

Idea

For the mode matching of a laser beam to a resonant cavity it is desirable to control size and position of the beam waist. This note suggests a simple three-lens design for a telescope which permits an independent control of both quantities by separating the functions of waist size change and displacement, which is not possible in two-lens systems. The principle can be illustrated as follows. The first lens (L_{1}) works approximately in the symmetrical $1: 1$ conjugate ratio, i.e. its output beam has the same waist size as the input beam. Under this condition, upon a slight shift of the lens position along the z axis, the output waist size $\mathrm{w}^{\prime}{ }_{1}$ can be changed, to first order without changing the waist position. The following afocal telescope (L_{2} and L_{3}) magnifies this beam waist by a factor α_{t}. If the distance z_{2} is changed by $\Delta \mathrm{z}_{2}$ (the telescope is shifted along the z axis), then the waist position will change by $\alpha_{\mathrm{t}}^{2} \Delta \mathrm{z}_{2}$ without changing the waist size.

The next two paragraphs treat this telescope in geometrical and Gaussian optics.

Geometrical optics

a) first lens $\left(L_{1}\right)$

The (transverse) magnification of a simple lens L is given by

$$
\begin{equation*}
\alpha=\frac{\mathrm{x}^{\prime}}{\mathrm{x}}=\frac{1}{\mathrm{z} / \mathrm{f}-1}=\frac{1}{1+\varepsilon} \approx 1-\varepsilon \quad \text { for } \mathrm{z} / \mathrm{f}=2+\varepsilon ; \tag{1}
\end{equation*}
$$

The distance between two conjugate points ($\mathrm{P}, \mathrm{P}^{\prime}$) on the axis is

$$
\begin{equation*}
\mathrm{z}+\mathrm{z}^{\prime}=\frac{\mathrm{z}^{2}}{\mathrm{z}-\mathrm{f}}=\mathrm{f}\left(4+\frac{\varepsilon^{2}}{1+\varepsilon}\right) \tag{2}
\end{equation*}
$$

As it can be seen, by changing the lens position along the z axis the magnification of L can be varied in the neighborhood of unity without, to first order, changing the axial position of P^{\prime} with respect to P .
b) afocal telescope (L_{2}, L_{3})

In an afocal telescope, the image side focus of the entrance lens coincides with the object side focus of the output lens. The (transverse) telescope magnification is given by the product of the magnifications of the individual lenses:

$$
\begin{equation*}
\alpha_{\mathrm{t}}=\frac{\mathrm{x}_{3}^{\prime}}{\mathrm{x}_{2}}=\alpha_{2} \alpha_{3}, \quad \text { where } \alpha_{2}=\frac{\mathrm{f}_{2}}{\mathrm{z}_{2}-\mathrm{f}_{2}} \text { and } \alpha_{3}=\frac{\mathrm{f}_{3}}{\mathrm{z}_{3}-\mathrm{f}_{3}} . \tag{3}
\end{equation*}
$$

With $z_{3}=f_{2}+f_{3}-z_{2}$ it follows $\alpha_{t}=f_{3} / f_{2}$. A similar calculation can be carried out for the beam opening angle φ, leading to an angular magnification of $\varphi_{3} / \varphi_{2}=1 / \alpha_{t}=f_{2} / f_{3}$.

The output focus position is given by

$$
\begin{equation*}
z_{3}{ }^{\prime}=f_{3}+\left(\frac{f_{3}^{2}}{f_{2}^{2}}\right)\left(f_{2}-z_{2}\right) \quad \text { or } \quad \Delta_{\text {out }}=\alpha_{\mathrm{t}}^{2} \Delta_{\mathrm{in}} \tag{4}
\end{equation*}
$$

where $\Delta_{\text {in }}=f_{2}-z_{2}$ and $\Delta_{\text {out }}=z_{3}{ }^{\prime}-f_{3}$. This means, that when there is a point source in the object focal plane of L_{2}, then its image will be in the image side focal plane of L_{3}; if the point source is displaced in axial direction by $\Delta_{\text {in }}$, then its image on the other side of the telescope will shift by $\alpha_{t}{ }^{2} \Delta_{\text {in }}$ in the same direction. We can thus define a longitudinal magnification, whose value is the square of the transversal one.

