

A Novel Non-Sequential 3D Gaussian Beam Tracer: Theia

Raphaël Duque, EGO Optics Group

Virgo Week July 2017

Wednesday, July 19th 2017

Introduction

What is theia?

- Synthesis of existing Gaussian optics simulation tools (OptoCAD, gtrace, IfoCad)
- + enhanced flexibility \rightarrow Scripting
- + enhanced user interface \rightarrow 3D visualization and navigation
- + enhanced user environment
 → support and extensibility
- + specific aims in optics design

What are the specific aims?

- Ghost beam hunting
- Large-scale optical benches

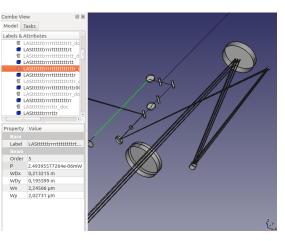


Figure: Working environment of theia

Image: A match a ma

Operation of theia

The extensive user environment

Quick tutorial

2

メロト メポト メヨト メヨ

Operation of theia

The extensive user environment

Quick tutorial

2

イロト イヨト イヨト イヨト

Scope of theia: Non-sequential 3D Gaussian beam tracer and visualization

No	Yes (July 14 th)	Not yet	Extensions
Higher or-	3D general astigmatic	All 2 nd order surfaces	Polarization
der modes	Gaussian beams		
Grating sur-	Spherical surfaces (mir-	High-level 3D visualization	Surface action spec-
faces	rors, lenses)		ification
Response in	{Non-, }sequential trac-	Beam tree navigation inter-	2-way communica-
GW envi-	ing	face (and transverse section	tion with CAD
ronment		inspection)	
	Low-level 3D visualiza-	Interferences	
	tion		
		Cavities	
		Beam clipping	

Table: The functionalities of theia v0.1.1

Approximations:

- Geometrical optics: none
- Gaussian data: ROC(beam) ≫ ROC(surface) (+ paraxial)

Test cases:

- 2D: confronted with OptoCAD
- 3D: comparison with experimental data

<ロ> (日) (日) (日) (日) (日)

• See tutorial files in project

э

Validating theia: 2D

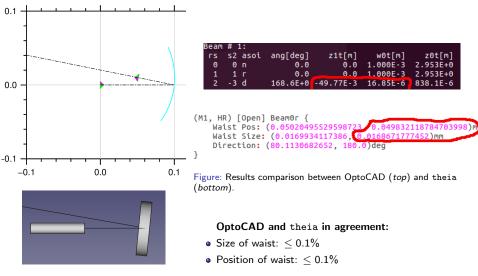


Figure: Simple setup for Gaussian optics testing (*top*: OptoCAD, *bottom*: theia).

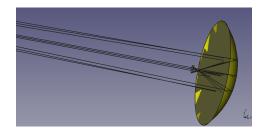


Figure: Interaction of a pencil of beams with a spherical reflecting surface

- Test against geometrical optics results
- Test against experimental results

Image: A mathematical states and a mathem

Operation of theia

The extensive user environment

Quick tutorial

2

・ロト ・回ト ・ヨト ・ヨト

Operation of theia Algorithms

Algorithms + Data Structures = Programs What low-level features allow the ghost beam hunting functionality?

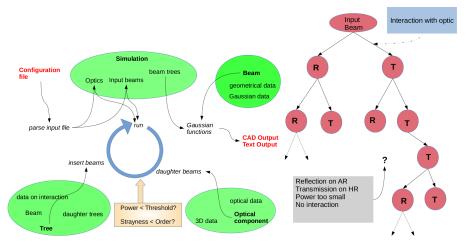
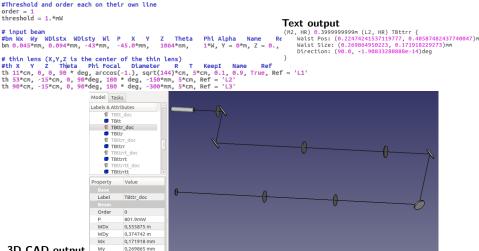



Figure: Left: the algorithm implemented in theia, right: the beam tree data structure.

