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1 Introduction

Material properties play an important role in understanding thermal noise of complex
systems. Future gravitational wave detectors are proposed to be operated at cryogenic
temperatures. Thus, the knowledge of material properties at low temperatures is strongly
required to predict their thermal noise limited sensitivity. This document describes the
fundamental view of solid state physics behind relevant material properties for future
gravitational wave detectors. The focus is put on potential bulk materials that will be
used in these detectors - silicon and sapphire for cryogenic operation and fused silica
for room temperature use. Followed by an introduction relevant physical properties are
discussed for the above set of materials and summarized in form of interpolated values.
A description is given how the interpolated data was obtained and under which limits it
should be used. The data is also available in form of plain text �les that are attached to
this document.
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2 Basic relations on material

properties of solids

In future gravitational wave detectors mirrors and suspensions should be used at low
temperatures promising a thermal noise decrease of these components. Among these de-
tectors are KAGRA - focusing on sapphire as the cryogenic test mass material - and ET -
proposing silicon test masses. For noise calculations or construction issues (e. g. the e�-
cient extraction of absorbed laser light through the suspension �bers) detailed knowledge
of the material parameters is necessary especially at the low operational temperatures.
But the properties of solids at low temperature di�er signi�cantly from everyday expe-

rience at room temperature. Without knowing the processes determining the temperature
dependence of solids there is no sense in assuming properties for a low temperature op-
eration of these materials. For that reason the main concepts to understand and predict
the properties of solids at low temperatures are presented in this chapter. These concepts
are a necessary ingredient to de�ne the desired data sets on the thermal properties of
sapphire, silicon and fused silica as the most interesting materials in current and future
gravitational wave detectors.

2.1 Speci�c heat

Any object at non-zero temperature undergoes thermal motion. This is not only true
for the well known special case of a Brownian particle in a �uid. In the same way also
the atoms in a solid move around their equilibrium position driven by thermal energy.
Consequently such a motion stores energy in the system. The following description can
be found in any standard text book on solid state physics, e. g. see Ref. [1, 2]. There a
more detailed view on Bose-Einstein statistics, Debye's and Einstein's model on lattice
vibrations can be found.
The heat capacity C exactly describes this amount of thermal energy. To be exact it

links the change of temperature T to a change in the inner energy U of the solid

C =
dU

dT
. (2.1)

From this de�nition it is clear that knowing the function U(T ) immediately gives the
solution to the desired values for the speci�c heat. Indeed the description using phonon
statistics gives further insight into such a calculation. With the help of the density of
phonon states D(ε) and the population density of phonons g(ε, T ) the inner energy reads

U(T ) =

∫
dε ε× g(ε, T )×D(ε) , (2.2)
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with ε being the energy of a single phonon state. In this approach the change of the phonon
dispersion and consequently of the density of states D(ε) with respect to temperature has
been neglected. Thus temperature only a�ects the inner energy through the population
density of phonons. As phonons are bosonic particles the Bose-Einstein statistics (see e. g.
Ref. [3]) have been used for the population density

g(ε) =
1

exp
(

ε
kBT

)
− 1

, (2.3)

where kB represents Boltzmann's constant.
A detailed calculation then requires knowledge of the exact dispersion relation of the

respective solid. But two approximations have been proven successful in describing the
basic behavior. Using the Debye model the acoustical phonon branches are described by
a linear and isotropic relation between radial frequency ω and wave number q as

ω(q) = v × q . (2.4)

This behavior is adopted from the classical propagation of a sound wave with velocity v.
It results in a quadratic density of states which is cut o� at a maximum frequency called
the Debye-frequency ωD. Further the optical branches are approximated as delta peaks
in the density of states due to a model of Einstein. At low temperatures only the acoustic
branches give rise to a signi�cant contribution to speci�c heat. For the case of crystals
with only one element in the atomic basis it reads

Ca(T ) ≈ 3NkB
4π4

5

(
T

θD

)3

. (2.5)

Here N is the number of atoms while θD marks the Debye temperature and is obtained
from a �t to the original phonon dispersion relation. Crystals bearing a single element in
the atomic basis exhibit only acoustic branches and are fully described by Debye's model.
For other crystals also the optical phonons have to be taken into account especially at
high temperatures. Such an approach arrives at the Dulong-Petit law with

Ca(T ) + Co(T ) ≈ 3NkB . (2.6)

From this number the molar heat capacity follows by dividing the heat capacity by the
molar amount of the sample n via

cm =
C

n
= 3R ≈ 25 Jmol−1K−1 (2.7)

For many metals the Debye temperature is well below room temperature and their speci�c
heat at room temperature follows the prediction of Dulong and Petit. For silicon the
Debye temperature is around 640K. Thus the stationary value is not reached at room
temperature. The general behavior of the molar heat capacity with respect to temperature
is depicted in Fig. 2.1.
As the de�nition of phonons requires a periodicity in the atomic structure it becomes

meaningless for amorphous solids. But also in this case a similar behavior of the speci�c
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Figure 2.1: Temperature behavior of the molar speci�c heat predicted by Debye's theory.

heat like in crystals is observed. Here again the atoms move within their potential around
the equilibrium position. At elevated temperatures each particle follows the equipartition
theorem. Consequently, due to the three spatial dimensions and potential and kinetic
energy each particle contributes an amount of 3kBT to the inner energy of the solid.
Lowering the temperature results in the decrease of the speci�c heat. At low temper-

atures only long-wave phonons are excited. As these phonons are not able to probe the
local structural disorder of an amorphous solid one is to expect that the Debye theory
is still valid for amorphous solids. Nevertheless at very low temperatures (below 1K fur
amorphous silica) a deviation from the T 3 law has been measured. This deviation can be
explained in terms of tunneling processes within the glassy structure (see e. g. Ref. [4]).
In principle the same treatment can be repeated to obtain the speci�c heat due to

electrons. Here the only di�erence consists in replacing the Bose-Einstein distribution in
Eq. 2.2 by the Fermi distribution f(ε, T ). For metals a detailed investigation reveals an
e�ect of

Ce(T ) ≈ D(εF )
π2

3
k2BT , (2.8)

for temperatures low compared to the Fermi-temperature TF of the electrons. As TF is
in the order of 10 000K this assumption is well ful�lled at room temperature and below.
It gives a linear impact of temperature on the speci�c heat due to electrons. With its T 3

law the phononic contribution covers the electronic contribution at temperatures above
∼ 10K. Only at very low temperatures the electronic contribution becomes visible.
Most calculations demand for the speci�c heat cp that is normalized to the mass of the

material m. The connection to the heat capacity C discussed above reads

cp =
C

m
. (2.9)

