
CNRS INFN
Centre National de la Recherche Scientifique Istituto Nazionale di Fisica Nucleare

SIESTA implementation of an accelerated
convergence scheme for FFT simulations

Massimo Galimberti

Laboratoire des Matériaux Avancés
7, avenue Pierre de Coubertin, 69622 Villeurbanne (FRANCE)

m.galimberti@lma.in2p3.fr

VIR-0658A-10
Issue: 1

November 29, 2010

VIRGO * A joint CNRS-INFN Project
Project Office: Traversa H di Via Macerata, I-56021 S.Stefano a Macerata (Pisa)

Secretariat: Telephone (+39) 050 752 511 * FAX (+39) 050 752 550 * e-mail W3@virgo.infn.it



SIESTA accelerated convergence VIR-0658A-10 Issue 1 November 29, 2010

Figure 1: Notation for the fields used throughoute the note.

1 Scope of the document

This note describes how the accelerated convergence scheme for FFT simulations presented
in [3] has been implemented in SIESTA, version v5r03. The implementation is described for
the case of a simple Fabry-Perot cavity.

Sections 3–4 explain the scheme proposed in Saha’s paper [3], from the point of view of
a generic linear system. The scheme is then rewritten for the case of a Fabry-Perot cavity.
Sections 5–6 deal with implementation in SIESTA and practical issues.

2 The problem

To avoid confusion, throughout this note we adopt for the fields a notation close to that
employed in [3].

Consider a Fabry-Perot cavity, as depicted in figure 1. We are interested in finding the
steady-state fields. The intracavity field E obeys the implicit equation (see e.g. [1, page 161]):

E = R1 P R2 P E + T1Ex (1)

where Ex is the input (external) beam, T1 is the transmittance operator of the input mirror,
R1 and R2 are the refection operators of respectively the input and end mirrors, and P is
the propagation operator. We will call C = R1 P R2 P the operator representing a cavity
round-trip, and Et = T1Ex the field entering the cavity.

The solution of equation 1 can be written in the form:

E = (I− C)−1Et (2)

where I is the identity operator. In numerical simulations, the problem becomes that of
inverting the matrix I−C. In modal simulations, where the field E is represented by a vector
in a convenient mode basis, this inversion can usually be done by standard numerical methods.
On the other hand, in FFT simulations, E is sampled on a xy grid; if the grid has n × n
gridpoints, then the matrix to be inverted has n2 × n2 elements, and it can easily be seen
that the memory and computation time needed for such an inversion are prohibitive even for
“small” grids of 128× 128 points. Iterative method are therefore the preferred choice for the
solution of equation 1.

3 Review of some iterative methods to solve linear systems

For the content of this section, see e.g. [2], page 108.

1



SIESTA accelerated convergence VIR-0658A-10 Issue 1 November 29, 2010

Let us suppose we seek a solution, via an iterative method, for the linear system:

Ax = b (3)

(we will go back to the field notation later). A general strategy to solve the system is the
splitting method, which consists in decomposing A in the form A = P − N, where P (called
the preconditioner) is non-singular. The iterative solution can then be written in the form:

Px(k+1) = Nx(k) + b (4)

Let us limit the discussion to the simple case where P = I. If we call r(k) = b−Ax(k) the
residual vector at iteration k, equation 4 can be rewritten in the form:

x(k+1) = x(k) + r(k) (5)

where it is explicit that the solution at iteration k + 1 is the solution at iteration k plus the
residual.

Now suppose that we want to modify the splitting method in order, for a specific lin-
ear system, to speed up convergence. One idea is to apply successive overrelaxations by
introducing a parameter ωk in equation 5:

x(k+1) = x(k) + ωkr(k) (6)

Of course, ωk must be conveniently chosen in order to accelerate convergence. Equation 6
can be rewritten as:

x(k+1) = (1− ωk)x(k) + ωk(Nx(k) + b) (7)

where it appears that the solution at iteration k + 1 is a linear combination of the solution
at iteration k and of the solution that would be obtained with the simple relaxation method
of equation 4.

Let us call this latter x(k)
SR, and let us generalize the preceding equation to:

x(k+1) = αk x(k) + βk x(k+1)
SR (8)

For a convenient choice of the coefficients αk and βk, the overrelaxation method can converge
faster than the simple relaxation one.

4 Application to the steady-state solution of a Fabry-Perot
cavity

Let us apply what exposed in section 3 to the problem of finding the steady-state field of a
Fabry-Perot cavity:

(I− C)E = Et (9)

With respect to the notation in the previous section, x = E, b = Et. The system matrix
A = I− C is already written in its split form, with P = I, and N = C. The simple relaxation
solution is therefore naturally written as:

E
(k+1)
SR = CE(k) + Et (10)

2



SIESTA accelerated convergence VIR-0658A-10 Issue 1 November 29, 2010

A convergence criterion must be chosen. A natural choice is to ask for the normalized
residual to be smaller than a fixed tolerance. Calling ∆(k) = E(k+1) − E(k) the residual,
iterations stop when:

‖∆(k)‖
‖E(k)‖ < tolerance (11)

Now, the first field E(0) of the iterative procedure is of course a “guess” field. The
convergence speed of the simple relaxation scheme depends on how close the initial guess field
is to the steady-state solution. For an initail guess field far from the steady-state, the iterative
procedure is not (much) faster than computing the cavity dynamics, i.e., starting with a null
field inside the cavity and letting the circulating field build-up to steady state with time steps
equal the round-trip time of the cavity. This is why an accelerated convergence scheme is of
interest.

