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I. Introduction
For keeping the distances between the VIRGO mirrors at the values dictated by the
resonance conditions etc., a phase modulation scheme similar to the Pound-Drever
technique [1] will be used; the design of this locking scheme has been discussed in detail
elsewhere [2]. One common characteristic of the two schemes suggested in [2] is, that
the modulation is done between the laser and the interferometer (frontal or Schnupp
modulation), and that no modulation occurs inside or after the interferometer. The
purpose of the following note is first, to give a collection of the information relevant for
decisions concerning modulation frequencies, separation of buildings, length of mode
cleaner etc., and second, to give a practical approach to determine these parameters
starting from a particular choice of a modulation scheme and given boundary conditions.
As examples, some possible configurations are derived; especially it will be shown that
there exists a configuration that allows passing all modulation frequencies through the
mode cleaner.
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Fig.1 Definition of symbols used in the text. Shown is a frontal modulation configuration (with
SSB in dotted lines)

Equal arm cavity lengths (L1 = L2 = L) are assumed for simplicity. The convention used
for the mirror phase shifts is the following: beam impinging from the coated side on a
mirror/beam splitter: phase shift π on reflection; beam impinging from the other side and
transmissions: 0 phase shift.



− 2 −

II. Constraints imposed by the modulation on lengths/frequencies

General conditions
The error signal giving the deviation of a cavity length from resonance in the Pound-
Drever technique is obtained by beating the carrier (= laser frequency) with the
modulation sidebands. Therefore it is necessary that at the observation point carrier and
sidebands are sufficiently strong. Consequently, all frequencies, carrier and sidebands,
must be resonant in the recycling cavity (RC) in order to be enhanced by a certain
recycling factor. Another way to state this is, that if the sidebands are not resonant in the
RC, they are mostly reflected from the recycling mirror and thus the effective modulation
index inside the RC is low.

A second obvious requirement is that the carrier itself is resonant also in the arm
(FP) cavities.

The gravitational wave signal must be observed at the modulation frequency in
order to get rid of the low frequency laser noise. Therefore some sideband power must
be present at the interferometer output in order to create a beat signal with the carrier, if
the latter leaks out at the dark fringe due to a GW. This can be achieved by introducing an
asymmetry in the recycling cavity arms. The sideband power extracted to the photodiode
is maximized, if the percentage coupled out of the recycling cavity (non-perfect dark
fringe condition for the sidebands) equals the other losses p in the interferometer
(absorption and recycling mirror transmission) :

   sin2 2πν∆d
c   =  p   ;

this leads to

    ∆d ≈  √ p  .  
c

2πν
    . (1)

So the optimum asymmetry ∆d depends on the modulation frequency ν. This condition is
not very strict. Especially, the signal-to-noise ratio decreases only very slowly with
increasing ∆d (see Appendix A).

Simple frontal modulation
The first scheme proposed in [2] uses a laser beam modulated at only one frequency ν;
photodiodes located at different points in the interferometer provide 4 independent error
signals used to control the lengths of the interferometer (simple frontal modulation).

The condition for the sideband resonance in the recycling cavity is given by
demanding that the phase shift upon a complete roundtrip in the RC is an integer multiple
of 2π:

   δd+ϕasy+ϕL = n . 2π     (n∈N)   , (2)
with

ϕL = Arg(R1 - r1r2 (1+R1) cos δL + R1R2  +  i . r1r2 (R1-1) sin δL )

   ϕasy = 
π
2 (1-sign cos 

2πν∆d
c  )   .

δd = 4πνd/c and δL = 4πνL/c are the phase shifts encountered by the beams upon a
complete roundtrip in the recycling and arm cavities, respectively. R1,R2 are the
reflectivities of the FP mirrors, ϕL is the phase shift upon reflection of the beam at the
entrance mirror of a Fabry-Perot cavity. ϕasy takes the values 0 or π and keeps thus track
of the phase reversals occuring in the RC because of the asymmetry in the short
Michelson interferometer. The important point is that the resonance condition in the
recycling cavity depends on the resonance condition in the arm cavities. That means that
the spacing between RC resonances is about c/2L for the complete interferometer instead
of c/2d for a simple 2 mirror cavity (in our case about 50 kHz instead of 12.5 MHz); so
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there is a densely spaced comb of recycled frequencies. Numerical simulations show that
all these frequencies give useful error signals for simple frontal modulation. However,
the RC resonances are broadest if ν is nearly antiresonant in the arm cavities, which
reduces the sensitivity to instabilities and fluctuations of ν. The preferred modulation
frequencies turn thus out to be the resonances in the close neighborhood of (2n+1).c/4d
(See Appendix B for a numerical example).

