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In December 2019, the LIGO Scientific Collaboration and the Virgo Collaboration have pub-
lished the results of their first two joint observing runs (O1 and O2), describing the source
properties of ten binary black hole (BBH) and one binary neutron star (BNS) events. Their
validation has been made employing state of the art Data Analysis techniques. All of them
rely, to some extent, on the assumption to know the statistical properties of the detector
noise, from which the gravitational signals are extracted. Moreover, their performances are
optimal, with respect to certain criteria, if the noise distribution is stationary and Gaussian.
To this purpose, in this Thesis work we have studied several strategies aimed at the verifi-
cation of the previous two hypotheses, and the characterisation of the detector noise. Once
a specific noise feature, detrimental for gravitational wave searches, was found, we have
proceeded to the investigation of its causes and some mitigation strategies. The techniques
that we have implemented have been selected from many fields of research, like Digital Im-
age Processing and state of the art Machine Learning. Two original contributions have been
introduced. One consists of a new method for the identification of generic non-stationary
noise, from the variations in the empirical distribution of the signal RMS value. The other is
a wavelet-based, instantaneous causality statistic, specifically aimed at the study of transient
noises. These aim to improve upon other existing strategies and have been applied for the
investigation of specific noise issue in Advanced Virgo detector data.
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Notation

Throughout the manuscript, we tried to consistently maintain the notation in use in the
most recent LIGO and Virgo collaboration articles, like the first Gravitational Wave Transient
Catalogue (GWTC-1) [1] or the detector noise and signal extraction guide [2]. This is also the one
used, in general, in the reference textbook by Creighton and Anderson [3], members of the
LIGO collaboration. Here we will summarise the most relevant conventions and notation
choices. Further comments shall follow about the specific usage of symbols and notations in
different chapters and contexts.

We use the symbol “:=” when a definition is introduced, and the equivalence symbol “≡”
to denote an identity. When there is no ambiguity, we will simply denote one or the other
by the equal sign “=”.

Coordinates on space-time are denoted by Greek letters, such as α, β, . . . or µ, ν, . . ., run-
ning from 0 to 3, with zero referring to the time coordinate. Sometimes it is useful to refer
to the space and time components separately, so we use Latin letters from the middle of the
alphabet, i, j, . . ., valued 1, 2 or 3, to stand for the space components alone. 3-dimensional
spatial vectors are also sometimes indicated with bold-faced letters, like x. The speed of light
is always labelled by c, for this reason the partial derivative with respect to the zeroth space-
time component is related to the one with respect to time by: ∂0 := c−1∂t. We make use
of this convention in chapter 1. The metric signature convention is space-like, (−,+,+,+),
and all the other sign-conventions for General Relativity are those of Misner, Thorne and
Wheeler [4]. Differently from [3, 4], we will not use bold sans-serif letter to represent tensor
quantities, to which we prefer using indices inside equations.

Large part of the notation about random variables and stochastic processes (chapter 2
and 3) is adopted from [5] and [6]. Random variables are denoted with upper case letters,
e.g. X. These take on values in some domain, and if we want to consider a particular ob-
servation of them (that is, X has been sampled and observed to have a particular value in
the domain) then that non-random value is denoted by lower case, e.g. x. Probabilities over
random variables are denoted as P(X), or PX , but a typical place we made use of the above
upper case/lower case convention is when the outcome is “spelled out” as P(X = x), or
PX(x), representing the probability that the random variable X takes on the fixed value x.
This distinction is made to emphasise the logical difference between the two concepts, or
whether we are talking about actual experimental outcomes or the statistical properties of
the corresponding estimators, although sometimes, when there is a clear distinction from the
context, we will be sloppy and use lower case letters. This is the case for example when the
variable is used as a subscript to label some other quantities. Expectation values are denoted
both with E[. . .] and with the “Quantum Mechanics” notation 〈. . .〉. We will usually assume
the “ergodicity” of the processes under study, hence we will make no notation distinction in
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the averages computed on their (inaccessible) ensembles and those computed with respect
to time.

Following [3, 5], our conventions for the Fourier transform are as follows. For continuous
quantities, the forward and inverse Fourier transforms are given by:

x̃( f ) :=
∫ +∞

−∞
x(t)e−2πi f tdt, x(t) :=

∫ +∞

−∞
x̃( f )e2πi f td f .

In most practical situations, the quantity x(t) is sampled for a finite time T, at a sampling
frequency fS, so that we will have N values xn := x(n/ fS), where n = 0, 1, . . . , N − 1, and
T = N/ fS. Then, the discrete forward and inverse Fourier transforms are:

x̃k :=
1
fS

N−1

∑
n=0

xne−2πi nk/N , xn :=
1
T

N−1

∑
n=0

x̃ke2πi nk/N .

