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Introduction

Many gravitational wave detectors are currently in action all around the

world to detect gravitational wave signals between a few tens of Hz and a

few kHz. Their sensitivity is going to be improved in the next generation of

antennas, that will be soon operative.

A crucial point in gravitational wave signal search is the development of

efficient algorithms to distinguish the signal from the noise in the detector

output. Several astrophysical sources are expected to emit gravitational

waves with different waveforms, within the ground-based antenna detection

band. We will focus on one particular family of them, the rotating neutron

stars, which is expected to permanently emit gravitational waves, mainly at

the double of the rotational frequency. This type of signals requires long

observation times in order to distinguish the peak at the emission frequency

in the antenna signal spectrum from the incoherent noise floor, since the

signal-to-noise ratio scales as the square root of the integration time.

The energy of the signal spectral peak is smeared (and thus buried in

the noise) by the Doppler phase modulation due to the antenna motion with

respect to the source and by the phase shift induced by the source rotational

frequency slowing because of energy losses due to both electromagnetic and

gravitational emissions. The correction to these effects requires, in general,

the knowledge of the source emission frequency ν, of the spindown ν̇ and of

the source sky position.

In this thesis we propose a new method to compensate for Doppler and
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spindown effects that turns out to be very effective. The technique is par-

ticularly useful for sources where direction is known but emission frequency

is not (semi-targeted search). It consists in a fast resampling of the antenna

signal aimed to synchronize with a large accuracy the detector time with

the source one. The antenna proper time is accelerated (or slowed down) by

removing (or doubling) in a timely manner single samples of the detector

digitized signal so to keep the synchronization to the source clock. The ap-

plied correction, and then the recovering of the peak in the antenna signal

spectrum, is valid for all the emission frequencies, fixed a given fractional

spindown ν̇/ν. If the emission frequency and the spindown are unknown

(as in the case of semi-targeted search), one can perform the peak energy

recovery assuming different possible value of the fractional spindown and

search for a peak coming out from the spectral floor. In the usual tech-

niques this operation has to be applied for any possible value of the couple

of parameters ν and ν̇, with a larger computational effort.

Tests of the technique have been performed for different values of source

frequency, spindown, sky direction and signal sampling frequency. In all

cases the antenna signal phase turned out to be “locked” to the source

one with the expected accuracy of 2πν/νs, being νs the sampling frequency

of the output signal. We have proved with additional tests that the peak

amplitude recovering, corresponding to this phase locking accuracy, is the

expected one. In particular, for values of ν/νs in the range of interest, the

amount of peak amplitude losses stays below 5%, that is enough for our

purposes.

The resampling method has then been applied to a selection of the first

Virgo Scientific Run data. The sensitivity to the detection of continuous

wave signals was studied by injecting artificial sources and by statistical

analysis. A correction of the output spectrum to compensate the signal

amplitude modulation due to the Earth rotation can be also considered,
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using the same procedure adopted by other pipelines for continuous wave

signal detection.
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Chapter 1

Gravitational-wave theory

The concept of gravitational wave was introduced by Albert Einstein in order

to fix the Newtonian theory of gravitation and its principle of instantaneous

action-at-a-distance, which is in contrast with the notion of causality as

understood in the Special Theory of Relativity.

According to Newton’s theory, the gravitational field produced by a body

depends on 1/r2, but this form does not take into account the motion of the

source. General relativity fixes this problem by proposing a way to treat

gravitational field very similar to the electromagnetic one. The information

about the motion of a source of space-time curvature propagates at the speed

of light [1].

1.1 Waves in general relativity

In the Special Theory of Relativity the space-time interval ds between two

points is given by

ds2 = −c2dt2 + dx2 + dy2 + dz2, (1.1)
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8 1. Gravitational-wave theory

with the usual notations. Using the Minkowski metric ηµν , given by

ηµν =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (1.2)

one can introduce the repeated index summation convention to rewrite the

interval as

ds2 = ηµνdx
µdxν (1.3)

The space-time interval is a fundamental concept in the Special Theory of

Relativity because of its independence of the reference frame.

In the General Theory of Relativity Einstein introduced a new defini-

tion of inertial frame of reference by considering a mass freely falling under

the gravitational attraction due to other bodies, rather than a mass not

subjected to external forces. The Equivalence principle, or the Universality

of free fall, states that the trajectory followed by the freely falling body is

univocally determined by its initial condition (position and velocity), inde-

pendently of its mass and composition. The body is seen at rest from any

reference frame united to this trajectory, and the motion of any other body

appears linear, if there are no other interactions besides the one due to grav-

itation and, as discussed in the following, if one looks at a limited space-time

region. This reference frame has thus the same characteristics of a classical

reference frame, in which space is homogeneous and isotropic and time is

homogeneous. General Theory of Relativity is based on the extension of the

principle of relativity to this class of reference frames.

The space-time region described needs to be limited, in order to guaran-

tee the validity of the previous argument. Indeed, the effects of the force of

gravity would become evident in a reference frame including a large region,

because the trajectories of the freely falling masses would curve accordingly

to the distribution of the sources of attraction. The more general expression
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for the space-time interval takes the following form:

ds2 = gµνdx
µdxν (1.4)

where all the information about space-time curvature is encoded in the met-

ric tensor gµν .

The relationship between the metric tensor and a given distribution of

matter is the crucial point of Gravitational theory, formally solved by Ein-

stein equations:

Rµν − 1
2
gµνR =

8πG
c4

Tµν . (1.5)

Eq. (1.5) is a system of sixteen equations, ten of which are independent.

Rµν is the Riemann tensor, a set of non-linear functions of the metric tensor

and its derivatives, and it is also called curvature tensor, because in bidi-

mensional varieties it reduces to a scalar which is numerically equal to the

inverse of the local radius of curvature. Rµν is null everywhere in ordinary

Euclidean spaces. R = gµνRµν is named Ricci scalar and G is the New-

ton gravitational constant. Thus the Einstein equations connect the mass

density to the Riemann tensor through the energy-momentum tensor Tµν .

In the limit of small density and velocity of the masses, from eq. (1.5) the

classical expression for gravitational interaction is obtained:

∆φ = −4πGρ (1.6)

where φ is the Newtonian potential and ρ is the mass density of the source.

On the Earth, where the gravitational field is weak, the metric can be

written as a small perturbation hµν of the flat space-time:

gµν = ηµν + hµν |hµν | � 1 (1.7)

The theory based on this approximation is named linearized gravitational

theory. Since the numerical values of the components of a tensor depend

on the reference frame, we are only interested in the ones in which this
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approximation holds on a sufficiently large region of space. Defining:

h = ηµνhµν (1.8)

and

h̄µν = hµν − 1
2
ηµνh (1.9)

and choosing the Lorentz gauge ∂ν h̄µν = 0, the Einstein equations reduce

to [2]:

2h̄µν = −16πG
c4

Tµν , (1.10)

where the symmetric 4×4 matrix hµν has only six independent components.

Eq. (1.10) together with the Lorentz condition provides the conservation of

energy-momentum tensor in the linearized theory:

∂νTµν = 0 (1.11)

The motion of a body in a gravitational field can be seen as a particular

series of events in the metric space ruled by a given distribution of matter.

The trajectories followed by the freely falling masses are curves defined by

the geometrical characteristics of the space-time, the geodetics. Geodetics

are curves of minimum space-time length joining two given events. The

equation that describes these curves is the generalization of the equation of

motion in absence of any force, i.e. when acceleration is null.

1.2 Propagation of gravitational field

A mechanisms of propagation for gravitational field similar to the electro-

magnetic case can be found in the linearized gravitational theory. This

approximation is valid because the space-time metric tends to the flat met-

ric when the distance from the source is large. The solution of eq. (1.10)

similar to the retarded potentials in electromagnetism can be given [2]:

h̄µν =
4G
c4

∫
d3~x′

r
[Tµν ]t−r/c . (1.12)
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As in the electromagnetic case, non-stationary solutions have a finite velocity

of propagation, carry an amount of energy and decrease with 1/r. These

solutions describe therefore gravitational waves. In empty space, far from

the source, gravitational waves satisfy the following relation:

2h̄µν = 0 (1.13)

that corresponds to the choice of the harmonic gauge. As in the case of

electromagnetism, any solution of this equation can be written as a super-

position of transverse plane monochromatic waves:

hµν(~x, t) = h0εµνe
i ω

c
(n̂·~x−ct). (1.14)

Everywhere the field associated to (1.14) oscillates with frequency ω and

maximum amplitude h, constant over any plane orthogonal to the versor n̂

and the quantity

ϕ =
ω

c
(n̂ · ~x− ct) (1.15)

is the phase of the wave. All the points of an equiphase surface move with

velocity c towards n̂, that can be then taken as the direction of the wave

propagation. The unique difference with respect to the electromagnetic case

is that now we are in presence of a tensorial field.

εµν is the wave polarization tensor, and it is a complex 4 × 4 matrix,

due to the fact that the field has the same structure of the metric tensor.

Although the vectorial space corresponding to a 4 × 4 matrix has 16 di-

mensions, the physically different polarization can be obtained by just two

independent matrixes, while the others are the representation of the same so-

lutions in different reference frames. In a particular gauge, named transverse

traceless gauge (TT ), the polarization tensor can be written by a transverse

matrix, orthogonal with respect to the propagation direction, with a null

trace (hence the name). If we apply a rotation to the three spatial axes of

the TT reference frame in order to make the z axis coincident with the wave
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propagation direction, any polarization can be expressed as a combination

with complex coefficients of the following matrixes:

εTT
µν,+ =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 εTT
µν,× =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 (1.16)

whose physical meaning will be clear in the following.

1.3 Interaction of gravitational waves with test masses

In the TT gauge, the space-time interval between two points in a gravitational-

wave field propagating along the z axis with polarization εTT
+ is given by

ds2 =
[
1 + h cos

(ω
c
(z − ct)

)]
dx2+[

1 − h cos
(ω
c
(z − ct)

)]
dy2 + dz2 − c2dt2. (1.17)

Let us consider two simultaneous events aligned along the x axis, defined by

the following coordinates

X1,µ = (t, x, y, z) X2,µ = (t, x+ L, y, z). (1.18)

One assumes that these events are the extremes of a segment lying along

the x polarization axis of the gravitational field. The infinitesimal vector

oriented in the direction of this segment has only the x component different

from zero:

dXµ = (0, dx, 0, 0). (1.19)

Substituting eq. (1.19) in eq. (1.17), reminding the condition h � 1, one

obtains:

ds =
[
1 +

h

2
cos

(ω
c
(z − ct)

)]
dx. (1.20)

Integrating this expression between X1,µ and X2,µ the proper distance is:



1.3. Interaction of gravitational waves with test masses 13

s12 =
∫ 2

1
ds = L+

Lh

2
cos(ωt+ ϕ). (1.21)

A similar result, with the opposite sign (see eq. (1.17)), would be achieved

for two contemporaneous events along the y axis. From these results one

can state that the proper distance of a segment lying on a polarization axis

(x or y) oscillates with the same frequency of the gravitational wave.

Some considerations about the physical meaning of the TT gauge are

necessary. The geodesic equation in TT frame (eq. (1.17)) shows that, in

absence of external non-gravitational forces, any trajectory in the space-

time is a geodesic trajectory, i.e. it is freely falling. This means that any

free mass initially at rest in the TT space remains at rest. The TT space is

therefore physically represented by a system of free masses, each univocally

determining a tern of spatial coordinates. The effect of a gravitational wave

is then the oscillation of the proper distance between two free masses at

the same spatial distance with respect to each other. In other words, the

coordinates of the TT frame stretch themselves, in response to the arrival of

the wave, in such a way that the spatial position of free test masses initially

at rest do not change. The physical effects of a gravitational wave can be

found monitoring the proper distances between the test masses.

As shown in sec. (1.2), the TT frame has the advantage that gravita-

tional waves assume a very simple form. However, a more intuitive frame

named detector proper frame can be used. In this particular reference frame

the oscillation of the proper distance induced by a gravitational wave can

be detected through the effective motion of a body in a laboratory.

Let us consider the coordinate transformation
x′ = x

{
1 + h

2 cos
[

ω
c (z − ct)

]}
y′ = y

{
1 − h

2 cos
[

ω
c (z − ct)

]} (1.22)

giving the following expression for the metric:

ds2 = −c2dt2 + dx′2 + dy′2 + dz2 − xHdtdx′ + yHdx′dz − yHdy′dz (1.23)
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where H = hω sin
[

ω
c (z − ct)

]
. With this choice of coordinates, the proper

distance between two contemporaneous events (dt = 0) aligned orthogonally

with respect to the wave propagation (dz = 0), with both x′ and y′ constant

in time, coincides with their Euclidean distance:

ds2 = dx′2 + dy′2. (1.24)

In absence of gravitational waves the new coordinate system is referable to

an Euclidean space, therefore the proper distance between the two events is

not affected by the transit of a gravitational waves. We can see these two

events as the ends of a rigid ruler with which an observer can confront the

position of a body and to measure its displacement. This process can be

briefly described as follows:

1. The local inertial reference frame is defined by a freely falling mass in

the field of a plane polarized gravitational wave. The test mass defines

the origin of the reference frame Oµ
t = (t, 0, 0, 0);

2. A rigid ruler is located along a direction of polarization, with one of its

ends coinciding with the origin Oµ
t . The other end will then define the

point X ′µ
L = (t, L, 0, 0). The resulting X ′ axis represents the detector

proper frame coordinate to which the transformation (1.22) refers.

3. At t = 0 a freely falling mass in X ′µ
L is put at rest with respect to

the TT frame. The mass has TT coordinates Xµ
L = (0, L, 0, 0), that

remains the same at any time, according to what said before about

the TT frame.

4. The equation of motion of the test mass are written in the detector

reference frame, that is simply the transformation of Xµ
L(t) by eq.

(1.22). We obtain

X ′µ
L (t) =

(
t, L

[
1 +

h

2
cos(ωt)

]
, 0, 0

)
. (1.25)
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Figure 1.1: The deformation of a ring of test masses due to the + and × polar-

ization

As a consequence in this reference frame an oscillation of the test mass

position with respect to the ends of the ruler occurs. The oscillation

frequency is equal to the one of the gravitational wave, with amplitude

Lh/2.

A similar argument shows that if the freely falling mass is on the y axis, an

oscillation with same frequency and amplitude, with a dephasing of π with

respect to the one previously described, will take place. One can conclude

that in the detector proper reference frame a gravitational wave gets the

mass on the x axis closer to the origin and the mass on the y axis further

away. The opposite effect is induced half cycle later.

The resulting deformation of a ring of test masses located in the (x, y)

plane is shown in Fig. (1.1). If εTT
µν,× is the wave polarization, the maximum

oscillation axis of the ring corresponds with the bisector of the quadrants.

Indeed, the two polarizations differ only by a π/4 rotation of the reference

frame around the z axis. The physical meaning of + and × polarizations

defined in eq. (1.16) is now clear.

Gravitational waves are thus in principle observable as the cause of a

motion of freely falling masses with respect to a rigid reference frame. This

motion can be interpreted as the application of a reciprocal force between

the masses produced by a gravitational field. More generally, one can state

that small fluctuations of the proper distance, referred to a rigid frame, can
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be interpreted in terms of a force.

Current gravitational wave detectors are based on the interferometric

detection of this displacements. It is important to stress that the magni-

tude of this displacement is proportional not just to the gravitational wave

amplitude h, but even to the distance L between the test masses.

1.4 Physics of gravitational wave generation

In order to understand how the amplitude of a gravitational wave is con-

nected to the dynamics of the source, it is necessary to study the retarded

potential solution (see eq. (1.12)) of Einstein equations in linearized theory

(eq. (1.10)).

As in the electromagnetic case, a multipole expansion of the emitted

signal can be made as a function of ~v/c (that is equivalent to state that the

dimensions of the source are small with respect to the emitted wavelength).

The main difference with respect to the electromagnetic case is that the

first term, not necessarily null, is the equivalent of the electrical quadrupole

field1. Taking the Taylor expansion around the parameter ~v/c. Its spatial

component can be written as

hij(~x, t) =
2G
c4r0

[
d2Iij

dt′2

]
t−r0/c

(1.26)

where the quadrupolar momentum Iij is defined by

Iij =
∫
d3~x′ρ(~x′, t′)

(
x′ix′j − 1

3
|~x′|δij

)
(1.27)

and r0 is the distance between the source and the point at which the field

is computed. The quadrupolar momentum Iij is proportional to the mass

of the source, but it also depends on the asymmetry of its density. The

components of Iij are different from zero only if the mass distribution has
1The consideration of the impulse and of the angular momentum in an isolated source

makes null the terms equivalent to electric and magnetic dipole emissions respectively [3].
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not spheric symmetry. The gravitational-wave amplitude depends on the

second derivative of Iij , i.e. on the components of acceleration breaking the

spherical symmetry.

