-

Giraio i the p p
CallbrétOl’ ’fgr th e .

se

Lo @vies FAETTE <LArp

.- Superyisor: Loic Rglland . .} ¥ MONT BLANCHESE s



Table of contents

1. Gravitational waves and Virgo interferometer
Photon calibrator improvement from O3 to O4

Virgo calibration chain: from power standards to Virgo calibration

B 2 o

Prospects



Gravitational waves are perturbations of the space-time
propagating at the speed of light.

Predicted by Albert Einstein in 1916 as a consequence of the general relativity Circle of free test masses at rest

Space-time deformation induced by a black-hole . .

Gravitational waves produced by a binary system of .
black holes G




Gravitational waves are perturbations of the space-time
propagating at the speed of light.

Predicted by Albert Einstein in 1916 as a consequence of the general relativity Effect of a GW propagating perpendicularly to
the screen on a circle of free test masses

Space-time deformation induced by a black-hole
o« ® * e,
Gravitational waves produced by a binary system of
black holes N e ld Jel Y

%
o
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Gravitational wave amplitude: h o 77
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Sources

Wave period

Wave
frequency

Detectors

Radio pulsar timing arrays

Extreme-mass-
ratio inspirals

Milliseconds

Terrestrial interferometers

/ —




Terrestrial interferometer network

Detection frequency bandwidth [10 Hz, 2 kHz]



Context

e September 14, 2015: First GW detection by LIGO from a binary black hole coalescence

Updated = |O1 02 == 08 == O4 == O5
2023-05-16
0 100 100-140 160-190 240-325
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LIGO ”k ]
)
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e Virgo is at ~35 Mpc at the moment
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Cumulative Detections
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01 =3, 02 = 8, O3a = 44, O3b = 35, Total = 90

O1 02 O3a rO03b
0— 100 200 300 400 500 600 700
LIGO-G2102395 Time (Days) Credit: LIGO-Virgo-KAGRA Collaborations

90 GW detections done until the end of O3
+ ~50 detections during the O4 run by LIGO



Interferometer working principle

OLn — 0Ly

— The strain signal /, —

contains the GW signal Lo

A = 1064 nm



More complex interferometer

WE
w
=~
=
v
Wi
ITF power
x 40
PR NI 3 km NE
BS
=2
‘J “ effective arm length
Laser E—=SR x 300
Increase
bandwidth The longitudinal position of the mirrors is controlled to:
> Keep the interferometer close to the dark fringe
U Detection > Maintain the cavities at their working point



Longitudinal control of the mirrors

Goals:
e Keep the interferometer in a dark fringe
e Keep the optical cavities at their resonant points

WE
- 2 electromagnetic actuators to each mirror:
3 e Marionette
5 e Mirror
— Marionette
Wi
Actuation
i =
& |
aser SR Coils laser
Magnets
control signal
W Detection .

Electromagnetic actuators

— The GW signal is contained by both the output signal of the interferometer, and the control signals of the
mirror actuators.
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Strain signal reconstruction h(t)

The reconstruction of the strain signal h is done in the frequency domain h(f).

Interferometer
output signal

Control M Actuator [m= Optical 4]
signals responses responses
Interferometer
response
strain signal
h(t)

The reconstructed signal h(t) used for the commissioning and for data analysis.

The reconstruction requires the measurement of:
e The actuator responses
e The interferometer optical responses

Calibration

11



Calibration of the electromagnetic actuators

[V] I
C9ntrol A(f) [m]
signal

AL

e The actuator response (in m/V) mirror displacement (in m) as function of the command signal (in V). It is
composed by:

o  The electronic response (in N/V) of the electromagnetic actuator:
o  The mechanical response (in m/N) of the mirror suspension system:

10—12 ‘
= Joald .
£10716 o f—ﬂ
£10718 i
8\ 10—20

1071 10° 10! 102 103

phase [rad]

YN == 2O
ouououo

107! 10° 10! 102 103
frequency [Hz]

> To be measured: The response of the electromagnetic actuator is calibrated with respect to a reference actuator:

o  Newtonian calibrator (NCal)
o  Photon calibrator (PCal)

12
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Photon calibrator working principle

The photon calibrator (PCal) makes the end mirrors move by a known motion

PR

WE

uX g

Wi

NI

W Detection

Two PCals

3 km

E BS [|i !g
[li
Laser SR

NE

Reflection
Bench - AL
S (in vacuum)
(in air) .
End mirror
APey
Main interferometer beam 5
Mass M
PCal beam
Injection
Bench
(in air)

