ENV training Outline

Introduction – Environmental noise hunting, WHAT IS IT?

Part I – Sensors and channels (Irene)

Part II – Experimental techniques (Federico)

Part III – Data analysis techniques (Irene)

ENV training session Part I Sensors and Channels

Irene Fiori on behalf of the ENV team

VIR-0947A-19

Virgo training sessions

September 26 2019

Outline of Part I

- Introduction: what is ENV noise disturbing Virgo?
- Environmental sensors
 - Type
 - Location
 - What they measure
- Channels
 - Names
 - Where to find the data

Introduction

Environmental noise hunting, WHAT IS IT?

Environmental influences on GW interferometer

Self-inflicted noise

Chillers

Electrical system, cables Illumination, Uninterruptible Power Supply Electronic devices, cooling fans

Distant but loud

30000 m Secondary cosmic rays ν_{μ} 20000 m μ^{-} Concorde

Part I

Sensors and channels

ENV probes

MCB and NEB (WEB)

- Accelerometer
- Episensor
- Velocimeter
- Thermometer
- Comb. (temp.+press.+hum.)
- **Microphone**
- ▲Infrasound microphone
- Magnetometer
- Voltage probe
- Current probe
- Radio frequency antenna

Building monitors

m.s-1/sqrt(Hz)

V1:ENV_CEB_SEIS_N V1:ENV_CEB_SEIS_V V1:ENV_CEB_SEIS_W

SOIL VIBRATIONS

GURALP velocimeter 0.1Hz to 100Hz

11

Building monitors

signal is demodulated around Virgo's Laser modulation frequencies: 6MHz, 8MHz, 56MHz **20kHz sampling**

Temperature 1Hz sampling

104

Spectrogram of V1:spectro_ENV_CEB_RF_6MHz_I_300_100_0_0 : start=1252886320.000000 (Wed Sep 18 23:58:22 2019 UTC)

Building monitors

3 PHASES of MAINS

Voltage monitors

230 Vac

• Current monitors

R = 100Ω

4.2 Vac

(measured)

R

R

7 Vac

(nominal value)

15

Monitor of in-air benches

V1:ENV_EDB_ACC_Z : 10000.00Hz V1:ENV_EDB_HU : 1.00Hz V1:ENV_EDB_MIC : 20000.00Hz V1:ENV_EDB_PRES : 1.00Hz V1:ENV_EDB_SEIS_X : 1000.00Hz V1:ENV_EDB_SEIS_Y : 1000.00Hz V1:ENV_EDB_SEIS_Z : 1000.00Hz V1:ENV_EDB_TE : 1.00Hz

Also: LB,EIB,SQZ,TCS_CO2_NI TCS_CO2_WI, EMCB

- •1 Microphone
- 1 Accelerometer (high frequency)
- 1 Tri-axial accelerometer (low frequency)
- 1 Temperature +Humidity sensor attached to bench
- 1 Temperature + Humidity + Pressure in the Clean Room

ENV probes

Vacuum chambers

Cryogenic vacuum traps

CEB

View-ports

MCB and NEB (WEB)

Accelerometer

- Episensor
- Velocimeter
- Thermometer
- Comb. (temp.+press.+hum.)
- **Microphone**
- ▲Infrasound microphone
- Magnetometer
- Voltage probe
- Current probe
- Radio frequency antenna

Monitor of critical spots

AUXILIARY slow monitors

• Monitors of infrastructure 1 Hz sampling

(V1:INF_* V1:HVAC_* V1:VAC_*)

- > Air&Water Temperature&Pressure
- Power consumption of big switching loads (chillers, heaters)
- Illumination (*LUX*)
- Air conditioners Hot&Cold loops
- > Vacuum valves, LN2 levels, residual gas pressure, ...

CW PRES IN:1.00Hz CEB_CW_PRES_OUT:1.00Hz V1:INF_CEB_Class100_HUM:1.00Hz V1:INF_CEB_Class100_TE : 1.00Hz V1:INF_CEB_Class1_HUM:1.00Hz V1:INF_CEB_Class1_TE:1.00Hz V1:INF_CEB_ENTRANCE_W_LUX:1.00Hz V1:INF_CEB_HALL_N_PRES:1.00Hz V1:INF_CEB_HALL_TE:1.00Hz V1:INF CEB HALL W PRES: 1.00Hz V1:INF_CEB_LUX:1.00Hz V1:INF CEB_PRES_OUT:1.00Hz V1:INF CEB TE IN : 1.00Hz V1:INF CEB TE OUT : 1.00Hz V1:INF CEB WW PRES OUT: 1.00Hz V1:INF CEB WW TE IN : 1.00Hz V1:INF CEB WW TE OUT : 1.00Hz

External monitors

Weather station and Lightning detector

V1:ENV_ZeusAZ : 1.00Hz V1:ENV_ZeusCD : 1.00Hz V1:ENV_ZeusN : 1.00Hz V1:ENV_ZeusSpm : 1.00Hz V1:ENV_ZeusUD : 1.00Hz

External magnetometers

External monitors

Environmental probes DOCUMENTATION

- HARDWARE inventory MAP http://slwebtest.virgo.infn.it/ifoapp/
- ENV maps 24 07 2018.pdf (with location of FAST and SLOW probes)
- Map ENV sensors cirone.pdf (with location of FAST probes, and associated NAMES)
- INF sensors interactive MAP <u>https://scientists.virgo-gw.eu/IMMS</u>/