This normalisation choice yields Fourier components x̃k with the same units as the contin-
uous Fourier transform x̃( f ). Consequently, the former can be interpreted as an approxi-
mation to the value of the latter at frequencies k/T: x̃k ≈ x̃(k/T), for 0 6 k 6 dN/2e and
x̃k ≈ x̃

(
(k− N)/T

)
for dN/2e 6 k 6 N (negative frequencies). Here the ceiling brackets (or

modulus) “d. . .e” correspond to the smallest integer greater than or equal to what’s inside
brackets. The DC component is k = 0, and k = dN/2 − 1e corresponds to the Nyquist-
frequency. Analogously to [3], we prefer to work with “double sided” power spectral densi-
ties, defined as the the Fourier transform of the auto-correlation function R of the stationary
stochastic process X(t):

S( f ) :=
∫ +∞

−∞
R(τ) e−2πi f τdτ

which is the quantity that is most convenient to use for mathematical calculations. How-
ever, the quantities that are directly measured by filtering procedures are the “one sided”
(supscript “1s.”) spectral density functions:

S1s.( f ) = 2
∫ +∞

0
R(τ) e−2πi f τdτ

= 4
∫ +∞

0
R(τ) cos (2π τ f ) dτ = 2S( f ) (1a)

defined for 0 < f < +∞. These are also the quantities reported in figures.
Different vectorial or matricial notations are sometimes implemented to replace indices

and conveniently manipulate ordered sets of quantities. For example, in the context of signal
analysis, the italic bold-faced letter x := {xn : n = 0, . . . , N − 1} is meant to collectively rep-
resent all the ordered data samples as a vectorial quantity: xn with n = 0, 1, . . . , N − 1. In the
context of multiple linear regression (subsection 3.5.3), where the data series corresponding
to p different channels are recorded, these will be collectively represented with the matrix
X :=

(
x1, . . . , xp

)
. Other notations have been adopted, although often temporarily for few

sections and calculations, and are promptly introduced and described in the main text.
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Introduction

On the 14th of September 2015, the Advanced LIGO detectors [7] accomplished the first di-
rect detection of a Gravitational Wave (GW) signal, GW150914 [8], originated from the merg-
ing of two stellar-mass black holes. This event provided further confirmation of the predic-
tions of Einstein’s General Relativity (GR) [9, 10] but, most importantly, it shaded light on
a class of astrophysical objects and phenomena in the Universe inaccessible with the means
available at the time, that is, the electromagnetic radiation and the astroparticles. Further de-
tections followed during this first observing run (O1), ended on the 19th of January 2016 [11].
In the next years, the detectors underwent some upgrades in preparation for the subsequent
O2 observing run, accomplished from December 2016 to the 25th of August 2017. The Ad-
vanced Virgo detector [12] took part to this joining the LIGO detector network, contributing to
the first three-detector observation of a Binary Black Hole (BBH) merger, GW170814 [13], and,
in particular, to the sky localisation to just 32 square degrees (90% C.L.) of the first Binary
Neutron Star (BNS) merger, GW170817 [14]. The unprecedented precision in the localisation
of the source allowed the identification of its host galaxy, and a successful multi-messenger
observation campaign across the electromagnetic spectrum [15]; no evidence for neutrinos
or high energy cosmic ray particles was reported [16].

The results of the first two observing runs (O1 and O2) of the Advanced GW detectors
were jointly published in December 2019 in the first Gravitational Wave Transient Catalogue
(GWTC-1) [1]. This reports on the source properties of ten BBH and one BNS events, includ-
ing the aforementioned ones, and represented the acknowledgement of GW observations as
a new important means to learn about the Universe.

In order to validate an event, it is required the consistency of the data observed by mul-
tiple detectors [2]. This allows to suppress instrumental and environmental backgrounds,
which represent a noise source for the identification of signals of astrophysical origin. State
of the art Data Analysis techniques have been developed to make the best use of detectors
data in order to distinguish these signals from the noise, and allow accurate detections and
estimations of the source properties. Most of these algorithms, like PyCBC [17] and GstLAL
library [18, 19], are based on matched filters [20, §17], which are basically noise-weighted cor-
relations of the detector data with relativistic models of the expected GW signals from Com-
pact Binary Coalescences (CBCs). There is also the coherent Wave Burst (cWB) algorithm, meant
for weakly modelled or unmodelled short-duration transient signals [21]. For all of them, it is
of fundamental importance to have an accurate knowledge of the properties of the noise. In
particular, there is an assumption, which is almost ubiquitous, that is the stationarity of these
properties. When this is not the case, most of the available techniques become inefficient,
and the analysis results are doomed to suffer of larger statistical uncertainties. Moreover, if
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these non-stationarities are ignored, and standard analysis performed, the corresponding re-
sults will be affected by systematic errors, and lack of reliability, due to an incorrect account
for the false alarm probability, which might even lead to false detections.

It is part of the detector characterisation (Detchar) activities to check the “quality” of detec-
tors data, such as the validity of the assumptions of the aforementioned analysis pipelines,
including stationarity [22, 23]. After a negative result of this check, the culprit data should be
vetoed from the analysis [LVC1, 24], and, from the detector point of view, the causes that may
have produced them investigated thoroughly in order to avoid, or at least mitigate, them for
the future.