6



2.2 Thermal conductivity

The parameter of thermal conductivity describes the e�ectiveness of a heat transport
between regions of a solid exhibiting di�erent temperatures. It is de�ned connecting the
heat current density j to a temperature gradient ∇T via

j = κ∇T . (2.10)

This relation is nicely illustrated by the thermal power P transported between the two
ends of a cylinder of length L and cross section A. The coe�cient of thermal conductivity
κ then follows from the relation

P = κ
A

L
, (2.11)

showing a unit of Wm−1K−1.
In a simple picture of solid state physics the process of thermal conductivity can be

illustrated utilizing phonons again. As a starting point for this illustration the case of
two regions showing a temperature di�erence remains. These two regions also exhibit
a di�erent phonon population. Due to the bosonic character of phonons their number
is not �xed in the system and consequently increases at higher temperatures. Looking
at phonons as particles carrying an energy portion they will start to di�use within the
system. And clearly as more phonons are situated at the hot part of the sample there will
be an e�ective �ow of phonons (and thermal energy) from the hotter part to the colder
part. Thus the heat �ow between these two regions can be explained by the di�usion of
phonons. By an analytic treatment of this process the relation

κ =
1

3
cV vΛ , (2.12)

can be found where cV is speci�c heat per volume and v the group velocity of phonons.
The free path length Λ describes the e�ect of phonon collisions with various crystal defects.
Any structure breaking the crystalline symmetry will act as a scattering center for phonons
and will decrease their free path length. Lattice defects as well as thermally moving atoms
reveal the most important impact on thermal conductivity. The above equation helps
explaining the typical temperature dependence of thermal conductivity in crystals. This
general behavior is depicted in Fig. 2.2.
Starting at room temperature the vibrations of atoms in the crystal are quite large.

This motion leads to a quite small free path length resulting in a relatively small thermal
conductivity. In this regime the thermal motion is even a stronger scattering center than
defects. Thus the thermal conductivity at room temperature and above is not sensitive to
the defect concentrations for many materials. One nice example of this can be found for
di�erently doped silicon samples showing nearly the same thermal conductivity at 300K
(see, e. g., Ref. [5]).
Decreasing the temperature will lead to an increase of thermal conductivity. This

process is due to the reduction of thermal motion of lattice atoms and raises the path
length. At intermediate temperatures (20K to 100K) the maximum value of thermal
conductivity appears being limited by the phonon scattering on impurities. Thus a strong
dependence of the maximum κ on crystal defects is experimentally observed. The above
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Figure 2.2: Schematic behavior of thermal conductivity in crystals. At low temperatures
the freeze out of phonons as carriers for heat energy leads to a T 3 behav-
ior. Also the phonon mean free path - and consequently κ - is limited by
the geometrical dimension of the sample. Approaching higher temperatures
the speci�c heat becomes �at and the free phonon path is limited by scatter
processes with lattice defects. Finally at elevated temperatures (also at room
temperature) thermal vibrations of the lattice atoms form the most important
scatter centers for phonons performing the heat transport. This e�ect leads
to a decrease of κ for increasing temperatures.

considerations are illustrated on the e�ect of oxygen and boron impurities in silicon in
Fig. 2.3. The same mechanism explains that also an isotopic mixture of atoms in a crystal
act as scatter centers and reduce the thermal conductivity. Thus very pure materials
show a large increase of maximum κ for isotopically enriched samples. On an isotopically
enriched silicon sample a maximum κ of ∼ 30 000Wm−1K−1 has been measured [6]
indicating an increase to standard silicon by a factor of 6.
Further decreasing the temperature below 20K does not change the phonon path length

anymore. This regime is called Casimir regime and can be understood in the following
manner. In general a temperature decrease will result in an increased mean free path
of phonons as the thermal motion of lattice atoms is strongly suppressed. Consequently
at a certain temperature Λ overcomes the dimension of the sample especially for pure
samples. In this regime the phonon transport within the sample shows a ballistic behavior.
Phonon scattering then only occurs at the sample surface as the most fundamental defect
of any crystal. Thus the surface takes the role of the limiting scatter source at very
low temperatures. The mean free path length is then replaced by the typical sample
dimension and becomes constant at low temperature. In the Casimir regime a change
to smaller samples promises a decrease of thermal conductivity which is also observed in
experiments. An investigation of this e�ect is exemplarily presented in Fig. 2.4(a). Further
a polishing of the surface results in an increase of the measured thermal conductivity.
As the polished surface is able not only to scatter phonons but also to re�ect major
parts without scattering, i. e. without any change of phonon momentum, explains the
experimental �nding.
As in the Casimir regime the mean free phonon path remains constant it gives no

temperature dependence for κ. Instead the temperature decrease lowers the number of
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Figure 2.3: Impact of defects on the thermal conductivity of silicon. Panel (a) compares
two samples with di�erent oxygen concentrations. Data set A represents curve
21 and data set B curve 24 from Touloukian [5]. For comparison the T 3 law
expected at low temperatures is inserted. Further the recommended values
of thermal conductivity in silicon from Ref. [5] have been added. Panel (b)
shows the e�ect of boron doping on thermal conductivity of silicon. Here the
data of a crystalline silicon layer [7] has been used to allow the comparison
between samples with identical parameters but the boron content. Due to
its reduced size the layer conductivity of is below the recommended values.
This maximum κ is further reduced with growing boron content. Also at low
temperatures a signi�cant decrease is visible due to the boron impurities.

excited phonons in the sample as carriers of thermal energy. This process is considered
by the appearance of the speci�c heat in Eq. 2.12. As at low temperatures the speci�c
heat follows a T 3 dependence (see Eq. 2.5) also κ undergoes the same strong reduction.
Fig. 2.3(a) and Fig. 2.4(a) illustrate the discussed behavior.
In the whole consideration the phonon dispersion has been assumed to be independent

from temperature. This assumption implies a constant group velocity v of phonons.
Consequently this measure does not introduce any temperature dependence on thermal
conductivity in our discussion.
In contrast to speci�c heat the thermal conductivity is strongly sensitive to the struc-

tural composition of the solid, i. e. for crystalline or amorphous solids. The thermal
conductivity of amorphous solids is many orders of magnitude below that of crystals.
This is understandable by considering amorphous solids as crystals with a large amount
of defects. Consequently there will be a large number of scatter processes leading to
the observed temperature dependence. A good model system for the above e�ect can be
found in the comparison of amorphous fused silica with crystalline quartz. Both materials
show the same chemical constitution but a completely di�erent thermal conductivity as
illustrated in Fig. 2.5.

