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• Our current and next generation LIGO-Virgo type detectors are de-
signed to measure, up to an extremely high precision, the relative
change in the arm lengths of the interferometers.

• It would be useful to know whether the geometric arrangements of the
three nested interferometers comprising the ET detector

could ensure a high precision in the determination of the absolute
change of the separated arm lengths.

• The purpose of this talk is to convince the scientific committee involved
in GW detection that new perspectives will open with the capability of
measuring the change of absolute arm lengths.
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• General relativity is a metric theory of gravity which can also be inter-
preted as being a gauge theory.

• To simplify a number of considerations, including the determination of
the response of interferometric gravitational wave detectors, the “trans-
verse traceless” (TT) gauge is often used.

• While the application of the TT gauge in the pure vacuum case is
preferable and straightforward, the use of the TT part of the metric
perturbations requires a higher level of clarity and rigor when sources
are involved.

– Likewise the transverse part of the electric current in the Coulomb
gauge in electrodynamics, the sources for the TT metric perturba-
tions become non-local.

• The aim: To demonstrate that some of the conclusions concerning the
description of gravitational waves are influenced by the associated pe-
culiarity of the TT gauge.

– In particular, attention is called on the possibility that gravitational
radiation may produce an isotropic change in the spatial geometry
and that ET should be made to be sensitive to this isotropic change.
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The basics of the weak field approximation

• weak gravitational effects ⇐⇒ the geometry is nearly flat

• Assumption: the metric gαβ of the spacetime, according to the rela-
tion

gαβ = ηαβ + hαβ , (1)

differs “only” a little bit from the flat metric ηαβ of the Minkowski
spacetime, i.e., there exist a Minkowski-type coordinate system such
that

|hαβ| � 1 .

• It is well-known that two linear perturbations hαβ and h′αβ of the flat
Minkowski spacetime have to be considered equivalent whenever

h′αβ = hαβ + Lξηαβ = hαβ + ∂αξβ + ∂βξα (2)

with some infinitesimal vector field ξα determining the coordinate trans-
formation

xα → x′α = xα − ξα. (3)
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• The linearized Einstein equations can be shown to take the simple form

�h̄αβ = −16π
(1)

Tαβ (4)

provided h̄αβ is chosen to be the trace reversed of hαβ, i.e.,

h̄αβ = hαβ − 1
2
ηαβ h , (5)

as well as, h̄αβ satisfies the Lorentz gauge condition

∂αh̄αβ = 0 . (6)

• There always exists coordinate transformation of the form x′α = xα−ξα
such that (6) holds in the new gauge.

• Analogous arguments in electrodynamics:

– two vector potentials Aα and A′
α are known to be physically equivalent if there

exists a real function χ such that A′
α = Aα + ∂αχ .

– The field equations, whenever the gauge dependent vector potential Aα satisfies the
Lorentz gauge condition ∂αAα = 0, read as

�Aα = −4π Jα ,

where � = −∂2t +∇2 and Jα is the electric four current vector.
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• A coordinate transformation with ξα satisfying

�ξα = 0

leaves the Lorentz gauge condition (6) intact.

• Whenever

�h̄αβ = −16π
(1)

Tαβ

apparently all the components of h̄αβ possess radiative degrees of free-
dom.

• The solutions to the inhomogeneous equation using the well-known re-
tarded Green function read as

h̄αβ(t,x) = 4
∫ (1)

Tαβ(t−|x−x′|,x′)

|x−x′| d3x′ .

• “The above equation is formally an exact solution to the linearized Einstein field equa-

tion. However, it has a serious problem: It gives the impression that every component of

the metric perturbation is radiative. This is an unfortunate consequence of our gauge.”

(Scott A. Hughes, arXiv:0903.4877v3, March 2009)
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The “radiation” or TT gauge in the sourceless case

• Whenever we have no sources (only radiation) in the spacetime, i.e.,
Tab ≡ 0, by making use of the relations

�h̄αβ = 0 & �ξα = 0

the following conditions

h = hαα = 0 & h0β = 0 (β = 0, 1, 2, 3)

are known to hold.

• The Lorentz gauge condition ∂αh̄αβ = 0 , along with hαα = 0, guaran-
tees then that

hαβ =

(
0 0
0 hij

)
where the 3 × 3 matrix hij is transverse and traceless, hij = hTTij ,
i.e,

∂ihij = 0 & hii = 0 .