イロト イポト イヨト イヨト

Text input

3D CAD output

イロト イ団ト イヨト イヨト

Operation of theia

The extensive user environment

Quick tutorial

æ

・ロト ・回ト ・ヨト ・ヨト

Extensive user environment

Theia online

http://theia.hopto.org:56000

- Quick start guide
- User documentation
- API documentation
- Tutorials
- Releases
- Contact with maintainer
- Access to git repo

Table of Contents	1	'''Defines the Mirror class for theia.'''
· · · · · · · · · · · · · · · · · · ·	2	# Provides:
Everything	4	# class Mirror
	5	#init
Modules	6	# lines # isHit
<u>theia</u>	8	# hit
theia.helpers	9	# hitHR
theia.helpers.geometry	10	# hitAR
theia.helpers.interaction	11 12	import numpy as np
theia.helpers.settings	13	from <u>helpers</u> import <u>geometry</u> , <u>settings</u>
theia.helpers.tools	14	from <u>helpers.units</u> import <u>deg</u> , <u>cm</u> , <u>pi</u>
theia.helpers.units	15	from .optic import Optic
theia.main	16 17	from . <u>beam</u> import <u>GaussianBeam</u>
theia.optics	18 -	class Mirror(Optic):
theid optics	19	
Example in a	20	Warren Arres
Everything	21 22	Mirror class.
	23	This class represents semi reflective mirrors composed of two faces (HR, AR)
All Classes	24	and with a wedge angle. These are the objects with which the beams will
abc.ABCMeta	25	interact during the ray tracing. Please see the documentation for details
theia.helpers.tools.InputError	26	on the geometric construction of these mirrors.
theia.helpers.tools.TotalReflee	28	* Attributes*
theia.optics.beam.GaussianBe	29	SetupCount (inherited): class attribute, counts all setup components.
theia.optics.beamdump.Beam	30	[integer]
theia.optics.component.Setup	31	OptCount (inherited): class attribute, counts optical components. [integer] Name: class attribute. [string]
theia.optics.ghost.Ghost	33	HRCenter (inherited); center of the 'chord' of the HR surface. [3D vector]
theia.optics.lens.Lens	34	HRNorm (inherited): unitary normal to the 'chord' of the HR (always pointing
theia.optics.mirror.Mirror	35	towards the outside of the component). [3D vector]
theia.optics.optic.Optic	36	Thick (inherited): thickness of the optic, counted in opposite direction to HRNorm. [float]
theia.optics.thicklens.ThickLe	38	Dia (inherited): diameter of the component. [float]
	39	Ref (inherited): reference string (for keeping track with the lab). [string]
theia.optics.thinlens.ThinLens	40 41	ARCenter (inherited): center of the 'chord' of the AR surface. [3D vector] ARNorm (inherited): unitary normal to the 'chord' of the AR (always pointing
theia.rendering.features.FCB	42	towards the outside of the component). [3D vector]
theia.rendering.features.FCB	43	N (inherited): refraction index of the material. [float]
theia.rendering.features.FCLe	44	HRK, ARK (inherited): curvature of the HR, AR surfaces. [float]
theia.rendering.features.FCM	45	HRr, HRt, ARr, ARt (inherited): power reflectance and transmission coefficients of the HR and AR surfaces. [float]
theia.rendering.features.FCO	47	KeepI (inherited): whether of not to keep data of rays for interference
theia.running.simulation.Simu	48	calculations on the HR. [boolean]
theia.tree.beamtree.BeamTre	49	Wedge: wedge angle of the mirror, please refer to the documentation for
All Even etden e	50 51	detaild on the geometry of mirrors and their implementation here.
All Functions	52	Alpha: rotation alngle used in the geometrical construction of the mirror
theia.helpers.geometry.basis	53	(see doc, it is the angle between the projection of Ex on the AR plane
theia.helpers.geometry.lineCy	54 55	and the vector from ARCenter to the point where the cylinder and the AR face meet). [float]
theia.helpers.geometry.linePla	55	Tace meet). [Toat]

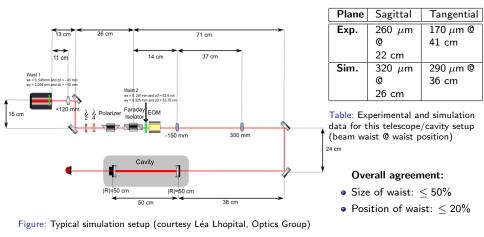
Figure: theia online API documentation

Wednesday, July 19th 2017 12 / 2

э

Operation of theia

The extensive user environment


Quick tutorial

æ

・ロト ・回ト ・ヨト ・ヨト

Quick tutorial

- Typical telescope/cavity setup, used as a test case for experimental validation
- Order 1 simulation for ghost beam hunting: Will transmitted beams interfere with PD?

