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Design of a three-lens
mode matching telescope

Idea
For the mode matching of a laser beam to a resonant cavity it is desirable to control size
and position of the beam waist. This note suggests a simple three-lens design for a
telescope which permits an independent control of both quantities by separating the
functions of waist size change and displacement, which is not possible in two-lens
systems. The principle can be illustrated as follows. The first lens (L1) works
approximately in the symmetrical 1:1 conjugate ratio, i.e. its output beam has the same
waist size as the input beam. Under this condition, upon a slight shift of the lens position
along the z axis, the output waist size w'1 can be changed, to first order without changing
the waist position. The following afocal telescope (L2 and L3) magnifies this beam waist
by a factor αt. If the distance z2 is changed by ∆z2 (the telescope is shifted along the z
axis), then the waist position will change by αt

2 ∆z2 without changing the waist size.
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The next two paragraphs treat this telescope in geometrical and Gaussian optics.

Geometrical optics
a) first lens (L1)
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The (transverse) magnification of a simple lens L is given by

α  =  
x'
x   =  

1

z/f−1
  = 1

1+ε
  ≈  1−ε     for z/f = 2+ε    ; (1)

The distance between two conjugate points (P,P') on the axis is

z+z'  =  
z2

z−f
  =  f 

 


 
4  +  

ε2

1+ε
     . (2)
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As it can be seen, by changing the lens position along the z axis the magnification of L
can be varied in the neighborhood of unity without, to first order, changing the axial
position of P' with respect to P.

b) afocal telescope (L2,L3)
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In an afocal telescope, the image side focus of the entrance lens coincides with the object
side focus of the output lens. The (transverse) telescope magnification is given by the
product of the magnifications of the individual lenses:

αt = 
x3'
x2

 = α2 α3 ,   where  α2  =  
f2

z2−f2
  and  α3  =  

f3
z3−f3

     . (3)

With z3 = f2+f3−z2' it follows αt = f3/f2. A similar calculation can be carried out for the
beam opening angle ϕ, leading to an angular magnification of ϕ3'/ϕ2 = 1/αt = f2/f3.

The output focus position is given by

z3' = f3 + 
 


 
f3

2

f2
2  (f2−z2)   or   ∆out = αt

2
 ∆in   , (4)

where ∆in = f2−z2 and ∆out = z3'−f3. This means, that when there is a point source in the
object focal plane of L2, then its image will be in the image side focal plane of L3; if the
point source is displaced in axial direction by ∆in, then its image on the other side of the
telescope will shift by  αt

2
 ∆in in the same direction. We can thus define a longitudinal

magnification, whose value is the square of the transversal one.
A transition to Gaussian optics can now be made by relating the opening angle of

the beam to the waist size via ϕ = λ/πwo, and equating the location of the beam focus to
the beam waist position. Thus the output waist can be shifted in axial direction by shifting
the input waist. The transformation of the waist diameter is governed by the angular
magnification, which is independent of the position. Thus the output waist can be shifted
without affecting the waist size.

Gaussian optics
The formulæ for Gaussian beams are quite similar to the ones for geometrical optics. One
has just to replace the axial distance z by the complex confocal parameter q = z + i zR,
where z is the distance from the waist, and zR = πwo

2/λ is the Rayleigh length. The beam
transformation by a lens becomes then

1
f   =  

1
q − 1

q '   , (5)

where the q's are measured at the lens, using the correct signs [1]. From this, another
form relating the waist positions can be deduced:

1
c + cR2/(c-1)

 + 
1
c '  = 1    , (6)

where c = z/f etc. are the distances normalized by the lens focal length [2,3].
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a) first lens (L1)
Putting z = −z' and zR = zR' in (5) leads to the symmetric case

cI/II  = 1±√1-cR
2 ≈ 

 

 2−cR

2/2

cR
2/2

    , (7)

which tends to the geometrical optics result for cR → 0 (zR « f ). Introducing a small
detuning such that c = cI + ε, leads to

c + c' ≈ 4 + ε2 − cR
2(1− 2ε)   . (8)

In the last equation there appears a term proportional to ε, if cR ≠ 0; this means that for a
Gaussian beam the object-image waist distance changes a little bit on lens displacement in
the symmetric case. So one needs to depart somewhat from the symmetric case to find a
situation where the distance between input and output waist does not change. The lens
magnification for Gaussian optics is given by [3]

α = 
1

√(1-c)2+cR2
   ,

and from (6) one gets the distance between object and image waist :

c + c' = 
cR2 (c+1) + c2 (c-1)

cR2 + (c-1)2
   . (9)

