, we set:

|M(fx, fy)| =
{

0 fr = 0
fr
−n+1

2 fr > 0

neglecting for the moment any normalization. |M | represents the modulus of the Fourier
transform of the map to be generated.

2. The phase of M is randomly generated, with uniform probability in the interval [0, 2π).

3. Having completely defined M (modulus and phase), the surface map is simply computed
by inverse Fourier-transforming M .

4. The standard deviation σ̃ of the pixels inside the circle of radius Rσ is computed.

5. The map is finally normalized by multiplying for the factor σ/σ̃, thus assuring that the
rms flatness is effectively σ, as defined.

4.1 Comparison between real and generated maps

Random maps have been generated having the same rms flatness as the Virgo and Virgo+
mirrors (see table 1). As an example, figure 7 shows a generated map having the same rms
flatness as the Virgo+ North input mirror. The random map has been generated with n = 2.3.
A comparison of the PSDs of the Virgo+ North input map and the generated one is shown
in figure 8.

4.2 Implementation in Siesta

Following the results in the preceding sections, the SIESTA card MIrugo has been modified
starting from version v5r013. The procedure described in section 4 has been implemented.
The user has now to define:

• the radius of the map to generate (which must be less than the grid size in FFT simu-
lations)

• the exponent n of the law 1/fn defining the PSD of the random map

• the rms flatness σ of the random map, and

• the radius Rσ of the area over which such rms is defined.

Further details can be found in the SIESTA User’s Guide, version v5r01.
3It has been extended to work in FFT simulations as well.
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Figure 7: Generated surface map, having the same rms flatness (4.1 nm) of the Virgo+ North input mirror
shown in figure 1.

5 Conclusions

The surface defects of the Virgo and Virgo+ mirrors have been characterized by their one-
dimensional power spectral density. The PSD can be sufficiently well modelled with a 1/fn

law, with n ≈ 2.3. Such a model is now implemented in SIESTA for the generation of random
surface maps.
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Figure 8: Comparison of the PSDs of the Virgo+ North input mirror and of a generated map with n = 2.3.
Both maps have the same rms flatness.
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Appendix: Power Spectral Density, definitions and usage

Although the definition of the power spectral density (PSD) of a signal in one dimension (for
instance in the time domain) is unambiguous, a certain confusion may arise when dealing
with two-dimensional functions, as is the case here. This section aims at clarifying the terms
employed in the present note.

Stricly speaking, the (two-dimensional) PSD of a two-dimensional function u(x, y) is de-
fined as:

S2(fx, fy) = lim
A→∞

1
A

∣∣UA(fx, fy)
∣∣2 (5)

where A is the surface area and UA(fx, fy) is the truncated Fourier transform of u(x, y) over
A:

UA(fx, fy) =
∫∫

A
u(x, y)e−2πi(fxx+fyy) dx dy (6)

In practice, since the mirror maps have a finite size, the limit A → ∞ is neglected and
the PSD is approximated with a two-dimensional periodogram:

S2(fx, fy) ≈ 1
A

∣∣UA(fx, fy)
∣∣2 (7)

The 2-D PSD contains the complete spectral information of a mirror map. However, since
for a round mirror there are no preferential axes x, y, it seems reasonable to describe the defect
distribution by means of a single spatial frequency instead of the pair fx, fy. The reader is
warned that there are two different and non-equivalent definitions of the one-dimensional PSD
which are currently used. The first one, which we may call the radial 1-D PSD, is the one
used throughout this note (and in SIESTA):

S1r(fr) =
∫

S2(fr, φ)fr dφ (8)

where fr =
√

fx
2 + fy

2 is the radial frequency, and φ = arctan(fy/fx). The use of S1r is
appropriate when the 2-D PSD is radially symmetric, which seems a reasonable assumption
for mirror maps. The definition of S1r is such that:

∫∫
S2(fr, φ)fr dfr dφ =

∫
S1r(fr) dfr = σ2 (9)

i.e., the integral of S1r over all frequencies gives the variance of the map.
The second defintion is the profile 1-D PSD:

S1x(fx) = 4
∫

S2(fx, fy) dfy (10)

which is none other than the one-sided projection of S2 on one axis. Again, the integral of
S1x over all frequencies gives the variance of the map:

∫∫
S2(fx, fy) dfx dfy =

∫
S1x(fx) dfx = σ2 (11)
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The interest of the profile 1-D PSD is that it is directly related to profile roughness measure-
ments [6, p. 29ff].

The relation between S1r and S1x is not trivial. If S2 has no rotational symmetry, the
two functions are unrelated and there is no way to compute one from the other. However, if
the 2-D PSD has rotational symmetry and thus is a function of fr only, equation (10) can be
inverted to give [3]:

S2(fr) = − 1
2π

∫ ∞

fr

dfx√
fx

2 − fr
2

dS1x(fx)
dfx

(12)

We get then:

S1r(fr) = 2πfrS2(fr)

= −fr

∫ ∞

fr

dfx√
fx

2 − fr
2

dS1x(fx)
dfx

(13)

A clear and thorough explanation of the use of PSDs to describe surface defects and of
practical issues concerning their computation is given in reference [3].
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