SSB modulation
A disadvantage of the simple frontal modulation is that all error signals are dominated by
the arm cavity lengths. This is because they are formed by beating the sidebands with the
carrier, which is necessarily resonant in the FP's and therefore sees all FP length
changes. This may make it difficult to extract the information on the RC lengths. More
independent signals for these can be obtained with a second carrier (subcarrier or single
sideband, SSB), shifted from the laser frequency by an offset νS and itself modulated at
ν2 (secondary modulation), such that subcarrier and its sidebands are non-resonant in the
FP's. Then the beat between them at ν2 is mainly dependent on the RC lengths.

The main modulation at ν1 now serves only for probing the FP lengths; its
sidebands must be recycled as stated above (Eq. 2). This holds also for the subcarrier
and the secondary modulation sidebands; moreover, they must not resonate in the arm
cavities, as explained above. The subcarrier must even be on exact antiresonance,
because otherwise its sidebands don't see symmetric resonance conditions:

   
2LνS

c  = n+
1
2     (n∈N)   . (3)

Moreover, in order to sense the RC arm length difference, the subcarrier must have a
dark fringe at the output:

2∆dνS
c  = m    (m∈N) (4)

The sidebands are resonant in the RC and non-resonant in the FP, if they are
approximately an integer number of RC free spectral ranges away from the subcarrier:

2dν2
c  ≈ n     (n∈N, for ν2 < 

c

4∆d
 ) (5)

Special case
If the arm cavity length L is an odd multiple of the recycling cavity length d, then there is
a set of special frequencies

ν = c
4d . (2n+j)      n=0,1,2,... , j=0 or 1, cos

2πν∆d
c  > 0 . (6)

All these frequencies are recycled (although not with equal efficiency); the ones at j=0 are
resonant in the FP cavities, the ones at j=1 are antiresonant. This situation is depicted in
Fig. 2:
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Fig.2 Spectrum of frequencies resonant in the recycling cavity, if the FP length is an odd
multiple of the RC length. The numbers given are for d=12 m, L=2988m and ∆d=0.2594m.
Indicated are also possible positions of carrier (c), one of the main modulation sidebands (+1),
subcarrier (S), and the two secondary modulation sidebands (-2,+2), according to the scheme given
in the text.

So there is a system of RC resonances that alternatingly enter the FP's or not, and which
are all a multiple of a common basis frequency νb=c/4d. (The frequencies ν for which
cos(∆d2πν/c) < 0 are antiresonant in the recycling cavity). The asymmetry ∆d must be
chosen within the neighborhood of the optimum value obtained by Eq. 1. νS must fulfill
Eq. 6 and the dark fringe condition Eq. 4, which gives

∆d = d . 
2m

2k+1   (k∈N,m∈2N)  , (7)

where (2k+1) = νS/νb. ν1 must be an odd multiple, ν2 an even multiple of νb; this
assures that they fulfill the recycling and antiresonance requirements. The fact that all
frequencies are at multiples of νb makes it possible to do all the modulation before the
mode cleaner, provided that its length is an even multiple of d.

Interactions of the servo loops for SSB modulation
Once the automatic length control is working, the RC servo system will tune ∆d such that
there is a dark fringe for the subcarrier. However, the exact dark fringe condition can in
general not be met for the carrier at the same time, since λs = c/νS ( ≈ 1m) will be no
exact multiple of the laser wavelength λ. Thus for the carrier there is a small deviation
δ(∆d) from the dark fringe condition of the order λ . λ/λs ≈ 10-6 λ. The FP servo system
will reestablish the dark fringe for the carrier by introducing an opposite detuning
δ(∆L)=π/2F . δ(∆d)  ≈ 10-7-10-8 λ in the FP, where F is the FP finesse; this will not
change the situation for the subcarrier, since it is (to first order) not affected by the FP
lengths. The same is true for d and L: The RC servo system will tune the average RC
length d such that there is an exact resonance for the subcarrier. This will in general not
coincide with an exact resonance for the carrier. Therefore the FP servo system will
correct L by a tiny amount δL in the opposite sense and thus tune the RC resonance peak
also to the carrier frequency.