• The TT components are subject to �hTTij = 0 as then hαβ = h̄αβ.
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TT gauge in the non-vacuum case

• Is it possible to separate the radiative physical degrees of freedom in
the non-vacuum case?

• It has been known for long that gauge independent expressions can be
built up from the components of hαβ.

– It is also known that in the corresponding decomposition only the
TT part of hαβ obeys a wave equation.

– All the other components are subject to Poisson type equations.
It is usually said then that the associated “non-radiative” physical
degrees of freedom are tied to the matter sources.

– The intriguing problem is that the solutions to these Poisson
type equations can be written as instantaneous integrals over their
sources that are far away from the observation point. Accordingly,
a change in the source distribution, displaced by even astrophysical
distance scale, leads to an instantaneous change in the correspond-
ing field values at an observation point on Earth !!!
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• Start by picking up a “3+1” decomposition of hαβ

hαβ =

(
htt hti
hit hij

)
, where

htt = 2φ
hti = βi + ∂iγ
hij = hTT

ij + 1
3
Hδij + ∂(iεj) +

(
∂i∂j − 1

3
δij∇2

)
λ .

• Electrodynamics:

– Then a vector potential Aα may be decomposed as Aα = (−φ,Ai).
– The spatial part Ai of Aα can be split up into ‘transversal’ and ‘longitudinal’ part

as Ai = ATi + ∂iϕ, where ATi is such that ∂iATi = 0.

– This decomposition is unique if in addition the potential ϕ is guaranteed to tend
to zero while r → ∞ as the elliptic equation ∇2ϕ = ∂iAi possesses then a unique
solution.
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• In determining the expressions appearing in the above decomposition
the requirements

∂iβi = 0 , ∂iεi = 0 , ∂ihTT
ij = 0 , δijhTT

ij = 0 ,

along with the boundary conditions

γ → 0, εi → 0, λ→ 0, ∇2λ→ 0 while r →∞

are used, where H ≡ δijhij denotes the three-dimensional trace which
is related to h = hαα as h = H − 2φ.

• The decomposition is unique Ai = ATi + ∂iϕ if in addition the potential ϕ is guaranteed
to tend to zero while r →∞ as the elliptic equation ∇2ϕ = ∂iAi possesses then a unique
solution.
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• As we have discussed above the components of hαβ themselves are not
gauge invariant.

– The quantities {φ, γ, λ,H, βi, εi} are not gauge invariant either.

– However, the combinations

Φ ≡ −φ + γ̇ − 1

2
λ̈

Θ ≡ 1

3

(
H −∇2λ

)
Ξi ≡ βi −

1

2
ε̇i ,

along with the 3× 3 matrix hTT
ij , are gauge invariant.

• Electrodynamics:

– Φ = φ+ ∂tϕ and ATi are gauge invariant, and the Maxwell equation reads then as

∇2 Φ = −4π ρ

�ATi = −4π
[
Ji −

1

4π
∂i(∂tΦ)

]
where Ji denotes the spatial part of the electric four current vector Jα = (−ρ, Ji).
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The decomposition of the energy-momentum tensor

• Before providing the field equations relevant for these gauge invariant
expressions consider now the analogous decomposition

Tαβ =

(
Ttt Tti
Tit Tij

)
.

• Define ρ, Si, S, P , σij, σi by the relations

Ttt = ρ

Tti = Si + ∂iS

Tij = Pδij + σij + ∂(iσj) +

(
∂i∂j −

1

3
δij∇2

)
σ

with imposing the constraints

∂iSi = 0 , ∂iσi = 0 , ∂iσij = 0 , δijσij = 0

and applying the boundary, or fall off, conditions

S → 0, σi → 0, σ → 0, ∇2σ → 0 while r →∞ .
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The TT part of Tαβ

• In the generic case the Einstein’s and matter field equations have to be
solved simultaneously. We shall assume tacitly that Tαβ represents the
sources satisfying suitable (but unspecified) evolution equations.

• In the applied decomposition the conservation law ∂αTαβ = 0 reads
as

∇2S = ρ̇

∇2σ = −3

2
P +

3

2
Ṡ

∇2σi = 2Ṡi ,

where ρ, Si and P are given in terms of the components of Tαβ as
ρ = Ttt, Si = Tti − ∂iS and P = δijTij .

