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1 Introduction 3

1 Introduction

The �free swinging Michelson� technique is the basis of the current Virgo actuator calibration.
In this speci�c con�guration, the mirror motion can be reconstructed. It is used to measure the
actuation transfer function (m/V), i.e. the response of the suspended mirror to an excitation
applied to its actuator. Some results of such analysis has been shown in [1], [2], [3] and [4].

In this note, the method used to reconstruct the mirror motion is described. The results of
the reconstruction on simulated data are given as well as the sensitivity obtained on the Virgo
data.
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2 Mirror motion reconstruction

2.1 The free swinging Michelson con�guration

The interferometer (IFO) is set in a simple Michelson con�guration, with frontal phase modu-
lation. In order not to have cavities, the PR mirror and one mirror per arm are misaligned as
shown in the �gure 1. Four con�gurations are possible:

• short Michelson: the IFO is set with the NI and WI mirrors.

• long Michelson: the IFO is set with the NE and WE mirrors.

• asymmetric Michelson: the IFO is set with the NE and WI or WE and NI mirrors.

In such a con�guration, the phase di�erence ∆Φ between the two recombined beams is
related to the di�erential arm length ∆L, the laser wavelength λ being the reference length:

∆L =
λ

4π
∆Φ (1)

The mirrors used in the simple Michelson con�guration are let free in the longitudinal
direction (along the beam). They are thus freely swinging. In general, the mirror motion is
enough (a few microns) to see the fringes going back and forth at the Michelson output. If they
would be more stable, an excitation signal would have to be added.

2.2 Output signals

When the IFO is in a free swinging Michelson con�guration, the output signals, i.e. the con-
tinuous (DC) and demodulated (ACp in phase and ACq in quadrature) powers, are functions
of the phase di�erence ∆Φ between the two recombined beams:

PDC = β
(
1− γ cos(∆Φ)

)
(2)

PACp = αACp sin(∆Φ) (3)

PACq = αACq sin(∆Φ) (4)

where β, αACp and αACq are proportional to the laser power, and γ is proportional to the
interferometer contrast. The calculations are given in the appendix B.

2.3 Mirror motion reconstruction

In the plane of a demodulated signal (ACp or ACq) versus the continous signal (DC), the
measurements follow an ellipse as described by the equations 2 and 3 or 4. Examples of ellipse
measured in the data are shown in the �gure 2. The phase o�set ∆Φ between both arms is the
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2.3 Mirror motion reconstruction 5

(a) Asymmetric Michelson WE-NI

(b) Short Michelson NI-WI

Figure 1: Examples of Michelson con�gurations.
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angle from the x-axis and the line from the ellipse center to the current data position along the
ellipse. The di�erential arm length ∆L is then reconstructed from equation 1.

Two methods can be used to reconstruct the phase o�set ∆Φ. One is based on the estimation
of the minima and maxima of the di�erent signals and is called hereafter the MinMax method.
The other one is based on a �t of the ellipse parameters (center position and axis widths) and
is called the Ellipse method.

(a) NE-WI, ACq vs DC (b) NI-WI, ACp vs DC

(c) NE-WI, ACp vs ACq (d) NI-WI, ACp vs ACq

Figure 2: Examples of 2-dimensional plots of the continuous and demodulated photodiode signals.
Data in NE-WI con�guration: GPS 875586970, for 5 minutes. Data in NI-WI con�guration: GPS
875588235, for 5 minutes.
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2.3.1 MinMax method

This method is based on the estimation of the minima, maxima and average of the continuous
and demodulated signals. Then, the α, β and γ parameters are computed:

α =
Pmax

AC − Pmin
AC

2
(5)

β = < PDC > (6)

γ =
Pmax

DC − Pmin
DC

2β
(7)

∆Φ is then derived from:

cos ∆Φ =
β − PDC

β × γ
(8)

sin ∆Φ =
PAC

α
(9)

Details of the algorithm are described in appendix C.
The MinMax method has to be used on data with the full ellipse covered such that the

minima, maxima and average values are well estimated. The current algorithm does not take
into account the width of the ellipse due to the noise: the minima and maxima of the signal
are thus absolute extrema. The parameters α and γ must thus be somehow overestimated.

The time series of the α, β and γ parameters are shown in the �gure 3 for data in asymmetric
NE-WI Michelson and in short Michelson con�gurations respectively. In order to compare with
the raw signals, the data are the same as the one shown in the �gure 2. The parameters
are stable in the short Michelson data, and slightly varying in the asymmetric NE-WI data.
However, the variations are lower than ∼ 5%. As shown in appendix B (table 5), the value
of γ is expected to be close to the IFO contrast, 1 in the short Michelson con�guration and
0.24 in asymmetric con�gurations. The measured values (∼ 1 and ∼ 0.22) are compatible with
expectations within ∼ 10%. The expected value of β/P0 are 0.22 and 0.44 (table 5). From the
measured value of β, one can infer that the laser power impinging on the BS is of the order of
0.9 mW (is it expected so low ?).

2.3.2 Ellipse method

This methods is based on an ellipse �tting [5] of the two-dimension plot of the AC vs DC
signals. The �t is regularly processed and gives the ellipse centre position (x0, y0) (theoretically
(β, 0)) and the axis widths σx and σy normalized such that σy = 1 (theoretically (−βγ/α, 1)).
∆Φ can then be deduced directly1. The ellipse �tting process is working even if only a part of
the ellipse (more than 1/4th yet) has been followed by the signal. The details of the algorithm
are described in appendix D.

1 Only the center position is necessary to compute ∆Φ
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(a) Asymmetric NE-WI Michelson

(b) Short NI-WI Michelson

Figure 3: Examples of time series of the parameters used in the reconstruction. The MinMax method
channels for α, β and γ are called MinMax_A (W), MinMax_B (W) and MinMax_C. The Ellipse
method channels are the ellipse center Ellipse_XCentre (W) and Ellipse_YCenter (W), the ellipse
axis width Ellipse_SigX and Ellipse_SigY (set to 1 by the method) and the ellipse normalisation
factor Ellipse_Norm.
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The time series of the the estimated ellipse center position, axis width and ellipse size
are shown in the �gure 3 for data in asymmetric NE-WI Michelson and in short Michelson
con�gurations respectively. The data are the same as the one shown in the �gure 2. The values
give a correct description of the ellipses. The important parameters for the estimation of ∆Φ
are the ellipse center position. A way to estimate their precision is to estimate the position
variations over the ellipse width: ∆x0

σx×N
. In asymmetric Michelson con�gurations, where the

ellipse contour is large (noisy), the precisions are of the order of 1% 10% along the DC and AC
axis ; in short Michelson con�guration, where the ellipse contour is much thinner, the precisions
are of the order of 0.3% along both axis.