9



1 1 0 1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

 t = 1 . 0 6  m m
 t = 2 . 1 4  m m
 t = 4 . 0 0  m m
 t = 7 . 2 5  m m
 T 3  l a w

the
rm

al 
co

nd
uc

tivi
ty 

κ (
W/

m/
K)

t e m p e r a t u r e  ( K )
(a) LiF

0 . 1 1 1 0 1 0 01 0 - 4

1 0 - 2

1 0 0

1 0 2

1 0 4

 r o u g h  s u r f a c e
 T 3  f i t
 p o l i s h e d  s u r f a c e
 T 3  f i tthe

rm
al 

co
nd

uc
tivi

ty 
κ (

W/
m/

K)

t e m p e r a t u r e  ( K )
(b) Si

Figure 2.4: (a)E�ect of sample thickness t on thermal conductivity for LiF. The data are
taken from Thacher [8]. Due to Casimir's theory at low temperatures the
phonon path lengths are limited by the geometry and become independent
from temperature. Consequently κ follows the T 3 behavior of the speci�c
heat at low temperatures. At high temperatures the mean free phonon path
is dominated by scattering on defects and phonons, leading to the observed co-
incidence of the samples' thermal conductivity. (b) E�ect of surface polishing
on the thermal conductivity of silicon. The data are taken from Ref. [4].
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Figure 2.5: E�ect of crystalline structure on the thermal conductivity in solids. Although
fused silica and crystalline quartz show the same chemical constitution they
show signi�cant di�erences in their thermal conductivity. Especially the amor-
phous character of fused silica leads to a decrease of κ. Below 100K κ of fused
silica is more than two orders of magnitude below its crystalline counterpart.
The presented data is taken from Zeller and Pohl [9].
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2.3 Thermal expansion

In real solids a temperature change gives rise to a length change of the sample. This e�ect
of thermal expansion is characterized by the coe�cient α de�ned via

α =
1

L

dL

dT
, (2.13)

where L represent the geometrical length of the sample.
In a microscopic picture thermal expansion originates from a change in the binding

length of a crystal. Thus the binding potential should be investigated to explain this
e�ect. A typical approximation can be found in the model of a harmonic potential leading
to a linear force law between atoms. Such a potential exhibits equidistant energy states.
Increasing the temperature excites the atom to a higher energy state leading to stronger
vibrations. Due to the symmetry of the harmonic potential the mean position of the
lattice atom is independent from temperature. Thus thermal expansion vanished for a
purely harmonic potential.
Indeed, introducing an anharmonic contribution to the potential causes the mean bind-

ing length to depend on the energetic state of the system. Consequently a thermal length
change can be observed in such system. For this reason the e�ect of thermal expansion is
speci�ed as an anharmonic e�ect. The discussed process is sketched in Fig. 2.6.

E

x
Figure 2.6: Thermal expansion as an e�ect of the anharmonic perturbation of the bind-

ing potential. The gray curve illustrates the pure harmonic potential. The
average binding length reveals not to be energy dependent resulting in a zero
thermal expansion. Adding an anharmonic contribution (black lines) changes
the average position with energy. Thus a temperature change leads to an
e�ective change of the binding length and a non-zero thermal expansion.

In solids the compressional modulus characterizes the energy necessary for a deforma-
tion, i. e. a change in binding length. Further thermal energy being independent from
the crystal properties feeds the process of thermal expansion. Thus a rule of thumb can
be derived connecting the existence of a high compressional modulus with a low thermal
expansion and vice versa.
Finally the di�erence between crystalline and amorphous materials shall be discussed.

As a crystal is oriented in a strongly symmetric manner any change of binding length will
add to the total expansion given by the macroscopic parameter α. In contrast amorphous
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materials show rotations and irregularities in their atomic constitution. Thus a change
of interatomic binding length can be released within the sample. The deformation of the
sample surface is reduced by this e�ect leading to a lower coe�cient α for amorphous
materials. This behavior can be illustrated by comparing fused silica and crystalline
quartz again. With a mass density of 2650 kgm−3 crystalline quartz is denser than its
amorphous counterpart showing a density of 2200 kgm−3. The latter fact supports the
idea of the amorphous structure to be more loose and irregular compared to the crystalline
one. At room temperature this manifests in α = 1.4× 10−5K−1 for crystalline quartz [5]
and α = 3.4× 10−7K−1 for fused silica (Spectrosil 1400) [10].

2.4 Thermo-optic coe�cient

Solids are also known to interact with electromagnetic radiation. One working mechanism
consists in the formation of electric dipoles between the electrons and the lattice atoms.
The incoming electromagnetic wave drives these oscillations of the electric dipoles. In turn
due to their motion the dipoles emit a secondary wave depending on the electronic and
lattice constitution of the crystal. In this classical oscillator model suggested by Lorentz
(see Lorentz oscillator e. g. in Ref. [11]) the interaction of light with dipoles determine the
refractive index of matter.
A change in the binding length is able also to change the interaction between light and

matter. So via thermal expansion it is also likely to observe a temperature dependence
of the refractive index. The latter is characterized by the thermo-optical parameter

β =
dn

dT
. (2.14)

As the structural changes in the solid have to vanish due to the third law of thermody-
namics also the coe�cient β has to approach zero for low temperatures.

2.5 Elastic parameters

Under an external force any material undergoes deformations. For any point within the
sample (x1, x2, x3) the displacement from the unperturbed shape is represented by the
vector u(x1, x2, x3) = (ux, uy, uz). Based on this quantity the strain tensor uij is de�ned
as

uij =
1

2

(
∂ui
xj

+
∂uj
xi

)
, (2.15)

exhibiting a symmetry under the commutation of indices.
Further the elastic load on the material is summarized by another tensor, the stress

tensor σij. It represents the force ~F acting on a surface element d~S of a piece of material
and is de�ned via

dFi = σij dSj , (2.16)

where Einstein's sum convention has been used.
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Then the elastic properties of a material represent the link between its deformation
(in terms of strain) and the mechanical forces in the material (in terms of stress). In
the leading order this relation becomes linear and is known as Hooke's law. For isotropic
materials Young's modulus Y and Poisson ratio ν fully describe a solid's elastic properties
leading to the relations [12]

uxx =
1

Y
σxx −

ν

Y
[σyy + σzz] , (2.17)

uxy =
1 + ν

Y
σxy . (2.18)

The equations remain valid for a cyclic permutation of indices.
In the anisotropic case a tensor of fourth order is needed to link stress and strain in

a material. This tensor is called sti�ness tensor Cijkl and results in the formulation of
Hooke's law as

σij = Cijkl ukl . (2.19)

This tensor turns out to be symmetric under commutations of i↔ j, k ↔ l and the whole
index pairs ij ↔ kl. If the crystal lacks any symmetry (i. e. for the triclinic class) this
results in 21 independent sti�ness constants. For a simple representation of a tensor of
fourth order the Voigt notation is used. It relies on the contraction of index pairs following