The factor G/c4 = 8.3 × 10−45 s2/Kg · m2 is responsible for the very

small amplitude of gravitational emissions compared to other interaction

phenomena, and therefore for the difficulties in gravitational wave detection.

It is easy to compute the field expressed by eq. (1.26) in the simple

case of a system formed by two bodies of equal mass M , with dimensions

much smaller than their orbital distance 2R, rotating with velocity ~v around

the barycenter [1]. The system emits a monochromatic wave at a frequency

that is twice the orbital frequency because of the quadrupolar origin of the

radiation. The direction of maximum emissivity is orthogonal to the orbital

plane with an amplitude of

h =
8GMv2

c4r0
(1.28)

and a circular wave polarization:

εµν = εTT
µν,+ + iεTT

µν,×. (1.29)

Along the plane of the orbit the wave is + polarized, with an amplitude

reduced by a factor 2 with respect to eq. (1.28).

As detailed in the next chapter, the system described above is very im-

portant, because it represents a class of objects really existing in Universe,

i.e. the binary systems. They consist in a couple of stars rotating around

each other because of the mutual gravitational attraction. Often the mass

and the velocity of these systems are enough to make them gravitational

wave sources of remarkable amplitudes.

In the simplest case, the masses of the two stars are equal, the orbit

is circular and the velocities are non relativistic. In such a case, we can

use the classical relationship between the velocity and the orbital radius for

Keplerian motion can be used in eq. (1.28). This allows us to estimate the
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amplitude of the gravitational field in terms of the binary system dimensions

and of the distance of the observer from the source:

h ≈
R2

S

r0R
(1.30)

where RS = 2GM
c2

is the Schwarzschild radius associated to a mass M . Its

order of magnitude is of a few kilometers for masses of the same order of the

Solar one. It is important to remind that the amplitude of the gravitational

wave scales with the inverse of the source distance r0.

In order to provide the order of magnitude of the expected signal, let us

consider a typical binary system with dimensions comparable to those of the

Solar System (RS ∼ 103 m, R ∼ 1012 m). This system emits a gravitational

wave with frequency Ω ∼ 10−9 Hz and amplitude h ∼ 10−25, measured

over a typical galactic distance of a thousand light-years. If the binary

system is composed by Neutron Stars (NS) or Black Holes (BH) in a very

near orbit (R ∼ 10 RS), the amplitude of the gravitational wave would be

h ∼ 10−17 over galactic distance, or h ∼ 10−20 over millions of light-years,

with a frequency Ω ∼ 103 Hz. The frequency of the emitted wave is very

important, because the detector sensitivity strongly depends on frequency.

As we will discuss in the following, the present ground-based interferometers

cannot achieve the needed sensitivity for frequencies lower than a few Hz.

In the next section we will shortly discuss the most promising astro-

physical phenomena in which large amounts of matter are subjected to huge

acceleration.

1.5 Astrophysical sources of gravitational waves

A variety of objects and processes in the Universe may give rise to detectable

gravitational waves on Earth. Thanks to its scarce interaction with matter,

gravitational waves can pass through matter without being absorbed, in

spite of what happens for electromagnetic waves. This would make possible
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to detect astrophysical events coming from very dense or opaque sky zones.

However, the probability for these sources to be actually detected depends

on many factors, as the strength of their emission, the frequency of their

signal and even the number of the possible sources in a given space and

time.

On the basis of current knowledge, the main astrophysical sources that

should produce gravitational waves of remarkable amplitude in a frequency

band accessible to ground-based interferometers (from a few Hz to a few

kHz) are compact object coalescing binaries (Neutron Star-Neutron Star,

Black Hole-Black Hole or Neutron Star-Black Hole), Supernovae, rotating

Neutron Stars and stochastic background [4].

1.5.1 Compact object binaries

About one third of the stars in the Galactic disk is in a binary system [5].

As shown above, this kind of systems are expected to emit gravitational

waves at the double of their orbital frequency. Binary systems composed by

compact objects, such a couple of Neutron Stars (NS), by a couple of Black

Holes (BH) or by a NS and a BH loose energy because of gravitational wave

emission. This causes the progressive decrease of the orbital radius and of

the orbital period. The permanence time around a given frequency (defined

as ν/ν̇) decreases with a strong power of the frequency itself (∼ ν−8/3). The

two objects spend therefore millions of years orbiting at very low frequency,

well below the ground-based detector sensitivity band. Only in the minutes

immediately before the collision, the orbital frequency, and thus the wave

emission one, increases dramatically sweeping in a few minutes the band of

ground based detectors (from a few Hz to a few kHz), until it reaches its

maximum frequency at the merging (around 1 kHz for NS/NS). During this

phase, called coalescence, the system is a source of gravitational waves of

remarkable intensity. Binary systems can then be detected by ground-based



20 1. Gravitational-wave theory

interferometers only in the last minutes of their life, when the two bodies

are close enough to orbit at frequencies larger than a few Hz. This is the

reason why, despite the large number of compact binary systems in the close

Universe, the rate of signals available for ground-based detection is low.

The inspiralling signals are the most promising sources for ground-based

detection. In addition to the expected remarkable amplitude an advantage

is given by the fact that the dynamics of these systems is well known and

its time evolution can be described as a function of a few parameters. This

allows using wave templates, to be correlated with the antenna output, in

order to distinguish the signal from the noise.

The only experimental proof, although indirect, of the existence of grav-

itational waves comes indeed from a binary system. The extended obser-

vation of the period of the Pulsar PSR1913+16 binary system showed an

inspiralling of the orbit in a strong agreement with that predicted by General

Relativity because of gravitational wave emission [6]. The expected rates for

NS/NS binaries for the present detectors, able to distinguish a signal over

a horizon (that represents the maximum distance where this signal can be

detected with a signal-to-noise ratio of at least a few units, and increases

when the detector sensitivity improves) of a few tens of Mpc, range from

10−3 event per year to a few events per year. Advanced detectors should

have a horizon of a few hundreds Mpc, and the expected rates are between

a few events per year to several events per year.

1.5.2 Supernovae

The Supernova explosion in our galaxy has been a well documented event

for many centuries. Both ancient and recent observations allow us to expect

a few events per century, considering only Supernovae that end with the

generation of a NS. Once the nuclear reactions cease, the gravity in the star

is no longer balanced by the outward pressure generated by electromagnetic
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radiation, and the matter starts to fall towards the center of the star. In

the nucleus of the star, the extreme compression induces the collapse of

the atomic structure, the fusion of proton-electron pairs into neutrons and

the emission of radiation. At this point, the gravitational collapse ends

abruptly, because the nucleus has reached its maximum compactness and

it then turns into a Neutron Star. The huge quantity of energy released

leads to the expansion of external layers and to a strong increase of the star

luminosity.

Although electromagnetic emissions due to this phenomenon are very

easy to detect, the gravitational wave emission could not be so large, be-

cause the gravitational collapse should be mainly spherical. In this case

the acceleration of quadrupole momentum, depending on the breaking of

spherical symmetry, could be very small. A Supernova is expected to emit

a gravitational wave burst lasting a few millisecond with dimensionless am-

plitude of

h ' 2.7 · 10−20

(
∆E

M0c2

)1/2 (
1 kHz
f

)1/2 (
10 Mpc

r

)
(1.31)

where f is the characteristic frequency (i.e. the inverse of the collapse time),

∆E is the energy emitted in the form of gravitational wave, M0 is the solar

mass and r is the distance between the source and the observer. The am-

plitude of the emitted signal depends on the degrees of asymmetry of the

collapse, giving the acceleration of the quadrupole momentum. This pa-

rameter is not predictable with enough accuracy to provide exact estimates

of the rate of detectable signals. However theoretical estimates lead to the

conclusion that gravitational waves produced by such events in our galaxy

would be detectable even by present ground based detectors [4].

In the meanwhile, one can search for events generated in the near galax-

ies. The Virgo cluster is constituted by a few hundreds of galaxies, in which

a few Supernovae can explode each year [7]. Unfortunately, their distance
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from the Earth (about 3 · 107 light-years) is such that only events with very

high asymmetry can be detected.

1.5.3 Rotating Neutron Stars

In our galaxy tens of millions of rotating Neutron Stars are expected to emit

gravitational waves, mainly at the double of their rotational frequency, which

is the frequency of the quadrupole variation. A few of them are Pulsars,

namely sources of a regularly pulsating signal detectable in radio band.

Over 1700 Pulsars have been discovered so far, and there is a population

of 105 ÷ 106 active Pulsars, while hundreds of millions of invisible rotating

Neutron Stars are expected in our Galaxy. A blind search of continuous

waves is thus necessary to discover objects that cannot be seen through their

electromagnetic emissions. Most of the Pulsars have periods between 0.25

and 2 seconds, while a few Pulsars rotate at hundreds of Hz. All periods are

lengthening as the Pulsars slowly lose their kinetic energy of rotation because

of electromagnetic and gravitational wave emissions. For the majority of

Pulsars the rotation slows down on a timescale (defined as the rate of change

of their periods P/Ṗ ) of 106 to 108 years. The period distribution and

slowdown rates suggest that most Pulsars start their lives with periods below

100 milliseconds, follow similar evolutionary paths, and cease to radiate after

a few millions of years [8]. The amplitude of a gravitational wave emitted by

a Pulsar expected on the Earth depends on the rotation frequency f , on the

distance from Earth r and on the ellipticity ε. The latter is the asymmetry

parameter, defined, in the simple model of an equatorial plane with an

elliptical section, as 1 − amin/amax, where amin and amax are the semi-

minor and semi-major axis respectively. The expression for the amplitude

is:

h ' 3 · 10−27

(
10kpc
r

)(
f

200Hz

)2 ( ε

10−6

)
. (1.32)



1.5. Astrophysical sources of gravitational waves 23

The signal-to-noise ratio, for a signal at a fixed frequency, goes as the square

root of the integration time. Pulsars are detectable for a very long period of

time, so these signals can be detected despite the fact that their amplitude

is very low in comparison to that produced by other astrophysical sources.

Pulsars within the limits of the ground-based detector band are expected

to be around 1000 if the lower bound is 10 Hz or around 5000 if it is 5

Hz [9], amongst many other unknown rotating NS. The most promising

sources for a continuous wave detection are the younger Pulsars, with high

rotational frequencies. Two promising known Pulsar in the low-frequency

region, where Virgo exhibits a good sensitivity, Crab and Vela. The former

is a very young Pulsar with rotational frequency ν = 30.22 Hz, a period of

P = 33.08 ms and a spindown of ν̇ = −3.86 · 10−10 Hz/s, while the latter

has ν = 11.19 Hz, P = 89.33 ms and ν̇ = −1.57 · 10−11 Hz/s.

On a time scale of some days, all Pulsars show a remarkable unifor-

mity of rotation rate. However, some irregularities in Pulsars rotation have

been observed, producing timing irregularities such as glitches, that mani-

fest themselves as remarkable step change in the rotation speed. Glitches

are rare (they have been observed in fewer than 40 Pulsars), and occur more

frequently in the younger Pulsars, like Crab and Vela. For example the pe-

riod of the Vela Pulsar at a typical glitch (which occurs with intervals of

about three years) decreases by up to 200 ns. The step change in rotational

frequency typically amounts to one or two parts in 106 [8]. Given the rarity

of the phenomenon, it will be neglected for the purposes of this discussion.

The detection of continuous waves emitted by NS is the main subject of

this work. A more accurate treatment of this type of signal will follow in

the next chapters.
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1.5.4 Stochastic background

A broadband cosmic radiation, essentially stationary and isotropic, similarly

for what happens with electromagnetic waves, is expected. This stochastic

background, produced by cosmological process and by the sum of many un-

known sources, can be described by a superposition of random gravitational

signals, coming from all directions at all frequencies.

Coincidence techniques between different antennae are necessary to in-

fer if this stochastic signal is correlated in the different detectors and to

reach an acceptable sensitivity. The evaluation of the amplitude and the

frequency band is very uncertain. All the astrophysical and cosmological

models suggest that the amplitude of this background is very small, even if

a few theoretical predictions do not exclude the possibility of a detection for

advanced interferometers [10].



Chapter 2

Gravitational wave detectors

As mentioned in sec. (1.3), the gravitational wave passage induces an os-

cillation of the proper distance between two free masses with an amplitude

that is proportional to their distance. A gravitational wave detector can be

thus a system of free masses, mutually unbounded, at a very long distance

from each other. This kind of arrangement is adopted by interferometric

detectors.

The idea of interferometric detection of gravitational waves was first

introduced by the Russian theorists M. Gertsenshtein and V. I. Pustovoit

in 1962. It was also considered by Weber, and then published in the late

1960s by R. Forward, R. Weiss, R. Drever and others [11]. The complexity

of the design of a long arm gravitational wave interferometer required large

international collaborations and over thirty years of preparation to put them

in action.

The most simple setting from which we can start to explain this kind of

detectors is the Michelson interferometer.

25
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Figure 2.1: Scheme of a Michelson interferometer for gravitational waves detec-

tion [12]

2.1 Michelson interferometer

The Michelson interferometer is a very accurate instrument to measure

changes in the travel time of light in its arms, and it was first developed

by Michelson and Morley in 1887 to measure the speed of the supposed

“ether wind” on the Earth surface [1].

The conceptual scheme, that we are going to remind, is shown in Fig.

(2.1). It consists of a monochromatic light source, whose light hits the

beam-splitter, a partially reflecting mirror inclined with an angle of 45°,

that separates the beam in two equal and coherent beams travelling in the

two orthogonal arms. Totally reflecting mirrors put at the end of each arm

send the beams back to the beam-splitter. Part of the resulting beam goes

to a photodetector that measure its intensity, while the remaining part goes

back towards the laser. In a gravitational wave detector the mirrors are

suspended at the end of a pendulum, and can be treated as freely falling

masses as long as the pendulum frequency is much lower than the signal
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frequency.

We can write a given spatial component of the electric field of the input

laser light as

E0e
−iωLt+i~kL·~x (2.1)

where ωL is the laser frequency and ~kL = ωL/c is its wave vector. Denoting

by Lx and Ly the length of the two arms, one can find that the power

measured by the photodetector is [1]:

|Eout|2 = E2
0 sin2[kL(Ly − Lx)] (2.2)

The amplitude of the light that leaves the interferometer depends thus on the

phase difference cumulated by the light travelling in the two arms kL(Ly −

Lx). When this difference is null the light at the output has amplitude E0

(constructive interference), while for kL(Ly − Lx) = π
2 all the light would

be reflected back to the laser source, and there would be no light at the

output (destructive interference). Therefore any variation in the arm length

difference corresponds to a variation of the power at the photodetector.

2.2 Response of a Michelson interferometer to grav-

itational waves

In the TT gauge description, the coordinates of the mirror and of the beam-

splitter are not affected by the passage of the wave. The TT frame results

then very helpful to describe the detector response, which is proportional to

the arm path difference. We are therefore interested in writing the expression

of the total power at the photodetector for the TT frame.

Let us consider for simplicity a plus-polarized gravitational wave in the

z = 0 plane of the interferometer, perpendicular to the interferometer plane.

The space-time interval in the TT frame is

ds2 = −c2dt2 + [1 + h+(t)]dx2 + [1 − h+(t)]dy2 + dz2. (2.3)
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A ray of light connects sets of points separated by ds2 = 0, so along the

x axis the interval between two near events connected by the light beam is

given by:

ds2 = 0 = gµνdx
µdxν

= (ηµν + hµν)dxµdxν

= −c2dt2 + (1 + h+(t))dx2.