III. Stepwise procedure for determining frequencies and lengths
Due to the mutual entanglement of all parameters, it is best to observe certain sequences
when determining the modulation frequencies and interferometer lengths. This section
gives a practical approach to finding the required parameters depending on the
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modulation scheme to be used and other boundary conditions, and derives numerical
values for some possible configurations.

SSB modulation

1. If the modulation frequencies must pass through the mode cleaner
The mode cleaner will have a finesse of about 1000; at a length of 150m its free spectral
range (FSR) is 1 MHz, and the bandwidth about 1000 Hz. This means, that the laser
frequency and all important sidebands must coincide with a MC resonance within a few
100 Hz. This constraint can be relaxed by making the MC shorter; on the other hand, the
resonances will get rarer then, since their spacing increases. So instead of hoping that
one can find a set of three frequencies (subcarrier, main and secondary modulation) that
accidentally fall on MC resonances, it is better to make use of the equally-spaced
frequency pattern explained above (Fig. 2) by having a well-defined ratio between the
RC and FP lengths.

The recycling cavity defines the length on the basis of which all other lengths and
the frequencies are determined; so any value can be chosen. By choosing a bigger or
smaller RC length, one can compress or expand the spectrum of possible frequencies.
Let's choose for example 12m, giving a FSR of 12.5 MHz, and a basis frequency of
6.25 MHz. Next, the FP cavity length must be an odd multiple of this. If we want a
length of about 3 km, the closest possible values are 2988 and 3012 m. Let's take 2988
m. Before we can determine the asymmetry, we must know the approximate frequency
of the main modulation, which must be an odd multiple of the basis frequency. The
possibilities are essentially 6.25 or 18.74 MHz; at higher frequencies the speed of the
photodiodes becomes critical. 6.25 MHz is the basis frequency of which all other
frequencies are multiples; therefore this is not a good choice for the main modulation,
because its sidebands at higher harmonics might disturb the signal at the secondary
modulation. 12.5, 25.0, ... MHz are possible, but more sensitive to modulation
frequency instabilities. So let's take 18.74 MHz. At this frequency the sideband power
coupled out to the interferometer exit is maximum, if the asymmetry is about 0.25 m (for
losses ≈ 0 the interferometer, since the sideband is non-resonant, and 1% recycling
mirror transmission). This gives as coarse values for the SSB frequency fulfilling the
dark fringe condition 0, 600, 1200, ... MHz. Among these frequencies, every second
falls in a band where the multiples of the basis frequency are antiresonant in the RC (see
Fig. 2); so the lowest possible SSB frequency lies near 1200 MHz (m=2 in Eq. 4). This
value must still be corrected, since because of the resonance requirements we need an
odd multiple of the basis frequency. Let's take 185 νb=1155 MHz. With the dark fringe
condition we can now determine the precise value of the asymmetry ∆d=12m . 2.2/185 =
0.2594m. If the secondary modulation sidebands are an even multiple of the basis
frequency away from the subcarrier, they meet the same resonance conditions; the lowest
possible value of 12.5 MHz seems most appropriate.

Now all interferometer parameters are fixed, and the modulation frequencies can
pass through the mode cleaner, if the latter is transparent for the basis frequency; so its
length must be an even multiple of the RC length (24, 48, 72, ... m).