2.3.3 Rough check with fringe counting

The reconstructed ∆L can be checked comparing, on the same time window, the motion cal-
culated from the algorithm and the motion estimated from the number of fringes passing in
front of the photodiodes. The length o�set from a fringe to the following one is expected to be
λ
2
. An example of reconstructed signal and DC photodiode signal is shown in the �gure 4 (also

in the �gure 13 (p. 31)). Six intervals between bright fringes are passed within ∆t ∼ 0.5 s.
It corresponds to a di�erential mirror motion of ∆L ∼ 6λ

2
= 3.19 µm. At the same time, the

reconstructed signal shows a di�erential motion of ∆L ∼ 3.18 µm as expected. This check
validates the reconstruction process.

2.3.4 Some remarks

Since the sign of α in equations 3 and 4 is not known (the phase di�erence between the signal
and the demodulation phase is not measured), the absolute sign of ∆Φ and therefore ∆L cannot
be determined by this method.

In principle, the demodulation phase Ψ (see equations 34) could be set such that one
of the demodulated power is null while all the information is contained in the other one.
This could increase the sensitivity of the free swinging Michelson data. Another way to ex-
tract all the information from both demodulated signals is to use a combination of both (i.e.

PAC = sign(PACp)
√

P 2
ACp

+ P 2
ACq

∝ sin(∆Φ)). It has been tested but the reconstructed ∆L

was slightly noisier than using one of the demodulated signal alone.

The larger noise in asymmetric con�gurations compared to the short con�guration (see the
width of the ellipse contours) must be due to alignement noise. When a 3-km arm is used, the
alignement variations of the end mirror must change the beam matching on the BS. This has
to be checked looking at the alignement signals in the future data for Virgo+ calibration since
these signals were not saved in the Virgo calibration data stream.

When a dominant excitation is injected to an arm mirror actuation, the reconstructed ∆L
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(a) 10 s of NI-WI data

(b) Counting the fringes over 1 s

Figure 4: Comparison of the reconstructed signal ∆L (black) with the scaled DC signal measured on
the B1p photodiode (red, its range goes from 0 to 0.8 mW). Six interfringes are seen during the time
∆t. They correspond to a di�erential displacement ∆L.
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2.3 Mirror motion reconstruction 11

at the correspondant frequencies gives the motion of this mirror. When injected to the BS
mirror, an e�ective motion is reconstructed. Since the mirror is inclined by 45◦, a real longi-
tudinal mirror displacement of ∆lBS increases one arm length by ∆l cos(45◦) = ∆l

√
2/2 while

decreasing the other arm length by the same amount. The e�ective di�erential arm length that
is reconstructed is thus ∆LBS =

√
2∆lBS.

The reconstruction method is not expected to induce any delay between the ∆L(t) signal and
the photodiode signals. However, a delay is expected from the mirror motion to the photodiode
signals due to the light propagation time is the arms. This delay is negligible from the central
mirrors (NI and WI) but must be 10 µs from the WE and NE mirrors. For the BS mirror,
the case is more di�cult: the beam transmitted by the BS to the north arm is re�ected on
the north mirror and 'sees' the BS position when it is re�ected to the photodiodes ; the beam
re�ected by the BS to the west arm 'sees' the BS position when it enters the interferometer, and
is then propagated back and forth in the west cavity, and transmitted by the BS mirror to the
photodiodes. No delay is expected from the �rst beam, while a delay of 20 µs is expected from
the second beam when the long arm (up to WE) is used. The e�ect on the phase when both
beams are recombined cannot be easily calculated. It has been estimated using simulations
later in this note.

VIR-112A-08 - November 21, 2008
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3 Checks and performance of the reconstruction

Additionnal checks and performance estimation of the ∆L reconstruction are evaluated in this
section.

From the motions of the mirrors to the output photodiode channels used for the ∆L re-
construction, the signal processes through the optical response of the IFO, which depends on
the mirrors, and through the photodiode readout electronics. The e�ect of the IFO optical
response and the e�ect of possible non-�at response of the photodiode readout electronics are
estimated.

The sensitivity of the free swinging Michelson data is then estimated.

3.1 E�ect of the IFO optical response

The optical response is expected to be a delay due to the light propagation time from the
mirror to the detection photodiodes. A special case arises for the motion of the BS motion in
con�gurations using the WE mirror. In this case, the BS mirror motion is probed by the IFO
laser beam twice as shown in the �gure 5: when the input beam is re�ected towards the WE
mirror, this beam travels 20, µs before it is recombined on the BS ; when the beam coming
back from the north arm is re�ected on the BS towards and recombined with the west arm
beam to the detection. The simulations are used to check the expected optical response and to
determine the response in the particular case of the BS.

Simulated data of free swinging Michelson con�gurations have been computed with the
SIESTA code [6] using the OPseq simulation2 for the interferometer with a clock at 1 MHz
(see appendix F for a con�guration �le). The light propagation time in the central IFO are
neglected (∼ 30 ns, for distances of the order of 10 m). An excitation signal3 is applied to one
mirror actuation. The mirror motion is stored into the channel ∆Lmir

simu. The output of the
detection photodiodes are also stored. The ∆L reconstruction algorithm is processed on these
data, producing a channel ∆Lrec.

The TF ∆Lrec

∆Lmir
simu

is computed in order to check the expected modulus and delay. The coher-

ence of both signals is high from a few Hz to 10 kHz. Some examples are shown in the �gure 6.
Fits of a constant value and of a line has been done on the modulus and the phase respectively
to extract the gains and delays.

For the arm mirrors, the modulus are �at and compatible with 1 up to 10 kHz. The delays
are 0 for the input mirrors and 10 µs for the end mirrors as expected from the light propagation
time. For the BS mirror, when the WI mirror is used in the Michelson con�guration, the
modulus is �at and compatible with

√
2(∼ 1.414) up to 10 kHz and the delay is 0 as expected.