(2.4)

The square root of eq. (2.4), in the linearized approximation (h+ � 1),

gives

dx = ±cdt
[
1 − 1

2
h+(t)

]
(2.5)

where the plus sign holds for the travel from the beam-splitter to the mirror

and the minus sign for the opposite sense of the travel. If t0 is the time at

which a photon leaves the beam-splitter, the time of arrival ta after a round

trip along the x arm can be obtained by integrating eq. (2.5) over one round

trip along the x arm:

ta − t0 =
2Lx

c
+

1
2

∫ ta

t0

dτh+(τ). (2.6)

One can approximate the upper limit of the integral as ta ' t0 + 2Lx/c, so,

according to [11], we get

ta − t0 =
2Lx

c
+
Lx

c
h

(
t0 +

Lx

c

)
sin(ωgwLx/c)
(ωgwLx/c)

(2.7)

where

h(t0 + Lx/c) = h0 cos[ωgw(t0 + Lx/c)] (2.8)

is a plus polarized wave, function of the retarded time t0 + Lx/c which

approximates at the first order the time t′ at which the photon touches the

mirror. The quantity t0 + Lx
c is, to zeroth order in h0, the time at which the

beam reaches the far end of the x arm. A similar expression can be obtained

for the y arm:

ta − t0 =
2Ly

c
− Ly

c
h

(
t0 +

Ly

c

)
sin(ωgwLy/c)
(ωgwLy/c)

. (2.9)
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Since we are interested in the light that comes out from the beam-splitter at

a given time t, it is useful to invert the previous expression fixing the value

of ta ≡ t and replacing h(t0 + Lx/c) by h(t− Lx/c). The time at which the

light started its round-trip travel is thus given by

t
(x)
0 = t− 2Lx

c
− Lx

c
h

(
t− Lx

c

)
sinc(ωgwLx/c) (2.10)

and similarly for the y arm

t
(y)
0 = t− 2Ly

c
+
Ly

c
h

(
t− Ly

c

)
sinc(ωgwLy/c). (2.11)

The phase of the field is conserved during the free propagation, therefore

setting the origin of the coordinate system at beam-splitter and writing the

electric field of the light as in eq. (2.1) we see that the phase of the light at

the beam-splitter at the time t(x)
0 is e−iωLt

(x)
0 . The expression for the electric

fields that go through the two arms at a time t is then:

E(x)(t) = −1
2
E0e

−iωLt
(x)
0 = −1

2
E0e

−iωL(t−2Lx/c)+i∆φx(t) (2.12)

E(y)(t) =
1
2
E0e

−iωLt
(y)
0 =

1
2
E0e

−iωL(t−2Ly/c)+i∆φy(t) (2.13)

where

∆φx(t) = h0
ωLLx

c
sinc

(
ωgwLx

c

)
cos

[
ωgw

(
t− Lx

c

)]
(2.14)

and

∆φy(t) = −h0
ωLLy

c
sinc

(
ωgwLy

c

)
cos

[
ωgw

(
t− Ly

c

)]
(2.15)

Being Lx and Ly made as close as possible, we can replace them in the latter

expressions by L = (Lx + Ly)/2, obtaining

∆φx(t) = −∆φy(t) = h0kLLsinc
(
ωgwL

c

)
cos

[
ωgw

(
t− L

c

)]
≡ |∆φx| cos(ωgwt+ α) (2.16)
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where α = −ωgwL/c is a phase. The total phase difference induced by a

gravitational wave in the Michelson interferometer is then

∆φMich = ∆φx − ∆φy = 2∆φx (2.17)

The total electric field at the output is

Etot(t) = E(x)(t) + E(y)(t) = −iE0e
−iωL(t−2L/c) sin[φ0 + ∆φx(t)] (2.18)

where φ0 = kL(Lx−Ly) still takes into account any small difference between

the length of the two arms. In the limit ωgwL/c � 1, i.e. when the signal

frequency is smaller with respect to the inverse round trip time, a gravita-

tional wave is nearly constant while the light makes a complete round trip

in the arm. In this case eq. (2.16) reduces to

∆φMich ' 2h
(
t− L

c

)
kLL. (2.19)

The gravitational wave induces a shift between the interfering beams pro-

portional to the wave vector and to the arm length. In the TT gauge the

position of the mirrors does not change at the arrival of a gravitational wave,

that affects only the propagation of light between the mirrors. In the proper

detector frame, it was shown that a reversed situation takes place, i.e. the

mirror position relative to a rigid ruler would change, while light propaga-

tion would not. The dephasing computed above is a relativistic invariant,

i.e. its value does not change in different reference frames. This means that

the effect of gravitational waves can be seen either as a change of the trav-

elling time of the beam between the mirrors or as a change in their relative

distance. The effect of the gravitational wave in the phase shift is equivalent

to a change of Lx − Ly given by

∆(Lx − Ly)
L

' h

(
t− L

c

)
. (2.20)
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The total power P ∼ |E2
tot| observed at the photodetector is modulated by

the gravitational wave signal as follows:

P =
P0

2
[1 − cos(2φ0 + ∆φMich(t))] (2.21)

and we want then ∆φMich to be as large as possible. As it can be seen from

eq. (2.16), its dependence on L is given by the factor

(ωLL/c)sinc(ωgwL/c) = (ωL/ωgw) sin(ωgwL/c). (2.22)

One can see that when the wave frequency coincides with the permanence

time of the light the effect is null. Thus the optimal arm length to detect a

GW of frequency fgw = ωgw/2π is given by

L =
π

2
c

ωgw
=
λgw

4
' 750km

(
100Hz
fgw

)
. (2.23)

The signal received by the detector is determined by the pattern functions

F+(θ, φ) and F×(θ, φ), which depend on the wave propagation direction

n̂ = (θ, φ), as follows:

h(t) = F+(θ, φ)h+(t) + F×(θ, φ)h×(t). (2.24)

The pattern functions, giving the response of the antenna to a given source,

depend on time since the orientation of the antenna with respect to the

source change because of Earth rotation. h+(t) and h×(t) are given by

h+(t) = h0,+ cos(ωgwt) (2.25)

h×(t) = h0,× cos(ωgwt+ α), (2.26)

being h0,+ and h0,× the real amplitudes for the two polarizations, and α

their relative phase. The response of an interferometric antenna to the two

polarization states h+ and h× for gravitational signals coming from an arbi-

trary direction (θ, φ) with respect to the normal to the interferometer plane
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Figure 2.2: Incident angles of the interferometer (θ and φ).

(Fig. (2.2)) can be evaluated by easy geometrical considerations. In partic-

ular, the variation of the arm length ∆L induced by the two polarization

states + and × is:

∆L(t) =
1
2
h+(t)L(1 + cos2 θ) cos 2φ (2.27)

∆L(t) =
1
2
h×(t)L cos θ sin 2φ (2.28)

Fig. (2.3) provides a representation of the antenna response to unpolarized

gravitational waves as a function of the incident direction with respect to the

x−y interferometer arms. One can notice that, apart from special directions

of the interferometer plane(the two bisectors), the response of the antenna

for the different directions does not change too much.

2.3 Folded interferometer arms

As one can see from eq. (2.23) the optimal arm-length to measure gravi-

tational waves with frequencies of order of a few hundreds Hz would be of

several hundreds of kilometers. Being this impossible in practice for Earth-

based interferometers, the needed arm-length is therefore obtained by folding

the optical path of light, making it “bounce” back and forth many times in

each arm, before the interference. In Virgo, each arm of the interferometer

is a 3 km long Fabry-Perot cavity resonating at the laser frequency (the
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Figure 2.3: Antenna response function to unpolarized waves for an interferometric

gravitational wave detector. Interferometer arms are oriented along

the box horizontal axes.

antennas of the US LIGO project have 4 km long arms).

2.3.1 Fabry-Perot cavities

An ideal Fabry-Perot resonator (see [1]) consists of two plane mirrors sepa-

rated by a distance L. Each mirror is characterized by the ratio of reflected

optical field to the incident field, the amplitude reflectivity r and the am-

plitude transmissivity t. A beam of monochromatic light with electric field

amplitude E0 normally hits on the first mirror (that has reflectivity r1 and

transmissivity t1), and it is partly reflected outside the cavity and partly

transmitted towards the second mirror (with reflectivity r2 and transmissiv-

ity t2) with an amplitude which depends on the above mentioned coefficients.

The cavity is said to be at resonance when the maximum power emerges, i.e.

when 2kL = 2nπ, with n any integer. In this situation the phase relation
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between the beams is adjusted so that they interfere in a constructive way

inside the cavity. Far from resonance, just a little fraction of light is trapped

inside the cavity, so most part of the incident beam is reflected off the first

mirror. When the cavity is tuned precisely at resonance, the electric field in

the cavity is high. Let us consider the simple case of a perfectly reflecting

far mirror with r2 = 1. One can write the amplitude of the light incident

on the first mirror from inside the cavity as

Einside = E0
t1

1 − r1e−i2kL
(2.29)

Only a fraction t1 � 1 of this field escapes from the first mirror, and since

resonance occurs when kL ≈ nπ, which means e−i2kL ≈ 1, an approximated

expression for the escaping electric field Eesc can be given:

Eesc = E0
t21

1 − r1(1 − i2kL)
(2.30)

The real part of Eesc is approximately equal to E0(1 + r1). This means

that the reflected part of the electric field can be evaluated by the following

expression:

Erefl ≡ −E0r1 + Eesc ≈ E0(−r1 + 1 + r1) = E0 (2.31)

This means that the superposition of the escaping light with the promptly

reflected light gives a beam with electric field amplitude E0, as in the off-

resonance case, but the escaping light has a change of phase of 2π nearby

the resonance. The change in the phase of the escaping light with the cavity

length L in the Fabry-Perot cavity can be seen as a particular case of a delay

line scheme. In a delay line the beam goes back and forth inside the arms, as

in a Fabry-Perot cavity. In this case, however, the mirrors are large because

the light beams have to be spatially separated in order to avoid spurious

interferences. In a delay line the phase variation ∂φ produced by a length

variation ∂LDL is given by

∂φ/∂LDL = 2N2π/λ, (2.32)
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where N is the number of round trips of the length. For a Fabry-Perot

cavity this expression becomes

∂φ

∂LFP
=

4r1
1 − r1

2π
λ
. (2.33)

As a consequence a Fabry-Perot cavity has the same effect of a delay line in

amplifying the phase shift due to a length variation, with N = 2r1
1−r1

. Since

the beams in the Fabry-Perot cavity are superposed, the mirrors used for

it are much smaller than those for a delay line, and then more convenient

from many points of view (physical characteristics, cost, engineering).

The finesse F , defined as

F =
π
√
r1r2

1 − r1r2
(2.34)

is a parameter that characterizes the sharpness of the resonance of a Fabry-

Perot cavity. If r2 = 1 it is immediate to see that

F =
π
√
r1

1 − r1
(2.35)

In the limit that the time scale for metric changes is long compared with
FL
c , a Fabry-Perot cavity gives 2F

π times the phase shift of a one-bounce

interferometer arm in response to a gravitational wave [1].

2.3.2 Gaussian beams

In the previous section any dependence of the electric field on the transverse

coordinates was neglected. In the realistic case of mirrors with finite trans-

verse extent the beam, which has itself a profile in the transverse direction,

is subjected to diffraction. This phenomenon causes the broadening of the

beam and its dispersion on a region of transverse size larger than the mirrors

(see [11]).

After traveling a longitudinal distance x the beam becomes larger, in the

transverse direction, by x∆θ ∼ xλL
a , where a is the beam transverse width
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and λL is the wavelength of its photons. If xλL
a � a we are in the regime of

Fresnel diffraction, and the broadening of the beam is negligible. If xλL
a � a

we are in the regime of Fraunhofer diffraction, and the broadening is not

negligible anymore. For typical gravitational interferometer laser beams this

means that the beam would widen remarkably already after a single one-way

trip through the cavity. This problem can be avoided by using a Gaussian

beam instead of an ideal plane wave. This beam has a Gaussian profile in

the transverse direction. Its profile stays Gaussian for any x, and its width

is a function of x:

w(x) = w0

√
1 +

x2

b2
(2.36)

where w0 is the initial transverse size and b = 1
2kLw

2
0 is said Rayleigh range.

The wavefronts of a Gaussian beam are spherical to an excellent approxima-

tion. The curvature radius, i.e. the radius of the spherical equiphase plane,

depends also on x by

R(x) = x+
b2

x
(2.37)

Gaussian beams are very useful in the construction of gravitational wave

interferometers because they have the minimum possible spreading. If the

surfaces of mirrors match exactly the beam equiphase surfaces, this does

not widen further each time it bounces between the two mirrors. Spherical

mirrors are thus the optimal choice. When the beam travels back and forth

between such spherical mirrors, its wavefronts are forced to converge back

towards the waist, so the transverse size of the mirror does not increase.

2.3.3 Detection at the dark fringe

As shown above, the passage of a gravitational wave in an interferometer

produces a phase shift proportional to the signal waveform h(t) (see eq.

(2.16)). The detection of gravitational waves can thus be obtained by ex-

tracting this phase from the output of the detector.
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In order to maximize the instrument sensitivity, one could choose as an

operating point the maximum of dPout/dφ. However, since we use the output

power as a measure of the phase, it is not possible to distinguish a change

in φ due to a gravitational wave from a fluctuation of the laser power. In

the point of maximum dPout/dφ the photodetector measures a large power

even in absence of gravitational waves, and this large DC contribution has

the same low frequency as the one of the perturbation of space-time due to

gravitational waves.

It is a better choice to work at a point where the instrument records zero

output in absence of signal, i.e. where the interferometer can be treated as

a null instrument. To have this condition it is necessary to work at the dark

fringe (see [1], [11]). This is in fact the only point where the output is zero

in absence of gravitational waves and there is no sensitivity to fluctuations

of the laser power. Since dPout/dφ = 0 the change in the output power

induced by the gravitational wave is very small as well. The problem can

be solved applying a phase modulation to the input laser light, by passing

the incident beam through a Pockels cell. This causes the beam phase to

change with time, and then the signal acquires sidebands. The light incident

on the beam-splitter is thus composed by a carrier at the laser frequency

ωL and two sidebands at ωL ±Ωmod (as shown below, higher sidebands can

be neglected for small phase modulation). The cavity length L is chosen so

that the carrier is resonant, while the modulation frequency Ωmod is fixed

so that the sidebands are not resonating. The electric field incident to the

beam splitter has the form

Ein = E0e
−i(ωLt+Γ sin Ωmodt) (2.38)

where Γ is called the modulation index. Ein can be expanded as

Ein = E0[J0(Γ)e−iωLt + J1(Γ)e−i(ωL+Ωmod)t

− J1(Γ)e−i(ωL−Ωmod)t + · · · ], (2.39)
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where Jn are the Bessel functions of the first kind. The effect of the phase

modulation is to generate sidebands. For small Γ, this expression is simply

obtained expanding (2.38) in powers of Γ. Higher sidebands are then negligi-

ble. On the dark fringe, in the presence of a gravitational wave, the electric

field of the carrier at the photodetector shifts from the value (Eout)c = 0 to

the value

(Eout)c = −i(1 − σ)E0J0(Γ)e−iωLt+2ikLl · 2F
π
kLLh(t), (2.40)

where J0 is the order 0 Bessel function and −(1 − σ) = R is the reflectivity

of the cavity at the resonance for kL. The modification of the electric field

due to the sidebands is negligible, since it gives a correction 1 + O(h), but

its term O(1), beating against the term O(h) in the carrier, gives a term

linear in h in the output. The total electric field at the output is then

(Eout)tot = −2iE0e
−iωLt+2ikLl·[

(1 − σ)J0(Γ)
F

π
kLLh(t) − J1(Γ) cos(Ωmodt− α)

]
(2.41)

Taking the modulus squared, the term which oscillates as cos(Ωmodt− α) is

linear in h and it is demodulated by a mixer. An output that is linear in

h(t) is thus obtained, even if the carrier is on the dark fringe.

2.4 Noise sources

The output of a gravitational wave detector is a time series which describes

the phase shift of the light recombined after travelling in the two interferom-

eter arms. This output will be a combination of a gravitational wave signal

(h(t)) and of noise (n(t)). Let us consider an additive model for the output,

that can thus be written as s(t) = h(t) + n(t). The noise sources affecting

the sensitivity of an interferometric detector can be generically divided in

three classes [13]:
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� displacement noise;

� optical readout noise;

� phase noise.

Some noise processes can generate spurious signals in the apparatus inducing

a real displacement of the interferometer optical components (displacement

noise). Other processes affect only the phase of the light beams even if

a real movement of the mirrors is not present (phase noise). The main

sources of displacement noise are the thermal noise and the seismic noise,

while phase noise arises from many optical processes such as the frequency

fluctuations of the laser and the refraction index fluctuations of the residual

gas in the pipes. In both cases, noise mechanisms induce fluctuations of the

phase of the interfering beams. These fluctuations cannot be described by

deterministic laws, but are characterized only by their statistical features.