For the numbers given above, the subcarrier with more than 1 GHz lies quite high.
This value comes from the small asymmetry due to the high main modulation frequency.
The SSB could be generated by a laser which is locked to the main laser by observing the
beat note between the two and comparing it to a high frequency oscillator. At the
detection side no GHz speed is required, since only the beat between subcarrier and its
sidebands (12.5 MHz) is observed. If the SSB frequency seems too high, it can be
reduced by choosing a bigger asymmetry (see Appendix A). For example, if the
asymmetry is increased by a factor of two, the SSB frequency decreases by 50%; then
the signal-to-noise ratio decreases by 2%, since asymmetry and main modulation
frequency are no longer matched.
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2. If only the main modulation must pass through the mode cleaner
The configuration developed above can of course be used also in this case; but here one
has a greater freedom in choosing the modulation frequencies and lengths, since their
values need not have fixed ratios to each other. However, the situation becomes more
complex, because there is in general no simple resonance scheme like in Fig.2 for
guidance.

Again, one can start by setting the RC length e.g. to 12m. Since this time the
modulation frequencies do not have to be multiples of a common basis frequency, one
can take for the main modulation any one of the many RC resonances spaced at ≈ 50 kHz
intervals. In practice, however, modulation frequencies close to the antiresonance in the
FP's are better, since they have kHz instead of Hz linewidthes. Thus the main
modulation frequency will be a few FP free spectral ranges around 6.25, 18.74, ...
MHz. Let's choose ≈ 6.25 MHz. This gives an optimum asymmetry of about 0.76 m,
which in turn imposes by the dark fringe condition a subcarrier frequency of a multiple of
197 MHz; due to the asymmetry, odd multiples experience a 180° phase jump during a
RC roundtrip, while even multiples do not. The exact frequency value is given by the
resonance conditions: One demands resonance in the RC and simultaneously
antiresonance in the FP. The combination of the two conditions fixes the subcarrier
frequency to an even multiple of the RC FSR if there is a phase jump, else to an odd
multiple. If we prefer the lowest possible frequency around 197 MHz, this gives a value
of e.g. 187.4 or 200 Mhz. Let's take 187.4 MHz; then the asymmetry must be fine tuned
to 0.8m in order to get a dark fringe. For antiresonance in the FP the frequency must be
an odd multiple of half the FP FSR, which fixes the FP length to ..., 2999.6, 3000.4, ...
m. Let's take 3000.4 m. With this value the exact main modulation frequency can be
determined by solving Eq. 2. If we want a broad resonance, we can choose between
about a dozen frequencies from 6 to 6.5 MHz, e.g. 6.22 or 6.27 MHz. For the
secondary modulation, the frequencies must again be searched in a not too broad range
around multiples of the RC FSR (12.5, 25, ...) MHz. The exact values are again given
by the peak of the RC resonance (e.g. 12.49 MHz). The mode cleaner must be
transparent for the main modulation, which allows lengths of 23.9, 47.8, ... m.

This scheme has the advantage that the modulation frequencies have no relation
with each other, so there will be no interference between them due to higher order
harmonics. Therefore it was possible to use the frequency at ≈6.25 MHz for the main
modulation, which allows a lower SSB frequency. Since there are no a priori fixed
length relations, there is also a greater freedom for the FP cavity length, which can be
chosen in finer steps (0.8 m instead of 24 m). On the other hand, it may turn out that
6.25 MHz is too low for the main modulation, since at this frequency the laser might not
yet be quiet enough.

Simple frontal modulation
In the case of the simple frontal modulation, one sacrifices the requirement that the
demodulated signals are well decoupled. This greatly simplifies the constraints for the
parameters, since only one modulation frequency is needed now. So one can determine
the RC and FP lengths (say, 12 and 3000 m), and then choose for the modulation a
frequency that is recycled while preferably being non-resonant in the FP (around 6.25,
18.74, ... MHz), e.g. 6.27 MHz. Finally, the signal is optimized by adjusting the
asymmetry to the modulation frequency (0.8 m).
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IV. Conclusion
The following table summarizes the frequency schemes given above. Of course these are
just examples, and other configurations are possible according to requirements.

N° 1 2 3 4
RC length [m] 12 11.94
FP length [m] 3000 3000.4 2988 4000
asymmetry [m] 0.8 0.2594 ?