Moreover, in the prospect of multi-messenger astronomy, it is of crucial importance to de-
velop analysis tools able to report on the quality of the data with the lowest possible latency;
this is essential for obtaining fast estimations of the sky localisation of the candidate events
and other important parameters, like the type of CBC, whether a BBH or a BNS merger, or
even an NS-BH signal,1 recalling that only from the latter we are likely to expect some kind
of counterpart, in order to send an alert to all the other observatories that detect electromag-
netic radiation, neutrinos and high energy gamma rays. Indeed, the identification of some
counterpart of a GW event provides a complementary insight into the physics that produced
it, and represents the only way to obtain a comprehensive knowledge of the astrophysical
sources and the related emission mechanisms [25].

This Thesis work has been carried out within the Detchar group of the Virgo Collabora-
tion, and in close contact with the colleagues of the LIGO Scientific Collaboration. The main
aim of it has been to develop adequate analysis tools for the investigation of non-stationary
noise. Their purposes have slightly changed over time, in accordance with those that were
the needs of the collaboration. From the end of O2, on the 25th of August 2017, and the
beginning of O3, on the 1st of April 2019, the Advanced Virgo and LIGO detectors have
undertaken a phase of upgrades, and a subsequent one of commissioning [26, 27]. In this
period, for the interventions on the detectors and the corresponding tuning for achieving
better and better performances, the noise was in general non-stationary, and it was assumed
that no signal of gravitational origin was present. Hence, the focus was not the characterisa-
tion of the detector varying behaviour but rather to asses the influence of the changes imple-
mented in certain parts of it, as well as those unintentional of environmental and technical
origin. This was done correlating the detector output with the various signals that monitor its
subsystems, and find whether and/or how modifications to any of them may reflect on the
overall detector performances. In this stage, the most of the time has been spent in resuming
and improving the analysis tool named NonNA (Non-stationary noise Analysis Tool) devel-
oped in 2008 by Dr. Gabriele Vajente [28, LVC2], of Caltech. Significant efforts have been put
in making these analyses able to handle very large amounts of Virgo data,2 in the least time
possible, making an efficient use of the CPUs of the Virgo computing farm machines [LVC4];
this was motivated by all those “brute force” investigations, where, in the absence of clear
direction where to look at, all the available information included in the data was analysed in

1Not currently observed as of October 2019. Other type of not yet observed sources for transient signals are
Core Collapse Supernovae and sudden and localized energy release in isolated neutron stars due, for example, to
“star-quakes”.

2For reference, the data produced by a gravitational wave detector amounts to about 40 MB/s, and only the
gravitational channel for Virgo in O1 is about 1.3 TB [LVC3].

https://www.ligo.caltech.edu/
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search of correlations. Part of the studies with NonNA, and in particular those related to the
environmental noise, have been described in [29].

Related to correlation, mostly from the point of view of the investigations of the un-
derlying relations between signals, rather than for the logic behind it, there is the concept
of causation [30–32]. Causality between actions, for example on detector subsystems or of
external disturbances, and effects on the output has been studied in relation to Virgo data,
following different approaches. This work has been partly carried out with the collabora-
tion of Dr. Luca Rei, of INFN section of Genova. A general outline of the idea of causation,
as well as three different approaches to test it, including an original one developed by the
author, are described in this manuscript. To the best of our knowledge, this is to-date (Octo-
ber 2019) the first attempt to introduce this kind of analysis, recently applied in other fields
like Climatology [33] and Neuroscience [34–36], to GW detectors data. This is an advanced
topic, originating from the limitations of the standard, and well understood, analyses based
on correlation and the need to dig deeper into the noise couplings inside the detectors. How-
ever, due to the complexity of the concept of causation itself and of the techniques involved,
no significant insights in the detector non-stationary noise structure have been achieved so
far with them. The algorithms that are described in this manuscript are aimed at presenting
when the different causality tests are applicable, and when not, in trying to reproduce some
coupling mechanisms understood and under control.

The 3rd observing run of the Advanced GW detectors started on the 1st of April 2019,
whose first part (O3a) have lasted until the 30th of September of the same year. During this
time the noise was, in general, more stationary (with a notable exception that we will analyse
later) and, most importantly, the data was expected to contain signals of astrophysical origin.
For the reasons explained before, it is of fundamental importance, for the validation of them
and the corresponding source characterisation, to make some precise checks of the quality of
the data for the purposes of the Data Analysis techniques exploited by the search pipelines.
These checks, in correspondence of the trigger of a “candidate event”, are called Data Quality
Reports (DQRs); some of them will be described in this manuscript. One of the original
contributions of the author has been to provide a new analysis tool to asses stationarity of
the data around the time of the trigger, which improves on the previously available methods.
This has been done by means of time-frequency maps of where, in time and spectrum, the
non-stationarities occurred, and relaxing part of the assumptions (e.g., the Gaussianity of the
data) of some of the other tests present in the DQRs. Moreover, this new test is attached with
quantitative statements about the level of non-stationarity (p-values) in each time-frequency
bin. The corresponding article, containing part of the material presented in this manuscript,
is currently in preparation [37].

Besides some persisting periods of non-stationary data, often related to bad weather con-
dition or insulated system malfunctions, which have been investigated with the aforemen-
tioned analysis tools, the most important manifestation of non-stationary noise were the
so-called glitches [38, 39]. These are short duration (. 1 sec) bursts of excess power; they
can mimic the waveform of some signals of gravitational origin, and for this reason it is im-
portant to find the actual mechanism that produced them, as commented before. For this
purpose, we have develop a framework that specialises to the case of these short-duration

https://www.ge.infn.it/wordpress/?page_id=586
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non-stationarities some of the concepts and the techniques discussed before, and which con-
stitutes an improvement on the other available tools based on correlation and coherence.

