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-2~ These are called quasi-normal modes

-2~ Frequencies and time-constants of the sinusoids depend only on the
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-2~ Does this mean we can learn nothing about what caused the
deformation of a BH by observing the ringdown modes!?

-2 Gravitational-wave observations of black holes offer the best
possible tests of general relativity

- v/c ~ 1 at merger of BBH
- v/c ~ 104 1n binary pulsars
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Black Hole Solutions In Einstein’s Theory

-2 Schwarzschild solution

‘> A one-parameter family of solutions - black hole mass

-2 Kerr solution

- Two-parameter family of solutions - mass and spin

2 Reissher-Nordstrom solution

> Two-parameter family of solutions - mass and electric charge

-2 Kerr-Newman solution

‘> Three-parameter family of solutions consisting of mass, charge and spin

-2 In this talk we will only consider Schwarzschild and Kerr solutions
‘* |solated black holes are interesting in their own right

> Their properties have been studied a great deal in literature

- Perturbed black holes, on the other hand, are truly fascinating

> They could be source of extremely luminous radiation, far exceeding the
luminosity in light of all the stars in the Universe
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Black Hole Perturbation Theory

-2 As far as we know black holes are stable (some caveats) against
external perturbations

>~ The deformation caused is re-radiated as gravitational waves with a
characteristic spectrum called quasi-normal modes

- quasi because unlike normal modes of vibrating string or membrane black
hole oscillations are quickly damped out and so they don’t form a basis

-2~ Quasi-normal modes are damped sinusoids

-2 Far away from the source the waveform emitted by a perturbed black
hole has the form

h(t)=A % exp(—t/7T) cos(wt + ¢g)

T Amplitude A depends on the nature of perturbation

T r 1s the distance to the black hole

T w and 7 are the mode frequency and damping time

Wednesday, 5 December 2012



Black Hole No-Hair Theorem wynim, Thim

Wednesday, 5 December 2012



Black Hole No-Hair Theorem wynim, Thim

‘» There are infinitely many quasi-normal modes enumerated by
integers (/,m,n):

Wednesday, 5 December 2012



Black Hole No-Hair Theorem wynim, Thim

‘" There are infinitely many quasi-normal modes enumerated by
integers (/,m,n):
‘# (l,m) are spherical harmonic indices,[ =23, ...and m=-[, ..., [

Wednesday, 5 December 2012



Black Hole No-Hair Theorem wynim, Thim

‘- There are infinitely many quasi-normal modes enumerated by
integers (/,m,n):
‘# (l,m) are spherical harmonic indices,[ =23, ...and m=-[, ..., [

-2~ For each (I, m) there are infinitely many modes, fundamental (i.e. least
damped) and overtones

Wednesday, 5 December 2012



Black Hole No-Hair Theorem wynim, Thim

‘- There are infinitely many quasi-normal modes enumerated by
integers (/,m,n):
‘# (I,m) are spherical harmonic indices,[ =23, ...and m=-[, ..., [
‘> For each (I, m) there are infinitely many modes, fundamental (i.e. least

damped) and overtones
+ n=0,1,2,3,... is overtone index; all but the n =0 have short decay times

Wednesday, 5 December 2012



Black Hole No-Hair Theorem wynim, Thim

‘> There are infinitely many quasi-normal modes enumerated by
integers (/,m,n):
‘# (l,m) are spherical harmonic indices, /=23, ...and m=-[, ..., [

‘2~ For each (I, m) there are infinitely many modes, fundamental (i.e. least
damped) and overtones

+ n=0,1,23,...is overtone index; all but the n = 0 have short decay times

‘" |In general relativity, mode frequencies and decay times all
depend only on the mass M and spin j of the black hole -
statement of the no-hair theorem

Wednesday, 5 December 2012



Black Hole No-Hair Theorem wynim, Thim

‘» There are infinitely many quasi-normal modes enumerated by

integers (/,m,n):
‘# (I,m) are spherical harmonic indices,[ =23, ...and m=-[, ..., [

‘2~ For each (I, m) there are infinitely many modes, fundamental (i.e. least
damped) and overtones

+ n=0,1,2,3,... is overtone index; all but the n =0 have short decay times

‘" |In general relativity, mode frequencies and decay times all

depend only on the mass M and spin j of the black hole -
statement of the no-hair theorem

‘>~ Measuring a single mode could give BH mass and spin;

measuring two or modes would constrain General Relativity or
provide smoking gun evidence of black holes

Wednesday, 5 December 2012



Black Hole No-Hair Theorem wynim, Thim

‘* There are infinitely many quasi-normal modes enumerated by

integers (/,m,n):
‘# (l,m) are spherical harmonic indices, /=23, ...and m=-[, ..., [

‘> For each (I, m) there are infinitely many modes, fundamental (i.e. least
damped) and overtones