11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6 , (2.20)

allowing the tranformation to a two-dimensional matrix. For the triclinic case the Voigt
notation of the sti�ness tensor reads

Ĉij =


c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26
c33 c34 c35 c36

c44 c45 c46
c55 c56

c66

 . (2.21)

As the matrix is symmetric only the upper half of its components is presented.
Additional symmetries of the crystal lead to the reduction of independent coe�cients

and to a simpli�cation of the above structure. The resulting form of the sti�ness tensor
can be found in standard text books of the subject, e. g. in [13]. In the most symmetric
case of an isotropic body one �nds a sti�ness matrix of

Ĉ
(iso)
ij =


c11 c12 c12 0 0 0

c11 c12 0 0 0
c11 0 0 0

c44 0 0
c44 0

c44

 . (2.22)
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The relation to the parameters discussed above (Y , ν) is given by the relations

c11 =
(1− ν)Y

(1 + ν)(1− 2ν)
, c12 =

νY

(1 + ν)(1− 2ν)
, c44 =

Y

1 + ν
. (2.23)

Sometimes it is useful to adopt the tensor components to a change of the coordinate
system. This represents one possibility to account for di�erent crystal orientation in any
mechanical analysis. Any linear coordinate transform (unit vectors ei → e′i) can be
described by a matrix Aij. Then the components in the new basis x′i follow from

x′i = Aijxj , (2.24)

where the components in the old basis are given by xj. In a similar way the elasticity
tensor (being of fourth rank) transforms under the same basis change following

C ′ijkl = Ai îAj ĵAk k̂Al l̂ × Cîĵk̂l̂ . (2.25)

Note that this transformation law is only valid in the four dimensional treatment of the
elasticity tensor. It does not hold under the two-dimensional simpli�cation in terms of
the Voigt notation.
In a �nite element approach (using COMSOL [14]) there are even simpler methods to

allow for a crystalline reorientation. One is to rotate the geometry in the global coordinate
system. A second possibility is to rotate the material coordinate system with respect to
the global coordinate system.

14



3 Data sets of thermal properties for

selected materials

3.1 Fused Silica

3.1.1 Elastic properties

Due to its amorphous structure fused silica exhibits an isotropic behavior also in terms of
elasticity. It is thus characterized by the parameters of Young's modulus Y and Poisson
ratio ν. Following McSkimin [15] their value at 20 ◦C read

Y = 72.9GPa , and ν = 0.155 . (3.1)

In contrast to silicon or sapphire a decrease of Young's modulus is observed heading to
lower temperatures. As the typical change from 20 ◦C down to −200 ◦C is below 5% [15]
it can be neglected in most calculations. A typical density for fused silica is taken from
Ref. [15] as ρ = 2203 kgm−3.

3.1.2 Thermal properties

Thermal expansion
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Experimental values have been taken from measurements on Spectrosil 1400 by White
[10]. Note that α is negative below 187K.
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Thermo-optic coe�cient
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Experimental values have been taken from measurements on Corning 7980 by Leviton

and Frey [16].

Speci�c heat
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Experimental values have been taken from Touloukian [5].
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Thermal conductivity
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Experimental values have been taken from Touloukian [5].

Data set

An excerpt of the numerical data is given in the following table. Extrapolations in the low
temperature regime have been performed assuming a T 3 law. Only for β a linear relation
has been used.

T (K) α (K−1) β (K−1) at
λ=1500nm

β (K−1) at
λ=1000nm

Cp
(J kg−1K−1)

κ
(Wm−1K−1)

1 −3.38× 10−9 3.38× 10−8 3.48× 10−8 1.86× 10−3 2.40× 10−2

2 −1.28× 10−8 6.75× 10−8 6.96× 10−8 1.49× 10−2 5.40× 10−2

3 −2.48× 10−8 1.01× 10−7 1.04× 10−7 5.35× 10−2 8.00× 10−2

4 −3.87× 10−8 1.35× 10−7 1.39× 10−7 1.58× 10−1 1.02× 10−1

5 −5.59× 10−8 1.69× 10−7 1.74× 10−7 3.51× 10−1 1.18× 10−1

6 −7.67× 10−8 2.03× 10−7 2.09× 10−7 7.11× 10−1 1.24× 10−1

7 −1.00× 10−7 2.36× 10−7 2.44× 10−7 1.24 1.25× 10−1

8 −1.30× 10−7 2.70× 10−7 2.78× 10−7 1.98 1.26× 10−1

9 −1.64× 10−7 3.04× 10−7 3.13× 10−7 2.97 1.27× 10−1

10 −2.04× 10−7 3.38× 10−7 3.48× 10−7 4.16 1.27× 10−1

12 −3.18× 10−7 4.05× 10−7 4.18× 10−7 7.01 1.30× 10−1

14 −4.25× 10−7 4.73× 10−7 4.87× 10−7 1.06× 101 1.34× 10−1

16 −5.01× 10−7 5.40× 10−7 5.57× 10−7 1.47× 101 1.39× 10−1

18 −5.62× 10−7 6.08× 10−7 6.26× 10−7 1.94× 101 1.45× 10−1

20 −6.11× 10−7 6.75× 10−7 6.96× 10−7 2.45× 101 1.53× 10−1

22 −6.52× 10−7 7.43× 10−7 7.66× 10−7 2.99× 101 1.61× 10−1
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T (K) α (K−1) β (K−1) at
λ=1500nm

β (K−1) at
λ=1000nm

Cp
(J kg−1K−1)

κ
(Wm−1K−1)