PCal laser modulated in power — control mirror motion

Mirror motion AL estimated from AP,

14



1/\Hz

—r

—h

Goals for the O4 photon calibrator

Calibration uncertainty ~ — Strain signal uncertainty Oh — To be reduced for the O4 run
1.34 % (03) — < 1% (O4)

Virgo sensitivity (noise level)

—— 08 Sensitivity (GPS=1268887996) BNS range=60 Mpc

107 04 Observing Scenario (88-115 Mpc)

10%

The PCal laser power noise

102" L : . .
% contributes to the interferometer noise

:n
N
N

IﬂTlT' IlIIllﬂ] [l

:n
N
w

102

Freq {Hz}

Improvement of the Virgo sensitivity for the O4 run:
e PCal power noise target = 1/10 of the total interferometer noise
15



Photon calibrator improvements

A Pr(» /‘ a
- / /J/ \\ \To the end mirror Reflection
A Rx_sphere B_en?h (in vacuum)
BeamDump (in air)
e Tx_PD2
o - / . End mirror
= | Al
~ BS. 3 g
g M_1 .
- 1_/ Main interferometer beam 9
= PBS ollimgtor
2 L
{:QQ) = /‘ Mass M
s BS 2 Tx_PD1 PCal beam
 / i M_2 T <P>~40 mW} Injection
Bench
in air
Reflection bench ( )

Mg

() O
' SR\
e |

— AP, 18 estimated from the integrating sphere +
monitored by photodiodes
16




PCal photodiodes + preamplifier

0
b}
3 5
g 107 ¢
g :
"8 g -6 :"1 e, S
25 107 |5y,
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@ 10 10 10 10
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The O4 photodiodes (InGaAs) have a lower sensing noise than the O3 photodiodes (Si)
— Lower the power noise further with the control loop

PCal photodiode (InGaAs) +
preamplifier

17



Laser control loop

" power The digital filter F (f) has been updated for the O4 run

— Laser power noise below the noise
constraint

Power laser
request
PCal laser power noise vs noise constraint for 04
= |aser noise, open loop l
1 0_1 | laser noise, closed loop | "H‘.
= sensing noise /u'"
= constraint \\ /
—— >v\\ /
N \
T 10°°
E WAl
= T
N ‘ oz
(] ‘ . m |
§10-5 ﬂ“‘\““‘"wﬂw
[} = [ does | | }“SA“‘ [ L i }
HWWM
10794 -
10° 102

frequency [Hz]

104
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4 Virgo integrating spheres

e 2 Rx spheres

o Installed permanently on PCal benches
e GSV: Gold standard Virgo

o  Main reference at LAPP

\
\

sphere wall

e \ e WSV: Working standard Virgo
18 ,’ ‘\ 9 &
é L o used at Virgo to calibrate PCal
incident light | g
! ofield \/ES
L of ]

1
view

Scheme of the integrating sphere
viewed from the side

v
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Virgo power standards at LIGO Hanford

National institutes of r. T T
\ metrology / LIGO standard Virgo standards

PS3 GSV & WSV

From May 16 to June 3, 2022 @ LIGO Hanford:
e  Mounting of the Virgo integrating spheres
e (alibration of the integrating spheres with respect to the LIGO power standards

— The sphere calibration consists in measuring the responsivity of the sphere p in [V/W]

Laser power [W] —b‘—» Output voltage [V]
21



Sphere general calibration method

Calibrated w.r.t. a reference sphere

. Ptest VT,test VR,test
Ratio: Oltest/ref = = .
Pref VR,r'ef VT,?'ef

1

Input laser power: 0.3 W LIGO intercalibration setup LAPP intercalibration setup

1 Vigwl— Vi)a —m - (T Pt qu) e  Sphere responsivity
P=—. e Temperature dependant background voltage

p| [1+r- (T —300.15 K)

Power estimated by the sphere from its output voltage

22



Temperature dependency of the background voltage

A linear regression is computed on the
measurement.
Vig(T) =V, +m - (T — 300.15 K)

The m parameter is characterized to each
sphere m ~ —0.1 mV/K

1} V;’a,w ol ‘/bq U (T ¥ s ‘Tba)

=

B U N(T'L/300.15 K)

Temperature dependency of GSV background voltage

=230
=21/
—3.00
=SS
=355 0}
=273

+ measured

background level [mV]