The rate of these glitches is of one each ten-to-hundred of seconds, depending on its
energy relative to the “noise background”. Hence, there are chances that some gravitational
signals may overlap or fall in the proximity of a glitch. For this purpose, in collaboration
with Prof. Marco Cavaglià and his team at Missouri University of Science & Technology
(MS&T), it has been studied a “deglitching” algorithm, based on artificial Neural Networks
(NNs), meant to reconstruct GW data corrupted by glitches, and mitigate therefore their
effects on the searches for signals of Astrophysical origin. This is one of the “trending” fields
of research inside the LIGO and Virgo collaborations, which will grow of importance in the
near future with the increase in rate of expected detectable GW events.

Outline of the Thesis

The contents presented in this Thesis don’t follow the chronological order described above
but a logical one, from a signal analysis perspective, in increasing level of complexity of the
techniques and the algorithms involved. This choice has been made to emphasise the com-
mon thread that links each analysis tool described, the range of applicability of it together
with its limitations, and the improvement carried by the one described next. The outline of
the various chapter is as follows:

Chapter 1: This chapter describes the framework where GW research takes place. The first
section recaps some fundamentals of GR, needed to introduce GWs. Here, particular
relevance has been given to the derivation and discussion of the TT-gauge, through
which the functioning of a simplified Michelson GW detector has been provided in
section 1.3.1. An overview of the most promising sources is presented in section 1.2,
with a particular focus and the ones that have already been observed, and which are
the subject of section 1.3. The Advanced GW detector network is described in sec-
tion 1.3, including an overview of the new coming detectors and of the planned next
generation ones. Finally, and with very much pleasure, we review in section 1.4 the
confirmed GW detections achieved during the first two observing runs and published
in the GWTC-1. The search pipelines that have allowed this, and the methods adopted,
will be briefly described as well.

Chapter 2: This chapter represents the “playground” where the noise studies of the author
have taken place. It starts with a quite detailed prelude about stochastic processes
and time series analysis. This is meant to fix the notation and, most importantly, it
constitutes the language employed to describe the rest of the manuscript. Two sections
of particular relevance, which motivates the importance of the following studies, are
the one about the concept os stationarity of a stochastic process and that about “the
non-optimal” matched filter; sections 2.1.3 and 2.1.5. The next section 2.2 contains
an overview of the detectors noise, with its classification in fundamental, technical
and environmental noises. A further classification is provided in the following two
sections, where we present the investigation strategies of stationary noise (section 2.3)

https://www.mst.edu/ 
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and where we introduce the non-stationary one, with its subdivision in “glitches” and
“slow non-stationarities” (section 2.4).

Chapter 3: Most of the work and the analysis implemented by the author are described in
this chapter. The first part of it, comprising sections from 3.1 to 3.4, deals with the
identification of specific noise features, like non-Gaussianities (section 3.3) and non-
stationarities of different kinds: slower ones (3.1), glitches (3.2) and frequency non-
stationarities (3.4). These are then related to the information provided by the detector
auxiliary channels by means of the analysis techniques described in the following sec-
tions. Section 3.5 contains the description of the analyses based on cross-correlation
and multiple linear regression, and some of their extensions. In particular, here we
present the rebuilt of the NonNA tool. In the next section 3.6 we extend the analysis
of non-stationarities by means of the wavelets, and we introduce the method of the
wavelet coherence, which extends to a time-frequency map the previous analysis of
correlation and coherence. In section 3.6.3 we define a new causality statistics that we
have called instantaneous time delay. The concept of causality is further elaborated in
section 3.7, where we present the notion of Granger-Geweke causality and that of Con-
verging Cross-Mappings.

Chapter 4: This constitutes a sort of “epilogue” for this Thesis, and an outlook towards the
most modern techniques in signal processing. In here, we present the glitch removal
project named NNetFix (a NN to Fix glitches on signals) that the author is carrying
on in collaboration with the LIGO MS&T group. This is meant to mitigate the effects
of glitches in proximity or superimposed to GW signals. In section 4.1 we describe
the algorithm, based on a Multi-layer Perceptron (MLP) architecture [40], and its ap-
plication to LIGO data with simulated regions of “corrupted” data, which we aim to
reconstruct. As anticipated before, the importance of this work will become even more
relevant during the next observing runs, where, with the increased rate of expected
events, the chances that some of them will occur in the vicinity of a glitch will be not
negligible. Various algorithms similar to ours are currently under development within
the LIGO and Virgo collaborations. In section 4.2 the state of the art of the most mature
and documented ones, updated at October 2019, is compared to that of NNetFix for
different kinds of signal and glitches.