A random variable X of a system, fluctuating around its rest position,

is characterized by its spectral density

SX(f) =< lim
T→∞

2
T
|X̂T (f)|2 > (2.42)

where X̂T (f) denotes the Fourier transform of the function X(t) inside the

integration range −T < t < T and the braket indicates the ensemble aver-

age. In order to define the antenna sensitivity one has to compare the ex-

pected gravitational signal hgw(t) with each significant spurious signal. The

most suitable way to compare noise and signal is to consider each spurious

fluctuation of the interference phase as produced by a fake signal charac-

terized by an equivalent dimensionless amplitude hnoise(t). The comparison

between the real signal and each fake signal is usually expressed in terms of

their linear spectral density, defined as the square root of the spectral density

and indicated with h̃gw(f) and h̃noise(f), respectively (expressed in units of

Hz−1/2). As shown above, the Fabry-Perot cavities increase the dephasing
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produced by displacements by a factor 2F
π , so as long as displacement noise

is dominating there is no advantage in increasing the cavity finesse, because

noise would be amplified just like the signal. On the contrary, shot noise

(that is a component of the optical readout noise) and phase noise are not

modified by the presence of Fabry-Perot cavities, so using them is effective

to amplify the phase shift in the interference beams produced by the signal,

and thus increase the signal-to-noise ratio where the detector sensitivity is

limited by these noise sources.

The linear spectral density of the total noise in the antenna can be

obtained by the uncorrelated sum of the linear spectral densities of all the

n noise contributions, namely

h̃noise(f) =
√
h̃2

1(f) + h̃2
2(f) + h̃2

3(f) + ...+ h̃2
n(f). (2.43)

The sensitivity curve of a gravitational wave antenna is usually expressed

by plotting this quantity as a function of the frequency. Straight from the

definition, it can be computed the signal to noise ratio for an impulsive

gravitational signal of length τ and amplitude h. Supposing a bandwidth of

the wave equal to ∆f = 1/τ , the signal-to-noise ratio is given by

S

N
=

h
√
τ

h̃noise(∆f)
(2.44)

where h̃noise(∆f) is the mean of the linear spectral density of the noise inside

the signal bandwidth and h is the pulse amplitude. By imposing S/N ≥ 1,

it can be obtained the minimum dimensionless amplitude detectable by the

antenna for a τ long impulsive gravitational signal. For a periodic gravita-

tional signal the spectrum is very narrow, being entirely concentrated, apart

from harmonics, around the fundamental frequency f0. The bandwidth is

thus limited by the observation time T (∆f = 1/T ) and the signal-to-noise

ratio is given by:
S

N
=

h
√
T

h̃noise(f0)
(2.45)
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In other words, the minimum detectable dimensionless amplitude of a peri-

odic gravitational signal at a given frequency f0 can be obtained by dividing

the sensitivity h̃noise(f0) by the square root of the integration time. This

shows how periodic signals, despite their smaller amplitudes, can in principle

be detected by long time observations.

2.4.1 Displacement noise

In the case of a displacement noise, h̃noise(f) is given by x̃(f)/L, where

L is the arm length and x̃(f) is the linear spectral density of the mirror

displacement in the beam direction induced by noise.

Thermal noise is due to dissipative effects both in the suspension wires

and in the mirrors.

The fluctuation-dissipation theorem states that any dissipative system

is subjected to stochastic forces whose amplitudes are proportional to the

square root of the temperature. Therefore, friction in wires, suspension

clamps and mirrors induces stochastic forces on the mirrors and thus fluc-

tuations of their position.

In the case of a pendulum of mass M , with a damping factor γ (defined

as the friction force divided by the velocity of the mass), temperature T and

resonant frequency ω0, the linear spectral density of the stochastic force is

white and it is given by [1]:

F̃ (Ω) =
√

4kBTγ
N√
Hz

(2.46)

where kB is the Boltzmann constant. In the hypothesis of viscous damping

due to collisions with gas molecules γ = M/τ , where τ is the pendulum

relaxation time. In this case the linear spectral density of the horizontal

displacement of the mass XTN induced by the thermal noise is

X̃TN (Ω) =
(

1
(Ω2 − ω2

0) + Ω2/τ2

)1/2
√

4kBT

Mτ

m√
Hz

. (2.47)
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Since the pendulum frequency of the mirrors is well below the detection band

(starting from few Hz), the noise has to be computed in the limit Ω � ω0.

In term of the dimensionless amplitude

h̃TN (Ω) ' X̃TN (Ω)/L (2.48)

the noise in this limit is

h̃TN (Ω) ' 1
LΩ2

√
4kBTω0

MQ
Hz−1/2 (2.49)

where Q, given by the product ω0τ , is called quality factor of the suspension

and is defined as the ratio of the pendulum energy dissipated in one cycle and

its total energy. This means that a low dissipation suspension (i.e. high Q)

reduces the thermal noise. This effect could be also obtained by increasing

the mass of the mirrors, but good optical performances cannot be reached

on large mirrors because of large internal stresses. The best compromise is

to use quartz mirrors weighing few tens of kilograms.

Dissipation effects occur also inside the mirrors. The mirror structure

can be thought as a series of high frequency harmonic oscillators each with

a given frequency (ωi), equivalent mass (Mi) and relaxation time (τi). At

frequencies much smaller than ωi, the linear spectral density of the mirror

longitudinal displacement due to the internal thermal noise is approximately

white and it is given by

X̃TN (Ω) '
∑

i

√
4kBT

MiQiω3
i

m√
Hz

(2.50)

Thus, in order to reduce the thermal noise, mirrors with low dissipation and

high frequency internal modes are desirable. The first internal mode of the

Virgo quartz mirror is expected to be around 3 kHz, with a quality factor of

about 106. Several damping mechanisms can affect the suspension and the

internal modes of the mirror (for example internal friction of the materials,

viscous damping and thermoelastic effects). The expected thermal noise in

Virgo is plotted in the sensitivity curve shown in the next chapter.
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Another important source of displacement noise is seismic noise [1]. The

ground is permanently affected by seismic vibrations due to many factors

(for example geological phenomena, tides, human activities).

The linear spectral density of the ground seismic displacement can be

well approximated, between 1 Hz and several tens of Hz, by the function

10−7/f2mHz−1/2 in all directions. The goal of the suspension system is to

make the residual seismic noise at the mirror level smaller than the other

noise mechanisms limiting the interferometer sensitivity (usually in this fre-

quency range the thermal noise and the Newtonian noise described in the

following). The basic idea is to suspend each mirror from a chain of pen-

dulums. In an N-stage pendulum the horizontal motion of the suspension

point, at a frequency f much higher than the normal mode ones, is trans-

mitted to the suspended mass attenuated by a factor proportional to f2N . If

the resonant frequencies are below a few Hz (that means to build long pen-

dulums) an acceptable attenuation can be achieved above 3-4 Hz. Vertical

vibrations would be also partially transferred to the laser beam (horizontal)

direction because of the unavoidable mechanical couplings and also because

of Earth curvature, making widely separated pendulums non parallel to each

other. A chain of oscillators can be realized also in the vertical direction by

replacing each mass of the pendulum with mechanical filter, exhibiting the

required vertical elasticity. The sophisticated mirror suspension system used

in Virgo will be discussed in Chapter 3.

Another type of displacement noise is the Newtonian noise [11], also

known as “gravity gradient noise”, which is due to the Newtonian grav-

itation attraction of objects that are moving, resulting in a time-varying

gravitational force acting on the mirror. The most important Newtonian

effect is induced by seismic waves, which produce mass density fluctuations

of the ground and therefore a fluctuation of the gravitational field, which

couples directly to the test masses of the interferometer.
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Newtonian noise, scaling with frequency as f−4, is overwhelmed by seis-

mic noise below a few Hz and by thermal noise elsewhere. It represents

the ultimate limitation to the sensitivity at low frequencies, because the

gravitational force cannot be screened. This means that once the minimum

possible level of seismic and thermal noise is reached (which can be done by

technological improvements), the Newtonian noise would be dominant, and

it could not be further lowered.

2.4.2 Optical readout noise

Once any possible measure to reduce the problems due to power fluctuations

of laser emission have been taken, shot noise is the fundamental limit for

optical detection [1].

The photon shot noise in h is described by a white amplitude spectral

density of magnitude

hshot(f) =
1
L

√
}cλ

2πPin
(2.51)

where λ is the wavelength of the laser and Pin is the input power.

Unfortunately, one cannot achieve an arbitrary accuracy just increas-

ing Pin, as eq. (2.51) seems to suggest. In fact we have to deal with the

quantistic problem of the measurement process disturbing the system un-

der measurement. In the case of an interferometric detector, the nearly

freely-falling test masses are the system to be measured, while laser, light

beams and photodetector are the measuring apparatus. Fluctuating radi-

ation pressure on the test masses cause them to move in a noisy way, and

the resulting fluctuation in the length difference between the two arms can

affect the phase difference between the light arriving from the two arms.

The power fluctuations in the two arms will be anti-correlated, so the effect

on the output of an interferometer is doubled, since the phase shift is pro-

portional to the difference in length of the two arms. The radiation pressure
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noise is given by:

hrp(f) =
2
L
x(f) =

1
mf2L

√
}Pin

2π3cλ
(2.52)

being x(f) the spectrum of each mass motion induced by the fluctuating

radiation pressure.

Thus there are two different sources of noise associated with the quantum

nature of light, and they exhibit an opposite dependence on the light power:

shot noise decreases as the power grows, while the radiation pressure noise

increases.

These two noise sources can be treated together as a single noise called

optical readout noise, given by the quadrature sum

hopt(f) =
√
h2

shot(f) + h2
rp(f). (2.53)

At low frequencies, the radiation pressure term dominates, while shot noise

is more important at high frequencies. The expression that optimizes the

power in order to obtain the minimum noise spectral density at a given

frequency f is

Popt = πcλmf2. (2.54)

Putting this expression in eq. (2.53) the lowest possible noise, i.e. the quan-

tum limit, can be obtained:

hQL(f) =
1

πfL

√
}
m
. (2.55)

hQL is a “pseudo-spectral density” rather than a real spectrum, because

it indicates for each frequency the minimum noise spectral density due to

optical readout noise that one can obtain, having a given light power. More

precisely, it is the locus of the lowest possible points of the family of spectra

hopt(f) parametrized by f0. It is important to stress that the maximum

sensitivity achievable at a given frequency f depends only on the arm length

and the mirror masses.
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2.4.3 Phase noise

In addition to displacement noise and optical readout noise we have to con-

sider phase noise [13], whose main sources are:

� frequency instability of the laser.

The dephasing between the light beams depends on the laser frequency

as

∆ϕ =
ωL

c
∆Lopt (2.56)

where ∆Lopt is the unavoidable statical path difference between the

two Fabry-Perot cavities. If ∆Lopt was null one could in principle

obtain interference even using a white light source. Since this is not

the case, any fluctuation in the laser frequency produces a dephasing

of

ϕ̃δ(f) =
ω̃L

c
∆L̃ (2.57)

where δ̃(f) is the linear spectral density of the frequency fluctuations.

The slight differences between the reflectivity of the mirrors produce

differences in the finesse of the cavities, inducing asymmetry in the

optical path ∆Lopt/Lopt ' 1%. In these conditions, a fluctuation of

the wavelength δ̃(f) = 10−5Hz/
√
Hz is allowed. The laser frequency

fluctuation is in general much higher, and a frequency stabilization

system is thus necessary.

� Air density fluctuations in the two arms introduce random variations

in the refraction index, and thus in the light optical path difference.

The whole apparatus needs to be in vacuum to suppress this noise.

In typical interferometer antennas a residual pressure of 10−6 mbar is

achieved. This keeps the residual phase error well below the shot noise

in all the detection band [13].
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� Light scattered from residual air can re-enter the beam by reflection

from the tube walls. Part of the small amount of light scattered off

by the mirrors can recombine with the main beam by a further mirror

scattering, after having interacted with the cylindrical vacuum pipe

walls. This spurious light follows a different optical path modulated

by the pipe seismic vibrations. A phase noise is thus induced in the

interference signal. For this reason absorbing baffles are assembled

inside the kilometer-scale vacuum pipes in order to absorb the diffused

light and make this noise well below the antenna sensitivity [14], [15].

� Laser power fluctuations inside the interferometer can be converted to

phase noise. Also in this case, the asymmetry between the two cavities

sets the requirements for the laser power stabilization. The power fluc-

tuations of the type of laser used in the interferometric detectors are

larger at low frequency; in Virgo, it is therefore necessary to modulate

the laser (at 12 MHz) to shift the detection signal to a lower noise

spectral region [16].

� The presence in the beam of different propagation modes makes it im-

possible to fix the same condition of resonance for all the photons in

the beam. To solve this problem gravitational wave interferometers

use a system called mode cleaner that sharpens the beam before it en-

ters the interferometer, selecting the main Gaussian mode (TEM00).

The mode cleaner is a suspended cavity with a very high finesse, and

its shape is triangular in order to avoid reflections back towards the

laser.
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Chapter 3

Virgo interferometer

The gravitational wave detector Virgo, funded by CNRS (France) and INFN

(Italy), is a recycled Michelson interferometer where each arm is replaced

by a 3 km long Fabry-Perot cavity. Virgo is located at the European Gravi-

tational Observatory (EGO), close to Cascina (Pisa, Italy), and is designed

to detect gravitational waves emitted by astrophysical sources in the fre-

quency range between a few Hz and a few kHz. Recently other groups from

the Netherlands, Poland and Hungary entered the joint effort. Virgo is the

unique detector that, from the beginning, thanks to its special anti-seismic

isolation system, extended the detection band down to about 10 Hz.

As shown in the picture in Fig.(3.1) there are several buildings in the

detector site: all the optics of the interferometer, including the two Fabry-

Perot input mirrors, are located in the central building. In the terminal

buildings (3 km far from the central one) the Fabry-Perot end mirrors are

located. All the operations of the instrument are performed remotely by the

control room located in the building visible closest to the road.

Each of the six main optical components (recycling mirror, beam-splitter

and Fabry-Perot cavity mirrors) is suspended from a 8 m long Superatten-

uator, the special attenuation system used to filter the seismic vibrations.

Smaller anti-seismic suspensions are used to isolate the optical benches and

49
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Figure 3.1: Aerial view of Virgo interferometer in Cascina (Pisa).

the input mode cleaner mirror described in the following. This last mirror

is placed at the end of a triangular cavity about 144 m long (and located in

the small additional building, visible on the left of the central one). The en-

tire system is in a high vacuum environment. In particular the Fabry-Perot

cavities are contained in 3 km long pipes with a diameter of 1.2 m, located

in the long tunnels appearing in the picture.

3.1 The optical scheme

The whole source apparatus consists of three benches [17]: two optical tables

(the laser bench and the external injection bench), ground connected, seis-

mically isolated by pneumatic legs, installed within a clean-room laboratory

with controlled temperature, and the suspended injection bench, hung to a

two stage multi-pendulum, in a vacuum bell at 10−6 mbar separated from

the laboratory environment by an optical window [18].
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Figure 3.2: Schematic representation of Virgo [13]

The laser bench contains the laser, the optical isolators and two phase

modulators. The light beam is generated by a 20 W high-power Nd:YVO4

laser source locked to a 1 W solid state Nd:Yag master laser, and is then sent

to the external injection bench, to be correctly aligned with respect to the

detector reference frame before entering the vacuum system. The amplitude

stabilization is performed by taking part of the light at the laser output from

one of the plane mirrors of the cavity, and then acting on the current of the

slave laser diodes. After the slave laser there is the electro-optic modulator

for the stabilization of the reference cavity and then two Faraday isolators

that reject the back-reflected light. On the external injection bench there are

all the detectors for the stabilization of various parameters (frequency, am-

plitude and beam geometry) matching with the reference cavity and with the

following mode cleaner. The beam entering the suspended injection bench

is focused by a telescope on the input mode cleaner. The latter consists in

a triangular cavity 144 m long, with two flat mirrors optically connected

to a dihedron and a curved one, suspended from a short suspension chain.
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The purpose of the input mode cleaner is to spatially filter the beam, se-

lecting a TEM00 mode, before the interferometer input, and to stabilize the

laser frequency. In the low frequency region (below 15 Hz) the input mode

cleaner is stabilized by using a 30 cm long rigid reference cavity hung under

the suspended injection bench.

After the mode cleaner, a telescope focuses the beam into the interfer-

ometer. This starts with a beam-splitter with reflectivity r = 0.5, inclined

by 45° with respect to the beam direction. The beam-splitter separates the

beam in two equal and coherent parts, which propagate into the two arms of

the interferometer, each constituted by a Fabry-Perot cavity. The distance

between the mirrors, installed within vacuum towers at each end of the cav-

ities, is L = 3 km. In both arms the first mirror is flat and it has reflectivity

r1 = 0.88, i.e. a part of the beam is transmitted and recombined with the

light reflected at the first impact, while the second mirror is curved, with

curvature radius rcurv = 3450 m, and it is totally reflecting (r = 0.9999).