24 −6.84× 10−7 8.10× 10−7 8.35× 10−7 3.55× 101 1.71× 10−1

26 −7.09× 10−7 8.78× 10−7 9.05× 10−7 4.14× 101 1.81× 10−1

28 −7.29× 10−7 9.45× 10−7 9.74× 10−7 4.74× 101 1.91× 10−1

30 −7.46× 10−7 1.01× 10−6 1.04× 10−6 5.35× 101 2.02× 10−1

32 −7.61× 10−7 1.08× 10−6 1.11× 10−6 5.95× 101 2.14× 10−1

34 −7.74× 10−7 1.15× 10−6 1.18× 10−6 6.55× 101 2.26× 10−1

36 −7.85× 10−7 1.22× 10−6 1.25× 10−6 7.16× 101 2.39× 10−1

38 −7.92× 10−7 1.28× 10−6 1.32× 10−6 7.77× 101 2.52× 10−1

40 −7.98× 10−7 1.35× 10−6 1.39× 10−6 8.40× 101 2.66× 10−1

45 −8.08× 10−7 1.52× 10−6 1.57× 10−6 1.00× 102 3.03× 10−1

50 −8.08× 10−7 1.69× 10−6 1.74× 10−6 1.18× 102 3.40× 10−1

55 −8.04× 10−7 1.87× 10−6 1.91× 10−6 1.35× 102 3.75× 10−1

60 −7.96× 10−7 2.04× 10−6 2.07× 10−6 1.52× 102 4.10× 10−1

65 −7.81× 10−7 2.21× 10−6 2.24× 10−6 1.68× 102 4.45× 10−1

70 −7.63× 10−7 2.39× 10−6 2.40× 10−6 1.84× 102 4.80× 10−1

75 −7.39× 10−7 2.56× 10−6 2.57× 10−6 2.00× 102 5.15× 10−1

80 −7.15× 10−7 2.73× 10−6 2.73× 10−6 2.16× 102 5.50× 10−1

85 −6.90× 10−7 2.90× 10−6 2.89× 10−6 2.31× 102 5.85× 10−1

90 −6.64× 10−7 3.08× 10−6 3.05× 10−6 2.47× 102 6.20× 10−1

95 −6.38× 10−7 3.25× 10−6 3.22× 10−6 2.62× 102 6.56× 10−1

100 −6.10× 10−7 3.43× 10−6 3.39× 10−6 2.78× 102 6.90× 10−1

110 −5.45× 10−7 3.82× 10−6 3.81× 10−6 3.08× 102 7.50× 10−1

120 −4.75× 10−7 4.19× 10−6 4.21× 10−6 3.39× 102 8.04× 10−1

130 −4.05× 10−7 4.48× 10−6 4.52× 10−6 3.68× 102 8.56× 10−1

140 −3.29× 10−7 4.74× 10−6 4.80× 10−6 3.97× 102 9.05× 10−1

150 −2.53× 10−7 4.98× 10−6 5.05× 10−6 4.24× 102 9.50× 10−1

160 −1.81× 10−7 5.22× 10−6 5.30× 10−6 4.51× 102 9.92× 10−1

170 −1.12× 10−7 5.47× 10−6 5.55× 10−6 4.77× 102 1.03
180 −4.62× 10−8 5.71× 10−6 5.78× 10−6 5.03× 102 1.07
190 1.48× 10−8 5.94× 10−6 6.01× 10−6 5.28× 102 1.11
200 7.14× 10−8 6.18× 10−6 6.24× 10−6 5.52× 102 1.14

210 1.20× 10−7 6.42× 10−6 6.48× 10−6 5.77× 102 1.17
220 1.56× 10−7 6.66× 10−6 6.71× 10−6 6.02× 102 1.20
230 1.87× 10−7 6.89× 10−6 6.94× 10−6 6.26× 102 1.23
240 2.15× 10−7 7.13× 10−6 7.18× 10−6 6.49× 102 1.26
250 2.39× 10−7 7.37× 10−6 7.42× 10−6 6.71× 102 1.28

260 2.61× 10−7 7.61× 10−6 7.65× 10−6 6.90× 102 1.30
270 2.83× 10−7 7.85× 10−6 7.89× 10−6 7.09× 102 1.32
280 3.04× 10−7 8.09× 10−6 8.13× 10−6 7.27× 102 1.34
290 3.23× 10−7 8.33× 10−6 8.36× 10−6 7.44× 102 1.36
300 3.43× 10−7 8.57× 10−6 8.60× 10−6 7.61× 102 1.38

18



3.2 Sapphire

3.2.1 Lattice structure

In the following the lattice properties of sapphire have been taken from Ref. [17]. Sapphire
condensates in a trigonal crystal system belonging to the point group D3d. Thus its unit
cell can be described with a rhombohedral basis given by

a1 =

(√
3

2
s,−s

2
, r

)
, a2 = (0, s, r) , a3 =

(
−
√

3

2
s,−s

2
, r

)
. (3.2)

Here the x-axis is oriented along a twofold axis of the crystal and s and r represent the
lattice constants. They are transformed to the more usual constants of a hexagonal system
via

3r = cH = 12.99Å ,
√

3s = aH = 4.76Å . (3.3)

The rhombohedral unit cell shows a total of 4 Al and 6 O atoms as the atomic basis of one
unit cell. It can be transformed into a hexagonal unit cell by the following modi�cation

a1 − a2 =
√

3s

(
1

2
,−
√

3

2
, 0

)
= aH

(
1

2
,−
√

3

2
, 0

)
= A1 , (3.4)

a2 − a3 =
√

3s

(
1

2
,

√
3

2
, 0

)
= aH

(
1

2
,

√
3

2
, 0

)
= A2 , (3.5)

a1 + a2 + a3 = (0, 0, 3r) = cH(0, 0, 1) = A3 . (3.6)

The basis vectorsAi represent a hexahedral lattice with the usual lattice constants aH and
cH . The bene�t of a simpler lattice structure is accompanied by an increased unit cell vol-
ume leading to an atomic basis consisting of 30 atoms instead of 10 for the rhombohedral
unit cell.
The growth of large sapphire crystals is restricted to three major orientations [18]:
{101̄0} (M-plane), {112̄0} (A-plane) and {11̄02} (R-plane). Here the four-index scheme
of labeling crystal planes has been used as lattice symmetries are easier to be identi�ed
within this system. In this notation indexing a lattice plane by (hkil) represents a plane
with the classical miller indeces of (hkl) while the index i is redundant and only inserted
to realize symmetries. It follows the relation i = −h − k. To illustrate the orientation
of the above planes it is helpful to present their normal vector in real space. For this
purpose the reciprocal lattice vectors of Ai have to be calculated using the relation

B1 =
2π

Ω0

(A2 ×A3) , Ω0 ≡ A1 · (A2 ×A3) , (3.7)

and its cyclic permutations. Ω0 represents the volume of the hexagonal unit cell. This
calculation reveals

B1 =
4π√
3aH

(√
3

2
,−1

2
, 0

)
, B2 =

4π√
3aH

(√
3

2
,
1

2
, 0

)
, B3 =

2π

cH
(0, 0, 1) . (3.8)

Knowing the inverse lattice vectors allows to calculate the surface normals in real space
revealing the results given in Tab. 3.2. A visualization of the planes is given in Fig. 3.1.
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(a) C-plane (b) M-plane (c) A-plane (d) R-plane

Figure 3.1: Visualization of the major growing planes in sapphire. The 3-fold axis is
along the normal to the hexagonal area while the 2-fold axes are along the
lines between the center of the hexagonal area to one lattice point.

