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Motivations

• Bayesian inference needs large amount of waveforms (~105)

• Time domain GW generation is computationally expensive

• Need for fast and accurate generative model

• Reduced Order Models [Pürrer 2016]

• ML with Mixture of Experts (med. mismatch ~10-4) [Schmidt et al. 2020]

• Proposed model: principal component regression
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BBH parameters

: line of sight

: binary parameters

: luminosity distance

Generative model

SEOBNRv4

Only (2,2) mode
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Waveform attributes

● ML model generates amplitude and phase

● Non uniform time grid

● Needs dimension reduction: truncated PCA
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Schmidt’s model [Schmidt et al. 2020]
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Overview of our model
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Overview of our model
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Hyperparameters tuning
Feature set

● Tested features:

● Tested feature sets: 

● Several good choices:

Polynomial degree

First order

Second order

Third order

Seventh order used for regression

Selected
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Hyperparameters tuning

Six PC used for dimension reduction

Number of PC for the phase
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Results on SEOBNRv4

Accurate
●          = 2.10-5 

●        = 2.10-6

●                = 1.5.10-4 

Fast
● ~100 times faster than SEOBNRv4
● Can be faster without interpolation

(from non-uniform to regular time grid)

Dataset properties
● Training size: 3200 Testing size: 800
● Mass ratio: U([1, 20])
● Dimensionless spins: U([-0.8, 0.95])
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Python library

Git : https://git.ligo.org/cyril.cano/gw-generation
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Python library

Git : https://git.ligo.org/cyril.cano/gw-generation
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Conclusion/perspectives

● Subdominant modes

● Comparison with other ML state of the art algorithms

● Precessing BBH

● Fast and accurate GW generation with principal component regression

● Applicability up to SNR ~ 225 (18 in the worst case) *:

● Non conventional features lead to better results

● Simple method with off-the-shelf algorithms from scikit-learn

Take home messages :

Perspectives :

* see [Chatziioannou 2017]
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R2 scores

PC 1 2 3 4 5 6

1.67e-06 0.00231 0.0214 0.00728 1.42 0.177

1.65e-09 9.44e-07 0.000248 0.00322 0.00401 0.0326
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