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% Introduction: Core-collapse supernovae

% Supernova Model Evidence Extractor SN 1006 remnant
- Singular Value Decomposition

- Bayesian model selection

% Results

- Signal injections in Advanced LIGO noise credit: NASA

- Signal injections in ET noise

% Summary and future work
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Core-collapse supernovae

% Several models have been proposed to explain the processes
behind core-collapse supernovae

% These models lead to different gravitational wave emission
mechanisms

527./‘11(‘211 1.15

% Numerical simulations of the various o

mechanisms have produced catalogues of
waveforms for the different mechanisms

% Can we distinguish between the
waveforms from the different catalogues
and, thus, learn about the astrophysics
behind core-collapse supernovae?

http://www.stellarcollapse.org/
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% Chose 3 initial catalogues to
develop analysis
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Neutrino Mechanism

% Neutrino mechanism - use Murphy
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% Magnetorotational mechanism - use
Dimmelmeier et al. 2008 catalogue
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% Acoustic mechanism - use Ott et
al. 2009 catalogue with 7
waveforms

Acoustic Mechanism
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% Use the Supernovae Model
Evidence Extractor (SMEE) to
distinguish between waveforms
from different catalogues

* SMEE:

|. reparameterises waveforms into a
set of orthonormal basis vectors

2. uses Bayes factor to compare the
likelihood that the observed signal
belongs to one catalogue as
opposed to another catalogue™

*the other “catalogue” could also be noise
or a model for known spurious noise
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Singular Value Decomposition

% consider a catalogue of M waveforms each N samples long

hi(t1)
hy = hl(;tZ) 3
ha(tw),

% arranged into a matrix A (NxM) such that each column
corresponds to one waveform i

- hi(t1)ha(t1) ... har(t1)

AL hl(tg?hg(tg.) . h.M(tQ)

hl(tN):hg(tN;. . h:M(tN)
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Singular Value Decomposition

% Singular Value Decomposition (SVD) states that A can be
factored into

A =UxV!
* where U is NxN,V is MxM and 2 is NxM

% U is a matrix where the columns are the eigenvectors of AAT
% V is a matrix where the columns are the eigenvectors of ATA

% 2 has the square roots of the eigenvalues on its diagonal
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Principal Component Analysis

* Note that AAT is the covariance matrix for the data in A

% So, for our data matrix, A, the eigenvectors in U (Principal
Components) form an orthogonal basis than spans the
parameter space defined by the data

% The eigenvectors are ranked by their corresponding
eigenvalue

% The first Principal Component is the eigenvector with the
largest corresponding eigenvalue
- direction of the largest variance in the data set

% The original set of waveforms that were used to construct A

can now be described as a
in U
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Principal Component Analysis
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Reconstructing the signal

% If we use all M Principal Components, we can reconstruct all
waveforms identically

% The Principal Components are an efficient basis for spanning the
parameter space described by the waveforms

% One can approximate each waveform by taking a linear
combination of k Principal Components, were k <M

k
hi ~ Z Ujﬁj
1=1

* Here, B is the scalar coefficient for the j-th Principal Component

% The corresponding eigenvalues indicate how well the choice of k
Principal Components will reconstruct the original waveforms

10 LIGO-GI1201265-x0



Bayesian model selection

% The Bayes factor is the ratio of the marginalised likelihoods for two
competing models

Big = p(DIMy)
p(D|M>)
% If Bi2 > |, M, is preferred. If Bi2 < |, M, is preferred
% If Bi2 = |, then there is insufficient information in the data to

support either model

- noise introduces an uncertainty which enlarges this to a “region of
ambiguity”
* Here, M| and M; are the different core-collapse supernova
mechanisms
- these models can also be the ratio of the likelihood that the data
contains a signal versus noise only
1 LIGO-G1201265-x0



The signal model

% Since simulated noise is used, we assume a Gaussian likelihood
for our signal model, M,

_ = T hz 2
p(D|B, M) o< exp | — Z (D 202(5))
L =1 1 )

* Here, 0 is the expected noise, D; is the i-th data point, h; is the

reconstructed model signal from Principal Components and 8
are the amplitudes or coefficients for reconstructing the signal

% To obtain the evidence, marginalise over all expected values

of B such that Bmax
p(D|M,) = / p(81M,)p(D|B, M,)dp
Bmin
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Investigations with

Advanced LIGO noise

AdvLIGO tunings

* Simulate noise for
Advance LIGO in al
“zero detuning, high TR
power” configuration | |

- ZERO_DET high_Ptxt, .

publicly available from
LIGO DCC
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https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=T0900288
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Fractional Count

Distinguishing
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Distinguishing SNe models
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Distinguishing SNe models

% The mechanisms p 10—
examined so far produce
quite different waveforms

% Also compared

Dimmelmeier waveforms = ¢
. =
to Accretion Induced <.l
Collapse (AIC) waveforms
. S | T S
% AIlC: collapse of accreting
Cal"bon White dwarfs S e e
* Use Catalogue by D43 743 o.is 0.351 052 0.5

Abdikamalov et al. 2010
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Distinguishing SNe models
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Investigations with ET noise

% We injected the signals at 10 kpc and 778 kpc (Andromeda)

into the ET-B noise curve

we will use something more current next time...
10-21 :

 hetpi/farxiv.orglabs/1206.033 1
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Supernova in Galactic Centre (ET)
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Fractional Count
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ET MDC

% Two supernova waveforms were injected into the latest ET
Mock Data Challenge (MDC)

% One from Dimmelmeier et al. 2008 catalogue and the other is
a long bar waveform using the waveform proposed by Fryer,
Hughes, Holz 2002 M =02 i, f=200Hz L =60km, R =10km

2.0 — Ol nallyeeire e S al 10 <

% SMEE will be run on these e

~. 1.0

injections < o3
- need to include long bar signal model _ZSWMMNWV MWW\W
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=2.05 20 40 &0 8o 100
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L. Santamaria et al., i_lnéO-DCC-GI 100014
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Summary and

future work

% The proposed method, SMEE, has demonstrated its ability to
associate an observed core-collapse supernova gravitational
wave signal with the correct waveform catalogue

% This allows us to infer the astrophysics behind the core-
collapse supernova from the detected gravitational wave signal

% Further features are required for SMEE and work is underway
to implement them

- analyse multi-detector data, incorporate time uncertainty and antenna
patterns, use power spectra or time-frequency data,.....

% Investigate waveform reconstruction from SMEE outputs

% Extend SMEE framework for analysis towards a broader Burst
parameter estimation and glitch classification
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