3.2.2 Elastic properties

The point group of sapphire D3d allows the appearence of six independent elastic con-
stants. In the Voigt notation the elastic sti�ness tensor reads

Ĉij =


c11 c12 c13 c14 0 0

c11 c13 −c14 0 0
c33 0 0 0

c44 0 0
c44 c14

c66

 , (3.9)

where the component c66 follows the relation

c66 =
1

2
(c11 − c12) . (3.10)

The elastic constants at room temperature as well as their behavior at lower temperatures
have been measured by Te�t [19]. In his work Te�t measured the elastic constants down
to 80K and extrapolated his results down to 0K. Due to this extrapolation the relative
change in each elastic component turns out to be below 3% being negligibly small for
most practical calculations. The measured elastic constants at 27 ◦C are taken from [20]

Table 3.2: Normal vectors of characteristic growth directions of sapphire in real space.
The normal vectors are presented in cartesian coordinates.

plane normal vector n comments

C-plane (0001) B3 ∝ (0, 0, 1) 3-fold axis
M-plane (101̄0) B1 ∝ (

√
3/2,−1/2, 0) bisectrix of two 2-fold axes

A-plane (112̄0) B1 + B2 ∝ (1, 0, 0) 2-fold axis
R-plane (11̄02) B1 −B2 + 2B3 ∝ (0,−1/

√
3, aH/cH)

20



and read

c11 = 490.2GPa, c12 = 165.4GPa, c33 = 490.2GPa, (3.11)

c13 = 113.0GPa, c14 = −23.2GPa, c44 = 145.4GPa, (3.12)

⇒ c66 = 162.4GPa . (3.13)

A typical density of sapphire reads

ρ = 3980 kgm−3 . (3.14)

In noise calculations the anisotropic character of sapphire has to be considered. With
this respect typical �nite element codes allow to orient the geometry axis within the
coordinates of the elastic tensor. The other way presented here is to transform the elastic
tensor to new coordinates and present the new component values of this tensor. Table 3.3
illustrates the results of this process.

21



Table 3.3: Elasticity tensor for sapphire along di�erent crystallographic axes. The Voigt
notation Ĉij is used to show the components of the elasticity tensor. In the
presented coordinates the z axis is oriented along the growing direction. All
presented values are valid for a temperature of 27 ◦C and taken from [20].

orientation Aij Ĉij

A-cut

0 0 −1
0 1 0
1 0 0



c33 c13 c13 0 0 0

c11 c12 0 0 c14
c11 0 0 −c14

c66 −c14 0
c44 0

c44



M-cut

 0 0 −1
1
2

√
3
2

0√
3
2
−1

2
0



c33 c13 c13 0 0 0

c11 c12 0 −c14 0
c11 0 c14 0

c66 0 −c14
c44 0

c44


c11 = 490.2GPa , c12 = 165.4GPa , c33 = 490.2GPa , c13 = 113.0GPa ,

c14 = −23.2GPa , c44 = 145.4GPa , c66 = 162.4GPa .

R-cut


1 0 0

0
√
3χ√

3χ2+1
− 1√

3χ2+1

0 1√
3χ2+1

√
3χ√

3χ2+1


χ ≡ aH/cH


e11 e12 e13 e14 0 0

e22 e23 e24 0 0
e33 e34 0 0

e44 0 0
e55 e56

e66


e11 = 490.2GPa , e22 = 466.9GPa , e33 = 424.9GPa , e12 = 107.0GPa ,

e13 = 171.4GPa , e23 = 157.3GPa , e44 = 189.7GPa , e55 = 178.5GPa ,

e66 = 129.3GPa , e14 = −13.8GPa , e24 = 4.3GPa , e34 = −14.2GPa ,

e56 = 2.2GPa .
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3.2.3 Thermal properties

Thermal expansion
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Experimental values have been taken from White [21]. The directions α‖ and α⊥ are
given with respect to the three-fold axis in sapphire.

Speci�c heat
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Experimental values have been taken from Touloukian [5].
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Thermal conductivity
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Experimental values have been taken from Touloukian [5]. The �t curve follows the

experimental data for large and pure samples. As in such samples the in�uence of the
surface and defects is minimized the presented curve serves as an upper bound on sapphire.
Although the sapphire structure allows for an anisotropic behavior of thermal conductivity
no di�erences are discussed in the literature.

Thermo-optic coe�cient

In the literature there exist a few publications reporting on the temperature dependent
refractive index (e. g. Ref. [22, 23]). Typically they refer to a direct measurement of
the refractive index and obtain a value for beta by a numerical derivation of a �t to the
measured data. Due to the small changes of n at low temperatures the inaccuracy of
this analysis scheme becomes signi�cant especially at low temperatures below ∼ 100K.
Further results for a wavelength at 1064nm are quite rare, while mainly the visible spectral
range has been investigated. For this reason we do not present a �t to the thermo-optic
parameter of sapphire. Instead for the use in a gravitational wave detector at 1064nm the
most valuable number is reported by Tomaru et al. [24]. For temperatures below 40K
they give an upper bound on β of 9× 10−8K−1.
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Data set

An excerpt of the numerical data is given in the following table. Extrapolations in the
low temperature regime have been performed assuming a T 3 law.

T (K) α‖ (K−1) α⊥ (K−1) Cp (J kg−1K−1) κ (Wm−1K−1)

1 7.50× 10−13 3.75× 10−13 6.57× 10−5 3.28
2 6.00× 10−12 3.00× 10−12 5.25× 10−4 2.62× 101