When the WE mirror is used, the simulations shown that the modulus of the TF of the BS
mirror motion is not �at as shown in the �gure 6(c). A �t of a complex pole (second order
low-pass �lter) has been computed on �gure 7. The results are a gain of 1.414, a delay of

2with the option full set to YES
3white noise or white noise �ltered by a pole and a zero

VIR-112A-08 - November 21, 2008



3.1 E�ect of the IFO optical response 13

Figure 5: In NI-WE or NE-WE con�gurations, the position of the BS mirror is sensed at two di�erent
times. It is sensed when the input beam is re�ected towards the WE mirror (green path), at t1. After
propagation in the arm, the beam is recombined with the beam coming from the north arm (blue path)
at t2 ∼ t1 + 2 × 10 µs. The beam coming from the north arm sense the BS mirror position when it is
re�ected on the mirror and recombined with beam from the west arm, at t2. The recombined beam is
then received by the detection photodiodes.
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−7.48 µs, a pole at 15460 Hz with a quality factor of 0.59. The residuals of the �t are better
than 0.5% up to 5 kHz. However, the phase can be described by a delay of 10 µs up to 10 kHz
within 10 mrad. The modulus can be assumed to be

√
2 within 0.2% up to 1 kHz.

The gains and delays of the di�erent TFs between the reconstructed mirror motion and the
e�ective one are summarized in the table 3. The delays correspond to the optical response
of the IFO: it is the light propagation time in the arms. The simulations con�rm that the
reconstruction method does not introduce any systematic frequency dependence in the TF
modulus nor in the phase below 10 kHz, excepted for the BS mirror in NE-WE and NI-WE
con�gurations where frequency dependence is seen above 1 kHz.

Con�g. BS NI WI NE WE

NI-WI
G 1.414± 0.018 0.996± 0.033 0.999± 0.039 - -
td 0.0001± 0.01 0 0 - -

NE-WI
G 1.414± 0.018 - 1.000± 0.015 1.000± 0.014 -
td 0 - 0 10.02± 0.27 -

NI-WE
G 1.409± 0.034(∗) 1.000± 0.013 - - 1.000± 0.012
td 10.00± 0.27(+) 0 - - 10.01± 0.23

NE-WE
G 1.414± 0.060(∗) - - ± ±
td 10.0± 1.5(+) - - ± ±

Table 1: Gains G and delays td in µs found between the reconstructed ∆L and the simulated mirror
motion for the di�erent simple Michelson con�gurations. They are valid up to 10 kHz, except for the
gain of the BS mirror in NI-WE and NE-WE con�gurations, where they are valid up to ∼ 1 kHz. (*)
Fit �at modulus below 1 kHz. (+) From a linear �t of the phase up to 10 kHz.

3.2 E�ect of the readout electronics

A possible source of systematic errors is a bad compensation of the compression �lters in the
photodiode readout electronics. Simulations have been computed processing the photodiode
output signals through some �lters to distort the signal before using it in the ∆L reconstruction
process. The 'bad compensation' has been simulated by a pole and a zero at 145 Hz and 150 Hz
respectively4

When only the DC signal is �ltered, the reconstructed ∆L loose coherence with the simulated
mirror motion from ∼ 100 Hz to ∼ 2 kHz as shown in the �gure 8. Around this region, the
motion is properly reconstructed.

When only the AC signal is �ltered, the e�ect is similar.

4 Pole at 145 Hz: US�lter1 d1tmp d1.dc 0 0 911.1 1. 911.1
Zero at 150 Hz: US�lter1 d1new d1tmp.out 0 1 942.5 0. 942.5
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(a) NE-WI, injection on NE

(b) WE-NI, injection on WE

(c) WE-NI, injection on BS

Figure 6: Coherence and TF of the reconstructed from the simulated mirror motion to the reconstructed
∆L.
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Figure 7: Fit of the TF of the reconstructed from the simulated BS motion to the reconstructed ∆L
in NI-WE (and NE-WE) Michelson con�guration. The residuals are also given.
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3.3 Sensitivity to mirror motion 17

When both the DC and AC signals are �ltered with the same �lters, the coherence between
the reconstructed and simulated ∆L is close to 1 and the motion is properly reconstructed in
all the frequency range.

These simulations have shown that it is important to have a precise compensation of the
compression/decompression �lters in the photodiode readout electronics in order not to loose
sensitivity.

Figure 8: Coherence and TF of the reconstructed from the simulated NI mirror motion ∆L in NI-WI
con�guration, with a �lter (pole and zero) applied to the readout DC photodiode signal.

3.3 Sensitivity to mirror motion

The sensitivity of the free swinging Michelson data is estimated. First, some tests are performed
on simulated data. Then, examples of sensitivity obtained on real data are given.

3.3.1 Noise from the reconstruction

Free swinging short Michelson data without noise has been simulated, injecting a white noise to
the NI mirror actuation. The WI and BS mirrors are �xed. In the simulations the demodulated
signals are related by PACq = −PACp. The mirror motion level is described by the FFT of the
simulated NI mirror as shown in the �gure 9. The FFTs of the reconstructed signals have been
superposed for comparison. Decreasing levels of white noise have been injected down to when
the level of the reconstructed ∆L do not decrease any more. This lower level is assumed to
described the noise �oor from the reconstruction procedure.

Noise levels are similar for both MinMax and Ellipse methods, with a value of 10−12 m/
√

Hz
at 150 Hz.
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3.3.2 Sensitivity in real data

The sensitivity of the reconstructed free swinging Michelson data is estimated by the FFT of
the reconstructed ∆L channel. It is shown in the �gure 10. The best sensitivity of 10−12 m
is achieved above 200 Hz. The lines below 1 kHz are calibration lines as quoted in the �gure
caption. A broad structure is visible between 4260 and 4320 Hz in all the data. Its origin is
unknown (aliasing of the laser modulation frequency, or of a mirror drum mode ?).

The sensitivity is slightly better using the Ellipse method than the MinMax method. Also,
depending on the Michelson con�guration, one of the demodulated signal has a better sensitiv-
ity: ACq for asymmetric con�gurations and ACp for short Michelson con�guration.

The origin of the noise is not understood yet. Possible origins are shot noise, laser frequency
noise or alignement noise. The corresponding channels were not stored in the past calibration
data. This study will be performed on the forthcoming Virgo+ free swinging Michelson data.

3.4 Search for non-linearities

A possible source of error could arise if the reconstruction method would introduce non lineari-
ties. This would show up as harmonic lines in the FFT of the reconstructed ∆L channel. Such
lines were not found in the data. The table 2 gives the amplitude of a few lines and the noise
level at its �rst multiple frequencies. It shows that possible non-linearities are below 0.1% of
the initial line amplitude.