A transition to Gaussian optics can now be made by relating the opening angle of the beam to the waist size via $\varphi=\lambda / \pi \mathrm{w}_{\mathrm{o}}$, and equating the location of the beam focus to the beam waist position. Thus the output waist can be shifted in axial direction by shifting the input waist. The transformation of the waist diameter is governed by the angular magnification, which is independent of the position. Thus the output waist can be shifted without affecting the waist size.

Gaussian optics

The formulæ for Gaussian beams are quite similar to the ones for geometrical optics. One has just to replace the axial distance z by the complex confocal parameter $\mathrm{q}=\mathrm{z}+\mathrm{i} \mathrm{z}_{\mathrm{R}}$, where z is the distance from the waist, and $\mathrm{z}_{\mathrm{R}}=\pi \mathrm{w}_{\mathrm{O}}{ }^{2} / \lambda$ is the Rayleigh length. The beam transformation by a lens becomes then

$$
\begin{equation*}
\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{q}}-\frac{1}{\mathrm{q}^{\prime}} \tag{5}
\end{equation*}
$$

where the q's are measured at the lens, using the correct signs [1]. From this, another form relating the waist positions can be deduced:

$$
\begin{equation*}
\frac{1}{\mathrm{c}+\mathrm{c}_{\mathrm{R}^{2} /(\mathrm{c}-1)}^{c^{\prime}}}=1 \tag{6}
\end{equation*}
$$

where $\mathrm{c}=\mathrm{z} / \mathrm{f}$ etc. are the distances normalized by the lens focal length $[2,3]$.
a) first lens (L_{1})

Putting $\mathrm{z}=-\mathrm{z}^{\prime}$ and $\mathrm{z}_{\mathrm{R}}=\mathrm{z}_{\mathrm{R}}$ in (5) leads to the symmetric case

$$
c_{I / I I}=1 \pm \sqrt{1-c_{R}^{2}} \approx\left\{\begin{array}{c}
2-c_{R}^{2} / 2 \tag{7}\\
c_{R}^{2} / 2
\end{array}\right.
$$

which tends to the geometrical optics result for $\mathrm{c}_{\mathrm{R}} \rightarrow 0\left(\mathrm{z}_{\mathrm{R}}<\mathrm{f}\right)$. Introducing a small detuning such that $\mathrm{c}=\mathrm{c}_{\mathrm{I}}+\varepsilon$, leads to

$$
\begin{equation*}
c+c^{\prime} \approx 4+\varepsilon^{2}-c_{R}^{2}(1-2 \varepsilon) \tag{8}
\end{equation*}
$$

In the last equation there appears a term proportional to ε, if $c_{R} \neq 0$; this means that for a Gaussian beam the object-image waist distance changes a little bit on lens displacement in the symmetric case. So one needs to depart somewhat from the symmetric case to find a situation where the distance between input and output waist does not change. The lens magnification for Gaussian optics is given by [3]

$$
\alpha=\frac{1}{\sqrt{(1-c)^{2}+c_{R}^{2}}}
$$

and from (6) one gets the distance between object and image waist :

$$
\begin{equation*}
c+c^{\prime}=\frac{c^{2}(c+1)+c^{2}(c-1)}{c_{R}^{2}+(c-1)^{2}} . \tag{9}
\end{equation*}
$$

If $c+c^{\prime}$ is not to change with c, the derivative of (9) must be zero; one finds 4 solutions satisfying this condition:

$$
\begin{align*}
& \mathrm{c}_{1 / 2 / 3 / 4}=1 \pm \sqrt{\frac{1}{2}\left(1-2 c_{R}^{2} \pm \sqrt{\left.1-8 c_{R}^{2}\right)}\right.} \tag{10}\\
& \approx\left(\text { for small } c_{R}\right) \quad 1 \pm\left(1-\frac{3}{2} c_{R}^{2}\right) \text { and } 1 \pm c_{R} \tag{11}
\end{align*}
$$