3 2.03× 10−11 1.01× 10−11 1.77× 10−3 8.86× 101

4 4.80× 10−11 2.40× 10−11 4.20× 10−3 2.10× 102

5 9.38× 10−11 4.69× 10−11 8.21× 10−3 4.10× 102

6 1.62× 10−10 8.10× 10−11 1.54× 10−2 7.14× 102

7 2.57× 10−10 1.29× 10−10 2.61× 10−2 1.11× 103

8 3.84× 10−10 1.92× 10−10 4.10× 10−2 1.58× 103

9 5.47× 10−10 2.73× 10−10 6.20× 10−2 2.17× 103

10 7.50× 10−10 3.75× 10−10 8.74× 10−2 2.90× 103

12 1.30× 10−9 6.48× 10−10 1.55× 10−1 4.91× 103

14 2.06× 10−9 1.03× 10−9 2.49× 10−1 7.41× 103

16 3.07× 10−9 1.54× 10−9 3.85× 10−1 1.01× 104

18 4.37× 10−9 2.19× 10−9 5.66× 10−1 1.31× 104

20 6.00× 10−9 3.00× 10−9 7.98× 10−1 1.57× 104

22 8.21× 10−9 4.20× 10−9 1.09 1.79× 104

24 1.09× 10−8 5.84× 10−9 1.45 1.95× 104

26 1.41× 10−8 7.87× 10−9 1.88 2.06× 104

28 1.79× 10−8 1.03× 10−8 2.39 2.10× 104

30 2.23× 10−8 1.30× 10−8 2.99 2.08× 104

32 2.75× 10−8 1.66× 10−8 3.69 2.00× 104

34 3.35× 10−8 2.05× 10−8 4.50 1.86× 104

36 4.02× 10−8 2.50× 10−8 5.42 1.67× 104

38 4.79× 10−8 3.01× 10−8 6.47 1.43× 104

40 5.65× 10−8 3.59× 10−8 7.65 1.20× 104

45 8.27× 10−8 5.39× 10−8 1.12× 101 7.70× 103

50 1.16× 10−7 7.76× 10−8 1.58× 101 5.20× 103

55 1.58× 10−7 1.08× 10−7 2.16× 101 3.68× 103

60 2.09× 10−7 1.45× 10−7 2.87× 101 2.65× 103

65 2.71× 10−7 1.92× 10−7 3.74× 101 1.99× 103

70 3.44× 10−7 2.48× 10−7 4.76× 101 1.53× 103

75 4.30× 10−7 3.14× 10−7 5.89× 101 1.20× 103

80 5.30× 10−7 4.00× 10−7 7.08× 101 9.60× 102

85 6.34× 10−7 4.84× 10−7 8.40× 101 7.79× 102

90 7.44× 10−7 5.69× 10−7 9.82× 101 6.40× 102

95 8.60× 10−7 6.58× 10−7 1.13× 102 5.32× 102

100 9.80× 10−7 7.50× 10−7 1.29× 102 4.50× 102

25



T (K) α‖ (K−1) α⊥ (K−1) Cp (J kg−1K−1) κ (Wm−1K−1)

110 1.24× 10−6 9.42× 10−7 1.63× 102 3.34× 102

120 1.52× 10−6 1.15× 10−6 2.00× 102 2.56× 102

130 1.83× 10−6 1.39× 10−6 2.37× 102 2.09× 102

140 2.14× 10−6 1.64× 10−6 2.76× 102 1.75× 102

150 2.43× 10−6 1.89× 10−6 3.16× 102 1.50× 102

160 2.72× 10−6 2.15× 10−6 3.55× 102 1.31× 102

170 3.01× 10−6 2.43× 10−6 3.94× 102 1.15× 102

180 3.30× 10−6 2.70× 10−6 4.33× 102 1.01× 102

190 3.58× 10−6 2.96× 10−6 4.71× 102 9.04× 101

200 3.84× 10−6 3.21× 10−6 5.07× 102 8.20× 101

210 4.09× 10−6 3.44× 10−6 5.43× 102 7.55× 101

220 4.34× 10−6 3.66× 10−6 5.77× 102 7.00× 101

230 4.57× 10−6 3.87× 10−6 6.09× 102 6.54× 101

240 4.80× 10−6 4.07× 10−6 6.40× 102 6.14× 101

250 5.01× 10−6 4.27× 10−6 6.70× 102 5.80× 101

260 5.21× 10−6 4.47× 10−6 6.98× 102 5.52× 101

270 5.40× 10−6 4.66× 10−6 7.24× 102 5.28× 101

280 5.59× 10−6 4.85× 10−6 7.48× 102 5.04× 101

290 5.75× 10−6 5.02× 10−6 7.71× 102 4.81× 101

300 5.90× 10−6 5.15× 10−6 7.92× 102 4.60× 101
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3.3 Silicon

Silicon crystallizes in the diamond structure belonging to the cubic crystal system. The
growth of silicon crystals is mainly along a {111} or a {100} plane [25]. This is due to the
fact that the {111} plane shows the highest atom density. Nevertheless for completeness
also the {110} orientation will be considered. The orientation of these planes in the lattice
is presented in Fig. 3.2

(a) (100) (b) (110) (c) (111)

Figure 3.2: Visualization of typical crystallographic planes in silicon.

3.3.1 Elastic properties

Condensating in the cubic crystal system silicon possesses three independent elastic con-
stants. The structure of the sti�ness matrix reads

Ĉij =


c11 c12 c12 0 0 0

c11 c12 0 0 0
c11 0 0 0

c44 0 0
c44 0

c44

 . (3.15)

For a temperature of 20 ◦C McSkimin [15] reports the following coe�cients

c11 = 165.7GPa, c12 = 63.9GPa, c44 = 79.6GPa. (3.16)

McSkimin further investigated the temperature dependence of the elastic constants in
silicon. Down to 70K all components show a relative change below 2%. Again in most
considerations this weak temperature dependence can be neglected. The density of silicon
reads

ρ = 2330 kgm−3 . (3.17)

Under an uniaxial load (as for e. g. in �exural modes of beams) the elastic behavior
can be modelled as isotropic. Then an e�ective Young's modulus and Poisson ratio can
be de�ned which are dependend on the crystalline orientation of the beam axis. This
approach presented by Wortman and Evans [26] shows e�ective Young's moduli in a
range from 130GPa to 189GPa.
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For more di�cult geometries or other load cases a more rigorous approach becomes
necessary. This is also true for a thermal noise estimate using the Fluctuation-Dissipation-
Theorem for an interferometer component. Then the full anisotropic structure of silicon
has to be taken into account. In typical �nite element codes one can thus orient the
geometry axis within the coordinates of the elastic tensor. The other way presented here
is to transform the elastic tensor to new coordinates and present the new component
values. Table 3.3.1 illustrates the results of this process. In the shape of the new elastic
tensor components the symmetry of the respective orientation becomes visible. Previously
this approach has been discussed by Hopcroft et al. [27].

Table 3.5: Elasticity tensor for silicon along di�erent crystallographic axes. The presented
components are valid for a coordinate system whose z-axis is oriented along the
stated crystal direction. The Voigt notation Ĉij is used to show the components
of the elasticity tensor. All presented values are valid for a temperature of 20 ◦C
and taken from [15].

orientation [110] [111]
symmetry tetragonal trigonal

Aij


√
2
2
−
√
2
2

0√
2
2

√
2
2

0
0 0 1

 1√
6

√3 0 −
√

3
−1 2 −1√

2
√

2
√

2



Ĉij


d11 d12 d13 0 0 0

d11 d13 0 0 0
d33 0 0 0

d44 0 0
d44 0

d66




e11 e12 e13 e14 0 0

e11 e13 −e14 0 0
e33 0 0 0

e44 0 0
e44 e14

e66



d11 = 194.4GPa

d12 = 35.2GPa

d33 = 165.7GPa

d13 = 63.9GPa

d44 = 79.6GPa

d66 = 50.9GPa

e11 = 194.4GPa

e12 = 54.4GPa

e33 = 203.9GPa

e13 = 44.8GPa

e14 = 13.5GPa

e44 = 60.5GPa

e66 =
1

2
(e11 − e12)

= 70.0GPa

28



3.3.2 Thermal properties

Thermal expansion
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Experimental values have been taken from White and Minges [10]. Note that α is
negative between 17K and 123K.