300 302 304 306 308 310 312

—4.00+ \\
-4251

= (-0.13240 +/- 0.00009 mV/K) x (T - 300.15) + (-2.5401 +/- 0.0003 mV)

314

0.025 1
0.020+
0.0154
0.010+
0.005+
0.000+
—0.005 ¢
—0.010
—0.015 {

+ measured - model

residual [mV]

300 302 304 306 308 310 312
temperature [K]

e Temperature dependant background voltage

314

23



Temperature dependency of the responsivity

measurement done the 2023-04-25 14:31:32.000

i - measuremen ts
1.00825 - et resam pled measurmen ts
i kappa = -1.334 +/- 0.072 hop/K | alpha’ = 1.0080 +/- 0.0000

1.00800 +

1.00775+

=
o
o
~
u
o

1.00725+

WSV vs GSV responses

A linear regression is computed between o and the
temperature of the test sphere. ;

(l/(T) = (1’, . (]_ + K- (T = 30015 K)) 1.00675 -

1.00650 -

1.00700

o

rati

The « factor characterized for each sphere

et —).01 %/K PR 300 302 304 306 308 310

temperature [K]

l Vtmw N %g —m: (T y ‘Tbg>
e (T =300.15 K)

=

24



Measurement of the sphere responsivity at LIGO Hanford

Temperature corrected voltages on different positions

nomalized voltage, with temperature correction nomalized voltage, with temperature correction

- VPS2_trans | mean = -0.76404 +/- 0.00032 | * 1.0010- VPS2_refl | mean = -0.76436 +/- 0.00037 responsivity ratio: VPS2 vs PS3

1.0010- . =- = K " =- »
§ PS?_refI | mean 1.65086 +/- 0.00083 X . PS3_trans | mean 1.64927 +/- 0.00076 = mean value : 0.462988 +/- 5.06732-05
o . . s i £
©1.0005- - : ; 0005 : 300
£ 5 1o . -. . ',. i = ._-. '... o "
- I T PP (s ¥ A o ~ . | 1.0000- e L,
E 1.0000 1 e, - — ; . o 1200
T e |4, 8| % . 0.9995- S

0.9995- - 7 e . @
£ ] o . . N ; . E -100
< - . . 75 B o

0.9990- < A D00 ; : E

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 = i 2
time [h] | start at 2022-05-26 09:44:13.462 time [h] | start at 2022-05-26 09:44:13.462
-—100
Responsivity ratio a e
responsivity ratio with temperature correction . . . . . .
2022-05-26 2022-05-27 2022-05-29 2022-05-30 2022-06-01 2022-06-02
« responsivity ratio 09:44:13 19:24:22 05:04:30 14:44:39 00:24:47 10:04:56

> 1.0010- = mean ratio = 0.46313 +/- 0.00022 hinte
S . - : : -
-2 1.0005- = IS o = s
© 1.0000- =5 : —— : : S
© . °
£ 0.9995; 3 5 . -
S
e .

0.9990

0.0 0.2 0.4 0.6 0.8
time [h] | start at 2022-05-26 09:44:13.462
e Ptest e VT.test VR,test
thst/rcf i N, V \ V 25
Pref Ryref T,ref

deviation [ppm]



Responsivity of the Virgo spheres measured at LIGO

responsivity ratio: VPS2 vs PS3 GSV

0.46315+ T = mean value : 0.462988 +/- 5.06732e-05
300 urel(VPS2) = 0.001021
046310 _259101 & pvese VPS2/PS3: wmean = -2.502481 =0
£200
0.46305 e Pl )
o 5
£ 1 100 § —2.5915
& 5
g0.46300' 2
© * g 3 —2.5920 =2
©
0.46295 - ¥ --100 -
Z 2502 0
0.46290+ l_500 =
! . . . ! ! —2.5930 2
2022-05-26 2022-05-27 2022-05-29 2022-05-30 2022-06-01 2022-06-02
09:44:13 19:24:22 05:04:30 14:44:39 00:24:47 10:04:56
date
—2.5935 1
Xp PS3 P GSV ’
. —2.5910 G
—2.5945 38
0.0 0.5 1.0 1.5 2.0 2] 3.0 35 1.0
Measurements

The responsivity 1s measured with re f%eCt to a LIGO standard (PS3). Ptest = Qtest/ref * Pref