Including a small deviation ε, the magnifications for these 4 cases are:

Solution	1	2	3	4
Normalized object distance z/f $=c=$	$2-\frac{3}{2} c_{R}{ }^{2}+\varepsilon$	$\frac{3}{2} c_{R}{ }^{2}+\varepsilon$	$1+c_{R}+\varepsilon$	$1-c_{R}+\varepsilon$
Magnification $\alpha \approx$	$1+c_{R}{ }^{2}-\varepsilon$	$1+c_{R}{ }^{2}+\varepsilon$	$\frac{1}{\sqrt{2} c_{R}}\left(1-\frac{\varepsilon}{2 c_{R}}\right)$	$\frac{1}{\sqrt{2} c_{R}}\left(1+\frac{\varepsilon}{2 c_{R}}\right)$

The first solution ($c \approx 2-3 c_{R}{ }^{2} / 2, \alpha \approx 1+c_{R}{ }^{2}$) is similar to the classical symmetric case ($c=2, \alpha=1$) as treated in the last paragraph.

Thus one sees that also in the case of Gaussian beams the magnification of a lens can be varied without, to first order, changing the position of the output waist with respect to the input waist. If the Rayleigh length is small compared to the focal length of the lens, then the geometrical optics result can be applied.

b) afocal telescope (L_{2}, L_{3})

From (5) and simple geometrical considerations, one obtains the beam transformations by L_{2} and L_{3} :

$$
\begin{align*}
& \mathrm{q}_{2}{ }^{\prime}=-\frac{\mathrm{f}_{2}}{\mathrm{Q}_{2}}\left(\mathrm{f}_{2}+\mathrm{Q}_{2}\right) \quad\left(\mathrm{Q}_{2}=\mathrm{q}_{2}-\mathrm{f}_{2}=\Delta_{\mathrm{in}}+\mathrm{i} \mathrm{z}_{\mathrm{R} 2}\right) \\
& \mathrm{q}_{3}=\mathrm{q}_{2}+\mathrm{f}_{2}+\mathrm{f}_{3} \tag{12}
\end{align*}
$$

$$
\mathrm{Q}_{3}{ }^{\prime}=\frac{\mathrm{f}_{3}^{2}}{\mathrm{f}_{3}-\mathrm{q}_{3}} \quad\left(\mathrm{Q}_{3}{ }^{\prime}=\mathrm{q}_{3}{ }^{\prime}+\mathrm{f}_{3}=\Delta_{\text {out }}+\mathrm{i} \mathrm{z}_{\mathrm{R} 3}\right)
$$

Here the beam parameters q_{2} and q_{3} are measured at their respective lenses, and Q_{2} and Q_{3} ' at the object / image focal planes of $\mathrm{L}_{2} / \mathrm{L}_{3}$. Then one gets

$$
\begin{equation*}
\mathrm{Q}_{3}{ }^{\prime}=\alpha_{\mathrm{t}}^{2} \mathrm{Q}_{2} \quad \text { or } \quad \Delta_{\mathrm{out}}+\mathrm{i} \pi \frac{\mathrm{w}_{3}^{2}}{\lambda}=\left(\alpha_{\mathrm{t}}^{2} \Delta_{\mathrm{in}}\right)+\mathrm{i} \pi \frac{\left(\alpha_{\mathrm{t}} \mathrm{~W}_{2}\right)^{2}}{\lambda}, \tag{13}
\end{equation*}
$$

which gives $\mathrm{w}_{3}=\alpha_{\mathrm{t}} \mathrm{w}_{2}$ and $\Delta_{\text {out }}=\alpha_{\mathrm{t}}^{2} \Delta_{\mathrm{in}}$. Thus, as for the geometrical optics case, the telescope magnifies the waist size by α_{t} and an input waist position change by α_{t}^{2}.