As shown in sec. (2.3.1), the light beam performs many bounces inside the

cavity before exiting it. The effective path length in Virgo arms is about

100 km. The Gaussian beam has a radius on the flat mirror of ∼ 54.9 mm,

with a Rayleigh range of ∼ 1161.06 m.

The exact position of the beam-splitter with respect to the input mirrors

of the Fabry-Perot cavities is determined in order to keep the interferometer

output carrier in the dark fringe, while the sidebands are transmitted. We

have constructive interference on the sidebands for

ω0 + Ω
c

2Lx − ω0 + Ω
c

2Ly − π = 2πn

⇒ Ly − Lx = ∆L =
c

Ω
π

2
=
λmod

4
, (3.1)

where Ω is the modulation frequency and ω0 + Ω is the frequency of the

upper sideband [17].

The interferometer works at the dark fringe, and the beam, apart from
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losses, is fully recombined in the direction of the source. In such condi-

tion, it is possible to recycle the light with the power-recycling technique

[19]. A mirror with high reflectivity (rrec = 0.95), called power-recycling

mirror, is located before the beam-splitter. This creates another Fabry-

Perot cavity between itself and the full interferometer that can be thought

of as a mirror reflects the light towards the source. The beam power hitting

the beam-splitter is amplified this way and the shot noise reduced. The

power-recycling mirror MR is a convex mirror that works as a lens, with

curvature radius rR,curv ∼ 4 m. The coating is on the plane surface towards

the interferometer. The power is amplified by a recycling factor of about

35. The distance between the power-recycling mirror and the beam-splitter

is 6 m. The presence of the power-recycling modifies the optimal asymme-

try, because the length ∆L that would maximize the sideband transmission

without power-recycling is not necessarily the one that maximizes the stor-

age in the power-recycling cavity, which is also a function of asymmetry.

The maximum sideband transmission occurs for

cos
(

Ω∆L
c

)
= rrecrITF (ω0 ± Ω) (3.2)

where rITF (ω0 ± Ω) is the one of the interferometer at ω0 ± Ω [17].

In the interferometer output there is a main beam reflected by the beam-

splitter reflecting surface on the dark fringe, and a secondary beam coming

from the reflection on the other surface of the beam-splitter. The gravita-

tional wave signal is in the main beam, but both the beams are used for

checking the interferometer position.

This detection system consists in a suspended detection bench maintained

in vacuum, and in an optical table located outside the vacuum tower, the

external detection bench. The former, attached to a superattenuator, focuses

both the beams and cleans the main beam, while on the latter there are the

InGaAs photodiodes for the signal detection and for the interferometer lock-
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ing [18]. We remind that the relative position of the suspended mirrors has

to be fixed with high accuracy (picometers) to keep the cavity at resonance

and the interferometer on the dark fringe. This control, involving four longi-

tudinal degrees of freedom, is made by using additional photodiodes at the

output ports of the interferometer. They produce the error signals and the

mirror position is corrected by coils acting on magnets glued on the back of

the mirror [20]. This system filters the dark fringe, detects the gravitational

wave signal and partially produces the locking signals to the interferometer.

Since there are many imperfections such as optical defects or asymmetries

that could produce higher modes in transmission, there is an output mode

cleaner on the suspended detection bench. This mode cleaner is a mono-

lithic cavity of 25 mm, curvature radius 3 m and finesse 50 [17]. It filters all

the higher order optical modes of the main beam.

The main beam, separated from the secondary one and focused, passes

through the mode cleaner. A fraction of this transmission is taken and is sent

to a photodiode on the external bench for the interferometer locking, and

to monitoring cameras. The gravitational signal is in the beat between the

carrier and the transmitted sidebands. The secondary transmission of the

interferometer is partly (90%) sent to a photodiode on the external bench

for the interferometer locking, while the remaining 10% is sent to sensors on

the suspended detection bench for its stabilization. Once the interferometer

is locked, the automatic alignment system is switched on. Photodiodes are

used to align the mirrors with an accuracy of fractions of nanoradians [21].

This allows to increase the contrast at the output phase and the sensitivity

of the apparatus.

3.2 Seismic noise attenuation

As we already saw in sec. (2.4.1), seismic noise is dominating at low fre-

quencies. In order to reduce seismic noise transferred to the mirrors, the
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Figure 3.3: Virgo superattenuator scheme [12].

Virgo collaboration has developed a particular system of suspensions called

superattenuator (SA, Fig. (3.3)) [22].

The SA (Fig. (3.3)) is essentially a five stage pendulum. In an N -stage

pendulum the horizontal motion of the suspension point, at a frequency f

much higher than the normal mode ones, is transmitted to the suspended

mass attenuated by a factor proportional to f2N . The Superattenuator

chain is long enough (about 8 m) to confine all its normal modes below 2.5

Hz. In this way a remarkable attenuation of the horizontal groun seismic

noise can be achieved starting from a few Hz. Vertical mirror vibrations are

also partially transferred to the laser beam (horizontal) direction because
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of unavoidable mechanical couplings1 (estimated to be well below 1%). An-

other oscillator chain can be realized in vertical to filter seismic vibrations

also along this direction. Each mass of the pendulum chain was replaced

by a special mechanical filter, exhibiting the required vertical elasticity (see

[23] and its references). Also the rotational modes of the chain about the

vertical axis are all below 1 Hz thanks to the large inertial momentum of

the filters and the small suspension wire thickness. The tilt of the ground is

also strongly suppressed along the chain. From the last filter of the chain it

is suspended the Optical Payload, a system composed by three items: Mar-

ionette, the mirror and its Reference Mass [24]. The Marionette (see Fig.

(3.3)) is steered by four coils each placed at the end of a 1 m long cylinder

extending from the last stage of the SA and acting on a permanent mag-

net mounted on the Marionette arms. The mirror and its reference mass

are suspended in parallel from the Marionette each by a cradle formed by

a couple of 1.9 m long thin wires. The mirror position can be controlled

in three degrees of freedom (the longitudinal displacement along the beam

and the rotation about the other two axes) both by Marionette coil-magnet

actuators and by four coils located on the Reference Mass, each acting on a

magnet glued on the back of the mirror.

In the resonance range, well below the detection band frequency thresh-

old, the chain horizontal resonances excited by seismic noise make the mirror

widely swinging (several microns along the beam direction). This displace-

ment has to be compensated at the level of the optical payload to maintain

the mirrors in the longitudinal working position with a very large accuracy

(of the order of picometers). On the other hand too large compensation

forces close to the mirror are not acceptable. Indeed the electro-mechanical

1The Earth curvature makes widely separated pendulums non parallel to each other

with about 3.10−4 rad plumb line misalignment on a 3 km scale. As a consequence, even

assuming a null mechanical coupling, a vertical-horizontal transmission of this entity takes

place.
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actuation system induces a white noise force (affecting the entire Virgo band)

proportional to the maximum required compensation amplitude. With the

present electronics dynamics, the maximum horizontal displacement that

can be adjusted acting by the payload actuators without affecting the an-

tenna sensitivity is a few tenths of micron. A preliminary reduction of the

tens of microns mirror swing induced by mechanical resonances is thus nec-

essary.

For this reason the top stage of the chain, formed by another mechanical

filter named Filter Zero, is suspended by three thin wires from a three legs

elastic structure called Inverted Pendulum [23]. The elasticity is given by a

flexural joint on which each leg is based. By keeping the horizontal resonant

frequency of the inverted pendulum at 30-40 mHz a significant attenuation

in the horizontal direction is achieved also in the pendulum chain resonance

range (from 100 mHz to 2 Hz).

An active inertial system acting on the suspension top stage (Inertial

Damping, see [25]), is used to further decrease the mirror swing to be com-

pensated acting on the optical payload down to an acceptable level. Three

high sensitivity accelerometers [22] were developed and assembled on the

Inverted Pendulum top stage to monitor with high accuracy its acceleration

in the horizontal plane (two translations and one rotation about the vertical

axis). Three coil-magnet actuators are then used in feed-back to keep the

position of the Inverted Pendulum top stage locked to the inertial system.

An effective active damping of the suspension resonances were obtained in

this way. A similar system was assembled on the vertical degree of freedom,

where accelerometers and coil-magnet actuators were used on the filter zero

movable part.

In order to reduce as much as possible the compensation force at the

mirror level a hierarchical control strategy was adopted in the SA (see [26]

for details). The hundreds of microns large seismic motion taking place in
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the ultralow frequency range (below 10 mHz) because of tides and drift was

controlled by the top-stage using the interferometer signal as a sensor. The

wide electronic floor induced by this large actuation force is suppressed by

the filter chain below. The residual optical payload displacements (up to a

fraction of microns) are compensated between a few tens of mHz and a few

Hz at the level of the marionetta with the electromechanical floor attenu-

ated by the mirror pendulum. Only small compensations (above a few Hz)

are compensated acting directly at the mirror level. The measured actua-

tion noise floor in the detection band was measured not to affect the Virgo

sensitivity and also the new generation interferometer (Advanced Virgo).

3.3 Virgo sensitivity

The minimal amplitude of the gravitational wave detectable by the instru-

ment depends on its strain sensitivity h̃n(f). The total noise spectral density

is defined as the superposition of the spectral power of each noise source [13].

� Seismic noise is dominant at low frequencies, below the superatten-

uator resonances (0.03 - 2.5 Hz). It becomes rapidly negligible for

higher frequencies, due to the strong filtering, scaling as a high power

of the frequency (f−16). At a frequency of about 3 Hz the crossing

with thermal noise and Newtonian noise is expected (h̃seis ' h̃therm '

h̃newt ' 5 · 10−20 · 1/
√
Hz). Seismic noise amplitude increases again

over 10 Hz because of structural resonances of parts of the attenuator,

but its spectral density is well below the shot noise.

� Thermal noise is the main noise source between 3 Hz and 150 Hz. It is

of the same order of shot noise between 150 Hz and 400 Hz (h̃therm '

h̃shot ' 2 · 10−23 · 1/
√
Hz). In the first part of the spectrum the

dominant contribution to thermal noise is given by mirror suspension

wires, and it goes as f−
5
2 . Over about 50 Hz it is more important the
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contribution of mirror thermal fluctuations, that scales with frequency

as f−
1
2 . At every frequency multiple of a frequency between 100 and

200 Hz there are very narrow and high noise peaks which correspond

to the suspended wires violin modes. A higher peak due to the first

internal resonance of the mirror is visible at about 5 Hz.

� Newtonian noise is less important than seismic noise below 3 Hz, and is

dominated by thermal noise above this frequency, because it decreases

with frequency as f−4. This noise is relevant on the detector sensitivity

only near the lower limit of the detection band, where it is comparable

with the other two.

� Shot noise is dominant at high frequencies, except for the exact fre-

quencies where there are the thermal noise peaks previously described.

Though its frequency independence, it shows a slight tendency to be-

come stronger above 500 Hz. This effect is due to the detector loss of

sensitivity in the region where photon flight time becomes comparable

to the gravitational wave period. At 10 kHz the spectral density grows

of over an order of magnitude (h̃shot ' 4 · 10−22 · 1/
√
Hz).

In Fig. (3.4) the linear spectral densities corresponding to the dominant

noise mechanisms is plotted.

3.4 The first Virgo Scientific Run

The first Virgo Science Run (VSR1) started on May 18, 2007 in coincidence

with the last period of the LIGO S5 run. Even if the detector sensitivity

was noisier than expected all over the bandwidth, in the frequency region

300 Hz-5 kHz the design sensitivity has been reached and it is comparable to

the LIGO one (see Fig. (3.5)). This result has been considered appropriate

to start joint data analysis with the LIGO Scientific Collaboration (LSC).

The VSR1 has been stopped on October 1st, 2007 (in coincidence with the
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Figure 3.4: Spectral density of main Virgo noises, expressed by equivalent field

[13]

end of S5) after about four months of continuous data taking. The detector

duty-cycle in science mode has been as high as 81% with about 20 sets

of un-interrupted data collection longer than 40 hours very promising for

future data analysis. These good results have been obtained thanks to the

locking automation procedure and to the fine tuning of the complex feedback

control systems. Even if the design sensitivity is not yet reached all over

the bandwidth, the Virgo interferometer shows the best sensitivity in the

world in the frequency range below 35 Hz [18]. Up to now, no evidence of

gravitational wave signals was found in VSR1 data.

3.5 Virgo upgrades

On July, 7th 2009, after a couple of years of commissioning and upgrading,

the new Scientific Run started (VSR2). The present sensitivity, as shown in

Fig. (3.6), is very close to the design one even in the low frequency range.

The upgrading of the experiment (Advanced Virgo) is foreseen in the next
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Figure 3.5: Sensitivity curves comparison for different detectors (Virgo, LIGO

and GEO-600 m) [18].

years. The goal is to increase the detector sensitivity in the whole band by

about a factor 10 with respect to the present one. Advanced Virgo, which is

expected to run in coincidence with the parallel American upgraded project

(Advanced LIGO), is starting from 2014.

3.6 Other gravitational wave antennas

In addition to the already mentioned U.S.A. LIGO project [28], other in-

terferometers, based on the same principle, are in action all around the

world. They are the 300 m Japanese interferometer TAMA close to Tokyo

[29] and the British-German antenna 600 m long arm antenna GEO close to

Hannover [30]. Other projects for the development of a second generation

interferometers are under approval in Japan (LCGT [31]) and in Australia
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Figure 3.6: Current sensitivity curve (red plot), compared to the VSR1 sensitivity

(black plot) and to the design sensitivity (grey plot) [27].

(AIGO [32]).

Not every gravitational wave detectors are interferometers. The first

gravitational wave detectors have been developed during the 1960s by Joseph

Weber [33]. He proposed to measure the stress engendered by the gravita-

tional wave on a suspended resonating bar. Since the particles are connected

by elastic forces, a bar is expected to oscillate after the excitation produced

by the gravitational wave. A bar detector is a suspended Given the small

detection band and the low sensitivity with respect to interferometric an-

tennas, developments of bar detectors has been stopped. At the present

time only three bar antennas are running (AURIGA, NAUTILUS and EX-

PLORER, see bar network website [34] and its links). The comparison

between broadband interferometer data and narrow band bar data is in fact
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appropriate particularly in burst and stochastic background searches [35].

Furthermore, bar detectors provide detection continuity during the periods

in which interferometers are not running.
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Chapter 4

Detection of Continuous

Waves

A periodic source emits gravitational waves continuously mainly at the dou-

ble of its rotational frequency. Since the emission is directly related to the

intrinsic rotational behavior of the star and not to occasional events such as

for coalescing binaries or Supernovae explosions, a signal belonging to this

particular class will always be present in any data stream. As we already

mentioned in sec. (1.5.3), the longer is the observation time, the larger is

the probability of detecting a gravitational wave emitted by a rotating Neu-

tron Star. This is true because the signal-to-noise ratio, for a signal at fixed

frequency, goes as the square root of the integration time [11]. In fact, if a

signal h(t) with a known form is buried into a noise n(t) higher than h(t),

we can multiply the output s(t) = h(t) + n(t) by h(t), integrate over the

observation time T and then divide by T , obtaining

1
T

∫ T

0
dt s(t)h(t) =

1
T

∫ T

0
dt h2(t) +

1
T

∫ T

0
dt n(t)h(t). (4.1)

Since the first integrand on the right-hand side is definite positive, this

integral grows as T ; its value averaged over a time T is ∼ h2
0, being h0 the

65
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characteristic amplitude of the oscillating function h(t). On the contrary,

the second integrand is oscillating, since n(t) and h(t) are uncorrelated. Its

integral is a stochastic variable that can be either positive or negative, and

its rms will then grow only as T 1/2:

1
T

∫ T

0
dt n(t)h(t) ∼

(τ0
T

)1/2
n0h0, (4.2)

where n0 is the characteristic amplitude of the oscillating function n(t) and

τ0 is the period of h(t). The latter term then averages to zero when T → ∞.

Thus, to distinguish the signal h(t) from the noise we should choose T in

such a way that h0 >
(

τ0
T

)1/2
n0.

The expression of the signal produced in the detector by a source emit-

ting gravitational waves has already been expressed in eq. (2.24) using the

pattern functions F+(θ, φ) and F×(θ, φ).