V;’aw g ‘/E)g AL L TbJ

s ; ®  Sphere responsivity
B L RS L 30015 16

— characterizations to be done in order to estimate the uncertainty on the responsivity

Rel. variation x 10"

26



Characterization of the sphere responsivity

The sphere responsivity variation have been characterized with respect to:
e The beam angle of incidence
e The beam lateral position
e Beam size

e Input power (linearity)



Responsivity vs angle of incidence

Normalized WSV output voltage vs angle of incidence of the beam without aperture

—2.8425-

. { -—200
S i }
= _2 84301
(0]
g i :
S i
8 —2.8435- =

//r"é/ & g
7 =
: 8
: polis
Y —2.8440- ®
c 0]
6 ©
; -400
3 —2.8445-
5
(o]

@ angle of incidence G { 600
—2.8450- relative error 89.5132 ppm
-10.0 -75 -5.0 —2 0.0 2.5 5.0 7.5 10.0

angle of incidence [°]

— Variation of the responsivity with the angle of incidence: ~90 ppm 28



Responsivity vs lateral position

—2.8030

Td

d lateral shift

WSV output voltage over PD2 power [V/W]

—2.8040-

— Variation of the responsivity with the position:

—2.8032-

—2.8034

normalized WSV output voltage vs lateral shift of the beam with aperture

relative error 46.1334 ppm  _

—2.8036-

—2.8038

p—a—

{

-100 -75 -5.0 -25 0.0 25 5.0 75
lateral shift [mm]

~46 ppm

10.0

-50

—150

-—100

-—50

deviation [ppm]

-100

-150

-200

29



Responsivity vs beam size

normalized WSV output voltage vs beamSize of incedence of the beam

- relative error 141.7806 ppm | { r—400
S i
= _2.8505 300
g t
] t—200
a
A T E
& -2.8510 T i
w : ! } i
4 8 -
v
A 94,3
8 -2.8515 z
) 1100 3
>
s
g +200
4 2 -2.8520
w beam size a 1300
e i
1400

0.4 0.6 0.8 1.0 1% 1.4 16 1.8
beam size [mm]

— Variation of the responsivity with the beam size: ~142 ppm 30



Linearity of the sphere

Laser power measured by the sphere and a photodiode simultaneously.
Linear regression.

_ggggg SRR e 7////’ Ppp =A-Pygy + B
i e s . &= =
25 =
0.2675- / ; | | | ] ! . -3
02900 02925 02950 02975 0.3000 0.3025 0.3050 03075 03100 |
g(l):: ,‘__“H\H\‘\\ll\i;a”ul\‘!‘Hl\H‘Hlli..m,m‘ - -
El AR RRAHARRITUTUERARARR ® maximum bias: -3262.821 ppm
Pl AR RHEU LR RARRERRRRL . ; ; ;
g | HILIRNRR AR AR AR AR R RRARELL 0.6 0.8 1.0 27
: 02900 0.2925 02950 0.2975 0.3000 0.3025 0.3050 0.3075 0.3100 WSV power [W]

WSV [W]

The nonlinearity can be due to either the sphere or the photodiode

— The gain varies by 0.326 % between 0.3 and 1.3 W. The cause of the nonlinearity is not well understood, further
investigation are needed.
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Recalibration of the Virgo spheres

F2P1B

National institutes of == 5
\_ metrology / LIGO standard Virgo standards

PS3 GSV & WSV

32



Recalibration of the Virgo spheres

transfer standards

4 )
NST
E2P1B

National institutes of ‘ — i —
\_ metrology / LIGO standard Virgo standards

PS3 GSV & WSV

Intercalibration procedure between LIGO, Virgo and KAGRA

| — A calibration setup was built at LAPP
— The procedure started in September 2023

33



responsivity [V/W]

Variation of the sphere responsivity over

WSV

16 months

GSV

= vs GSV :-2.614505 +/- -0.000114 vs PS3 : -2.593360 +/- -0.000109
vs PS3 : -2.612544 +/- -0.000081 = vsTSB:-2.594324 +/--0.000084 | +—1000
-2.610+ = VsTSB:-2.615839 +/- -0.000071 || ~1000 -2.5914 = total : -2.593349 +/- 0.001110
= total : -2.612533 +/- 0.001214
—2.611
—500 —2.592 ¢ —500
Y617 T K
a > 3
Q a2 5 —2.5971
= =
] = 0
—2.6431 = a J .\
S o
. 5 2 sl -0.04%
0 500 (4 o d
2614 -0.12% -
. \/ 1
®
—2.5951
—2.615+ e 00
L3
\ / o
—2.616 s —2.596 1 1000
L3
| ‘ | ‘ 500 ‘ | ‘ | ‘ |
2022-05-25 2022-08-26 2022-11-27 2023-02-27 2023-05-31 2023709-01 2022-05-26 2022-08-27 2022-11-28 2023-03-02 2023-06-03 2023-09-04
16:39:02 11:04:23 05:29:44 23:55:06 18:20:27 12:45:48 09:44:13 15:00:20 20:16:27 01:32:34 06:48:41 12:04:48
date date