Figure 9: Lower achieved level of the FFT of the reconstructed ∆L signal (in m√
Hz

) using both MinMax

and Ellipse method, superposed onto the FFT of a low-amplitude simulated NI mirror motion.
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(a) Asymmetric NE-WI Michelson

(b) Short NI-WI Michelson

Figure 10: FFT of the reconstructed ∆L signal (in m√
Hz

) using both MinMax and Ellipse method,

and both ACp and ACq signals (reconstruction sensitivity). Top: asymmetric NE-WI con�guration
(calibration lines were injected at 6.5, 16.5, 36.5, 66.5, 116.5, 8, 7, 17, 37, 67, 117 and 217 Hz).
Bottom: short WI-NI con�guration (calibration lines were injected at 7, 357, 557, 18 and 18.5 Hz).
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f0 (Hz) A(f0) (m/
√

Hz) A(2f0) (m/
√

Hz) A(3f0) (m/
√

Hz) A(4f0) (m/
√

Hz)
NE-WI 7 5× 10−8 3× 10−10 1.4× 10−10 6.3× 10−11

NE-WI 67 1× 10−9 3.2× 10−12 3.1× 10−12 -
NE-WI 756 8.5× 10−12 1× 10−12 1× 10−12 -
NI-WI 7 9.6× 10−8 6.7× 10−11 5.4× 10−11 3.3× 10−11

Table 2: Amplitude of the injected line (f0) and noise level at the �rst possible harmonics of the line.

4 Sensitivity to calibration signals

The noise level of asymmetric data as well as the maximum amplitude of calibration lines
that can be injected for Virgo and Virgo+ (after the magnets and coil driver replacements)
are compared in the �gure 11. The reduction of actuation dynamic for Virgo+ might make
impossible direct measurements of the actuation above 1 kHz.

The lines injected on the BS mirror can be stronger than for the arm mirrors, as seen on
the �gure.

Figure 11: FFT of the reconstructed ∆L signal from WE-NI asymmetric Michelson data (100 s). The
red curve indicates the maximum amplitude of calibration lines that can be injected to the end mirrors
of Virgo, averaging 10 s-FFTs. The blue curve represent the amplitude for Virgo+ actuation, which is
reduced by a factor ∼ 5.
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4.1 Possible improvements 21

4.1 Possible improvements

Improvements in the sensitivity of the free swinging Michelson data might be possible:

• adjust the demodulation phase of the B1p photodiodes such that one demodulated signal
is null, while all the information for the reconstruction is contained in the other one.

• increase the laser power. This would increase the size of the ellipses, improving the relative
precision on the ellipse parameters or minimum/maximum values.

If the ellipse width is found to be due to alignement noise, possible alignement improvements
for Virgo+ might also improve the sensitivity.
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5 Conclusion

Two methods to reconstruct the di�erential mirror motion of a free swinging Michelson in-
terferometer with frontal phase modulation have been described. They use the DC and a
demodulated signal transmitted by the IFO.

Simulations were performed to check the reconstruction process. Both methods reconstruct
the mirror motion without systematic e�ects nor time delay introduction. The optical response
of the IFO has been characterised from the simulations.

The noise level obtained in the data has still to be explained. It will be studied on future
free swinging Michelson data since not all the needed channels were stored in the past data.
When the noise origin will be understood, a further version of this note will be done.

The sensitivity of the data to calibration signals has been studied. It has shown that the
calibration-induced mirror motion might not be detectable above 1 kHz for Virgo+.
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A Some Virgo mirror and cavity characteristics

During VSR1, the laser was phase-modulated at Ω = 6.264288 MHz with a modulation depth
m varying5 between 0.27 and 0.29.

The following tables give some intensity re�ectivity and transmission coe�cients values and
the lengths of the di�erent cavities.

PR
R = 1.8± 0.2 ppm (1st face)

T = 5.13%± 0.02% (2nd face)

BS
R = 50.25%± 0.18% (1st face)
R = 519± 10 ppm (2nd face)

NI
R = 132± 2 ppm (1st face)

T = 11.8%± 0.03% (2nd face)
NE T = 42.9± 0.2 ppm

WI
R = 171± 0.6 ppm (1st face)

T = 11.66%± 0.02% (2nd face)
WE T = 38.3± 0.7 ppm

Table 3: Intensity re�ection and transmission coe�cients of the Virgo mirrors.

lrec (PR to BS) 5.98
ln (BS to NI) 6.512
lw (BS to WI) 5.634
LN (NI to NE) 3000.0812

LW (WI to WE) 3000.0812

Table 4: Lengths of the Virgo cavities, in meters. LN and LW are averaged on the west and noth
cavities.

5 During VSR1, the modulation depth was monitored in the channel Bs_MOD_E0_M6, where the value
6.5 corresponds to m = 2.7 as measured in February 4th 2008 by Julien Marque.
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B Calculation of continuous and demodulated powers for

a Michelson interferometer

The aim of this annexe is to calculate the continuous and demodulated powers transmitted
by a simple Michelson interferometer with frontal phase modulation. The results are used to
reconstruct the mirror di�erential motion of the interferometer in the Virgo calibration.

First, the results for a simple interferometer without modulation are given. The frontal
phase modulation is then added.

B.1 Michelson interferometer

In a Michelson interferometer, a beam is split into two arms by a beam splitter (BS) as shown
in the �gure 12 (no modulation is assumed yet). At the end of each arm, a mirror re�ects the
beams to the BS where they interfere.

Figure 12: Simple Michelson con�guration with frontal phase modulation

Let's call A the amplitude of the incident �eld on the BS (assumed ideal: r = t = 1√
2
). The
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amplitude At of the beam transmitted to the detection is thus6:

At = A(
1√
2
)ejkl1(−r1)e

jkl1(
1√
2
) + A(

−1√
2
)ejkl2(−r2)e

jkl2(
1√
2
) (10)

= −A

2

[
r1e

2jkl1 − r2e
2jkl2

]
where k = 2π

λ
, λ the laser wavelength, l1 and l2 the arm lengths and r1 and r2 the amplitude

re�ection coe�cients of the mirrors. In practice, the coe�cients are e�ective coe�cients that
take into account the possible transmission coe�cients when crossing the input mirrors and the
beam matching which might not be perfect in a free swinging Michelson. With l− = l2− l1 the
length di�erence and l+ = l2 + l1 the sum of the arm lenghts, the amplitude of the transmitted
�eld can be written:

At = Aejkl+
[
jr sin(kl−) + ∆r cos(kl−)

]
(11)

where r = r1+r2

2
is the average re�ectivity and ∆r = r2−r1

2
the asymmetry between the two arm

re�ectivities.
The power transmitted by the interferometer is then:

Pt = AtAt

= AA
[
∆r2 cos2(kl−) + r2 sin2(kl−)

]
= AA

[
∆r2 1 + cos(2kl−)

2
+ r2 1− cos(2kl−)

2

]
=

Pmax

2

[
1− C cos(2kl−)

]
(12)

with

Pmax = P0(r
2 + ∆r2) (where P0 = AA) (13)

C =
r2 −∆r2

r2 + ∆r2
(14)

C is the interferometer contrast. The transmitted power is maximum Pt = Pmax when 2kl− =
(2q+1)π where q is an integer. The transmitted power is minimum Pt = Pmin when 2kl− = 2qπ.
We have: Pmin

Pmax
= 1−C

1+C
.