Chapter 5: Conclusions about this work, with comments and perspectives for the future.
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1 Gravitational waves: theory,
detectors and detections

The existence of wave-like solutions (or radiation), propagating information through space
and time at the speed of light,1 is one of the most fascinating predictions of Einstein’s the-
ory of General Relativity (GR) [9, 10]. Indeed, thanks to the weakness of the gravitational
interaction, the information carried by them is not appreciably altered in their travel from
the source toward us.2 This property makes Gravitational Waves (GWs) a reliable messen-
ger to observe distant astrophysical objects, and probe regions opaque to photons, offering
a new formidable window on the Universe, beyond that allowed with the electromagnetic
spectrum and the cosmic rays [25].

As a drawback, despite every non-spherically symmetric accelerating energy/mass den-
sity can produce gravitational waves (ref. to (1.36)), due to the weakness of this interaction,
only highly energetic astrophysical and cosmological events can produce waves actually de-
tectable by us. Also, for the same reason, the detection of gravitational waves has been a
tremendous challenge far almost sixty years3 and constant efforts are underway to improve
the sensitivity of current detectors, and reach furthest sources and regions of space-time [26].

This chapter contains a brief introduction to the subject of Gravitational Wave research.
In the first section, some basics of the GR framework are outlined, which are meant to be
functional to the derivation of GWs as approximate solution to the linearised Einstein’s
equations. Then, the most relevant sources, and their effects on test masses, are presented.
In section 1.3 the basic working principles of interferometric gravitational wave detectors is
discussed, together with an overview of the present GW detectors and the next generation
ones. For the material presented here, and in general for the entire GW community, the two
reference textbooks on the subjects are those by Maggiore [49, 50] and the one by Creighton
and Anderson [3], from which we tried to consistently adopt the notation. Lastly, in sec-
tion 1.4.2 the first Gravitational Wave Transient Catalogue (GWTC-1) is presented, with an
overview of the Advanced LIGO and Virgo discoveries during their first two observing run
(O1-O2), updated to December 2018.

1Or, more correctly, at the speed of space-time [41].
2This is certainly true in first approximation but there is at least an important exception, recently studied in

literature, that is, the angular power spectrum of the astrophysical gravitational wave background of GWs [42].
3The milestones for this quest have been the 1957 Chapel Hill Conference [43], later known as GR1, and its

follow-up, where Pirani [44] and his mentor Bondi [45] realised the physical nature of the gravitational radiation,
and the first detection achieved by the two Advanced LIGO detectors in 2015 [8]. Some nicely comprehensive
overview of the history of gravitational waves can be found in these review articles [46, 47] and in the book by
Kennefick [48].
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1.1 Gravitational wave theory overview

In the geometric approach pioneered by Minkowski [51], space-time, the structure on which
all the physical phenomena take place, can be mathematically described as a 4-dimensional
Lorentzian manifold (M, g) [52, §2.5], that is, a topological space that resembles R4 near each
point, equipped with a continuous and non-degenerate metric, gµν, whose signature is, for
our convention, of the type (−,+,+,+) at every point of M. This metric determines the
geometry of space-time, as well as the geodesic paths of test masses and light beams. BothM
and gµν are a priori arbitrary, from this the origin of the name “General Relativity” [53]. The
revolutionary intuition of Einstein’s GR was to link gravity to the curvature of space-time,
which became then a dynamical entity. This idea is encapsulated in the set of non-linear,
partial differential equations for the metric tensor, known as Einstein’s field equations:

Rµν −
1
2

gµνR =
8πG

c4 Tµν (1.1)

where Rµν and R := Rµνgµν are respectively the (components of the) Ricci tensor and Ricci
scalar, computed from gµν and its mixed partial derivatives up to the second order. Tµν is the
stress-energy tensor of matter, which obeys the equations of motion∇µTµν = 0. The constant
factor 8πG/c4 on the right-hand side can be found by requiring that the previous equations
reduce to the usual form in the Newtonian limit of slow motions and weak gravitational
fields involved [52, §4.2]. It is convenient to rewrite the previous equations in the form

Rµν =
8πG

c4

(
Tµν −

1
2

gµνT
)

(1.2)

obtained contracting the stress-energy tensor with the (inverse) metric, T := Tµνgµν, and
recalling the invariant relation gµνgµν = δ

µ
µ = 4.

Despite their apparent simplicity, the previous equations cannot be generally integrated.
The only known “exact solutions” are obtained imposing further assumptions, as for exam-
ple some symmetry properties of the metric tensor. This is the case of the Schwarzschild [54]
and Kerr [55] solutions, describing axisymmetric bodies in a surrounding empty space, and
the Friedmann-Lemaître-Robertson-Walker solutions, for homogeneous and isotropic space-
times that must contain a energy-momentum tensor of perfect fluid type [56]. For a compre-
hensive account of further exact solutions refer to [57, 58].

1.1.1 Linearised gravitational wave solutions

Besides the importance of the mentioned exact solutions in the global context of GWs pro-
duction and propagation, what concerns us in this section is to derive them as approximate,
linearised solution of the general Einstein’s equations (1.1).4 Indeed, in the situations of inter-
est for the detection of GWs, the curvature of space-time can be typically considered small at
least in a certain region of space-time (meaning that quadratic terms in gµν inside Rµν do not
significantly contribute to the equations of motion), and we can model the solutions to (1.1)

4For completeness, it should be noted that, as for the previous solutions, also GWs have been found as exact
ones with the additional imposition of some particular symmetry [10, 58–60].
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as being the Minkowski metric ηµν plus a small perturbation term hµν:

gµν = ηµν + hµν, (1.3)

with ηµν = diag(−1, 1, 1, 1) in Cartesian (inertial) coordinates (x0 = c t, x1 = x, x2 = y, x3 =

z), and |hµν| � 1.5 This condition requires both the curvature to be small, and in addition
constrains the coordinate system to be approximately Cartesian [64].