e C(Calibration done at LAPP with respect to TSB

Variation of the sphere responsivity from June 2022 to August 2023 — included in the PCal uncertainty budget

B Rl D 9% Opgy- -0-04 %

34
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Sphere responsivity and uncertainty

Main contribution

WSV GSV
Responsivity [V/W] | -2.6125 | -2.5934

Uncertainty source WSV GSV
LIGO standard (PS3) response | 0.107% | 0.107%
Output voltage 0.049% | 0.049%
Responsivity ratio 0.003% | 0.004%
Angle of incidence 0.012% | 0.012%
Beam size 0.014% | 0.014%
Linearity 0.326% | 0.326%
Responsivity variation 0.125% | 0.040%
Total 0.369% | 0.349%

35



Calibration of the Virgo PCal power sensors w.r.t. WSV

i \
NIST
@PTB | ‘ . . -", m

National institutes of 3 = i
\_ metrology / LIGO standard Virgo standards

PS3 GSV & WSV

e  Sphere responsivity measured
e Uncertainty on the sphere response estimated

36



Calibration of the Virgo PCal power sensors w.r.t. WSV

4 N
NST
EPIB

National institutes of

K metrology /

2 goals:

Calibration of the sensors in power — AP

LIGO standard
PS3

Virgo standards

Rx_sphere

T M_3

GSV& WSV | PCal power sensors:

i

Rx sphere + Tx photodiodes

Measurement of the mechanical response — AL

37



Calibration in DC of the PCal sensors

Calibration at 1.3 W.
Each sensor has a calibration gain G in [W/V]

Method:
1) Replace the Rx sphere by the WSV sphere and
measure the ratio between the output voltages of

the sphere and the photodiodes
Ve . |

&
Rx_sphere // \\

BeamDump

YIWSY

{;,'/,,) —
! PD PW S\

2)  Put back the Rx sphere and measure the ratio
between the photodiodes and the Rx sphere

Vpp
GR.U >

-

Rx

- Gpp

i i i . Labsph
— Calibration done in November 2022, and done again o

in June 2023

~ghunll

Rx sphere calibration gain variation: 0.2 %



Losses of the viewports and M 3 mirror

/

ref Losses of the M_3 mirror

-/ /4 ey 0.6
Rx_sphere
0.4 o %

PR.‘I? e Liref™ (1 e lvp) U (1 - l]\'[3>

Losses measured at LAPP w.r.t. the angle of incidence of the beam.
Measured losses:

° 1Vp =0.60 + 0.09%

e [,=011+0.01%

Losses of the viewport
= A=-0.085;B=0313;C=0.337

0 0.3- ]
@ 5 0.4-
o o /
0.2
03 *
0.1- 32
0.2-
10 15 20 25 30 35 40 45 0.0 0.5 1.0 15 2.0 2.5 3.0 355 4.0
Angle of incidence of the laser beam on the mirror [°] Tilt of the viewport with respect to the bench [°]
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Uncertainty on the laser power measured by the Rx spheres

Uncertainty source WSV GSV
LIGO standard (PS3) response | 0.107% | 0.107%
Output voltage 0.049% | 0.049%
Responsivity ratio 0.003% | 0.004%
Angle of incidence 0.012% | 0.012%
Beam size 0.014% | 0.014%
Linearity 0.326% | 0.326%
Responsivity variation 0.125% | 0.040%
Total 0.369% | 0.349%
\ :
Variable lo urﬁﬁg&tamty value [%]
WSV response 0.369
Calibration of the Rx sphere 0.201
Losses of the viewport 0.095
Losses of the M_3 mirror 0.012
Reflected power =< 0.431
ref

(1.24% uncertainty on the reflected power during O3)



Mechanical response with mirror deformations

10-1°
Computes the mirror displacement with respect to the _ 1020
PCal laser power Z 102

E 10-22
©

) 1023

1024

[ 102 103 104

I 0.0 —
\ -0.5

rad]

-1.01 — pendulum

‘ 0 —1.51 —— drum modes
—2.01 — total

\ =2.5
\ =3.0

phase

102 103 10
frequency [Hz]

Pendulum Drum modes

Hpend(f) — Hdrum(f) v

— The parameters G and G must be fitted to a measurement of the mechanical response, the other parameters are known4 ;



Measurement of the mechanical response

. 2 : 2es : mechanical response of WE
Sinusoidal signals are injected with the PCal.