B.2 Michelson with frontal phase modulation

A Pockels cell is set in front of the interferometer in order to modulate the phase of the laser
beam before it enters the interferometer as shown in the �gure 12. The phase is modulated

6 The re�ection coe�cient r on a surface depends of the refraction indexes n1 and n2 of the medium on both
sides. For a beam in the medium of index n1, r = n1−n2

n1+n2
. The re�ection coe�cient is thus positive when the

beam is re�ected inside the mirror and negative when it is re�ected inside vacuum.
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at pulsation Ω (6.26 MHz for Virgo) with a modulation depth m. The �eld entering the
interferometer is then:

E(t) = Aejω0tejm sin(Ωt) (15)

The term ejm sin(Ωt) can be developped using the Bessel functions:

ejm sin(Ωt) = J0(m) + J1(m)ejΩt − J1(m)e−jΩt +higher order terms (16)

The entering �eld can then be written:

E(t) = AJ0(m)ejω0t + AJ1(m)ej(ω0+Ω)t − AJ1(m)ej(ω0−Ω)t (17)

It is the superposition of a wave with pulsation ω0 called the carrier and two waves of pulsations
ω0±Ω called the sidebands. The amplitude of the waves depends on the modulation depth m.

The �eld transmitted by the interferometer can be written (applying equation 11 to the
carrier and lateral bands):

Et(t) = At
0J0e

jω0t + At
+J1e

j(ω0+Ω)t − At
−J1e

j(ω0−Ω)t (18)

(At
0J0) = AJ0e

jk0l+
[
jr sin(k0l−) + ∆r cos(k0l−)

]
(19)

(At
+J1) = AJ1e

jk+l+
[
jrsb sin k+l− + ∆rsb cos(k+l−)

]
(20)

(−At
−J1) = −AJ1e

jk−l+
[
jrsb sin k−l− + ∆rsb cos(k−l−)

]
(21)

where we de�ned:

k0 =
ω0

c
, k+ = ω0+Ω

c
, k− = ω0−Ω

c
(22)

and where rsb and ∆rsb are the average re�ectivity and asymmetry of both arms for the side
bands7

Let's now compute the transmitted power P t(t):

P t(t) = Et(t)Et(t) (23)

= (At
0J0)(At

0J0) + (At
+J1)(At

+J1) + (−At
−J1)(−At

−J1)

+ (At
0J0)e

jω0t(At
+J1)e

−j(ω0+Ω)t + (At
0J0)e

jω0t(−At
−J1)e

−j(ω0−Ω)t

+ (At
+J1)e

j(ω0+Ω)t(At
0J0)e

−jω0t + (At
+J1)e

j(ω0+Ω)t(−At
−J1)e

−j(ω0−Ω)t

+ (−At
−J1)e

j(ω0−Ω)t(AT
0 J0)e

−jω0t + (−At
−J1)e

j(ω0−Ω)t(At
+J1)e

−j(ω0+Ω)t

= (At
0J0)(At

0J0) + (At
+J1)(At

+J1) + (At
−J1)(At

−J1) (24)

+ <
{[

(At
0J0)(−At

−J1) + (At
0J0)(A

t
+J1)

]
ejΩt

}
+ <

{
(At

+J1)(−At
−J1)e

j2Ωt

}
The power transmitted by the interferometer is the sum of a continuous term, a term at the

modulation frequency and a term at twice the modulation frequency.

7 This is the more general case: for a simple interferometer, the re�ectivity for the side bands is the same as
the one for the carrier.
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B.2.1 Continous term of the transmitted power

The continuous term of the transmitted power is the sum of three terms like in the equation 12.

P t
DC = (At

0J0)(At
0J0) + (At

+J1)(At
+J1) + (At

−J1)(At
−J1) (25)

=
P0J

2
0

2
(r2 + ∆r2)

[
1− C cos(2k0l−)

]
+

P0J
2
1

2
(r2

sb + ∆r2
sb)

[
1− Csb cos(2k+l−)

]
+

P0J
2
1

2
(r2

sb + ∆r2
sb)

[
1− Csb cos(2k−l−)

]
=

P0J
2
0

2
(r2 + ∆r2)

[
1− C cos(2k0l−)

]
+

P0J
2
1

2
(r2

sb + ∆r2
sb)

[
2− Csb

(
cos(2k+l−) cos(2k−l−)

)]
=

P0J
2
0

2
(r2 + ∆r2)

[
1− C cos(2k0l−)

]
+ P0J

2
1 (r2

sb + ∆r2
sb)

[
1− Csb cos((k+ + k−)l−) cos((k+ − k−)l−)

]
=

P0J
2
0

2
(r2 + ∆r2)

[
1− C cos(2k0l−)

]
+ P0J

2
1 (r2

sb + ∆r2
sb)

[
1− Csb cos(2k0l−) cos(

2Ωl−
c

)
]

Now assume the usual case where rsb = r and ∆rsb = ∆r. The phase o�set of the Michelson
interferometer arms is de�ned as ∆Φ = 2k0l−.

P t
DC = P0(r

2 + ∆r2)

[
J2

0

2

(
1− C cos(∆Φ)

)
+ J2

1

(
1− C cos(

2Ωl−
c

) cos(∆Φ)
)]

= P0(r
2 + ∆r2)

[(J2
0

2
+ J2

1

)
−

(J2
0

2
+ J2

1 cos(
2Ωl−

c
)
)
C cos(∆Φ)

]
= β

(
1− γ cos(∆Φ)

)
(26)

where we de�ned, using the sideband transmission factor T = sin2(Ωl−
c

):

β = P0

(
J2

0

2
+ J2

1

)(
r2 + ∆r2

)
(27)

γ =

[
1− 2J2

1

J2
0

2
+ J2

1

T

]
C (28)

β is proportional to the laser power, and depends on the re�ection coe�cients and modulation
depth. γ is proportional to the interferometer contrast and also depends on the modulation
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depth. The sideband transmission factor T is a function of l− which varies of a few µm when
data are taken in free swinging Michelson con�guration. However, the period of the factor is
of the order of 50 m. Its variations over a few microns can thus be neglected.