If c+c' is not to change with c, the derivative of (9) must be zero; one finds 4 solutions
satisfying this condition:

c1/2/3/4 = 1 ± √ 
1
2 (1-2cR

2±√1-8cR
2) (10)

≈  (for small cR)   1 ± (1−3
2 cR

2)   and   1 ± cR   . (11)

Including a small deviation ε, the magnifications for these 4 cases are:

Solution 1 2 3 4
Normalized
object distance

z/f = c =

2−3
2 cR

2 + ε 3
2 cR

2+ ε 1 + cR+ ε 1 − cR+ ε

Magnification
α  ≈ 1+ cR

2−ε 1+ cR
2+ε 1

√ 2cR
  


 
1−  

ε
2cR

1

√ 2cR
  


 
1+  

ε
2cR

The first solution (c ≈ 2−3cR
2/2, α ≈ 1+ cR

2) is similar to the classical symmetric case
(c=2, α=1) as treated in the last paragraph.

Thus one sees that also in the case of Gaussian beams the magnification of a lens
can be varied without, to first order, changing the position of the output waist with
respect to the input waist. If the Rayleigh length is small compared to the focal length of
the lens, then the geometrical optics result can be applied.

b) afocal telescope (L2,L3)
From (5) and simple geometrical considerations, one obtains the beam transformations by
L2 and L3:

q2' = − f2
Q2

 (f2+Q2)     (Q2  = q2−f2 = ∆in + i zR2)

           q3  =     q2'+f2+f3 (12)
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     Q3' =     
f3

2

f3−q3
            (Q3' = q3'+f3 = ∆out+ i zR3)   .

Here the beam parameters q2' and q3 are measured at their respective lenses, and Q2 and
Q3' at the object / image focal planes of L2 / L3. Then one gets

Q3' = αt
2 Q2      or     ∆out + iπw3

2

λ
  =  (αt

2 ∆in) +  iπ
(αtw2)2

λ
   , (13)

which gives w3 = αtw2 and ∆out = αt
2
 ∆in. Thus, as for the geometrical optics case, the

telescope magnifies the waist size by αt and an input waist position change by αt
2.

Example: input telescope for the Orsay mode cleaner prototype

Laser
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P3

100mm

The Orsay mode cleaner prototype is a 30 m long ring cavity, whose optical components
are suspended as pendulums under vacuum. The beam from a compact (palm top)
Nd:YAG ring laser must be made resonant in it, and consequenctly needs to be matched.
As an application of the above considerations, this section gives the constuctive details of
an appropriate telescope.

The optical characteristics are:
laser MC cavity

waist size wo 0.1 mm 3.7 mm
Rayleigh length zR 30 mm 40.4 m
beam half angle ϕ 3.4 mrad 90 µrad

length l 30 m
mirror curvature R 85 m

For the first lens, a focal length of 200 mm was chosen in order to give enough space
(400 mm to each side) for additional optical components. So cR is small (0.15), and the
geometrical approximation for the first lens is quite good. L1 reproduces the input beam
waist at a distance of 786mm from the laser, with the possibility of a magnification or
reduction. For the following afocal telescope (L2,L3) a magnification αt=37 is required in
order to increase the beam waist from 0.1 to 3.7 mm. Space constraints forbid a very
long focal length for L3; the values chosen for f2 and f3 are 6.4mm and 250mm,
respectively; the distance between L2 and L3 is thus 256.4mm. This length should be
quite stable, since otherwise the telescope will no longer be afocal as assumed in the
calculations, and because a change of 1mm would lead to an output waist shift of 12m.
The magnification resulting from the lens data is 39; the resulting slight waist size
mismatch must be corrected by shifting L1. The beam path between L1 and the afocal
telescope is folded using two flat mirrors, which saves space and, by axial shifts, gives
the possibility of changing the distance L1−L2 without changing the other distances. Thus



5

the waist size can be changed by shifting L1 with P1, and the waist position by moving
the block carrying the two flat mirrors with P2. P3 serves for fine tuning the distance L2−
L3.

From the above formulæ, the sensitivity to shifts ∆zP of the translational stages
P1 and P2 can be calculated:

waist size waist position
∆w3'
w3'  = (1+cR2) 

∆zP1
f

∆z3' = αt 2∆zP2

From this results the maximum tuning range, supposing that P1 and P2 can be shifted by
±25mm:

∆zP1 = ± 25mm max. =>∆w3'
w3'  = ±12.5% max.(f=200mm) =>

w3' = 3.25 ... 4.15mm

∆zP2 = ± 25mm max. =>
∆z3' = ±1.7 zR max.

= ± 68.5m
The tuning range of w3' can be further increased by reducing the focal length of L1 (e.g.
f=100mm).
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