10-1° Gp = 3.505e-15 +/- 1.402e-17 h/W
PCal laser mechanical optical output g 1020, G 3 330e 33 113579033 bWt
power response response signal £ 921

(%]
310722
=]
S 10723

10—24

Optical response = simple pole at 400 Hz.

103
20

15
10

3 N O

residual [%]
o
[
]
ol

frequency [Hz]

— Mechanical response used to estimate the mirror displacement induced by the PCal AL from the laser power AP .



Uncertainty on the mirror displacement

Variable

lo uncertainty value [%]

WSV response 0.369
Calibration of the Rx sphere 0.201
Losses of the viewport 0.095
Losses of the M_3 mirror 0.012
Reflected power Ug—:jf 0.431
Variable lo uncertainty value [%]
Reflected power U]’;,—“ff 0.431
Mechanical response (< 1 kHz) 0.40
Mirror displacement ZaL 0.59

AL

residual [%]

Uncertainty on the mechanical response (> 1 kHz)

20
15
10

5

0
=
-10
=15
=20

104
frequency [Hz]

The uncertainty on the reconstructed mirror displacement AL has been improved
from 1.34% (03), to 0.59% (04)

— How much is AL delayed from the real mirror displacement ?

43



Sensing chain frequency response

PCAL_NE_Rx_PD1_DC__TIME

1 GPS receiver

114

\ Synchronized ;_ ower Signal L {\ ﬁ
LED 1y pp1 135} f i \ I-L ‘ Ll
D photodiode v v 1 \ 1 \ \ 1.
‘ 13 | - \ ! ' \ 1
ADC - UL U
R mezzanine | Computer ' (1) 1 j \j I \/
125l | ) 1: g \
beam B | v GPS time

1.2

STAVA: ' 5202
1379245029.9831 Sep20 2023 11:36:51 UTC

{ The output digital signal is delayed from the input analog
8| signal by the ADC (analog digital convertor)

L

Tx_PDI photodiode with LED photodiode ADC mezzanine

Goal: Reconstruct the input power signal of the ADC from the output signal



phase [rad]

Measurement of the sensing chain response

GPS receiver

Synchronized

LED
Tx_PD1 TF from the
D photodiode v v
Goinit » Computer
laser mezzanine
beam
3} - measured
21 residual delay = 0.7314 +/- 0.0210 us
1 4
0 S5SNI | N T S I — — —
_1 |
_2 4
-3

10

102
frequency

10°

104

— Residual delay between measurement and model < 1us (5 ps during O3)
— In the data analysis, the model is used to compensate the photodiode sensing chain response.

to the digital signal

The phase of the TF is fitted with a



Calibration of the electromagnetic actuators

4 N
NST

EPIB

National institutes of

K metrology /

Calibration of the PCal power sensor

LIGO standard
PS3

Rx_sphere

o - , "
Virgo standards
GSV& WSV | PCal power sensors:

: Rx sphere + Tx photodiodes

Reconstruction of the mirror motion signal AL

46



Calibration of the electromagnetic actuators

_____________________________________________________________________________

4 N
NST
EPIB

BeamDump

National institutes of : . i : M3 h, SRS
\_ metrology j LIGO standard Virgo standards : : |
PS3 GSV& WSV . PCal power sensors: Electromagnetic
' Rx sphere + Tx photodiodes actuator

e (Calibration of the EM actuator using the PCal as reference
e Measurement of the optical response
— Reconstruct the strain signal
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Electromagnetic actuator calibration
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— Model used to calibrate the optical
response of WE, and to reconstruct the
strain signal h(t) 48



Measurement of the optical response

The optical response O( {), describes how the output
power signal of the detector varies when a mirror moves.