In the case of no modulation (J0 = 1 and J1 = 0), the equation is the same as equation 12.
If the sidebands are not transmitted (T = 0), the γ factor corresponds to the interferometer
contrast.

Some numerical values The expected values of β/P0 and of γ can be estimated for di�erent
IFO con�gurations, using the mirror and length characteristics from appendix A (with m =
0.27). It is assumed that the transmission and re�ection coe�cients of the mis-aligned mirrors
(by a few 100 µrad are the same as when the mirrors are aligned.

The Bessel coe�cients for a modulation depth m = 0.27 are J0 = 0.9818 and J1 = 0.1338.

NE-WI WE-NI NI-WI
T 0.01568 0.0261 0.0003

γ/C 0.9989 0.9981 1.000
C 0.247 0.245 1.0
γ 0.247 0.244 1.0

β/P0 0.224 0.224 0.441

Table 5: Some numerical values of the coe�cients that enter the P t
DC expression (equation 26). They

all are of dimensin [1]. P0 is the power impinging on the BS at the IFO entrance.

B.2.2 Term of the transmitted power at the modulation frequency

The term of pulsation Ω of the transmitted power is computed from equation 24.

P t
Ω(t) = <

{[
(At

0J0)(−At
−J1) + (At

0J0)(A
t
+J1)

]
ejΩt

}
(29)

= AĀJ0J1<
{

−ejk0l+
(
jr sin(k0l−) + ∆r cos(k0l−)

)
e−jk−l+

(
− jrsb sin(k−l−) + ∆rsb cos(k−l−)

)
ejΩt

+e−jk0l+
(
− jr sin(k0l−) + ∆r cos(k0l−)

)
ejk+l+

(
jrsb sin(k+l−) + ∆rsb cos(k+l−)

)
ejΩt

}
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P t
Ω(t) = P0J0J1<

{
ej

(
Ω
c

l++Ωt
)[

−jr sin(k0l−) jrsb

(
sin(k+l−)− sin(k−l−)

)
(30)

−jr sin(k0l−) ∆rsb

(
cos(k+l−) + cos(k−l−)

)
+∆r cos(k0l−) jrsb

(
sin(k+l−) + sin(k−l−)

)
+∆r cos(k0l−) j∆rsb

(
cos(k+l−)− cos(k−l−)

) ]}

= P0J0J1<
{

ej
(

Ω
c

l++Ωt
)[

2rrsb sin(k0l−) cos
(ω0

c
l−

)
sin

(Ω

c
l−

)
(31)

−2∆r∆rsb cos(k0l−) sin
(ω0

c
l−

)
sin

(Ω

c
l−

)
−2jr∆rsb sin(k0l−) cos

(ω0

c
l−

)
cos

(Ω

c
l−

)
+2jrsb∆r cos(k0l−) sin

(ω0

c
l−

)
cos

(Ω

c
l−

) ]}

P t
Ω(t) =2P0J0J1<

{
ej Ω

c
l++Ωt 1

2
sin(2k0l−)

[
sin

(Ω

c
l−

)
[rrsb −∆r∆rsb] (32)

+ j cos
(Ω

c
l−

)
[rsb∆r − r∆rsb]

]}

P t
Ω(t) =P0J0J1 sin(∆Φ)

[
cos(

Ω

c
l+ + Ωt) sin(

Ω

c
l−) (rrsb −∆r∆rsb) (33)

− sin(
Ω

c
l+ + Ωt) cos(

Ω

c
l−) (rsb∆r − r∆rsb)

]

Demodulated signals - The transmitted power measured by the B1p photodiodes is de-
modulated at the modulation frequency Ω. The phase ϕ of the demodulation is adjusted for
Science Mode data and not to the phase Ψ = Ω

c
l+ of the free swinging Michelson data.

The demodulated signal 'in phase', PACp, is computed multiplying the power P t
Ω(t) by

cos(Ωt + ϕ) and low-pass �ltering the result in order to keep the continuous component only.
One has:

cos(Ψ + Ωt) cos(Ωt + ϕ) = 1
2

[
cos(Ψ + ϕ + 2Ωt) + cos(Ψ− ϕ)

]
sin(Ψ + Ωt) cos(Ωt + ϕ) = 1

2

[
sin(Ψ + ϕ + 2Ωt) + sin(Ψ− ϕ)

]
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Reporting these formulas in equation (33) and keeping only the continuous term (and not the
term at 2Ω), one gets the demodulated signal in phase:

PACp = 1
2
P0J0J1 sin(∆Φ)

[
sin

(
Ω
c
l−

)
(rrsb −∆r∆rsb) cos(Ψ− ϕ)

− cos
(

Ω
c
l−

)
(rsb∆r − r∆rsb) sin(Ψ− ϕ)

]
= αACp sin(∆Φ)

Similarly, the demodulated signal 'in quadrature', PACq, is computed multiplying the power
P t

Ω(t) by sin(Ωt+ϕ) and low-pass �ltering the result in order to keep the continuous component
only. One founds:

PACq = −1
2
P0J0J1 sin(∆Φ)

[
sin

(
Ω
c
l−

)
(rrsb −∆r∆rsb) sin(Ψ− ϕ)

+ cos
(

Ω
c
l−

)
(rsb∆r − r∆rsb) cos(Ψ− ϕ)

]
= αACq sin(∆Φ)

In general, the re�ection coe�cients are the same for the carrier and the sidebands. The
second term, with the di�erence rsb∆r−r∆rsb is thus negligible. Moreover, r2 ∼ 0.8, r∆r ∼ 0.1
and ∆r2 ∼ 0.01. Neglecting the terms containing ∆r, the demodulated powers can be written:

PACp ∼ α
′
cos(Ψ− ϕ) sin(∆Φ) (34)

PACq ∼ −α
′
sin(Ψ− ϕ) sin(∆Φ) (35)

α
′

=
1

2
P0J0J1 sin

(Ω

c
l−

)
r2 (36)

Both of them can be written as

PAC = αAC sin(∆Φ) (37)

The factors αAC are di�erent for both demodulated signals. They are proportional to the
laser power. They depend on the modulation depth and on the mirror re�ectivities. They also
depend on the sideband transmission and re�ection factors T and 1 − T , i.e. on l− (thus on
∆Φ). There period, of the order of 50 m, is much larger than the mirror motion, of the order
of microns in the free swinging Michelson data. Their variations can thus be neglected. For a
given Michelson con�guration, the di�erence between the ACp and ACq signals is the cosine
or sine factor of the phase shift between Ψ and the phase ϕ of the demodulation. In principle,
one could set the phase of the demodulation such that one signal achieve optimum sensitivity
while the other is zero.
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B.3 Conclusion

The continuous and demodulated signal at the output of a frontal phase modulated Michelson
interferometer are functions of the phase o�set between the two arms ∆Φ:

PDC = β
(
1− γ cos(∆Φ)

)
(38)

PACp = αACp sin(∆Φ) (39)

PACq = αACq sin(∆Φ) (40)

where β, αACp and αACq are proportional to the laser power, and γ is proportional to the
interferometer contrast.