The decomposition (1.3) is not unique for different choices of coordinates may give in
general different forms for hµν, although the space-time solution that they describe is the
same. This is an example of gauge symmetry, where the system does not change when the
underlying coordinate system is “shifted” by an infinitesimal amount [52, §7.1]. We will ex-
ploit this fact in a moment. For this freedom, equation (1.3) identifies a family of coordinate
systems that are called nearly Minkowskian (or Lorentzian), which can be transformed into
each other by means of global Lorentz transformations, provided the boost doesn’t spoil the
condition |hµν| � 1; hµν behave as a tensor under them.

To preserve the linear order, indices of tensor quantities are raised, by convention, by
means of the flat metric ηµν, while the inverse linearised metric is:

gµν = ηµν − hµν +O(h2),

whose form is imposed by the condition: (ηµρ + hµρ)gρν = δν
µ +O(h2).

We want to find the equations of motion obeyed by the metric perturbation hµν, which
can be obtained expanding the Einstein’s equations to first order. We start by computing the
linearised expression of the connection coefficients (or Christoffel symbols):

Γρ
µν :=

1
2

gρλ
(

∂µgνλ + ∂νgµλ − ∂λgµν

)
=

1
2

ηρλ
(

∂µhνλ + ∂νhµλ − ∂λhµν

)
+O(h2), (1.4)

where the usual assumptions of absence of torsion, Γµ
νρ = Γµ

ρν, and metric compatibility,∇ρgµν :=
∂ρgµν − Γλ

ρµgλν − Γλ
ρνgλµ = 0, have been adopted [52, §3.2].

All the terms in the previous equations are already first-order quantities in the metric
perturbation; thus, the only contributions to the Riemann tensor will come from their deriva-
tives, while terms of the form Γ2 won’t contribute:

Rµνρσ := gµλ

(
∂ρΓλ

νσ + Γλ
αρΓα

νσ − (ρ↔ σ)
)

= ηµλ∂ρΓλ
νσ − ηµλ∂σΓλ

νρ +O(h2)

=
1
2

(
∂ρ∂νhµσ + ∂ρ∂µhνσ − (ρ↔ σ)

)
+O(h2). (1.5)

5Equation (1.3) assumes that the background space-time is flat. A more general expansion can be done with
respect to a background metric ḡµν: gµν = ḡµν + hµν, where the condition of |hµν| to be small is now referred to
the diagonal elements of ḡµν [49, §1.4]. In general this is true in all those reference frames where there is a clear
separation of scales, either in space (with their wavelength) or in time (with frequencies), then the distinction of
the “perturbation” with respect to the background can be done unambiguously. This concept is at the base of the
works of Pirani [61] and Isaacson[62, 63], and the identification of GWs as a physical effect, carrying energy and
information.
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The Ricci tensor comes from contracting the Riemann tensor over one index in the first and
one in the second pair:6

Rµν := Rµρνσηρσ =
1
2

(
∂σ∂µhσ

ν + ∂σ∂νhσ
µ − ∂µ∂νh−�hµν

)
+O(h2). (1.6)

In the previous expression we have introduced the trace of the metric perturbation h :=
ηµνhµν = hµ

µ, and the d’Alembertian differential operator of flat space-time: � := ∂µ∂µ =

− 1
c2

∂2

∂t2 +∇2. Substituting (1.6) into (1.2) yields:7

(
�hµν − ∂σ∂µhσ

ν − ∂σ∂νhσ
µ + ∂µ∂νh

)
= −16πG

c4

(
Tµν −

1
2

ηµνT
)
+O(h2) (1.7)

These are the linearised Einstein’s field equations. As anticipated, in this form, they cannot yield
unique solution because of the remaining gauge freedom to make coordinate transformations
(and Physics must not depend on the choice of coordinates). Hence, in order to simplify the
previous expression, it is convenient to exploit this freedom choosing a coordinate system
satisfying the harmonic or de Donder gauge condition [65]:8

gµν∇µ∇νxρ = −gµνΓρ
µν = 0, (1.8)

which is equivalent, for the metric perturbation, to demanding

∂µhµ
ν = 1

2 ∂νh (1.9)

up to terms of the second order in hµν, as it is immediate to prove contracting (1.4) with ηµν.
To find such a frame, we can consider a local change of coordinates, characterized by the

vector field ξµ(x),
xµ → x′µ = xµ + ξµ(x), (1.10)

which transforms the metric perturbation hµν as:

hµν(x) → h′µν(x′) := g′µν(x′)− ηµν

= hµν(x) +
(

∂xρ

∂x′µ
∂xσ

∂x′ν
− δ

ρ
µδσ

ν

)
gρσ(x)

= hµν(x)−
(
∂µξν + ∂νξµ

)
+O

(
(∂ξ)2), (1.11)

where in the second line we have substituted to the flat space-time metric ηµν its expression
in terms of hµν and gµν. In order for h′µν to remain small, the partial derivatives ∂µξν should
be small at least of the same order of hµν. Local changes of variables with such a property

6Here we adopt the Misner, Thorne and Wheeler convention [4] for the choice of which index to contract, as
explained in the Notation.