Even assuming the source perfectly periodic, the signal received by an

interferometer on Earth would be very different from the one described by

eqs. (2.24)-(2.26), because the motion of the Earth introduces several effects

that modulate the signal and make it different from its original shape. The

Earth motion with respect to the Solar System Barycenter (SSB) induces

a variation in time of the relative velocity Earth-source, and this produces

a time-varying Doppler-shift in the frequency. Besides, the Earth rotation

makes the apparent position of the source changing, so the angles θ and φ

are not constant, but change periodically with the sidereal time. The de-

pendence of pattern functions on θ(t) and φ(t) introduces thus an amplitude

modulation in the detected signal.

4.1 Doppler shift and phase modulation

The Doppler effect due to the Earth motion with respect to the SSB intro-

duces thus a frequency modulation in the observed signal [1]. The frequency
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of the received wave is

f = f0

(
1 +

~v · r̂
c

)
, (4.3)

where f0 is the frequency of the original monochromatic signal, ~v is the

velocity of the antenna with respect to the source, and r̂ is the source direc-

tion. Since ~v · r̂ is a function of time, this introduces the time-dependence

in the observed frequency. We can give an estimate of how much important

this effect is by separately computing it for the Earth rotation around its

axis and for its orbital motion around the Sun [11].

Denoting by (∆v)T the change of the component of the velocity in the

direction of the source in a time T , then the change in frequency during the

same time is

(∆f)Doppler = f0
(∆v)T

c
. (4.4)

The Doppler effect can be neglected as long as (∆f)Doppler is smaller than

the frequency resolution ∆f = 1/T . In the approximation of a circular

orbit (∆v)T ∼ vrotωrotT , where vrot and ωrot are the rotational velocity of

the Earth and its rotation frequency, one obtains that (∆f)Doppler becomes

of the order of the frequency resolution for

f0

(vrot

c

)
ωrotT ∼ 1

T
. (4.5)

Therefore the integration time over which the Doppler effect is still negligible

is

T ∼ 60 min
(

1 kHz
f0

)1/2

. (4.6)

The maximum frequency shift induced by the rotation of Earth around its

axis is

(∆f)max
rot ∼ 2f0

vrot

c
' 2.4 · 10−3 Hz

(
f0

1 kHz

)
. (4.7)

The same argument is true for the Earth revolution around the Sun. In this

case, the maximum frequency shift is

(∆f)max
orb ∼ 2f0

vorb

c
' 0.2 Hz

(
f0

1 kHz

)
(4.8)
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where a circular orbit was considered [11]. (∆f)max
orb is much larger than

(∆f)max
rot , since vorb � vrot. The time after which the orbital Doppler shift

becomes larger than the frequency resolution is:

T ∼ 120 min
(

1 kHz
f0

)1/2

. (4.9)

The effect due to the Earth rotation is thus the first to become relevant

when the integration time in eq. (4.6) increases, but the orbital Doppler

shift raises steadily with T , and it takes less than one day to become the

dominant effect.

The detection of the small signals emitted by Pulsar requires very long

integration time (T ' 107 s) to distinguish the spectral peak from the noise

floor. It is clear that the effect of Doppler shift in the signal received by the

detector has to be corrected. Let us consider the simple case of a detector

moving with constant velocity, along a circular orbit around the Sun and

pointing to the source with fixed orientation. According to [36] the detected

signal will be

A(t) = A0 cos (ω0t+ ϕ(t)) (4.10)

where ϕ(t) = ε sin(2πfyt). fy denotes the orbital frequency while ε is the

amplitude of the phase variation due to the Doppler effect. This is called

phase modulation index, defined as

ε =
f0

fy

v

c
=

2πr
λ
. (4.11)

For the rotation of the Earth around its axis ε ' 100(f0/1 kHz), while for

the orbital motion ε ' 3 · 106(f0/1 kHz) [11]. The frequency modulation is

thus

∆f = f − f0 = εfy cos(2πfyt). (4.12)

Eq. (4.10) can be expressed as a superposition of monochromatic waves

using the identity

A0 cos (ω0t+ ε sin(ωyt)) = A0

+∞∑
−∞

Jn(ε) cos(ω0 + nωy)t (4.13)
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where Jn(ε) are the Bessel functions of the first kind. The signal is therefore

split into a carrier at the frequency f0, plus an infinite number of sidebands

at f0±nfm, for n any integer. The signal energy is not affected by the phase

modulation but it is spread on a band ∆f whose halfwidth is given by the

frequency modulation amplitude, εfy, and the power in the nth sideband is

proportional to J2
n(ε). Reducing the modulation index has then the effect

of reducing the width of the band over which the energy is spread. For

ε = 1 rad we would have J0 = 0.765198, so the carrier would keep more

than 75% of the signal amplitude (about 60% of the energy).

We can now define a new variable t′ = t+ ~x(t)·r̂
c , where ~x(t) is the position

of the detector expressed in the reference frame of the SSB, and r̂ is the

direction of the source. Introducing t′ in eq. (4.10), the signal is simply

proportional to cos(ω0t
′), and in its Fourier transform all the sidebands

produced by the Doppler effect collapse into a single frequency. Therefore

a simple method to correct the Doppler shift consists in resampling the

output of the detector in terms of t′. This causes also the broadening of

monochromatic lines due to instrumental noise and helps us to discriminate

a real gravitational wave signal from the noise.

Both ~x(t) and r̂ have to be known with a large accuracy. The motion of

the Earth, and thus the antenna one, is precisely known from the ephemeris

given by the NOVA satellite [37]. We have to estimate the accuracy on

sky direction needed to correct the Doppler shift. From eq. (4.3) one can

infer the angular resolution in rads of the source position so to have a peak

recovery within the frequency resolution 1/T . In other words, one can write:

f0

c
(∆v)T ∆θ <

1
T

(4.14)

where ∆θ is the angular resolution in radians on the position of the source.

Assuming that the Doppler effect due to the orbital motion dominates the

one due to Earth rotation around its axis, we can consider (∆v)T ∼ vorbωorbT .
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The accuracy needed for the source direction is thus:

∆θ <
1

f0(vorb/c)ωorbT 2
' 0.1arcsec

(
107s

T

)(
1 kHz
f0

)
. (4.15)

This requirement is easily satisfied for targeted searches, i.e. in case the

position of the source is measured by its electromagnetic emission. It is

very interesting, though, to perform blind searches, sweeping the whole sky

looking for unknown sources. The celestial sphere should be divided in cells

with a size given by eq. (4.15) and apply a Doppler correction for each of

them. The correction should be provided for more than 1011 seconds to

detect 100 Hz signals, that is prohibitive from computational point of view.

We have assumed in the previous argument that the intrinsic frequency

f0 of the source is stable within the resolution ∆f = 1/T . The electromag-

netic and gravitational radiations, however, induce energy losses, which is

taken from the rotational energy of the pulsar. The evolution of the pulsar

frequency can be expressed as a Taylor expansion around some reference

value of the pulsar proper time T0 = 0:

f(T ) = f0 + ḟ0T +
1
2
f̈0T

2 + ... (4.16)

It is thus necessary to take into account at least the first order of the spin-

down parameters to correct the Doppler phase modulation. This parameter

can be measured for known pulsars, but introduces another unknown quan-

tity for blind searches.

4.2 Amplitude modulation

As shown in sec. (2.2), the Earth rotation around its axis affects also the

pattern functions, which are periodic functions of sidereal time. This intro-

duces an amplitude modulation in the signal received by the detector. To

consider this further modulation in the correction of the detector output,

the time dependence of the pattern functions F+ and F× introduced in eq.
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(2.24) can be expressed as follows:

F+(t) = sin ζ [a(t) cos 2ψ + b(t) sin 2ψ] (4.17)

F×(t) = sin ζ [b(t) cos 2ψ − a(t) sin 2ψ] (4.18)

where ψ is the polarization angle while a(t) and b(t) are known functions

of many fixed quantities [38]: right ascension α and declination δ of the

source, the angles λ, γ and ζ which determine the position and geometric

characteristics of the detector, the angular velocity of the Earth Ωr and the

characteristic phase φr, which defines the position of the Earth in its diurnal

motion at t = 0. Therefore the beam-pattern functions can be computed at

any time for any detector.

The phase of the gravitational wave can be written as

Ψ(t) = Φ0 + Φ(t) (4.19)

where Φ(t) is the frequency Taylor expansion [38]:

Φ(t) = 2π
s∑

k=0

f
(k)
0

tk+1

(k + 1)
+

2π
c
n̂0 · ~rd(t)

s∑
k=0

f
(k)
0

tk

k + 1
, (4.20)

where f (k)
0 is the kth time derivative of the instantaneous frequency evaluated

at t = 0 at the SSB, n̂0 is the constant unit vector in the direction of the

star in the SSB reference frame and ~rd is the position vector of the detector

in that frame. The gravitational wave signal can be written as

h(t) = h+(t) + h×(t) (4.21)

where h+(t) and h×(t) are the polarization components of the signal:

h+(t) =
1
8
h0 sin 2θ sin 2ι cosΨ(t) +

1
2
h0 sin2 θ(1 + cos2 ι) cos 2Ψ(t) (4.22)

h×(t) =
1
4
h0 sin 2θ sin ι sinΨ(t) + h0 sin2 θ cos ι sin 2Ψ(t), (4.23)

where the wobble angle θ is the angle between the total angular momentum

vector of the star and its axis of symmetry and ι is the angle between the
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total angular momentum vector of the star and the direction from the star

to the Earth. We will consider θ ' π/2, that means that the star is rotating

along the antenna orbital plane. In this case the term ruling the emission

at the rotational frequency in both eqs. (4.22) and (4.23) vanishes. The

amplitude h0 is given by

h0 =
16π2G

c4
εIf2

r
. (4.24)

where f is the sum of the star rotation frequency and the frequency of

precession, I is the moment of inertia with respect to the rotation axis, r is

the distance from the star and ε is the poloidal ellipticity of the star, defined

as

ε =
I1 − I2
I

. (4.25)

I1 and I2 denote the star moments of inertia with respect to the principal

axes orthogonal to the rotation axis. Taking into account eqs. (4.17) and

(4.18) the signal in (4.21), detected by the antenna as ∆L/L (see sec. (2.1))

is:

h(t) =
4∑

i=1

Aihi(t) (4.26)

where the constant amplitudes Ai depend on the parameters h0, θ, ψ, ι and

Φ0 as follows:

A1 = h0 sin ζ sin2 θ

[
1
2
(1 + cos2 ι) cos 2ψ cos 2Φ0 − cos ι sin 2ψ sin 2Φ0

]
(4.27)

A2 = h0 sin ζ sin2 θ

[
1
2
(1 + cos2 ι) sin 2ψ cos 2Φ0 + cos ι cos 2ψ sin 2Φ0

]
(4.28)

A3 = h0 sin ζ sin2 θ

[
−1

2
(1 + cos2 ι) cos 2ψ sin 2Φ0 − cos ι sin 2ψ cos 2Φ0

]
(4.29)

A4 = h0 sin ζ sin2 θ

[
−1

2
(1 + cos2 ι) sin 2ψ sin 2Φ0 + cos ι cos 2ψ cos 2Φ0

]
(4.30)
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The time dependent functions hi(t) used in eq. (4.26) have the form

h1(t) = a(t) cos 2Φ(t) (4.31)

h2(t) = b(t) cos 2Φ(t) (4.32)

h3(t) = a(t) sin 2Φ(t) (4.33)

h4(t) = b(t) sin 2Φ(t) (4.34)

being a(t) and b(t) the same used in eqs. (4.17) and (4.18), and Φ(t) In

the frequency domain, the gravitational wave signal has a carrier frequency

of 2f0 that is amplitude and phase modulated. The amplitude modula-

tion splits the carrier into five lines corresponding to frequencies 2f0 − 2fr,

2f0 − fr, 2f0, 2f0 +fr and 2f0 +2fr, being fr ' 10−5 Hz the Earth rotation

frequency.

Given this precise knowledge of the expression of the amplitude modu-

lation, this effect can be easily taken into account by applying a matched

filter on the spectrum of the signal [38].

4.3 Data analysis techniques

As already pointed out in section 4.1, performing a blind all-sky search for

continuous waves is quite difficult because the effect of the phase modulation

depends on many unknown parameters.

A possible method of analysis is called coherent search. This is a proce-

dure in which one can discretize the parameter space, and then perform the

demodulation for each point. However, the number of these points is very

high, and scales as T 4 [11]. This means that, for long observation time T ,

the time required to perform the analysis would largely exceed the observa-

tion time itself. To avoid this, a coherent search could not be performed for

an observation time longer than a few days.

A possible solution to this computational problem is to use an alterna-

tive procedure, dividing the observation time into shorter segments. This
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method is called incoherent search, because the phase information between

two different segments is lost. This consists in splitting the observation time

T into N stacks of length Tstack, chosen so that a coherent search over this

time is feasible. The output of each coherent search performed over one

stack is a collection of functions h̃(f), one for each value of the parameter

space, that are quadratically added over the N stacks. It can be shown that

the time required for an incoherent search is smaller than that required for

a coherent search by a quantity

τinc '
1

Nn−1
τcoh (4.35)

where the power n represents the dimention of the parameter space, and it

depends on the kind of pulsar observed [11]. Before adding the power spectra

related to the stacks, each has to be demodulated for the Doppler effect.

In alternative, one can choose Tstack short enough to consider the phase

modulation negligible, reducing the computational time. However, longer

stacks imply better sensitivity, though with more expensive computational

time. Several variations of this scheme can be applied in order to increase

its efficiency [38].

However, this is not the only way available to improve computational

time for the continuous wave analysis. In the next chapter we will introduce

a new algorithm that performs a fast correction of the phase modulation

through a discrete resampling of the signal.



Chapter 5

Resampling algorithm for

semi-targeted search

As already mentioned several times, the continuous gravitational signal

search requires long integration time in order to dig out the very small

signal from the instrumental noise floor. We have also seen that this type

of search needs the knowledge of several source parameters (frequency, spin-

down and direction) to recover the monochromatic peak smeared by Doppler

effect and source slowing down. Each unknown parameter weights on the

computational cost, and traditional technique computational time exceeds

the observation time itself, even by orders of magnitude.

The method illustrated in this chapter is computationally very effective.

The goal is to reduce the number of frequencies over which the signal energy

is spread due to the Doppler and spindown effects into a single frequency

corresponding to the source one, and then perform the analysis using the

Fast Fourier Transform algorithm. The idea is to correct for the Doppler

effect by a fast resampling that removes or doubles single samples in a timely

manner in order to keep the detector time synchronized with the source one

with a large accuracy.
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5.1 Doppler correction by discrete resampling tech-

nique

In sec. (4.1) it was shown that the Doppler effect can be corrected by

resampling the antenna signal using a modified time t′ = t+ ~x(t)·r̂
c so to

recover a pure sinusoidal signal.

Let us introduce our method considering a source in a given position of

the sky. One can figure out that this source emits a monochromatic wave at

a frequency equal to the sampling frequency of the antenna νs (for instance,

in Virgo this frequency is 20 kHz). This is not a realistic case, but it is

necessary for introduce our technique. Its equiphase planes are orthogonal

to the wave vector ~ks = n̂ωs/c, being ωs = 2πνs and n̂ the wave propagation

versor, and they travel at the speed of light [36]. In the reference frame at

rest relatively to the source, the plane equation for a given phase φ is given

by:

~ks · ~r − ωst = φ. (5.1)

Let us take as a reference the family of planes whose phase φ is an integer

multiple of 2π. They travel parallel to each other, separated by a distance

c∆t, as it can be seen from eq. (5.1). The dephasing between two contiguous

equiphase planes is then ωs∆t. An observer at rest with respect to the source

that monitors the position of the family of equiphase planes at the sampling

frequency would see, at a given sampling time, each equiphase plane taking

the place occupied by its predecessor at the previous sampling time. This

means that, although these equiphase planes at 2π phase-distance from each

other are moving at the speed of light, the positions of their family monitored

at each sampling time is always the same. As a consequence, they set a

reference grid of planes in the rest frame (a schematic representation of this

grid is shown in Fig. (5.1)).

The antenna motion with respect to this reference frame is described by
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Figure 5.1: A schematic representation of the equiphase plane reference grid

crossed by the antenna during its motion. The distance between two

contiguous planes is c∆t, being ∆t the sampling time.

the trajectory ~r(t). The goal is to synchronize the antenna clock with the

source one, in order to have a time difference between them not larger than

the sampling time ∆t. We can assume, without loss of generality, that the

two clocks are synchronized to φ = 0 on the target plane crossing the rest

frame origin, coincident with the moving observer starting position fixed

at the beginning of the analysis period. The phase measured at time t by

the moving observer is given by eq. (5.1), while the one measured by the

observer at rest is simply ωst. The dephasing due to the motion is then

given by ~ks · ~r, and depends only on the antenna position with respect to

the reference frame origin.