MC length 23.9/47.8/... 23.9/47.8/... 24/48/... 23.88
Main modulation [MHz] 6.268... 6.267... 18.737... 18.84

Subcarrier [MHz] --- 187.37... 1155.45... 250
Sec. modulation [MHz] --- 12.490... 12.491... 12.54

Ref. [2] [2] [3]

Tab.1 Some possible sets of numerical values. 1: Simple frontal modulation, 2: SSB
modulation, 3: SSB modulation, where all frequencies pass through the mode cleaner. 4: Scheme
proposed for LIGO (there is also a ternary modulation at 31.4 MHz).  c ≡ 299792458 m/s.

As it could be seen, there exists a scheme in which all the modulation frequencies in the
case of SSB modulation can pass through the mode cleaner, so that the beam jitter and
small misalignments are filtered out also for the subcarrier and its sidebands. Whether
this is necessary or not remains to be investigated. If not, some flexibility can be gained.

[1] R.W. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Manley, H.
Ward "Laser phase and frequency stabilization using an optical resonator". Appl.
Phys. B 31, 1983

[2] R. Flaminio, H. Heitmann "Interferometer locking scheme". VIRGO note PJT
93021, 1993

[3] J. Giaime, "The effects of harmonics of modulation frequencies in an asymmetry
GW-readout interferometer with a subcarrier for auxiliary readout." LIGO internal
report 1993

[4] J.-Y. Vinet "Fonction de transfert optique d'un interféromètre à recyclage
standard". VIRGO note 27.01.1993
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Appendix A: Constraints for the choice of the asymmetry

Fig.3 Demodulated interferometer output signal (lower curve) and signal-to-noise ratio (upper
curve) for simple frontal modulation in the case of varying asymmetry. Optimum value = 0.8 m.

In order to help assess the influence of the asymmetry on the signal, here is the result of a
numerical simulation of the interferometer for varying asymmetry. It was assumed simple
frontal modulation (scheme 1 in Tab. 1 (modulation at 6.27 MHz); contrast defect = 10-4,
recycling mirror transmission = 1% etc.). The lower curve in Fig. 3 shows the size of the
demodulated signal at the interferometer output. With increasing asymmetry, the
efficiency for sideband extraction from the recycling cavity first increases; at the same
time, the recycling gain for the sideband decreases, as more power is coupled out. So the
signal strength decreases after reaching a maximum. The upper curve is the signal-to-
noise ratio; it shows a much weaker dependence on the asymmetry. This is because the
noise considered here, the shot noise of the photodiode current, is mainly due to the
sideband power for the given configuration (the carrier power on the photodiode is
100mW as opposed to 700 mW for both sidebands). So if the sideband power decreases,
the shot noise and the signal decrease together, which leads to a weak overall dependency
around the maximum. If one allows for a 2% decrease in SNR, one can vary the
asymmetry between 0.4 m and 1.6 m around the optimum value 0.8 m from Eq. 1.
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Appendix B: Frequency list

This Appendix gives as an example the list of frequencies resonant in the recycling cavity
for the case of simple frontal modulation with the FP length being an even multiple of the
RC length (scheme 1 in Tab. 1); so here there is no "nice" resonance frequency around
6.25 MHz. The table contains for each RC resonance the frequency, the linewidth, the
recycling gain and the power enhancement in the FP cavity. As it can be seen, the only
broad resonances occur quite near to the FP antiresonance, and around 6.25 MHz there
are altogether about a dozen resonances with kHz width. Furthermore one sees that for
increasing frequencies the recycling tends to get worse, because more and more power is
lost through the asymmetry. Accordingly, the recycling gain of the subcarriers in scheme
2 and 3 (187.4 and 1155 MHz) is high (about 375), since no power is coupled out to the
dark fringe, and no power is lost by resonance in the FP's.