7Notice that the stress-energy tensor already accounts for effects of first order in hµν; for this reason it has been
substituted the flat metric ηµν, in front of its trace, to the perturbed one gµν. In any case, the same result can be
obtained computing the linearised left-hand side of (1.1), as in [64, (2.60)].

8From (1.8), in this gauge each of the coordinate functions xµ satisfies the curved space-time d’Alembert’s equa-
tion (thus the alternative name d’Alembert gauge). This is a generalisation to space-time of the harmonic coordinates
satisfying Laplace’s equation in Riemannian geometry (Laplace’s gauge). As regards the “potentials” hµν, and in
particular the trace-reversed ones h̄µν, the condition (1.21b) is also analogous to the Lorentz gauge for the electro-
magnetic potential vector Aµ: ∂µ Aµ = 0.
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are called slowly varying diffeomorphisms. From the previous equation, it is immediate to
verify that the linearised Riemann tensor (1.5) is invariant under the effect of this gauge
transformation, and also that:

∂µhµ
ν − 1

2 ∂νh → ∂′µh′µν − 1
2 ∂′νh′ = ∂µhµ

ν − 1
2 ∂νh− ∂µ

(
∂νξµ + ∂µξν

)
+ ∂µ∂νξµ

= ∂µhµ
ν − 1

2 ∂νh−�ξν (1.12)

Since the d’Alembertian operator is invertible, we can always solve the inhomogeneous
wave equation �ξν = ∂µhµ

ν − 1
2 ∂νh, without spoiling the slow diffeomorphism conditions,

and choose the gauge parameter ξµ such that the right-hand side of the previous equation
vanishes:

∂′µh′µν = 1
2 ∂′νh′ (1.13)

satisfying the harmonic gauge condition (1.9). If we compute the derivative ∂′ρ of the pre-
vious equation and we symmetrize with respect to ν and ρ, substituting the result (prime
symbols are omitted)

∂ρ∂µhµ
ν + ∂µ∂νhµ

ρ − ∂ρ∂νh = 0

in equation (1.7), after renaming in a suitable way all the dummy indices, we have:

�hµν = −16πG
c4

(
Tµν −

1
2

ηµνT
)
+O(h2) (1.14)

This choice of the gauge has reduced the linearised Einstein’s equations to simple wave
equations with source term given by the trace reversed stress-energy tensor: Tµν − 1

2 ηµνT.
Instead of having this form on the right-hand side, it is often customary to redefine it in
terms of the trace reversed metric perturbation:

h̄µν := hµν −
1
2

ηµνh (1.15)

which gives to the linearised Einstein’s filed equations the particularly simple form:

�h̄µν = −16πG
c4 Tµν +O(h2) (1.16)

These equations are the starting point for computing GWs generation within the linearised
theory. We will come back to this aspect in the next section.

Outside the source Tµν = 0, and (1.16) become homogeneous wave equations for each
component:

�hµν ≡ �h̄µν = 0. (1.17)

The flat space-time d’Alembertian operator implies metric perturbations that travel at the
speed of light, to which we attribute the meaning of Gravitational Waves. In this case, the
most general vacuum solutions to�

(-)

hµν = 0 is given by the infinite summation of monochro-
matic plane waves

hµν(x) =
∫ d3k

(2π)3 hµν(k)eikρxρ + c.c. (1.18)
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where kµ =
(
2π f /c, 2π f Ω̂/c

)
is the null, wave four-vector, and Ω̂ is the unit (three-dimen-

sional) vector that identifies the direction of propagation of the wave. We can rewrite the
differential of the wave vector as:

d3k = (2π/c)3 f 2d f d2Ω̂,

where d2Ω̂ := d cos θ dφ, and then rewrite (1.18) as:

hµν(t, x) =
1
c3

∫ ∞

0
d f
∫

S2
d2Ω̂ f 2h̃µν

(
f , Ω̂

)
e−2πi f (t−Ω̂·x/c) + c.c. (1.19)

The factors 1/c3 and f 2 can be reabsorbed in the definition of the amplitudes h̃µν

(
f , Ω̂

)
.

Notice also that only “physical frequencies”, i.e. f > 0, enter in the previous equation; we
can rewrite it in a more compact form, extending the definition of h̃µν

(
f , Ω̂

)
to negative

frequencies by defining:
h̃µν

(
− f , Ω̂

)
:= h̃ ∗µν

(
f , Ω̂

)
,

and then rewriting (1.19) as:

hµν(t, x) =
∫ +∞

−∞
d f
∫

S2
d2Ω̂ h̃µν

(
f , Ω̂

)
e−2πi f (t−Ω̂·x/c). (1.20)

1.1.2 GWs in TT-gauge

The harmonic gauge condition (1.9) doesn’t completely fix the freedom we have to modify
the components of the metric perturbation, and possibly to “gauge them away”. Indeed, this
symmetric tensor hµν has 10 independent components, which are later reduced to 6 imposing
the four constrain of the harmonic gauge (1.9). It is important then to convince ourselves
about how many of them have a real physical meaning, and represent actual propagating
degrees of freedom; refer to the comments in note 3.

