

Virgo O3 PCal update

D. Estevez for the calibration team

D. Estevez et al., The Advanced Virgo Photon Calibrators, 2020 (currently VIR-0705A-20 through PnP)

CAPP

PCal setup

Above the suspension resonance frequency:

Laser Power Noise (LPN)

Prior to calibrate and use the PCals:

PCal laser beam intrinsic noise at all frequencies:

- Laser Power Noise
 - Displacement of the mirror
 - Limit the sensitivity h(f)

Injection and reflection benches

PD1 and PD2 calibrated with Virgo Integrating Sphere (VIS)

G2001633 / VIR-0764A-20 - LVK meeting - D. Estevez

PD1 and PD2 used to estimate P_{end}

- $P_{end} \sim 2 W$
- ~ 3 mW onto PD1 and PD2
- Viewports losses $(1-R)^2$, R = 0.05%

$$P_{end} = P_{inj}(1-R)^2 = \frac{P_{ref}}{(1-R)^2}$$

• $\eta = P_{ref}/P_{inj}$ ~ 0.998 (expected)

Photodiodes calibration

- Measuring simultaneously the laser power with the integrating sphere and the output voltage of the photodiode located on the injection bench (PD1)
- Derive a conversion factor in W/V for the photodiode (PD1)
- Calibrate PD2 using PD1
- Are we measuring the same "absolute" power as LIGO?

LIGO-Virgo intercalibration

Idea: calibrate the GW detectors network on the same "absolute" reference D. Bhattacharjee et al., 2020, arXiv:2006.00130v1

- Gold Standard (GS) calibrated by NIST $\rightarrow 0.32\%$
- VIS calibrated at LHO (2019):
 - → Laser power corrected by 3.92% ± 0.34%
- Working Standard Virgo (WSV) (2019):
 - → Check the stability of VIS calibration $\rightarrow 0.5\%$

G2001633 / VIR-0764A-20 - LVK meeting - D. Estevez

VIS position issue

Investigations on the dependency of the measured laser power with VIS position on the benches

Keep a conservative uncertainty of 0.8%+0.2% (expected optical efficiency) to estimate P_{end}

• Need to be addressed for $O4 \rightarrow$ measurements at different laser beam sizes

Uncertainty on P_{end}

Parameter	1σ Uncertainty
GS responsivity (2018)	0.32%
VIS linearity	0.4%
VIS/GS responsivity ratio	0.1%
VIS/WSV responsivity ratio	0.5%
Voltage calibrator	0.007%
VIS position and optical efficiency	1%
Power reflected by the end mirror	1.24%

Calibration stability during O3a

1.02

1.015

O3a ratio hrec/hpcal

Calibration stability during O3

O3a and O3b distribution of hrec/hpcal

(a) WE PD1 O3a

(b) NE PD2 O3a

WE and NE driver laser failure

(d) NE PD2 O3b

Stability separately assessed for O3a and O3b

Demonster	1σ uncertainty O3a		1σ uncertainty O3b	
Parameter	NE	WE	NE	WE
Responsivity (temperature)	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$
Other sources	$\pm 0.5\%$	$\pm 0.5\%$	$\pm 0.6\%$	$\pm 1.2\%$
Total	0.51%	0.51%	$\pm 0.61\%$	$\pm 1.2\%$

- Significant discrepancy for WE PD1 calibration between O3a and O3b
 - Relative humidity variations affect calibration

G2001633 / VIR-0764A-20 - LVK meeting - D. Estevez

Geometrical parameters

Parameter	1σ uncertainty
Mass of the end mirror	0.05%
Angle of incidence (cosine)	0.12%
Rotation of the optic	0.001%
Total	0.13%

Uncertainty on *x*_{pcal}

Dependent	1σ uncertainty O3a		1σ uncertainty O3b	
Farameter	NE	WE	NE	WE
Reflected laser power (P)	1.24%	1.24%	1.24%	1.24%
Geometrical parameters	0.13%	0.13%	0.13%	0.13%
Calibration stability (O3)	0.51%	0.51%	0.61%	1.2%
Total	1.35%	1.35%	1.39%	1.73%

$$x_{pcal}^{free}(f) = -\frac{1}{m(2\pi f)^2} \frac{2\cos(\theta)}{c} P_{end}(f) \quad \text{ only valid up to ~400Hz}$$

PCal mechanical response

G2001633 / VIR-0764A-20 - LVK meeting - D. Estevez

Total uncertainty on X_{pcal}

O3a budget WE NE Uncertainty budget of the PCals in % 2 1 Drumhead mode ±1.35% 0 contribution $^{-1}$ -2 -3 101 10² 10³ 104 Frequency [Hz]

Valid up to 1.5 kHz

Danamatan	1σ uncertainty O3a		1σ uncertainty O3b	
rarameter	NE	WE	NE	WE
Reflected laser power (P)	1.24%	1.24%	1.24%	1.24%
Geometrical parameters	0.13%	0.13%	0.13%	0.13%
Calibration stability (O3)	0.51%	0.51%	0.61%	1.2%
Total	1.35%	1.35%	1.39%	1.73%

Plan for O4

- Ship Virgo Integrating Sphere (and WSV) to LHO more often to compare their calibration against the Gold Standard
- Characterize the dependency of VIS responsivity on the incoming laser beam size
- Address the humidity variations inside the PCal benches (actions TBD)
- Change Si photodiodes to InGaAs photodiodes (less sensitive to temperature changes)
- Extend the range of laser power modulation up to a few tens of kHz (currently ~8kHz maximum)

BACK-UP

Verification of h(t) at high frequency

 \rightarrow Need a higher bandwidth of power modulation (> 10 kHz) and a higher sampling of channels