Thermo-optic coe�cient

5 1 0 1 0 0 3 0 01 0 - 8

1 0 - 7

1 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

 K o m m a  e t  a l .
 F r e y  e t  a l .
 f i t

the
rm

o-o
pti

c c
oe

ffic
ien

t β
 (1

/K)

t e m p e r a t u r e  ( K )
Experimental values have been taken from Komma et al. [28] and from Frey and Leviton

[29].
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Speci�c heat
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Experimental values have been taken from Hull [30] and from Touloukian [5].

Thermal conductivity

1 1 0 1 0 0 3 0 01 0

1 0 0

1 0 0 0

1 0 0 0 0

the
rm

al 
co

nd
uc

tivi
ty 

κ (
W/

m/
K)

t e m p e r a t u r e  ( K )

 T o u l o u k i a n  
         ( b u l k  v a l u e s )

 f i t  c u r v e

Experimental values have been taken from Touloukian [5]. The �t curve follows the
experimental data for large and pure samples. As in such samples the in�uence of the
surface and defects is minimized the presented curve serves as an upper bound on silicon.
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Data set

An excerpt of the numerical data is given in the following table. Extrapolations in the
low temperature regime have been performed assuming a T 3 law.

T (K) α (K−1) β (K−1) Cp (J kg−1K−1) κ (Wm−1K−1)

1 5.00× 10−13 8.00× 10−11 2.76× 10−4 3.96
2 4.00× 10−12 6.40× 10−10 2.21× 10−3 3.17× 101

3 1.35× 10−11 2.16× 10−9 7.45× 10−3 9.98× 101

4 3.20× 10−11 5.12× 10−9 1.77× 10−2 2.26× 102

5 6.34× 10−11 1.00× 10−8 3.45× 10−2 4.24× 102

6 1.08× 10−10 1.80× 10−8 5.96× 10−2 6.86× 102

7 1.72× 10−10 2.89× 10−8 9.47× 10−2 9.91× 102

8 2.56× 10−10 4.33× 10−8 1.41× 10−1 1.34× 103

9 3.67× 10−10 6.15× 10−8 2.01× 10−1 1.72× 103

10 5.00× 10−10 8.40× 10−8 2.76× 10−1 2.11× 103

12 8.00× 10−10 1.82× 10−7 4.70× 10−1 2.87× 103

14 1.30× 10−9 3.58× 10−7 8.22× 10−1 3.60× 103

16 1.10× 10−9 6.02× 10−7 1.44 4.22× 103

17 2.60× 10−10 7.84× 10−7 1.85 4.47× 103

18 −1.00× 10−9 1.00× 10−6 2.31 4.67× 103

19 −1.90× 10−9 1.25× 10−6 2.84 4.83× 103

20 −3.00× 10−9 1.52× 10−6 3.41 4.94× 103

22 −7.56× 10−9 2.14× 10−6 5.05 5.06× 103

24 −1.48× 10−8 2.91× 10−6 7.52 5.13× 103

26 −2.40× 10−8 3.80× 10−6 1.07× 101 5.12× 103

28 −3.73× 10−8 4.79× 10−6 1.45× 101 4.99× 103

30 −5.30× 10−8 5.86× 10−6 1.88× 101 4.81× 103

32 −7.12× 10−8 7.05× 10−6 2.35× 101 4.57× 103

34 −9.21× 10−8 8.41× 10−6 2.85× 101 4.27× 103

36 −1.14× 10−7 9.91× 10−6 3.36× 101 4.00× 103

38 −1.39× 10−7 1.15× 10−5 3.89× 101 3.76× 103

40 −1.64× 10−7 1.32× 10−5 4.41× 101 3.53× 103

45 −2.28× 10−7 1.77× 10−5 5.91× 101 3.06× 103

50 −2.90× 10−7 2.23× 10−5 7.70× 101 2.68× 103

55 −3.50× 10−7 2.68× 10−5 9.62× 101 2.37× 103

60 −4.00× 10−7 3.15× 10−5 1.15× 102 2.11× 103

65 −4.38× 10−7 3.64× 10−5 1.33× 102 1.88× 103

70 −4.60× 10−7 4.13× 10−5 1.52× 102 1.68× 103

75 −4.67× 10−7 4.62× 10−5 1.70× 102 1.50× 103

80 −4.70× 10−7 5.12× 10−5 1.88× 102 1.34× 103

85 −4.57× 10−7 5.62× 10−5 2.06× 102 1.20× 103

90 −4.30× 10−7 6.13× 10−5 2.24× 102 1.08× 103

95 −3.91× 10−7 6.63× 10−5 2.41× 102 9.71× 102
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T (K) α (K−1) β (K−1) Cp (J kg−1K−1) κ (Wm−1K−1)

100 −3.40× 10−7 7.11× 10−5 2.59× 102 8.84× 102

110 −2.13× 10−7 8.06× 10−5 2.94× 102 7.53× 102

120 −6.00× 10−8 9.00× 10−5 3.28× 102 6.38× 102

130 1.18× 10−7 9.90× 10−5 3.62× 102 5.42× 102

140 3.10× 10−7 1.08× 10−4 3.95× 102 4.65× 102

150 5.00× 10−7 1.16× 10−4 4.26× 102 4.09× 102

160 6.90× 10−7 1.23× 10−4 4.56× 102 3.69× 102

170 8.78× 10−7 1.31× 10−4 4.85× 102 3.35× 102

180 1.06× 10−6 1.38× 10−4 5.11× 102 3.08× 102

190 1.24× 10−6 1.44× 10−4 5.35× 102 2.84× 102

200 1.40× 10−6 1.50× 10−4 5.57× 102 2.64× 102

210 1.55× 10−6 1.56× 10−4 5.78× 102 2.46× 102

220 1.70× 10−6 1.61× 10−4 5.97× 102 2.30× 102

230 1.84× 10−6 1.66× 10−4 6.15× 102 2.16× 102

240 1.98× 10−6 1.70× 10−4 6.32× 102 2.03× 102

250 2.10× 10−6 1.75× 10−4 6.49× 102 1.91× 102

260 2.22× 10−6 1.79× 10−4 6.65× 102 1.80× 102

270 2.33× 10−6 1.82× 10−4 6.79× 102 1.71× 102

280 2.43× 10−6 1.86× 10−4 6.91× 102 1.62× 102

290 2.53× 10−6 1.89× 10−4 7.03× 102 1.55× 102

300 2.62× 10−6 1.91× 10−4 7.13× 102 1.48× 102
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