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There has been some confusion in the past concerning the filtering properties of a mode
cleaner cavity with respect to laser power and frequency fluctuations. Perhaps the
following compilation of simple considerations can help to clarify things.

Cavity behaviour
The resonance curve of a linear, loss-free optical cavity in transmission is an Airy
function
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for the power, where Ti=ti2, Ri=ri2 are the power and field transmittivities and
reflectivities, respectively, of mirror i  (Ti+Ri=1), and ΩFSR= 2π c
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For a small deviation Ω from resonance, the curve can be approximated by a
Lorentzian (see Fig. 1):
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. Thus for detunings bigger than the corner frequency ΩHWHM, the

cavity transmission is inversely proportional to the frequency for the field and inversely
proportional to the square of the frequency for the power.

Amplitude modulation
Fluctuations in the laser power can be described by an amplitude modulation. For a
sinusoidal disturbance, we have

E(t) = Eoeiωt (1+2m cos(Ωt)) = Eoeiωt (1 + m eiΩt + m e-iΩt)   ; (4)

P(t) ≈ Po (1+4m cos(Ωt))   . (5)

After the mode cleaner, the coefficients of the frequency constituents must be multiplied
by the field transfer function for the appropriate frequency:



E'(t) = Eoeiωt (T(0) + T(Ω)m eiΩt + T(Ω)m e-iΩt) (6)

= Eo'eiωt (1+2m' cos(Ωt))   ;

P'(t) ≈ P'o (1+4m' cos(Ωt))   .

Here, Eo'=Eo.T(0) and m'=m.T(Ω)
T(0)

. The important conclusion is, that for laser power

fluctuations the modulation index m and thus the fluctuations are reduced by the cavity
field transfer function, i.e. inversely proportional to frequency; this holds for the field
and for the power.

Frequency modulation
A sinusoidal phase or frequency variation of the incident light is described by

E(t) = Eoei(ωt+mcos(Ωt)) = Eoeiωt ∑
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where Jn(m) is the n-th order Bessel function. For small modulation index m one
can neglect the higher frequency terms:

E(t) ≈ Eoeiωt (1 + i m eiΩt + i m e-iΩt)   , (8)

which is transformed by passing though the mode cleaner to

E'(t) ≈ E'oeiωt (1 + i m' eiΩt + i m' e-iΩt) ≈ E'oei(ωt+m'cos(Ωt))    , (9)

in good analogy to the case of amplitude modulation. One sees that also the frequency
fluctuations are filtered with the field transfer function and thus decrease inversely
proportional to frequency for Ω > ΩHWHM.

For understanding the behaviour of the higher harmonics generated by the
modulation, one can write to a better approximation than in (9)
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This can be compared with the full expansion for a modulation using the "filtered" index
m' from above:
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The sideband amplitudes in (10) and (11) are not the same. This means, that the filtered
light is no longer purely frequency modulated. Instead the modulation is distorted, and
amplitude modulation at higher harmonics (especially 2Ω) is introduced. More
pronounced effects may happen, if one of the stronger harmonics gets resonant with a
higher order resonator mode. In general, however, all these effects should be negligible if
m is sufficiently small, as is certainly the case for laser frequency noise.

Conclusion
As we have seen, a cavity in transmission filters the amplitude - power - frequency -
phase fluctuations of the incident light with a 1/Ω dependency, as soon as the modulation
frequency Ω exceeds the corner frequency ΩHWHM . The reason for this is, that the
modulation must be considered as an interference which involves the fields of the
individual side bands beating with the carrier field, and not the (quadratically decreasing)
powers.

Fig.1 Field transfer function of a mode cleaner cavity with R1=R2=0.99 and

F ≈ 600, plotted vs. Ω
ΩHWHM

 in double logarithmic scale. Also shown are the

Lorentzian T(Ω) from eq.(3) and a 1/Ω fit.