A demodulated signal can be combined with the continuous signal to reconstruct the phase
o�set vs time, and thus the di�erential arm length variations ∆L(t) = λ

4π
∆Φ(t). This is the

base of the calibration of the Virgo mirror actuation transfer functions.

Figure 13: DC, ACp and ACq powers (along with the reconstructed ∆L channel) in WE-NI asymmetric
data. The ACp and ACq powers are in phase as expected from equation 34 (or phase opposition). The
DC power is always strictly positive since the contrast in not 1 in asymmetric con�gurations. On the
bright fringe (DC is maximum) and on the dark fringes (DC is minimum), the AC signals cross zero as
expected. The y-axis scale units depends on the signals: 20 W for DC power, 10 W for ACp and ACq
powers (1 m for ∆L). Dark fringe counting, as in section 2.3.3: during the time ∆t, the DC signal
shows that the di�erential mirror motion has crossed 6 interfringes, thus 6 × λ/2 = 3.19 µm. During
the same time, the reconstructed channel shows a mirror motion of ∆L ∼ 3.18 µm.
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C MinMax method algorithm

The details of the algorithms are given here.
The parameters α, β and γ are estimated from the minimum, maximum and average signals

each time the angle ∆Φ has moved by more than 2π since last estimation (or if more than 5 s
of data was read for the very �rst computation).

They are then averaged using a sliding average that behaves as a low pass �lter.
The value of ∆Φi and ∆Li are then estimated for every sample i from the last average

values < α >k, < β >k and < γ >k. The ∆Li values are saved into the frame at the same rate
as the sampling of the photodiode signals Pr_B1p.

Two values of ∆L are computed, one using Pr_B1p_ACq and the other one using Pr_B1p_ACp.
The parameter average values < α >k, < β >k and < γ >k are saved into the frame at

the same rate as the photodiode signal with names MinMax_A_ACq, MinMax_B_ACq,
MinMax_C_ACq respectively (if they are computed with the quadrature signal ACq).

D Ellipse method algorithm

The Ellipse method is used to estimate the mirror displacement in free Michelson con�gu-
ration. The details of the algorithm are given here. It is based on the fact that the phase
(Pr_B1p_ACp) or quadrature (Pr_B1p_ACq) photodiode signals plotted as function of the
DC signal has an elliptic shape.

D.1 General algorithm

Two values of ∆L are estimated from both the phase and quadrature signals. The following
examples are given for the quadrature signal.

The kth averaged ellipse centre position (Xk
0 , Y k

0 ) and axis width ratio σk
X/σk

Y are estimated
from the DC and ACq signals. Then the angle ∆Φi of the following samples i are estimated
from the relation:

cos ∆Φi =
DCi −Xk

0

σk
X

(41)

sin ∆Φi =
ACqi − Y k

0

σk
Y

(42)

(43)

The current ellipse parameters xk
0, yk

0 , σk
x, σk

y are estimated using the method described
below from bu�ered samples of DC and ACq signals every time that the current ∆Φk di�ers
by more than 2π from its value when the last ellipse ∆Φk−1 was �tted and that the number of
samples in the bu�er is more than 1000 (the �rst ellipse is computed using 5 s of data). They
are then average using a sliding average.
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The estimated values of ∆L as well as the estimated values of the averaged ellipse parameters
are saved into the frame at the same rate as the photodiode signals.

D.2 Ellipse �tting method algorithm

A numerically stable non-iterative algorithm for �tting an ellipse to a set of data points is
described in [5]. It has been added in the Cali module using the matrix objects from ROOT in
the �les FreeMichelsonCalib_DeltaLReconstruction, under the name HalirFlusserMethod.

Ellipse �tting method description - The method takes as arguments a set of N coordi-
nates (xi, yi), i ⊂ (1, N). The ellipse is described by an implicit second order polynomial:

F (x, y) = ax2 + bxy + cy2 + dx + ey + f = 0

and the six unknown ellipse parameters are (a, b, c, d, e, f).
From the data, two N × 3 matrixes are built:

D1 =



x2
1 x1y1 y2

1

. . .

. . .
x2

i xiyi y2
i

. . .

. . .
x2

N xNyN y2
N



D2 =



x1 y1 1
. . .
. . .
xi yi 1
. . .
. . .

xN yN 1


Then, four 3× 3 matrixes are de�ned:

S1 = DT
1 ×D1 (44)

S2 = DT
1 ×D2 (45)

S3 = DT
2 ×D2 (46)

(47)

and

C1 =

 0 0 1/2
0 −1 0

1/2 0 0
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From these objects, one computes the 3× 3 matrix M :

M = C−1
1 (S1 − S2S

−1
3 ST

2 )

The three eigenvectors vj of M are then calculated. One of these vectors, called a1 = (a, b, c),
represents the ellipse parameters. To choose among them, one estimates the number s = aT

1 C1a1

and select the vector a1 with the more little positive s value. The other ellipse parameters are
then calculated as:

a2 = −S−1
3 ST

2 a1 = (d, e, f)

At this point, the six parameters (a, b, c, d, e, f) are �tted.
As the �tted ellipse of the AC vs DC signals has its main axis parallel to x and y:

(x− x0)
2

σ2
x

+
(y − y0)

2

σ2
y

= 1

one can deduce from the parameters the ellipse center coordinates (x0, y0) and the normalized
axis lengths (σx, σy):

σ2
x =

1

a
(48)

σ2
y =

1

c
(49)

x0 = −σ2
x × d

2
(50)

y0 = −
σ2

y × e

2
(51)

These four parameters are returned by the HalirFlusserMethod function and used to av-
erage the ellipse parameters over time and to compute the ∆Φ angle of the following data points.

The resolution of the ellipse centre and sigma reconstruction has been estimated and is
better than 1%.

