Virgo O3 NCal update and "FROMAGE"

IPHC group D. Estevez for the calibration team

Numerical model

D. Estevez et al., FROMAGE, VIR-0759A-20 Git repository: https://git.ligo.org/virgo/virgoapp/FROMAGE

FROMAGE: Finite element analysis of ROtating MAsses for Gravitational Effects

1) Discretize the objects into small 3D elements:

2) Compute the Newtonian force of gravity:

$$\vec{F}_{\theta} = G \sum_{I} \sum_{J} \frac{m_{mir,I} \ m_{rot,J}}{d_{I,J}^2} \vec{u}_{I,J}$$

3) Make a full turn with the rotor step by step θ

4) Using a Fourier expansion we extract the contribution to the longitudinal force up to the order N:

$$F(\theta) = \frac{1}{N} \left(C_0 + 2 \sum_{k=1}^{N-1} (C_k) \cos(k\theta + \psi_k) \right)$$

Force at k.f_{rotor}

Grid size

Convergence test to choose the grid size with threshold at 0.005%:

Grid = (longitudinal cut n_x , angular cut n_a , radial cut n_r) Initial grid

Mirror (10,10,10); Rotor (10,10,10)

Optimized grid

Mirror (12,30,8); Rotor (8,65,40)

Simulations apply to Virgo NCalO3

- Simple geometry case:
 - Mirror: full cylinder
 - Rotor: two 90° sectors

Numerical NCal-induced strain

Fourier Coeff.	Amplitude $[h]$	Phase [deg]
C_0	7.52397e-16	0
C_1	2.13463e-30 f_{rot}^{-2}	183
C_2	$3.35754\text{e-}18 \ f_{2rot}^{-2}$	1e-12
Numerical amplitude	3.35752e-18	—
Residuals	0.0007%	_

Main contribution to the total amplitude:

→ C₂: signal at 2f_{rotor}

- More realistic geometry case:
 - Mirror: full cylinder + flats + ears and anchors
 - Rotor: four 90° sectors, fillets, screws and holes

Amplitude at 2f_{rotor}: 3.35721e-18 (f_{2rot})⁻² Change of -0.01% compared to the simpler case

Simulations apply to LIGO prototype -v1

Tungsten cylinders

Holes

Using FROMAGE			Relative difference with LIGO model
Moments	Force $[N_{pk}]$	Strain	
2f	1.96333e-11	$3.13505\text{e-}18 \ f_{2rot}^{-2}$	→ ~0.02%
3f	9.3326e-12	1.49023e-18 f_{3rot}^{-2}	→ ~0.02%
4f	4.9853e-14	7.96051e-21 f_{4rot}^{-2}	→ ~0.03%
6f	6.80053e-15	1.08591e-21 f_{6rot}^{-2}	→ ~0.07%

Results from LIGO NCal model provided by M.P. Ross

→ Nice cross-check of FROMAGE

Analytical model

Extended rotor and **point** mirror model at 2f: \rightarrow previous model $a(f_{0,-i}) = \frac{9G\rho_{al} \ b \ \sin(\alpha)(r_{max}^4 - c_{max}^4)}{2G\rho_{al} \ b \ \sin(\alpha)(r_{max}^4 - c_{max}^4)}$

$$a(f_{2rot}) = \frac{9G\rho_{al} \ b \ \sin(\alpha)(r_{max}^4 - r_{min}^4)}{32\pi^2 f_{2rot}^2 d^4} \cos(\phi) \left[1 + \frac{25}{54d^2} \frac{(r_{max}^6 - r_{min}^6)}{(r_{max}^4 - r_{min}^4)}\right]$$

Extended rotor and **extended** mirror model at 2f:

 \rightarrow our new analytical model

$$a(f_{2rot}) = \frac{9G\rho_{al} \ b \ \sin(\alpha)(r_{max}^4 - r_{min}^4)}{32\pi^2 f_{2rot}^2 d^4} \cos(\phi) \left[1 + \frac{25}{54d^2} \frac{(r_{max}^6 - r_{min}^6)}{(r_{max}^4 - r_{min}^4)} + \left(\frac{405}{72} \sin^2(\phi) - \frac{5}{2}\right) \left(\frac{r_{mir}}{d}\right)^2 + \left(\frac{405}{216} \cos^2(\phi) - \frac{225}{216}\right) \left(\frac{x_{mir}}{d}\right)^2\right]$$

Uncertainty on the numerical model

- Study done for two NCals:
 - → NCal_N (near) at $d_N = 1.267$ m and $\Phi = 34.71^\circ$
 - → NCal_S (far) at $d_s = 1.947$ m and $\Phi = 34.71^{\circ}$

We don't know how far our numerical model is from reality... Comparison between LIGO and Virgo numerical models could help

Virgo NCalO3 layout

O3 data taking

Example from February 2020: clean NCal signal

Check hrec with the NCalO3

- Frequency dependent shape agrees with PCal data
- 50 Hz h(t) reconstruction issue spotted
 Points not shown in this plot
- Absolute value is ~5% off PCal data
- Difference between NCal_N and NCal_S data
 expected distance to the mirror may be wrong

Model: FROMAGE, no mirror position correction

Extract the absolute distance

$$\begin{array}{c} A_i = C_i (d_i + d_0)^{-4} \\ A_i \approx K_i (1 - 4 \frac{d_0}{d_i}) \\ \hline A_S = -\frac{A_N}{K_S} = 4 d_0 \frac{d_S - d_N}{d_S \cdot d_N} \approx 1.103 \ d_0 \end{array} \\ \hline \begin{array}{c} NCal FAR (S) \\ \hline freq. (Hz) \\ 31 \\ 0.930 \\ 35 \\ 0.938 \\ 34 \\ 0.9292 \\ 35 \\ 55 \\ 0.9562 \\ 54 \\ 0.9472 \\ 56 \\ 0.9449 \\ 0.9460 \\ 0.9285 \\ 0.9288 \\ 0$$

Check hrec with measured distance

NCalO3 uncertainty

Rotor geometry

Parameter			Relative impact	
name	value	uncertainty	formula	value (%)
density ρ (SI)	2805	5	$\delta ho/ ho$	0.18
thickness $b \pmod{m}$	74	0.2	$\delta b/b$	0.27
$r_{\rm max} \ ({\rm mm})$	95	0.1	$4\delta r_{ m max}/r_{ m max}$	0.42
Total			quadratic sum	0.53

Total uncertainty budget

	NCal_N	NCal_S
Rotor	0.53	0.53
Mirror distance	1.33	0.87
Mir. Dist. Syst. Rot.	1.62	0.93
Angle	0.23	0.23
Vertical position	0.06	0.03
Model	0.13	0.05
Total	2.2	1.4

Note: Virgo PCal systematic uncertainties O3b are 1.39% NE PCal, 1.73% WE Pcal Pcal is the reference method for O3 calibration

Plan for O4

- 1 close NCal for high frequency check (red)
 - Same distance as O3 Ncal_N (~1.27 m)
- 3 NCal for mirror position control (green)
 - Same mirror distance for reduced model uncertainties (~1.7 m)
- 1 Far NCal for permanent line (blue)
 - At 2.1 m or 2.5 from the mirror
 - Reduced systematic uncertainties
- New rotor geometry
 - Stay close to current geometry
 - Remove some parts and new design → gain in amplitude
- R&D made at IPHC (Strasbourg France)