Each time the moving observer trajectory crosses an equiphase plane, it

cumulates a dephasing ωs∆t relatively to the rest observer. If the antenna
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motion versus is opposite to the wave one, i.e. if ~v(t) · n̂ < 0, the dephasing

with respect to the source clock is negative, and the moving observer time is

anticipated relatively to the source one. This means that we need to delay

the antenna time, in order to keep it synchronized with the source time.

The needed delay is then simply obtained by repeating a sample of the

signal detected by the moving observer. Similarly, if ~v(t) · n̂ > 0 a positive

dephasing occurs, and the consequent delay in the antenna time relatively

to the source one is compensated by removing a sample. Performing this

operation each time the antenna trajectory crosses an equiphase plane, the

lack of synchronization by the moving observer during its trajectory will not

exceed the one existing between two contiguous equiphase planes, namely

∆t.

As mentioned in sec. (4.1), if one is able to reduce the phase modu-

lation index below 1 rad applying a correction for the Doppler effect, the

first term of the expansion in Bessel functions of the signal keeps more than

75% of the signal amplitude, and thus the peak spectral amplitude reduc-

tion with respect to the rest frame will be small [36]. Let us now consider

a physical monochromatic signal coming from the source with frequency ν0.

The phase synchronization corresponding to the time one just achieved will

be of ω0∆t = 2πν0/νs. If one requires a sky direction knowledge below 1

rad, the sampling frequency has thus to be larger than 2πν0. Being the

gravitational wave antenna sampling frequency usually around 20 kHz, this

technique can thus be applied to a wide range of source frequencies. The 1

rad accuracy obtained performing the correction for a given sky direction is

valid for all the sources in the same direction with frequency ν < νs/2π. As

a consequence one can assume the Doppler phase modulation corrected for

all this frequency range (up to several kHz in the case of Virgo detector). It

is important to stress that below a few hundreds of Hz (the region where the

continuous wave signals are expected) the accuracy of phase synchronization
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(2πν0/νs) is much better than 1 rad if νs = 20 kHz. This makes the en-

ergy losses essentially negligible. In conclusion, one can tune the sampling

frequency where our resampling technique is applied as a function of the

maximum source frequency to be investigated and to the required accuracy.

One can estimate how many times typically a sample has to be duplicated

or removed during a given observation time to keep the time synchronization.

Assuming that the moving observer velocity does not change much between

two contiguous plane crosses, the time interval is approximated by [36]:

tcross =
1

|~β · n̂|νs

(5.2)

where ~β = ~v/c. In the special case when the antenna moves parallel to the

wave, tcross assumes its minimum value tcross = 1/(βνs). In terms of samples,

the correction cannot occur more often than 1/β samples, independently of

the sampling frequency. Let us notice that for the Earth β ∼ 10−4, therefore

we will need to modify just one sample each about ten thousands in antenna

digitized signal.

5.2 Preliminary tests

All the information necessary to the signal resampling is stored in a buffer

called mask. In the simplest scheme, the mask can be seen as an array of

Ns integer, where Ns is the number of samples in the original signal. Its

values can be either +1, 0 or -1, depending on the action to perform on the

corresponding sample: +1 for doubling, -1 for removing and 0 if the sample

needs no action. The sampling frequency is not modified by the application

of the correction.

The original resampling idea was tested by developing a C language

simulation. The routine computed all times tj the circular orbit used for

this preliminary test crosses an equiphase plane of the grid. All values of tj ,

expressed in term of the rest frame sample index, and a label indicating the
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corresponding action (−1 for sample suppression and +1 for duplication)

were stored in a two column ascii file (mask.dat) [36]. During the data

reading the correction is applied simply suppressing (or doubling) single

samples (each a few thousands, in realistic cases) according to what written

in mask.dat. This technique has been tested for several sampling and signal

frequencies, wave direction and orbital motion. Fig. (5.2) shows the phase

difference between the signal detected by the moving observer and the rest

one as a function of the orbital position x − y. The same plot for the

corrected signal (red points) is close to zero in any orbital position. The

residual dephasing (Fig. (5.3)) is contained in a range ' ±0.62 rad (as

expected by the phase accuracy relation ∆φ ≤ 2πν0/νs). As shown in Fig.

(5.4) the correction technique allows to restore a large part of the signal

energy, spread by the observer motion on a wide frequency band, in the

main spectral bin. The peak recovering has the side effect of increasing the

tail amplitude with respect to the case without Doppler correction. This

effect is induced by the sawtooth waveform of the corrected phase. Once

the mask is computed, all the informations necessary to correct the signal

for the Doppler effect are available.

5.3 Spindown correction

The preliminary tests on a circular orbit were performed by considering a

monochromatic source with constant frequency. In the real case of a rotating

Neutron Star the electromagnetic and gravitational emissions decrease its

rotational energy. The Taylor expansion of the Pulsar frequency was already

written in eq. (4.16). The cumulated phase is obtained by integrating ν(t)

over time:

ϕ(t) = 2π
∫ t

0
ν(τ)dτ = 2π

(
ν0t+

1
2
ν̇0t

2 +
1
6
ν̈0t

3 + ...

)
. (5.3)
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Figure 5.2: Phase difference between the sinusoidal wave as detected by the mov-

ing observer with respect to rest observer as a function of the antenna

orbital position x-y (black points). The same plot for the residual de-

phasing between the corrected signal and the one detected by the rest

observer is displayed (red points). INPUT PARAMETERS: ν0 = 10

Hz, νs = 100 Hz, wave direction : nx = 0, ny = −1, nz = 0, R = 3·108

m, β = v/c = 10−3.
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Figure 5.3: Same phase difference in red points of Fig. (5.2), plotted as a function

of time for the entire orbit (' 6, 283 s). Two zooms of the previous

plot around t=0 and t=3/4 of the orbital period are reported. At the

beginning (first zoom), when the antenna motion is parallel to the

wave, the corrections took place frequently and the residual phase er-

ror exhibits the sawtooth shape. Close to the point where the antenna

changes versus with respect to the wave vector (zoom 2), the plane

crossing (and thus the phase correction) are less frequent.

We can take the first term of this expansion to write the signal emitted by

a Pulsar as

S(t) = h0 sin
(
ω0t+

1
2
ω̇0t

2

)
(5.4)

where ω0 = 2πν0 and ω̇0 = 2πν̇0, with typical values of ν̇ between 10−9 and

10−14 Hz/s. The phase of this signal is seen by the moving antenna as

ϕ′(t) = ω0

(
~r(t) · n̂
c

+ t

)
+

1
2
ω̇0

(
~r(t) · n̂
c

+ t

)2

(5.5)

due to the Doppler effect. Since the presence of the spindown term implies

that the source frequency decreases in time, it is clear that ν̇0 < 0.
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Figure 5.4: Linear spectral density of the signal as measured by the moving ob-

server (black) and of the corrected signal (gray). The configuration is

the same of the previous figure. The energy of the signal detected in

moving observer is spread out on many bins. The spectral peak am-

plitude measured by the rest observer (equal to 1) is almost entirely

recovered by the correction technique (peak linear spectral density

is about 0.91). An integration time of two orbital periods (about

12,566 s) was considered. Use of log scale was done to emphasize the

differences in the tails.
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The frequency spindown introduces a complication in the geometrical

approach suggested in the previous section, because the distance between

two contiguous equiphase planes is not constant anymore. A geometrical

computation of the coordinates at which the antenna trajectory crosses the

equiphase planes needs to take into account this time dependence. The

change in the phase due to spindown is:

∆φsd =
ω̇t′2

2
, (5.6)

while the phase difference between two contiguous planes for a regularly

pulsating source is ω0∆t = ω0/νs. The time difference cumulated by the

moving observer due to spindown is then

∆tsd =
∆φsd

ωs
=
ω̇t′2

2ωs
. (5.7)

5.4 Application to targeted search

In the case of a targeted search, for which all the source parameters are

known, one can perform the analysis over a very narrow frequency band,

downsampling the signal by a new sampling frequency ν ′s. According to the

Nyquist theorem, the downsampling frequency has to be at least two times

the signal bandwidth. Given that the shift of Pulsar frequency due to its

slowing down is very small, a bandwidth of a fraction of Hz is more than

sufficient for our purposes. Since the original sampling frequency consid-

ered in our work is νs = 4 kHz, one can thus downsample the original signal

by a factor larger than about 104. One can thus choose a time interval

∆T equal to the inverse of the downsampling frequency and calculate how

many equiphase planes are crossed by the antenna trajectory during ∆T .

The distance travelled by the antenna in this time interval can be well ap-

proximated by the projection of the antenna velocity over n̂ multiplied by

the time interval ∆T . Since the distance between two contiguous planes is
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c∆t = c/νs, the number of plane crossed each ∆T is

Nplanes =
(~v(t) · n̂)∆T

c/νs
. (5.8)

The correction to the Doppler phase modulation thus can be performed by

computing Nplanes each ∆T . The resampling mask computation can be

usefully re-adapted to the case of a downsampled signal for targeted search.

Instead of considering the action to be performed sample by sample, one can

actually compute the number of equiphase planes crossed by the antenna

trajectory at each downsampling time, and store it in the mask. The number

of elements stored in the mask will not be equal to the original signal one

(Ns), but instead it will be Nm = Ns · ν ′s/νs. Then the downsampling is

made by shifting the sample selection by the amount indicated by the mask.

More precisely, the kth sample of the downsampled stream has to be taken

from the high-frequency stream in the position

S′
k = Sk +Mk (5.9)

where Sk is the sample that would be taken in absence of correction and Mk

is the kth element of the mask. For instance, if our downsampling time is 100

s (meaning a downsampling frequency of 10−2 Hz), instead of the k ·100 s ·4

kHz sample one has to fill the downsampled buffer with the k · 100 s · 4 kHz

+Mk sample of the 4 kHz data stream to recover the synchronization.

The action that has to be performed is specified by the mask sign. If

Mi > 0 then the scalar product between ~v(t) and n̂ is positive, and one has

to move forward of Mi samples in order to obtain the effect of removing

samples while performing the downsampling. In the opposite case we have

to move backward of Mi samples, which is the same as adding Mi samples

in the original high-frequency signal. This resampling method is illustrated

in Fig. (5.5). The number of target planes crossed each ∆T is computed as

indicated by eq. (5.8). The antenna velocity ~v(t) is obtained by interpolation
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Figure 5.5: The resampling method: the buffer of the downsampled stream is

filled taking from the high-frequency stream the sample shifted with

respect to the one without correction, by the amount of samples in-

dicated by the mask. A backward shift introduces a delay in the

antenna clock, while a forward shift has the opposite effect.

from 1 s sampled ephemeris1 at time t = t0 + i∆T . One can assume without

loss of generality that the analysis starts at time t0 = 0, and compute the

distance ~r(t) with respect to the position at the starting time ~r(t = 0) in

the SSB coordinates.

A term has to be inserted in eq. (5.8) in order to correct the plane drift.

The amount of samples cumulated because of the source slowing is obtained

by eq. (5.7):

∆Nsd =
ω̇t′2

4π
. (5.10)

The ith mask value can be computed using this result, obtaining:

Mi =
(~v(t) · n̂)∆T

c/νs
+∆Nsd. (5.11)

Nplanes needs a further correction due to the time that the wavefront needs

1The Virgo antenna trajectory in SSB was given by PSS libraries, developed at INFN

Roma 1 [39]. These routines make use of the NOVA satellite for the generation of precise

ephemeris [37].
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to cross the target planes. This effect is compensated by repeating the

calculation of Mi, performing an iteration over the time, with a certain

computational cost. The method described above is based on geometrical

considerations about the antenna trajectory.

In the case of the targeted search a way to solve the spindown problem

is to choose a downsampling time t0 and then find the value of time t′ at

which the moving observer phase ϕ′(t′) is equal to the rest observer one at

the downsampling time in the case of a monochromatic source with constant

frequency. This means to impose:

ω0

(
~r(t′) · n̂

c
+ t′

)
+

1
2
ω̇0

(
~r(t′) · n̂

c
+ t′

)2

= ω0kt0 k = 1, . . . T/t0

(5.12)

with the usual notation, and where T is the whole observation time. t′−kt0

represents thus the time difference between the two reference frames. The

number of samples to be modified in order to synchronize the two clocks is

given by

NS = (t′ − kt0)νs. (5.13)

Since this correction equalizes the two phases, it includes simultaneously

both the spindown and the Doppler effects. Solving eq. (5.12), we obtain

the time shift between the moving observer and the rest one:

δt = t′ − kt0 = −~r(t
′) · n̂
c

+
ε(kt0)2

1 − εkt0 +
√

1 − 2εkt0
(5.14)

where ε = ν̇0/ν0 is the fractional spindown. It is important to stress that

one has to compute δt only few times over the observation time (each down-

sampling time), and the applied correction is valid for all the sources in the

n̂ direction with the same value of ε. As already mentioned, the main diffi-

culty with this approach consists in the dependence of the time shift δt on

the position ~r(t′), with t′ unknown. The solution is obtained numerically by

iterations. We first evaluate eq. (5.14) considering the antenna position at
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the not corrected sampling time ~r(t0), and then we repeat the computation

replacing t0 with t0 + δt until the result converges. The ith value stored in

the mask is thus obtained by

Mi = δt · νs. (5.15)

This approach, based on the analytical solution of the problem of finding

the time at which the antenna receives the same signal phase as the one seen

at a given time t0 by an observer at rest with respect to the source, turned

out to be more clean and effective than the geometrical one because the

spindown correction is included from the beginning.

The first two techniques considered are both based on the idea of cor-

recting the signal while downsampling it. The downsampling method has

already been outlined in the previous section, and it is clearly represented

in Fig. (5.5). Our routines are applied over binary data files, that allow us

to surf between the samples in a fast way. We reach through a for cycle the

sample that would be selected by a simple downsampling (i.e. one sample

each without correction), and then we use the C built-in function fseek to

pick up the shifted sample. The number of data that fseek has to skip is

the one stored in the mask. Once written the selected sample in an output

buffer, we jump to the next “non-corrected sample”. The large amount of

data that we have to analyse requires to be splitted over several files2.

5.5 Validation of the technique

Several tests of the resampling method have been performed. We simulated

signals considering many different values of signal frequency ν0, sampling

2A jump from a file to another can therefore occur, and our routine has to be able to

work in such situations. We define thus a threshold to check if we are near to one of the

file ends, in order to manage in an effective way the fact that a corrected sample can be

out of the considered file.
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frequency νs and spindown ν̇0, several source directions and even many

orbital parameters (two different circular orbits and ephemeris for the first

Virgo Scientific Run), while the source amplitude modulation is still not

considered. The technique turned out to be very effective.

In order to check the phase locking we produced by an external routine

two sinusoidal signals: one with phase ω0t (rest signal) and one with phase

ω0

(
~r(t)·n̂

c + t
)

+ 1
2 ω̇0

(
~r(t)·n̂

c + t
)2

(modulated signal). A comparison was

performed before and after applying the correction to the latter.

First of all the phase locking accuracy was tested. The tests performed

with the circular orbits let us show the robustness of the technique using a

short time. We repeated the test on two orbits with the following parame-

ters:

Orbit 1 Orbit 2

R (m) 1.5 · 108 1.5 · 1010

β 10−4 10−4

Table 5.1: Parameters of the circular orbits used in the first tests: R is the orbital

radius, β is the ratio between the orbital velocity and c.

We considered also various spindown values, choosing a physical one

(ν̇0 = 10−11) and a non-physical one (ν̇0 = 10−7). In both cases the signal

phase was correctly recovered, with a dephasing between the rest signal and

the corrected one that does not exceed the predicted limit of 2πν0/νs (see

sec. (5.1)). Fig. (5.6) shows the difference in the phase between the rest

signal and the corrected one for Orbit 1 over 3 · 105 s (more than three

days), with ν0 = 20 Hz, ν̇0 = 10−11 Hz/s and νs = 1000 Hz. The plot shows

the expected phase locking accuarcy of 0.126. The same result have been

obtained for Orbit 2, with both a physical spindown (ν̇ = 10−11, in Fig.

(5.7)) and a non-physical one (ν̇ = 10−7, in Fig. (5.8)).
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Figure 5.6: Phase locking accuracy test using Orbit 1. The plot on the left shows

the phase difference between the rest signal and the modulated one

(red curve) and the one between rest and corrected signals (black

curve). The signal modulation due to the Doppler effect and the small

drift due to spindown are evident in the red curve. The maximum

dephasing after the correction visible in the y axis zoom of the black

curve is the one expected: 2πν0/νs = 0.126.