E Sliding average

A low-pass �lter is used to smooth the parameters computed for the ∆L estimation in free
Michelson con�guration. The method is a sliding average that uses all the data in the past.
One needs to de�ne a parameter ε. The raw data being called (ak)k=0..N , the average of a at
the step i is de�ned as:

a0 = a0 (52)

ai = ε× ai−1 + (1− ε)× ai (53)

ai = εi × a0 + (1− ε)
i∑

k=1

εi−kak (54)
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Assuming that ε is 0.9, the last term contributes for 10% to the average. The further the
data is, the lower it contributes (through the factor (1− ε)× εi−k).

VIR-112A-08 - November 21, 2008



36 CONTENTS

F SIESTA con�guration �le

Con�guration �le for SIESTA simulation of an asymmetric WE-NI Michelson interferometer,
with white noise injection on the WE mirror.

/* Simulate 10 s of data at 1 MHz (for delay studies) */

UJclock masterClocks 10000000 2 1000000 1. /*clock rate for OPseq : 100 kHz to 40 MHz */

UFrBuilder FBuilder 1 0 0 1

/* Seismic noise */

/* Noise motion description */

GRound 0 3.e-9 0.1 0.

/* Noise motion at on point */

GRoundPt Mbs 0. 0. 0.

GRoundPt Mni 6.2 0. 0.

GRoundPt Mne 3006.2 0. 0.

GRoundPt Mwi 0. 5.8 0.

GRoundPt Mwe 0. 3005.8 0.

GRoundPt Mpr -6.0 0. 0.

/* --------------------------------------------------- */

/* Generate white noise for injection to the mirrors */

/* USgenerator [name][clock][sigma] */

USgenerator wn_0 0 0.00004

/* Force applied on the mirrors */

/* BS: no noise */

USadder fBS 0 1 wn_0.out

0.0

/* WE: noise */

USadder fWE 0 1 wn_0.out

100.0

/* NI: no noise */

USadder fNI 0 1 wn_0.out

0.0

/* Mechanical simulation, with thermal noise */

/* BS front */

MIglobal mBS 0 Mbs.dxyzt NULL NULL NULL fBS.out 10

100. 100. 100. 100. 100. 100. 100. 60. 28. 28.

1. 1. 1. 1. 1. 1. 1. 1. .7 .7
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1.e2 1.e2 1.e2 1.e2 1.e2 1.e2 1.e2 1.e2 1.e6 1.e6

Thermal ThBS 0 1 28. 0.5955 1.e6

MIrror MirBS 0 mBS.dxyzt ThBS.out MiSuBSf NULL 0. 0. 0. .7 -.7 0.

MIsurf MiSuBSf 0. .2 0. 0. 0. .5 0.

/*NI back */

MIglobal mNI 0 Mni.dxyzt NULL NULL NULL fNI.out 10

100. 100. 100. 100. 100. 100. 100. 60. 28. 28.

1. 1. 1. 1. 1. 1. 1. 1. .7 .7

1.e2 1.e2 1.e2 1.e2 1.e2 1.e2 1.e2 1.e2 1.e6 1.e6

Thermal ThNI 0 1 28. 0.5955 1.e6

MIrror MirNI 0 mNI.dxyzt ThNI.out NULL MiSuNIb 6.2 0. 0. 1. 0. 0.

MIsurf MiSuNIb 0. .2 0. 0. 0. .88 3.e-4

/*WE front */

MIglobal mWE 0 Mwe.dxyzt NULL NULL NULL fWE.out 10

100. 100. 100. 100. 100. 100. 100. 60. 28. 28.

1. 1. 1. 1. 1. 1. 1. 1. .7 .7

1.e2 1.e2 1.e2 1.e2 1.e2 1.e2 1.e2 1.e2 1.e6 1.e6

Thermal ThWE 0 1 28. 0.5955 1.e6

MIrror MirWE 0 mWE.dxyzt ThWE.out MiSuWEf NULL 0. 3005.8 0. 0. 1. 0.

MIsurf MiSuWEf 2.898e-4 .2 0. 0. 0. .9999 0.

/* Misaligned mirrors: null reflection coefficients */

/*NE front */

MIrror MirNE 0 NULL NULL MiSuNEf NULL 3006.2 0. 0. 1. 0. 0.

MIsurf MiSuNEf 0. .2 0. 0. 0. 0. 0.

/*WI back */

MIrror MirWI 0 NULL NULL NULL MiSuWIb 0. 5.8 0. 0. 1. 0.

MIsurf MiSuWIb 0. .2 0. 0. 0. 0. 0.

/* PR front */

MIrror MirPR 0 NULL NULL MiSuPRf NULL -6. 0. 0. 1. 0. 0.

MIsurf MiSuPRf 0. .2 0. 0. 0. 0. 0.

/* Optics simulation */

IOlaser laser 0 NULL 1.064e-6 10. NULL NULL -8.8879408e-6 .0198008 .40 NO 0

OPmod mod 0 laser.oBeam 3 0. 6.268428e6 -6.268428e6 carrier NULL sb1 NULL sb2 NULL

USignal carrier 0.96

USignal sb1 0.196

USignal sb2 -0.196
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/* Simulation of the full interferometer */

OPseq itf 0 mod.oBeam MiSuBSf MiSuNIb MiSuNEf MiSuWIb MiSuWEf MiSuPRf YES YES

/* Detection photodiode, with shot noise */

OPdiode d1 0 1. 6.268428e6 NULL itf.oBeam1 YES

/* Output channels */

/* -> Demodulated detection photodiode signals */

UFrLRdout 0 "Pr_B1p_DC" d1.dc 1.0 -1 adc

UFrLRdout 0 "Pr_B1p_ACp" d1.phase 1.0 -1 adc

UFrLRdout 0 "Pr_B1p_ACq" d1.quad 1.0 -1 adc

/* -> Force applied to the mirror */

UFrLRdout 0 "Sc_BS_zCorr" fBS.out 1.0 -1 adc

UFrLRdout 0 "Sc_WE_zCorr" fWE.out 1.0 -1 adc

UFrLRdout 0 "Sc_NI_zCorr" fNI.out 1.0 -1 adc

/* -> Mirror motion */

UFrLRdout 0 "MirBS" MirBS.dxyzt.s2 1.0 -1 adc

UFrLRdout 0 "MirWE" MirWE.dxyzt.s2 1.0 -1 adc

UFrLRdout 0 "MirNI" MirNI.dxyzt.s2 1.0 -1 adc

UFrOFile -1 "FreeMichelsonSimulation_WENI" NO FBuilder.frameH 10
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