Example: input telescope for the Orsay mode cleaner prototype

The Orsay mode cleaner prototype is a 30 m long ring cavity, whose optical components are suspended as pendulums under vacuum. The beam from a compact (palm top) $\mathrm{Nd}: Y A G$ ring laser must be made resonant in it, and consequenctly needs to be matched. As an application of the above considerations, this section gives the constuctive details of an appropriate telescope.

The optical characteristics are:

		laser	MC cavity
waist size	w_{0}	0.1 mm	3.7 mm
Rayleigh length	Z_{R}	30 mm	40.4 m
beam half angle	φ	3.4 mrad	$90 \mu \mathrm{rad}$
length	1		30 m
mirror curvature	R		85 m

For the first lens, a focal length of 200 mm was chosen in order to give enough space (400 mm to each side) for additional optical components. So c_{R} is small (0.15), and the geometrical approximation for the first lens is quite good. L_{1} reproduces the input beam waist at a distance of 786 mm from the laser, with the possibility of a magnification or reduction. For the following afocal telescope (L_{2}, L_{3}) a magnification $\alpha_{t}=37$ is required in order to increase the beam waist from 0.1 to 3.7 mm . Space constraints forbid a very long focal length for L_{3}; the values chosen for f_{2} and f_{3} are 6.4 mm and 250 mm , respectively; the distance between L_{2} and L_{3} is thus 256.4 mm . This length should be quite stable, since otherwise the telescope will no longer be afocal as assumed in the calculations, and because a change of 1 mm would lead to an output waist shift of 12 m . The magnification resulting from the lens data is 39 ; the resulting slight waist size mismatch must be corrected by shifting L_{1}. The beam path between L_{1} and the afocal telescope is folded using two flat mirrors, which saves space and, by axial shifts, gives the possibility of changing the distance $L_{1}-L_{2}$ without changing the other distances. Thus
the waist size can be changed by shifting L_{1} with P_{1}, and the waist position by moving the block carrying the two flat mirrors with $\mathrm{P}_{2} . \mathrm{P}_{3}$ serves for fine tuning the distance $\mathrm{L}_{2}-$ L_{3}.

From the above formulæ, the sensitivity to shifts Δz_{p} of the translational stages P_{1} and P_{2} can be calculated:

waist size	waist position
$\frac{\Delta \mathrm{w}_{3}{ }^{\prime}}{\mathrm{w}_{3}{ }^{\prime}}=\left(1+\mathrm{c}_{\mathrm{R}^{2}}\right) \frac{\Delta \mathrm{z}_{\mathrm{P} 1}}{\mathrm{f}}$	$\Delta \mathrm{z}_{3^{\prime}}=\alpha_{\mathrm{t}} 2 \Delta \mathrm{z}_{\mathrm{P} 2}$

From this results the maximum tuning range, supposing that P_{1} and P_{2} can be shifted by $\pm 25 \mathrm{~mm}$:

$$
\begin{array}{c|r}
\hline \Delta \mathrm{w}_{3}{ }^{\prime} \Delta \mathrm{z}_{\mathrm{P} 1}= \pm 25 \mathrm{~mm} \max .=> & \Delta \mathrm{z}_{\mathrm{P} 2}= \pm 25 \mathrm{~mm} \max .=> \\
\mathrm{w}_{3^{\prime}}= \pm 12.5 \% \max .(\mathrm{f}=200 \mathrm{~mm}) \Rightarrow & \Delta \mathrm{z}_{3}{ }^{\prime}= \pm 1.7 \mathrm{zR} \max . \\
\mathrm{w}_{3}=3.25 \ldots 4.15 \mathrm{~mm} & = \pm 68.5 \mathrm{~m} \\
\hline
\end{array}
$$

The tuning range of w_{3} ' can be further increased by reducing the focal length of L_{1} (e.g. $\mathrm{f}=100 \mathrm{~mm}$).
[1] H. Kogelnik, T. Li, "Laser beams and resonators"; Appl. Opt. 5, 1550 (1966)
[2] S.A. Self, "Focusing of spherical optical beams", Appl. Opt. 22, 658 (1983)
[3] Melles Griot, Optics Guide