Control interferometer Output
e o O(f) e SN
signal v [m] [W] oop (W] signa
Optical response of WE mirror
2 #Mﬁ—ﬂ-——-‘ﬂ—q&
€100 Bl N
= N ]
= it
4 N o Fe
= T .
S
€
]
10! 102 103
00| Pl
B e,
§ —0.51 k‘—» -
§—1.0 ‘%,.\ -
T ‘-%_E-iii
_2_O~ ? anae\;\;:ljﬁziise-#OQ +/- 3.19e+07 | f pole: 366.338 +/- 0.22 | delay: 30.7843 +/- 0.0978 us r 1
10! 102 103

frequency [Hz]

The pole frequency is ~400 Hz, it can vary with SR alignment.

WE

w
=
3

Wi

control signal

W Detection

The optical responses of NE, WE and BS are measured

Measurement fitted with a simple pole model.
— Model used to reconstruct the strain signal
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Current state of the interferometer calibration

hrec/hinj for average of the 2023-09-15 injections

Interferometer R :
output signal B oreE—t W
é ET S e ] . i :éu
1.02 E e : ‘ . : J i
Control E . P | 2.3
A Ec > ‘ ‘ : ]
signals Z::EQI i 9.4 % # %Lai L
0:94 = b 5 t t +/" () 0. 1
B t on modulus
107 FvL?:uamy (Hz)
hrec/hinj for average of the 2023-09-15 injections
E_ 0.4 I # MirNE :
strain signal 2 il
h(t) 2 02 = & PcalWE
TN 107" ——nh(f) from Virgo TF L T 090090900000 009 Hoig-g -4 Ty
—*‘ s 1018 — FFT[h(t) - . g ‘.
S ¥ E 0.1 rad error
= 10— 04—
q E . on phase
% 1 0—20 10 Fr1s°q:uency (Hz)
—21 il | !
18 [ i Current error on reconstructed h(t)
£22) | 3 s
10 e Maximum modulus bias = 6%
107 il e Phase bias = 0.1 rad
10—24 i i i
10 10 10°

Frequency [Hz]

! ) LA 50
Virgo sensitivity — to be used by commissioning team



Current state of the interferometer calibration

e New PCal setup designed and installed on the Virgo site

e Virgo standards mounted and calibrated at LHO w.r.t. PS3

e Intercalibration procedure between LIGO-Virgo and KAGRA has started, w.s.t. TSB
e PCal power sensors installed at Virgo have been calibrated twice

e Preliminary calibration of the mirror actuators and optical response

o  Calibration procedure automatized and can be done weekly

Calibration of the interferometer:

Started in May 2024
Calibration of the PCal Intercalibration
Improvement of the PCal Calibration of GSV and WSV:  power sensors: procedure:
From Oct. 2020 to May 2022 From May to June 2022 Nov. 2022 and June 2023 Started in Sepp023

I
S on 2000, 2022 2023 5




Table of contents

1. Gravitational waves and Virgo interferometer
Photon calibrator improvement from O3 to O4

Virgo calibration chain: from power standards to Virgo calibration

BT 0

Prospects
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Prospects for O4

Pref

Uncertainty source WSV GSV
LIGO standard (PS3) response | 0.107% | 0.107%
Output voltage 0.049% | 0.049%
Responsivity ratio 0.003% | 0.004%
Angle of incidence 0.012% | 0.012%
Beam size 0.014% | 0.014%
Linearity 0.3267% | 0.326%
Responsivity variation 0.1257% | 0.0407%
Total 0.369% | 0.349%
Variable lo uncertainty value [%)]
WSV response 0.369
| Calibration of the Rx sphere 0.201
Losses of the viewport 0.095
Losses of the M_3 mirror 0.012
Reflected power Z2r<t 0.431

Variable 1o uncertainty value [%]
Reflected power ;7 :ff 0.431
Mechanical response (< 1 kHz) 0.40
Mirror displacement “8% 0.59

Improve the uncertainty on the PCal calibration:
e  Measure linearity w.r.t. another sensor
o  Expected uncertainty: 0.1%
e (Correct the WSV responsivity variation
o  Uncertainty after correction: 0.04%
e [mprove the PCal calibration procedure

o  Expected uncertainty: 0.01%

—total expected uncertainty on the reflected power:

0.187%

—total expected uncertainty on the mirror displacement:

0.44%
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Thank you for your attention !
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Backup slides:
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Prospect: integrating spheres calibration