Tab.2 List of modulation frequencies resonant in the RC as calculated numerically using the
formulas derived in [4] (adapted to the phase convention used). The values given for each resonance
are the frequency (carrier=0) and the linewidth [Hz], and the power enhancement in the RC and FP
[relative to the power incident on the corresponding cavity]. L=3000m, d=12m, ∆d=0.8m,
Rr=0.99, R1=0.85,R2=0.9999, c=299792458 m/s. The mirror losses are respectively 0, 3.10-4, 0.
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Appendix C: Stability of modulation frequencies

Subcarrier
Static detunings and slow drifts
Once the feedback loops are working, we can assume that they assure the RC resonance
and dark fringe condition for carrier and subcarrier. The feedback using the subcarrier
acts on the RC lengths, while the main feedback controls the FP lengths. If the subcarrier
frequency νS deviates from the ideal value by δνS, its RC resonance and dark fringe
condition are restored by the "short" Michelson loops by changing RC length d and
asymmetry ∆d:

    δd = 
δνS

νo+νS
 . (d+L/g)   ;   δ(∆d) = 

δνS

νo+νS
 . (∆d+∆L/g)  . (C1)

Here g=2F/π≈25 is the power enhancement in the FP, with F its finesse, and νo the laser
frequency. Since this affects the carrier RC resonance and dark fringe condition, the
"long" Michelson feedbacks change L and ∆L in the opposite sense, as explained before:

    δL = −
δd
g    ;   δ(∆L) = −

δ(∆d)
g   . (C2)

 These actions detune the FP resonances:

νFP(νo)−νo ≈ −
δL
L  . νo  =  δνS . 

1
g (

d
L + 

1
g) (C3)

νFP(νS)−νS ≈ −δνS (C4)
For a good resonance/antiresonance in the FP, we demand

νFP−νS < ε . 
c

2L . 
1
2F   (e.g. ε  = 0.1) ;  (C5)

then Eqs. C4 with C5 give the strongest upper limit on the static deviation with δνS<50
Hz.

Frequency noise
The "short" Michelson feedback system translates subcarrier frequency fluctuations ν~S to
RC asymmetry fluctuations ∆d~ ; those are interpreted by the main detector in the same
way as GW signals. This led in [2] to an upper limit for \o(∆d;~) of 1.5.10-17 and 5.10-19

m/√Hz for 10 and 100 Hz, respectively. With

   ∆d~  = 
νS
~

νo+νS
 . (∆d+∆L/g)  (C6)

it follows νS
~  < 5.10-3 and 2.10-4 Hz/√Hz, respectively, for ∆d=0.8m. (As usual, the FP

arm asymmetry was assumed to be negligible, which is however not necessarily the case;
especially, the finesses of the two cavities may be different.)

Main and secondary modulation
Static detunings and slow drifts
If the optical and electrical paths from the frequency generator to the demodulator
experience different delays, then a changing ν (ν1 or ν2) introduces a changing phase
shift ϕ(δν) between photocurrent and local oscillator. If the phase was initially
compensated such that ϕ(0)=0, then one must demand ϕ(δν) < επ/2 with e.g. ε = 0.1 in
order to have a good demodulation efficiency. If the demodulation must at the same time
reject a strong quadrature signal (like the L1,L2 dependence for simple frontal
modulation) by a factor s (e.g. s=10-3), then the much stronger condition ϕ(δν) < s  must
hold. The phase shift is given by

ϕ(δν) = ϕel(δν)−ϕopt(δν) = δν 2π
c  (lel − lopt)   , (C7)
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where lopt ≈ 4/p . (d+L/g) ≈ 27km {4/p . (d+Lg) ≈ 4900km} is the effective optical delay
length for the sideband non-resonating {resonating} in the FP, p being its losses. If the
wire length between oscillator and demodulator is negligible, then it follows δν < 280
{1.5} Hz and 5 {0.03} Hz, respectively, for the two cases given above.

Frequency noise
Frequency jitter of the modulation sidebands has to first order no influence on the signal,
because, if the optical and electrical delay are the same, the phases of photocurrent and
local oscillator change synchronously; thus the fluctuations cancel in the demodulated
output. In the case of unequal delays a varying phase shift is introduced. Again, the
effect of a varying phase between local oscillator and signal is to change the
demodulation efficiency. So, if a gravitational signal is present, its detected amplitude
will be slightly modulated according to the instantaneous frequency deviation of the
oscillator. If the fluctuating modulation is represented by cos(2πν+mα(t)), then the
instantaneous frequency is ν+δν(t) with the jitter δν(t)=mα. (t)/2π. Demanding ϕ(δν(t)) <
επ leads to the same tolerances for δν(t) as for δν above.