SENSORS specs:

<u>https://scientists.virgo-gw.eu/EnvMon/sensorDocs.htm</u>

EGO

Infrastructure Machine Monitoring System (IMMS)

Documentation

Datasheet
Meetings minute

IMMS SENSORS LOCATION

North E

Vest End

Channel name conventions

V1:ENV_LOCATION(_SUBLOCATION)_SENSOR(_DIRECTION)

CEB = Central Building (NEB,WEB,MCB) LLR = Laser Lab Boom	CT = CryoTrap CHILLER HEATER LINK = link pipe	SEIS ACC MAG MIC VOLT CURR TE HU PRES RF 	Z is along beam
 BS = Beam Splitter EIB = External Injection Bench			Orthogonal triplets: X,Y,Z → Z is along beam direction, Y is vertical N,W,V → N= along N arm, W=W arm, V= vertical
••••			

Channel naming conventions VIR-0223B-14 <u>https://tds.virgo-gw.eu/ql/?c=10250</u>

For a more complete description CHANNEL DATABASE

http://slwebtest.virgo.infn.it/ifoapp/

DATA streams: OFFLINE

• "RAW":

• **"TREND"**:

• All channels with full sampling (1Hz, 1kHz,.... 20kHz,....)

- -0.05 0 1m25 01m30 01m35 01m40
- File list /virgoData/ffl/raw.ffl (to load in dataDisplay, or your own Matlab or Python script)

(updated every 5-10minutes)

Quick look over long time stretches

• Only channels sampled at 1Hz or less

V1:DQ BRMSMon BRMS ANTHROPIC SEIS 1Hz 5Hz ENV EIB SEIS Z

- min, max, mean, rms of each raw channel (computed over 1s)
- File list /virgoData/ffl/trend.ffl (updated every 30minutes)
- BRMS channels: RMS computed over given band, DQ_BRMSMon*, Hrec, several ENV channels

V1:DQ_BRMSMonHrec_BRMS_HREC_HOFT_FREQ_BAND_110_130_Hrec_hoft_16384Hz : 1.00Hz V1:DQ_BRMSMonHrec_BRMS_HREC_HOFT_FREQ_BAND_1350_1750_Hrec_hoft_16384Hz : 1.00Hz V1:DQ_BRMSMonHrec_BRMS_HREC_HOFT_FREQ_BAND_153_160_Hrec_hoft_16384Hz : 1.00Hz V1:DQ_BRMSMonHrec_BRMS_HREC_HOFT_FREQ_BAND_160_190_Hrec_hoft_16384Hz : 1.00Hz V1:DQ_BRMSMonHrec_BRMS_HREC_HOFT_FREQ_BAND_10_190_Hrec_hoft_16384Hz : 1.00Hz V1:DQ_BRMSMonHrec_BRMS_HREC_HOFT_FREQ_BAND_10_19_24_Hrec_hoft_16384Hz : 1.00Hz V1:DQ_BRMSMonHrec_BRMS_HREC_HOFT_FREQ_BAND_205_210_Hrec_hoft_16384Hz : 1.00Hz V1:DQ_BRMSMon_BRMS_ANTHROPIC_SEIS_1Hz_5Hz_ENV_CEB_SEIS_N : 1.00Hz V1:DQ_BRMSMon_BRMS_ANTHROPIC_SEIS_1Hz_5Hz_ENV_CEB_SEIS_V : 1.00Hz V1:DQ_BRMSMon_BRMS_ANTHROPIC_SEIS_1Hz_5Hz_ENV_CEB_SEIS_V : 1.00Hz V1:DQ_BRMSMon_BRMS_ANTHROPIC_SEIS_1Hz_5Hz_ENV_CEB_SEIS_V : 1.00Hz V1:DQ_BRMSMon_BRMS_ANTHROPIC_SEIS_1Hz_5Hz_ENV_CEB_SEIS_V : 1.00Hz V1:DQ_BRMSMon_BRMS_ANTHROPIC_SEIS_1Hz_5Hz_ENV_EIB_SEIS_V : 1.00Hz V1:DQ_BRMSMon_BRMS_ANTHROPIC_SEIS_1Hz_5Hz_ENV_EIB_SEIS_V : 1.00Hz V1:DQ_BRMSMon_BRMS_ANTHROPIC_SEIS_1Hz_5Hz_ENV_EIB_SEIS_V : 1.00Hz

Very useful to look for time evolution of noise and correlate with slow trends

DATA streams: ONLINE

• Use dataDisplay as an Oscilloscope ...

<mark>x</mark> dy_	fiori_24844	本 - ロ×
Input	inputs	DataDisplay v10r9p1 Clear Ref Plots Tools Quit
Star	Read FFL Read Files	-1 GPS / latency 0.0000 1253458389. 14:53:27 2019 UTC Date Syn. Jan. 6 00:00:19 1980
	Connect Unline Connect to DataSender	
Sta	Read Shared Memory	Next Refresh Stop O Wait for data HELP
✓ 25 Se	Read Audio Wave File Read Ascii File	v10r9p1 ready to get data. Use Input Menu

END of part I