+ n=0,1,2,3,... is overtone index; all but the n = 0 have short decay times

‘" In general relativity, mode frequencies and decay times all

depend only on the mass M and spin j of the black hole -
statement of the no-hair theorem

- Measuring a single mode could give BH mass and spin;

measuring two or modes would constrain General Relativity or
provide smoking gun evidence of black holes

‘>~ Mode frequencies and decay times could depend on other parameters
(e.g., the structure of the central object)

Wednesday, 5 December 2012



Black Hole No-Hair Theorem wynim, Thim

‘* There are infinitely many quasi-normal modes enumerated by

integers (/,m,n):

‘# (l,m) are spherical harmonic indices, /=23, ...and m=-[, ..., [

‘> For each (I, m) there are infinitely many modes, fundamental (i.e. least
damped) and overtones

+ n=0,1,2,3,... is overtone index; all but the n = 0 have short decay times

‘" |In general relativity, mode frequencies and decay times all

depend only on the mass M and spin j of the black hole -
statement of the no-hair theorem

>~ Measuring a single mode could give BH mass and spin;

measuring two or modes would constrain General Relativity or
provide smoking gun evidence of black holes

»~ Mode frequencies and decay times could depend on other parameters
(e.g., the structure of the central object)

> Absence of quasi-normal modes after merger might indicate

failure of GR or existence of naked singularities
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Typical Values of the Dominant Mode

>~ Mode frequencies are inversely proportional to BH mass and decay
times directly proportional to it

- Qravitational waves being quadrupolar the most dominant mode
excited is [ =2
> The frequency and the decay time of the 22 mode (i.e. /=2, m=2) is
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Frequency of quasi normal modes
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Quality Factor of QNMs
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Can Quasi-normal Modes Reveal Their Perturber?

‘2 If mode frequencies depend only on the black hole’s mass and

spin how can they reveal what caused the perturbation?
‘2= No-hair theorem really doesn’t apply to deformed BHs

-2~ Should be possible to measure not just BH mass and spin but also, for
instance, the mass ratio of the progenitor binary from the QNMs produced
in the aftermath of merger

‘2~ They key is that the amplitude of the modes carry additional

information
-2~ They depend on the nature of the perturber
h‘|‘ . th _ AlmM 6iwlme—t/7'lm
Im Im

r

-2~ If we have observe only one mode then the amplitude would be

degenerate with other parameters - distance to the black hole,
its location on the sky, etc.
-2~ Observing higher order modes should help break the degeneracy
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No analytical approach is known to
compute the relative amplitudes of
modes excited during a merger

A complete model of the ringdown signal
would require high-accuracy merger
simulations

We carried out a large number of
numerical simulations to understand the
relation between progenitor parameters

and ringdown amplitudes
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Waveform as seen by a detector

o, M
ho()= 3 ==Y (e 7 cos(w gyt —mep),
€,m>0 L

o, M
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Quasi-Normal Modes in LISA
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Spectrum with Four Modes
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ET SNR for a BH source at | Gpc
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Effect of Spin

‘2 Is it really possible to infer progenitor mass ratio from
QNM radiation?

‘>~ We could have exactly the same final black hole but from different
progenitor binaries
-2 Different binaries could have different mass ratios and
spins so as to produce exactly the same final black hole

‘> In the case of spinning black hole binaries our model of ringdown
waveforms will not be correct

‘> So, our measurement of mass ratio will not give the true mass ratio
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Degeneracy in Parameter Space
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Parameter Space to Understand the Effect Spin

‘> The full parameter space of binary black holes on
quasi-circular orbits has seven dimensions

-2~ Six parameters for the spins of two black holes and one
parameter for mass ratio

> There is no absolute scale in general relativity and hence total mass is not a
parameter to be considered except when we construct search templates

-2 It is computationally expensive to carry out simulations in the
full parameter space
-2 Analytically modelling the full space of waveforms is
not easy

-2~ Carry out a study of binaries with black holes whose spins are
aligned with the orbital angular momentum
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Parameter
space of
Simulations

q X1 X2 Xeff
2 0.16 | -0.70 | 0.197
2 0.07 | -0.40 | 0.102
2 | -0.04 | 0.15 | -0.045
2 | -0.11 | 0.45 | -0.130
2 | -0.19 | 0.75 | -0.220
3 0.00 | 0.00 | 0.000
3 | -0.02 | 0.10 | -0.025
3 | -0.03 | 0.30 | -0.056
3 | -0.05 | 0.50 | -0.094
3 | -0.06 | 0.70 | -0.125
4 1-0.020 | 0.10 | -0.024
4 1-0.025 | 0.30 | -0.047
4 1-0.030 | 0.50 | -0.071
4 1-0.040 | 0.70 | -0.098
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Initial spins such that y ~ 0.62, mass ratio g=2
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22 and 33 mode amplitudes are constant, 2| mode
varies with total spin X+ = (m1 x1 + ma2 x2)/Min

Initial spins such that y ~ 0.62, mass ratio g=2
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Does this work for other configurations!?