Once the method has been tested on the circular orbit, we performed

other tests with the ephemeris orbit, i.e. with the real antenna motion in

the SSB during VSR1. Fig. (5.9) shows an example of the test performed

for five days long data with ν0 = 25 Hz, ν̇ = 10−11 Hz/s and νs = 1 kHz.

Also in this case the dephasing is the one expected.

Once established the method accuracy in phase locking, we estimated

also the peak amplitude recovering in the signal spectrum for various fre-

quencies ν0, spindown values ν̇ and sampling frequencies νs (400 Hz, 1 kHz

and 4 kHz). An example of a corrected signal spectrum compared to the one

without correction is shown in Fig. (5.10). The results of the comparison

between different sampling frequencies are shown in Fig. (5.11) and (5.12),

from which it is clear that the peak amplitude recovery depends only on the

ratio ν0/νs as expected. We are mainly interested in ν0/νs < π/2 in order

to keep the phase accuracy below 1 rad. In this situation, the percentage of

peak amplitude losses is very small (under 5%). We are therefore allowed to

use low sampling frequencies as long as the phase accuracy remains below 1
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Figure 5.7: Phase locking accuracy test using Orbit 2. The plot on the left shows

the phase difference between the rest signal and the modulated one

(red curve) and the one between rest and corrected signals (black

curve). The y axis zoom of the black curve shows that the maximum

dephasing after the correction is the one expected: 2πν0/νs = 0.126.

rad, without incurring remarkable peak amplitude losses, as it is shown in

Figs (5.11) and (5.12).

All the tests performed show that the method is really effective in the

correction of the phase modulation induced by Doppler and spindown effects.

The method is also computationally effective. In Tab. (5.2) we show the

computing times obtained in the preliminary tests described so far to process

5 days of data. The computing times directly related to the resampling

νs (Hz) Mask computation (s) Mask application (s) Total (s)

4000 0.28 2.5 20.67

Table 5.2: Computing times for νs = 4 kHz, over a signal during 5 days. All the

values are obtained as a mean over 10 measures.

method (calculation and application of the correction) can be distinguished

from the total computing time. The residual time is a fix cost that we

pay for I/O operations (file opening, reading and writing), that would be

unavoidable for any analysis pipeline. From the shown results we can say

that this search method takes about 10−4 of the real time to perform the
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Figure 5.8: Phase locking accuracy test using Orbit 2 and a very strong spindown

(ν̇ = 10−7). The plot on the left shows the phase difference between

the rest signal and the modulated one (red curve) and the one between

rest and corrected signals (black curve). The plot on the right shows

that the maximum dephasing after the correction is the one expected:

2πν0/νs = 0.126.

correction. This result can still be improved by future optimizations and by

reducing the starting sampling frequency, that is now higher than necessary

to guarantee a peak reconstruction with the required accuracy.

5.6 The pipeline

After the validation, we applied the technique to a part of the VSR1 data.

The VSR1 data were divided in many segments of various length (from a

few thousands to a few hundred thousands of seconds). The data segments

are not contiguous, because of interruptions during the run data taking.

We replaced the missing data frames with zeroes (zero-padding) in order to

keep the correct phase in the data. The steps in the data induced by the

zero-padding are smoothed by the windowing factor sin2(1
2πt/twin), where

twin is the windowing time, typically of tens of seconds. This operation is

necessary in order to avoid the presence of spurious effects induced by the

steps, especially during the filtering.

We used the 4 kHz sampled data of the gravitational wave amplitude
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Figure 5.9: Phase locking accuracy test using ephemeris and ν̇ = 10−11 Hz/s. The

plot on the left shows the phase difference between the rest and the

modulated signal (red curve) and the one between rest and corrected

signals (black curve). As it can be better appreciated from the zoom

of the black curve on y axis, the maximum dephasing after correction

for a signal with ν0 = 25 Hz and νs = 1000 Hz is ∼ 0.157, as expected.

measurement of the h(t) as provided by Virgo calibration group. The pro-

cess of zero-padding and windowing are parallel to the data filtering. A

band-pass filter is applied around a given central frequency to 4 kHz data.

The band-pass filter used is a type II Chebyshev filter of the 9th order, with

a gain A = 100 dB. This choice was due to the characteristics of no rip-

ples in the passband of this type of filter. The filter cuts all the negative

frequencies to avoid aliasing in the spectrum, so the filter output consists

of complex elements. We applied the resampling to a set of two days data

filtered by a pass-band Chebyshev filter with cutoff frequency νstop = 0.05

Hz, centered around f0 = 30.445 Hz. The Doppler and spindown correction

downsampling was then applied to the 4 kHz filtered signal. In particular,

the filtered data were undersampled, corrected by mask application using

the technique described in sec. (5.4), and a heterodyne was applied to bring

them to the baseband. These three operations are made in a single step.

The FFT was then performed on the downsampled data, and thus with a

reduced number of samples. The plot of the obtained spectrum is shown

in Fig. (5.13). As one can see from the comparison of the two plots, the
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Figure 5.10: On the left: amplitude of the signal spectrum by a source with

νs = 4 kHz, ν0 = 30.025 Hz and ν̇ = 0.5 · 10−11 Hz/s, filtered

by a Chebyshev passband centered around 30 Hz, downsampled at

ν′s = 0.1 Hz and brought to the baseband. The Doppler smearing is

clearly visible. On the right: amplitude spectrum of the same signal,

corrected for the Doppler and spindown effects. The peak amplitude

loss after reconstruction is less than 1%.

stopband noise is increased by the mask application by a small factor that

is visible only outside of the filter passband. We then filtered a test signal

with no noise, with the results shown in Figs (5.14) and (5.15).

5.7 Semi-targeted search

We stress again that our method is valid for all frequencies that satisfy

ν0 ≤ νs/2π, so the targeted search is just a particularly simple case in

which it can be applied. Since this independence of the frequency is the real

advantage of the technique, the application to a broadband is very promising

in terms of computing costs with respect to other techniques. The band over

which the analysis is performed can thus be broadened, allowing the search

of possibly existing sources emitting in that frequency band (semi-targeted

search).

Since Virgo is the unique detector in action to exhibit a good sensi-

tivity also in the low-frequency range (i.e. below a few tens of Hz), we
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Figure 5.11: Peak amplitude losses percentage versus the frequency ratio ν0/νs

for three different sampling frequencies. The losses depend only on

the frequency ratio and not directly on νs. The estimated errors

were smaller than the plot resolution.

decided to apply our resampling method in the whole band below 50 Hz.

A semi-targeted search on a broadband can be performed correcting the

signal sample by sample, i.e. recognizing the single samples that have to

be doubled or removed, as required by the first conceptual scheme outlined

at the beginning of sec. (5.2). In order to identify exactly which sam-

ples of the high-frequency stream have to be removed or doubled one can

tune eq. (5.12) more precisely by substituting the right-hand term with the

maximum dephasing allowed by the technique. The equation to be solved

becomes then:

ω0

(
~r(t′) · n̂

c
+ t′

)
+

1
2
ω̇0

(
~r(t′) · n̂

c
+ t′

)2

= ω0k∆t k = 1, . . . T/∆t

(5.16)

where ∆t = 1/νs is the signal sampling time. The solution in this case is

t′ =
ε
(

~r(t′)·n̂
c

)2
− 2

(
~r(t′)·n̂

c − k∆t
)

1 − ε~r(t′)·n̂
c +

√
1 − 2εk∆t

. (5.17)
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Figure 5.12: Peak amplitude losses percentage versus the frequency ratio ν0/νs

for three different spindown values. The losses do not depend on

spindown. The estimated errors were smaller than the plot resolu-

tion.

Applying the correction to a data set with νs = 250 Hz, we can obtain a

good correction for all source frequencies ν0 ≤ νs/2π (Fig. (5.16)), and thus

surely up to 50 Hz.

The scheme for a semi-targeted search can be implemented by calculating

the mask using eq. (5.17). As in the targeted case, we need to compute the

solution iteratively because of the dependence of t′ on ~r(t′) (defined in sec.

(5.4)). In this case, the evaluation of (5.17) for the first sample is done by

starting from an expression without the term depending on ε:

t′start = −~r(t0) · n̂
c

, (5.18)

and then we compute the complete expression replacing t0 with t′start. For

the nth sample the process starts using the value of t′ obtained for the

(n− 1)th one. In order to know exactly which samples need the correction,

a bisection algorithm was applied. We use the fact that the nth element
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Figure 5.13: On the left: two days of VSR1 data filtered by the Chebyshev pass-

band. On the y axis is shown the modulus of the FFT performed over

the complex filter output. On the right: the same data resampled

by the mask. In both plots is clearly visible the characteristic filter

shape, represented between 0 and 5 Hz instead of -2.5 and +2.5 Hz

because we are not considering negative frequencies.

in the mask differs from the (n − 1)th by an amount ±1 as soon as we

find the sample to be corrected. This hypothesis is surely valid for a mask

computation sampling of 0.5 s. Since the minimum value for a target plane

crossing is 0.5 s (see eq. (5.2)) we are sure that the variation between

two contiguous elements of the mask can be only 0, +1 or -1. The classic

root-finding algorithm is then modified to find the sample at which the

mask changes its value, in analogy with a function that changes its sign

immediately after a root. The number of the found samples is then stored

into a buffer that will be used for the correction.

The spectral analysis is performed using the C fftw library. Since we

use a single FFT buffer, the amount of data that can be analyzed is limited

by the buffer maximum dimension. An FFT on several buffers could be

performed at the prize to reduce the effectiveness of the process. Since we

are forced to use at least 100 Hz FFT in order to have a 50 Hz band and the

buffer maximum dimension is about 6 · 107, only about 12 hours of data can

be analyzed in a single buffer. For a given integration time T , the maximum

sampling frequency allowed to have an FFT in a single buffer is connected
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Figure 5.14: On the left: amplitude spectrum of a sinusoidal signal filtered by

the same Chebyshev passband as Fig. (5.13), with ν0 = 15.223 Hz,

ν̇ = 0.295 · 10−10 Hz/s, T = 2 days and downsampling time ∆t = 10

s, zoomed on the right around the signal frequency.

to the maximum number of elements in the buffer by:

νs ≤
NFFT,max

T
. (5.19)

This relation defines then the bandwidth ∆νB over which we can perform a

semi-targeted search of length T , since it needs to satisfy the condition by

the Nyquist theorem ∆νB ≤ νs/2. This method, that applies the mask on

the original data stream with no pass-band filter, can be implemented for

wide band searches on long periods if one accepts the idea to perform very

long FFT extending the maximum number of points to be analyzed in the

spectrum, or to perform FFT using more buffers. Vice versa if one wants to

keep the spectral analysis light, using a reasonable number of samples, the

band to be investigated has to be reduced. For this reason we decided to

use another implementation of the technique based on the previous method

(the one for targeted search), but with a broader band. In order to analyze

one month long data without exceeding the value of NFFT,max previously

mentioned, sampling frequency cannot be larger than 10-20 Hz, meaning a

maximum bandwidth of about 5-10 Hz. The analysis was performed over

thirty days long data originally sampled with νs = 4 kHz, filtered by the

previous described Chebyshev pass-band with a cutoff frequency νstop = 2.5
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Figure 5.15: On the left: amplitude spectrum of the same signal of Fig. (5.14)

with the mask correction. The zoom on the right shows the narrower,

higher peak recovered at the same frequency as the analogous rest

peak with an amplitude recovery accuracy of ∼ 98%.

Hz, centered around ν0 = 19.0 Hz. We injected a modulated signal with

ν = 20.025 Hz and ν̇/ν ' 5 · 10−13 s−1, that was well reconstructed by the

application of the technique, as it can be seen in Fig. (5.18). It is important

to remark once again that the correction is valid for all frequency bins.

Since the integration time is very long (millions of seconds), the frequency

resolution is below 1 µHz, and thus millions of bins are corrected at the

same time. In this sense a search over a 2.5 Hz band can be considered

semi-targeted. The analysis has been performed dividing the whole data

stream in 12 hour long segments. The mask computation over each segment

took less than 1 s, while the mask application over each segment lasted

∼ 27 s, on average. The whole analysis took 1679 s, i.e. ∼ 10−4 of the

data duration. We are confident that a strong reduction of this number,

obtained without any special precaution and already good if compared with

other pipelines, will take place in the final architecture, where computing

optimization and parallelization will be implemented. Given the good results

obtained with the technique for the analysis of a single sky direction and

a single fractional spindown over one month of data, we can build over it

a more complete pipeline parallelizing its application over many values of
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Figure 5.16: 250 Hz Butterworth filtered and corrected data.
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Figure 5.17: Plot of the spectrum obtained resampling a 30 day long data stream

filtered by a Chebyshev pass-band with νstop = 2.5 Hz and a central

frequency νc = 19.0, with a signal injected at ν = 20.025 Hz and

ν̇/ν ' 5 · 10−13 s−1 with an amplitude h0 = 10−19. The signal peak

at 1.025 Hz is clearly visible near to the peak at 1.0 Hz corresponding

to the 20 Hz instrumental line.

these parameters. The parallelization of the routine will be made by using

the Grid technology, a computing infrastructure developed by CERN, that

allows to manage huge quantity of data. Through the parallelization, we

will be able to use the resampling technique effectiveness over a wide range

of sky directions and fractional spindowns.

It is important to remind that the source amplitude modulation (intro-

duced in the previous chapter) was not taken into account. A very effective

method to recover from this effect acting in the output spectrum was recently
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Figure 5.18: Zoom of the spectrum seen in Fig. (5.17) around the signal injected

in the data at 20.025 Hz (and thus appearing at 1.025 Hz in the

19 Hz centered filtered spectrum.). On the left: the smeared signal

before the correction. On the right: the corrected signal.

proposed by Rome INFN group [40]. The effect of the amplitude modula-

tion is a production of two sidebands at the Earth rotational frequency and

its double, on both sides of the central frequency. The amplitude of the

five lines depends on two parameters only, generally unknown (polarization

phase and orbit inclination). Estimators based on simple scalar products

at the concerning frequency between the signal spectrum and the recov-

ered experimental one can be used with very small computational costs. In

our case, we have to perform this correction (consisting for each source fre-

quency in a few products) moving on the central frequency (unknown in the

semi-targeted search) and on the two parameters just mentioned.



Conclusions

In this thesis a new technique for the continuous gravitational wave search

was introduced. We have shown that the phase modulation induced in the

signal by the Doppler effect, due mainly to the Earth orbital motion, can be

corrected by an effective resampling method that synchronizes the antenna

clock with the source one. This synchronization is achieved by removing or

doubling a few samples of the antenna digitized signal in order to accelerate

or slow down in a timely manner the moving clock. The dephasing due to

the source frequency slowing because of electromagnetic and gravitational

emissions (spindown) has also been corrected.

The proposed technique is particularly effective in the cases where source

direction is known while the frequency is not (semi-targeted search), because

it depends only on the spindown parameter ν̇/ν and not on the source

frequency. In other words, the correction obtained for a given spindown is

accurate enough for frequencies smaller than νs/2π, where νs is the sampling

frequency, that is enough for usual cases. The peak in the spectrum due to

any unknown source in the chosen direction emitting within this frequency

band a gravitational signal with remarkable amplitude could be detected

after a single correction.

First of all we performed a validation of the technique for a search where

all the source parameters are known with high precision (targeted search).

In this case it was possible to check that a high accuracy in the phase

locking between the antenna and the known source signal can be achieved. In

103
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particular we proved that the dephasing due to Doppler effect and spin down

were compensated in all cases within the expected limit of 2πν/νs, i.e. 2π

times the ratio between the source frequency and the sampling one, and that

this corresponds to very low losses in the spectral peak amplitude recovery

(of the order of a few % in the usual cases). The required computing time

turned out to be below 10−4 parts of the length of the period under study,

which is a very good result if compared with other pipelines developed for

continuous gravitational wave searches. Moreover, this number is expected

to increase by future optimizations and using particular architectures.

The technique was then applied to semi-targeted search. After several

tests using Virgo Scientific run data we concluded that an effective imple-

mentation of our technique is to perform the semi-targeted search over a

bandwidth of a few Hz. In this way the sampling frequency can be reduced

down to the double of the bandwidth and thus a Fast Fourier Transform

analysis for peak search over long integration times (months) can be per-

formed with an acceptable number of points. This pipeline is going to be

implemented, using the Grid technology, as a parallel analysis over many

sky directions and many values of relative spindowns (ν̇/ν).
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