< □ > < ^[] >

Conclusions and perspectives

- New 3D simulation tool to respond to specific aims: Ghost beam hunting and large-scale setups
- Next steps: confirm test cases, implement following features, communicate (theia.hopto.org:56000)

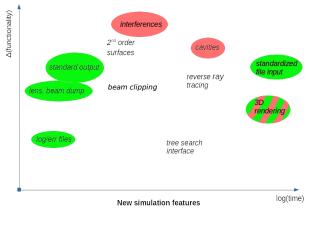


Figure: The near future of theia

 E. Kochkina, G. Wanner, D. Schmelzer, M. Tröbs, G. Heinzel: Modeling of the General Astigmatic Gaussian Beam and its Propagation through 3D Optical Systems, Applied Optics 24 (2013)

э

イロト イヨト イヨト イヨ

• Optimum placement of lens L2 for maximum width of transmitted beam? For position of waist?

 \Rightarrow Small script

Figure: Optical setup (*left*) and Python script (*right*) for an optimization case

```
#optics, the first L1 lens doesn't move
L1 = thinlens.Thinlens(X = 0*cm, Y = 0., Z = 0., Focal = 20.*cm,
Diameter = 3.*cm, Phi = 180.*deg, Ref = 'L1')
```

this is a list of centers for the second lens we want to try (it is around % or = list, * 2*Focal to respect the 2F configuration). We're trying n #configurations around L2.X = 50 n = 500 n =

```
# load beam
simu.InBeams = [bm]
```

```
#run the simulations (n sequence)
for center fun conters;]
for center fun conters;
    'vis.enter, 'v': 0., '2': 0., 'Focal': 20.*cn,
    'vis.enter, 'v': 0., 'fata': 2004dg, 'pht': 180.*deg, 'Ref': 'L2'}
    simu.optList = [L1, thinlens.Thinlens(**dic)]
```

< ロ > < 同 > < 三 > < 三

```
#go theta go! Optimization sequence
simu.run()
output = simu.BeamTreeList[0].T.T.T.T.Root
```

```
#save output data for plotting
waistSizes.append(output.waistSize()[0])
waistPositions.append(output.waistPos()[0])
```

```
simu.writeCAD()
```

```
splet the results plotting
plt.supplot(33)
plt.plot(centers, waitSizes, 'e')
plt.plot(centers, waitSizes, 'e')
plt.subel('usize (n)')
plt.subplot(232)
plt.plot(centers, waitFootitions, 'g')
plt.plotters, waitFootitions, 'g')
plt.subel('usizer d' second lans (n)')
plt.subel('usizer d' second lans (n)')
```

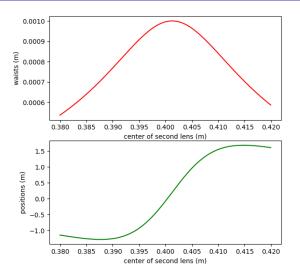
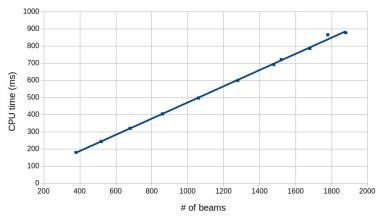


Figure: Width (top) and position (bottom) of the waist of the output beam as calculated by theia

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

• General astigmatic Gaussian beam in an orthogonal basis (k, e_1, e_2) :


$$E(\vec{r},t) = \exp[i\eta(z) - i\frac{k}{2}t(x,y)Q(z)(x,y)]e^{i(\omega t - kz)}$$

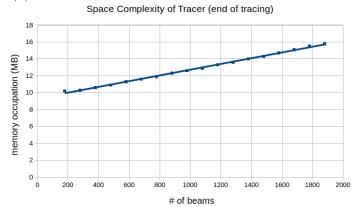
• (x, y) is the transversal coordinate in the (e_1, e_2) basis, Q is a symmetrical tensor:

$$\begin{pmatrix} \frac{\cos^2\theta}{q_x(z)} + \frac{\sin^2\theta}{q_y(z)} & \frac{1}{2}\sin 2\theta \left(\frac{1}{q_x(z)} - \frac{1}{q_y(z)}\right) \\ \frac{1}{2}\sin 2\theta \left(\frac{1}{q_x(z)} - \frac{1}{q_y(z)}\right) & \frac{\sin^2\theta}{q_x(z)} + \frac{\cos^2\theta}{q_y(z)} \end{pmatrix}$$

- Specification parameters: $heta, q_{x,y} \in \mathbb{C}$, (e_1, e_2) basis.
- Approximations: $ROC(beam) \gg ROC(surface)$ (+ paraxial)
- Geometric optics: no approximation

• • • • • • • • • • • •

Time Complexity of Tracer


• CPU = 0.47ms × (# beams) ($R^2 = 99.95\%$)

2

イロト イヨト イヨト イヨト

Benchmarking: space (i7/8GB)

mem (MB)

• Mem. = 9,3MB + 3,4kB/beam (R² = 99.76%)

э

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A