Equal initial spins X ,=),, mass ratio g=4
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Does this work for other configurations?

‘2 Yes; 22 and 33 remain roughly constant and 21| varies

Equal initial spins X ,=),, mass ratio g=4

0.50
—@ abs 22
LI m---m21/22
- — 3322
0.40 m A— —A32/22
5 . 31/22
O 44/22
S w. 55/22
= 0.30 %__ -
S i Skt 3
2
5 0.2
020 .
Q
0.10 T A
X ¢ I — == -
S D S T T -

O'OQO.S -06 -04

Wednesday, 5 December 2012




s this generic? Seen in many other cases

Equal initial spins ) =Y, mass ratio g=2
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A new parameterization
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Understanding QNM Amplitudes:

A post-Newtonian Perspective

Wednesday, 5 December 2012



Understanding QNM Amplitudes:

A post-Newtonian Perspective

-2 For non-spinning systems, the 2| amplitude has
identical dependence on the mass ratio during
inspiral and ringdown

Wednesday, 5 December 2012



Understanding QNM Amplitudes:

A post-Newtonian Perspective

‘2 For non-spinning systems, the 2| amplitude has
identical dependence on the mass ratio during
inspiral and ringdown

-2 Spin correction to 21 (and all modes with [+m
odd) appear at order v/c beyond dominant
order

Wednesday, 5 December 2012



Understanding QNM Amplitudes:

A post-Newtonian Perspective

- For non-spinning systems, the 2| amplitude has
identical dependence on the mass ratio during
inspiral and ringdown

-2 Spin correction to 21 (and all modes with [+m
odd) appear at order v/c beyond dominant

order
-2~ Varies by factor 4.5 as spins change from -0.8 to +0.8

Wednesday, 5 December 2012



Understanding QNM Amplitudes:

A post-Newtonian Perspective

- For non-spinning systems, the 2| amplitude has
identical dependence on the mass ratio during
inspiral and ringdown

-2 Spin correction to 21| (and all modes with [+m
odd) appear at order v/c beyond dominant
order
-2~ Varies by factor 4.5 as spins change from -0.8 to +0.8

-2 Spin correction to 22 and 33 (and all modes
with [+m even) appear at order v3/c’

Wednesday, 5 December 2012



Understanding QNM Amplitudes:

A post-Newtonian Perspective

- For non-spinning systems, the 2| amplitude has
identical dependence on the mass ratio during
inspiral and ringdown

-2 Spin correction to 21| (and all modes with [+m
odd) appear at order v/c beyond dominant
order
-2~ Varies by factor 4.5 as spins change from -0.8 to +0.8

-2~ Spin correction to 22 and 33 (and all modes
with [+m even) appear at order v3/c’

-2~ Vary by 20% when spins change from -0.8 to +0.8

Wednesday, 5 December 2012



Understanding QNM Amplitudes:

A post-Newtonian Perspective

- For non-spinning systems, the 2| amplitude has
identical dependence on the mass ratio during
inspiral and ringdown

-2 Spin correction to 21 (and all modes with [+m
odd) appear at order v/c beyond dominant
order
-2~ Varies by factor 4.5 as spins change from -0.8 to +0.8

-2 Spin correction to 22 and 33 (and all modes
with [+m even) appear at order v3/c3

-2~ Vary by 20% when spins change from -0.8 to +0.8
-2~ Spins have a negligible effect on 22 and 33 amplitudes
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A9y = A9y /Ags = 0.43 [V1 — 4V — Xegt]
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Progenitor binary parameters from ringdowns
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Progenitor binary parameters from ringdowns

2’Add a ringdown signal to noise background
‘> The noise PSD is that expected in a detector

-2"Use Bayesian parameter estimation to
detect and measure parameters

‘» The outcome is posterior probability density
function of various signal parameters

‘® Provides estimates of accuracy with which
parameters can be measured
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Posterior PDF of Black Hole Mass
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Posterior PDF of Mass Ratio
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Posterior PDF of Effective Spin
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Posterior PDF of Component Spin
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Conclusions and Future Perspectives

‘2 In the restricted parameter space of alighed spin binaries it is
possible to extract progenitor parameters from ringdown
signal alone

> 22 and 33 amplitudes depend only on the mass ratio, 2|1 depends on
effective spin

> Verified by test simulations of precessing binaries

> Real systems are likely to be on a generic spherical orbits with
spins in arbitrary directions
- A signal model that describes the ringdown signal in the full parameter
space will be required for application with real data
> Confirm of these predictions with observations

> Advanced LIGO will come on-line in 2015, full sensitivity likely by 2018;
however, SNRs will not be large enough to disentangle different mode
amplitudes

‘¢ Einstein Telescope or LISA would be required for precise tests of these
predictions
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