• These equations, along with Tαβ and the above boundary conditions,
completely determine S, σ and σi , and, in turn, σij.

• Accordingly, σij gets to be determined by the components of Tαβ as

σij = Tij − Pδij − ∂(iσj) −
(
∂i∂j − 1

3
δij∇2

)
σ .
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The linearized Einstein’s equations

• The Einstein’s equations Gαβ = 8πTαβ can then be given as

∇2Θ = −8πρ 8πS = −Θ̇

∇2Φ = 4π
(
ρ + 3P − 3Ṡ

)
8πσ = −Φ− 1

2
Θ

∇2Ξi = −16πSi 8πσi = −Ξ̇i

�hTT
ij = −16πσij

• Only the TT part of the metric satisfy a wave equation while all the
other components are subject to Poisson type equations.

• Misinterpretation: The sources are at astrophysical distances from
Earth
=⇒ GWs can be considered as if they were sourceless and they possess
the same type properties as if they were GWs in the pure vacuum case.

• What is wrong with this interpretation? The TT part of the energy-
momentum tensor

σij = Tij − Pδij − ∂(iσj) −
(
∂i∂j − 1

3
δij∇2

)
σ

is non-local !!! even if Tαβ may be of compact support.
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The implications by the non-locality of σij (1)

• The TT part hTT
ij of a solution hαβ to the evolution equation

�h̄αβ = −16π
(1)

Tαβ

is expected to be given as hTT
ij = Λij,klhkl , where

Λij,kl = PikPjl − 1
2
PijPkl

is assumed to be given in terms of an “elementary projection operator”
Pij. It follows from the above considerations that even if we are far
from the sources, it is completely fictitious to define Pij as

Pij = δij − 1
ω2kikj = δij − ninj ,

ki denotes the spatial wave number vector of the anticipated plain wave.

• The proper projection operator Pij, taking into account non-locality, is
given (see, e.g., Eq. (6.27) of Jackson’s book), as

Pij [V (x)]j = δij [V (x)]j + 1
4π
∂x
i

∫ (∂x′j [V (x′)]j)
|x−x′| d3x′ .
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The implications by the non-locality of σij (2)

• The arguments, aiming to determine the response of laser interferomet-
ric detectors to the arrival of GW signals, end up with the variant

d2Li(t)

dt2
= −Ri

tjtL
j (with i, j = 1, 2)

of the geodesic deviation equation, where Li(t) = Li0 + δLi(t) is meant
to denote the proper length of the arms with the assumption that
|δL| � |L0| .

• Then, the relationRitjt = −1
2
ḧTT
ij , which is adequate only in the vacuum

case, is applied to derive the familiar relation δLi(t) = 1
2
hTT
ij L

j
0 , where

as usual
d(δLi)

dt
|t0 = δLi|t0 = 0 are assumed.

• However, if we do want to make astrophysical observations it is better
not to exclude the existence of sources in which case the “tidal force
components” of the Riemann tensor read as

Ritjt = −1
2
ḧTT
ij + Φ,ij + Ξ̇(i,j) − 1

2
Θ̈δij .
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• It can be checked that Φ,ij ∼ 1
r3

and Ξ̇(i,j) ∼ 1
r2

. Nevertheless, since

Θ̈ ∼ 1
r

the variation of the proper lengths satisfies the relation

δLi(t) ≈ 1
2

[
hTT
ij + Θ δij

]
Lj0 . (7)

• Back-reaction has to be taken into account as the entire formalism gets
to be adequate only if Tαβ is replaced by Tαβ + tGWαβ , where tGWαβ consists
of all the higher order hαβ terms in the Einstein tensor.

• If this is done correctly the second term in (7) yields an observable
common mode type change in the spatial geometry at our detectors.

• Our current and next generation detectors are sensitive only to the
relative change in the arm lengths. In proposing ET at various funding
agencies it would be advantageous to emphasize that ET will be the
first detector sensitive to this isotropic change.

• The presence of the second term is also trying to tell us that not all
the released energy is stored by the “+” or “×” polarization states of
hTT
ij . Not negligible part may be converted into the expansion of the

universe which may also affect our success in detecting GWs by the
advanced detectors.