Responsivity variation greater than statistical uncertainty

responsivity ratio: VPS2 vs PS2 . . =
[ ~ e Responsivity variation
0.60705-‘ [] = mean value : 0.606909 +/- 5.27754e-05

A e  Statistical uncertainty
‘ r200
|
0.60700+
3 ‘ 100
£ 0.60695 g
T s
£0.606901 3 : E
[} °
0.606851 ' _100
0.60680J v o ‘

|

| — } } | } =200

2023-08-23 2023-08-25 2023-08-28 2023-08-30 2023-09-02 2023-09-04
10:15:18 20:13:12 06:11:06 16:09:00 02:06:54 12:04:48

e More accurate characterization of the sphere response with respect to the angle of incidence of the beam.
e  Monitoring the response with respect to the environment, (temperature, air humidity, pressure)

— 0.05% reduction on the sphere response uncertainty
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Prospect: integrating spheres linearity

0.3% uncertainty on the sphere due to the non linearity with respect to an InGaAs photodiode — main contribution

Possible solutions:
Characterize sphere linearity w.r.t. another reference device, (Si photodiode?)

h

— up to 0.3% reduction on the sphere response uncertainty
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Prospect: Calibration of the PCal sensors

PCal photodiodes background voltage may vary with temperature
Possible solution: change the PCal sensors calibration method.

Laser signal: 1.3 W + permanent lines
And linear regression between WSV and photodiodes

Ppp = A:Pysy + B

|| o @=0.9231 +/- 3.35e-05 W/W
1.21507 = § 26002124 +/ 4.572e.05 W
1.2125-

= 1.2100+
= 1.2075-
o
0 1.2050- s
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1.2025-

1.2000-
1.1975
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gain Lvw/w |

=) o
© ©
N N
(=} [

/
/-""r/”-

/

photodiode intercept [W]
N

1.3050 1.3075 1.3100 1.3125 1.3150

WSV [W]

0.922 -

=
MW maximum bias: -3262.821 ppm
=
T T ¥ T T
«10-30.4 0.6 0.8 1.0 1.2
&
7/ offset variation: -2.500 mW
=
- > = -
T T T T T
0.4 0.6 0.8 1.0 1874

WSV power [W]

During the characterization of the sphere

linearity, the photodiode background voltage
varied with the input power

— 0.2% reduction on the PCal calibration uncertainty
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Prospect: calibration of the electromagnetic actuators

Actuator response stable with time, but measurement varies due to the optical ca; —»{ Ay

response variation. @ Rire

/) 3 CAI-new O Anew >
Possible ideas:

e  Monitor and correct optical response variations

A 4

Interferometer response may be not the same

e Compute the mean over many actuator response measurements between each injection.
e  Use machine learning model to fit the measurements
0.425 2
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2 0.415 } 1 1 % giiz
Z0.410 1 I i B P L 3 %ol415
5 0.405 o 4 x| i --ii;f‘i ; 13 1‘ x? id S5y
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e E f5 1 i T £ 0.405
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12 1373964821 o= 14 Fp = 121 +/- 16 Hz
_ 104 ¥ 1375204780 . 121 Eg z ;ig;ﬁ/gﬂzm
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S04 .
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: e o womse
001 = i s | =

10% 10° 10! 102 10
frequency [Hz]
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— up to 1% reduction on the actuator response uncertainty 59



Prospect: optical responses

Comparison with the optical response computed to reconstruct the strain signal h(t).

Hrec_ORIpole_V1:5c_NE_MIR_Z_CORR_62.5

|

Optical response of WE mirror
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frequency [Hz]

Variation of the optical response gain and pole frequency due to the SR alignment,
possible correlation between SR position and optical response parameters.

— Better understanding of the optical response behaviour




Fabry-Perot cavities
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= 50 Input beam Internal beam going onward
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The newtonian calibrator

Consists in a rotor with two rotating masses which produce a local
variations of the gravitational field around the mirror, which makes it
moves.

Beam axis

34.7° :‘\
Near NCal Mirror
Far NCal '

‘ Top view

— One of the reference actuator for the actuator calibration.
— Used to verify the strain signal h(t) reconstruction.

WE

wy €

Wi

PR

BS NI 3 km iN]E

SR

Detection
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New constraints on the PCal

CAD design of the future PCal benches

e Beam splitted in two, in order not to excite the drum modes

e Bigger PCal benches with several levels

e PCal installed on the rear flange of the mirror due to space
constraint
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OS5 PCal optical layout (prospec
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