If we apply the overrelaxation method (equation 8) to the cavity equation 9, we can write
the overrelaxed iterative solution as:

E(k+1) = αkE
(k) + βkE

(k+1)
SR (12)

The problem is now that of finding a convenient choice of αk and βk. Following [3], we choose
the values that minimize the norm of the residual at the next iteration ‖∆(k+1)‖. This is a
least-square minimization which translates in the solution of the system:




〈D(k), D(k)〉 〈D(k), D
(k+1)
SR 〉

〈D(k+1)
SR , D(k)〉 〈D(k+1)

SR , D
(k+1)
SR 〉







αk

βk


 =




〈D(k), Et〉

〈D(k+1)
SR , Et〉


 (13)

where: 〈·, ·〉 indicates the scalar product; D(k) = E(k)−CE(k); and D
(k+1)
SR = E

(k+1)
SR −CE(k+1)

SR .

5 SIESTA implementation

From a practical point of view, this is the scheme of the algorithm implemented in SIESTA:

1. start iteration k, knowing from iteration k − 1:

– the coefficients αk−1, βk−1

– the fields E(k−1), E
(k)
SR

– the fields CE(k−1), CE(k)
SR

2. compute field E(k) = αk−1 E(k−1) + βk−1 E
(k)
SR

3. compute field CE(k) = αk−1 CE(k−1) + βk−1 CE(k)
SR

4. compute field E
(k+1)
SR = CE(k) + Et

5. compute residual ∆(k) = E
(k+1)
SR − E(k)

3



SIESTA accelerated convergence VIR-0658A-10 Issue 1 November 29, 2010

6. if ‖∆
(k)‖

‖E(k)‖ < tolerance, stop iterations (E(k) is then retained as the approximation to the
steady-state solution); otherwise go on

7. compute field CE(k+1)
SR ; this is the only step where FFT propagation is employed

8. compute D(k) = E(k) − CE(k), and D
(k+1)
SR = E

(k+1)
SR − CE(k+1)

SR

9. compute the matrix elements of equation 13 and solve the system to find αk, βk (see
below for details)

10. restart from point 1 with a new iteration.

Note that, although both simple- and over-relaxation fields are in play, only one round-trip
FFT propagation is performed for every iteration. The only exception is iteration 0, where we
start with a guess field E(0) equal to the field predicted by theory for perfect infinite mirrors,
and let it do a first round-trip to obtain E

(1)
SR .

One important difference between SIESTA implementation and the theory described in
section 4 is the computation of the matrix elements of equation 13. In general, all the elements
in equation 13 are complex, and αk and βk are complex as well. In SIESTA, it has empirically
been observed that the use of complex αk and βk makes the algorithm diverge. This is perhaps
due to the fact that, since the phase of the circulating field has already been set by adjusting
the cavity to resonance, letting αk and βk touch the phase of E(k) can only push the circulating
field farther from resonance. Therefore, the algorithm has been implemented in order to force
αk and βk to be real numbers. This has been obtained by solving only the real part of
equation 13.

6 Evaluation of convergence speed

As a benchmark to evaluate the effectiveness of the fast convergence scheme for the steady-
state of a Fabry-Perot cavity, 1000 simulations have been run with the following configuration
(Advanced Virgo arm cavity, as specified in [4]):

• grid size = 400 mm, number of grid points = 128× 128

• cavity length = 2998.8 m

• input mirror: diameter = 340 mm; RoC = 1420 m; transmission = 1.4%

• end mirror: diameter = 340 mm; RoC = 1683 m; transmission = 5 ppm

• flatness defects extracted randomly from a 1-D power spectral density of the kind f−2,
f being the radial spatial frequency of the defects; the (unweighted) rms value of the
defects is 10 nm over a diameter of 340 mm

• input beam = TEM00 matched with a perfect cavity with the same length and RoC’s;
power = 1 W

• cavity length adjusted to resonance with a tolerance of 10−7 rad

• tolerance for the iterative process set to 10−6 (i.e., iterations stop when the relative
residual is less than 10−6, see equation 11)

4



SIESTA accelerated convergence VIR-0658A-10 Issue 1 November 29, 2010

default algorithm fast algorithm
CPU time (s) 11.2± 0.9 4.2± 1.0
no. of iterations to converge 1370± 62 390± 109
circulating power (W) 201.28± 15.35
average difference in circulating power (W) 8 · 10−4

round-trip losses (ppm) 2446± 639
average difference in round-trip losses (ppm) 0.04

Table 1: Results of the benchmark test, expressed as mean± standard deviation over 1000 simulations.

The test has been performed on a PC equipped with a 2.13 GHz Intel Core2 CPU (using
only one of the two processors), running Scientific Linux 5. The results of the benchmark are
reported in table 1.

We checked that both methods converge to the same solution by looking at the circulating
power and the round-trip losses. The difference in these two figures between the default and
the fast method is negligible. What is interesting in the results is the number of iterations
needed to converge (the CPU time, in fact, takes into account also the time needed to adjust
the cavity microscopic length, which does not of course depend on the convergence scheme,
and in some cases is a non-negligible fraction of the total CPU time). From the number of
iterations, we see that the fast convergence scheme gains on average a factor of about 3.8.

References

[1] The VIRGO physics book, vol. 2, april 2006.

[2] A. Quarteroni, R. Sacco, and F. Saleri. Matematica numerica. Springer, 2000.

[3] P. Saha. Fast estimation of transverse fields in high-finesse optical cavities. J. Opt. Soc.
Am. A, 14(9):2195–2202, 1997.

[4] R. L. Ward. Advanced Virgo optical design parameters summary. VIR-0541A-10, issue
1, october 2010.

5