Let us work with the trace reversed metric perturbation, and deduce the number of ef-
fective propagating degrees of freedom in vacuum (Tµν = 0). We can rewrite the gauge
condition (1.9) and its transformation (1.12) for h̄µν as:

h̄µν → h̄′µν := h̄µν −
(
∂µξν + ∂νξµ

)
+ ηµν∂ρξρ (1.21a)

∂µ h̄µ
ν = 0 → ∂′µ h̄′µν = ∂µ h̄µ

ν −�ξν = 0. (1.21b)

Then, we are free to perform any further transformation satisfying�ξν = 0 without spoiling
the previous conditions.

For definiteness, we consider a plane wave solution of the form h̄µν(t, x) = eµν eikρxρ
,

where the polarization tensor eµν is a set of constants, with respect to x (but not with k), form-
ing a symmetric tensor (10 components), and kρ is the null wave 4-vector introduced in the
previous section. Putting it in the harmonic gauge condition we have

kµeµν = 0 (1.22)
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meaning that the polarization tensor must be transverse with respect to the propagation di-
rection identified by k (4 constraints).

The gauge vector field can be chosen of the form ξµ(x) = χµ eikρxρ
, with χµ four constants

(for fixed kµ), which automatically satisfies the condition �ξν = 0; the most general ξµ(x) is
the infinite sum of such solution, similarly to (1.20). Substituting it into (1.21a), we have the
transformation relation:

e′µν = eµν − ikµχν − ikνχµ + iηµν kρχρ. (1.23)

The residual gauge freedom, embodied in the four arbitrary constants χµ, can then be
exploited choosing e′µν to be traceless:

e′µµ = eµ
µ − 2ikµχµ = 0 (1.24a)

that is, the constants in the gauge field chosen such that:

2ikµχµ = eµ
µ.

This constitutes one further constraint to the actual degrees of freedom of e′µν, reducing the
number of independent constants of χµ by one. In this transverse-traceless gauge (TT) the
trace reversed metric coincides with the usual one: h̄µν ≡ hµν.

Three more conditions can be then imposed. For example all the e′0µ can be set to zero:

e′0µ = e0µ − ikµχ0 − ik0χµ + iη0µ kρχρ = 0. (1.24b)

These correspond to three conditions, and not four, because e′µν must be transverse, and the
previous four equations are constrained to fulfil

kµe′0µ =kµe0µ − ik2χ0 − ik0kµχµ + ik0 kµχµ

=kµe0µ = 0

meaning that e′0µ = 0 stands for just three independent conditions. An explicit solution for
the two (1.24) is given by [64]:

χµ =
3eνρlνlρ

8ik4
0

kµ +
ηνρeνρ

4ik4
0

lµ +
1

2ik2
0

eµνlν (1.25)

with lµ := (k0,−k).
The symmetric polarisation tensor then has two independent elements, corresponding to

two physical propagating degrees of freedom, which can’t be cancelled out by any gauge
choice. For example, a plane wave travelling in the +z-direction has the TT-gauge expres-
sion:

hTT
µν (t, z) =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


µν

e−2πi f (t−z/c). (1.26)
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The two polarisation states can be taken to be

e+µν :=


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


µν

, and e×µν :=


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


µν

(1.27)

respectively named “plus” and “cross” modes, and with amplitudes h+ and h×:

hTT
µν (t, z) = ∑

A=+,×
eA

µνhAe−2πi f (t−z/c). (1.28)

The origin of these names for the two polarisation modes will be cleared in section 1.1.4. The
non-tensorial part of the previous equation, hA(t, z) := hA exp

(
− 2π f (t − z/c)

)
is called

the GW strain, and also the reason for that will become clear in the next section.
Although the previous procedure of passing to the TT-gauge has been derived for mono-

chromatic waves, in fact, this can be extended to all the radiative solutions. Indeed, these can
be generally expanded as linear superposition of monochromatic waves, as expressed by
(1.20).

1.1.3 Emission of gravitational waves

In linearised theory, the emission of GWs is described by equation (1.16), which can be
solved, analogously to the case of Electrodynamics, with the method of Green’s function [66,
§12], obtaining a retarded potential solution

h̄µν(t, x) =− 16πG
c4

∫
d4x′

(
− 1

4π|x− x′| δ
(
ct− |x− x′| − ct′

))
Tµν(x′)

=
4G
c4

∫
d3x′

1
|x− x′|Tµν

(
t− |x− x′|

c
, x′
)

(1.29)

up to second order terms in h.9 In the first line, the term in parenthesis is the Green’s function
for the d’Alembertian operator in four dimensions, and the term t− |x− x′|/c represents the
retarded time in x for a wave emitted by a source in x′. The previous integrals extend over the
past light-cone of the event (t, x).

We want to connect the results of these equations with the vacuum solutions obtained in
(1.20). For the purposes of this section, we are particularly interested in the far-field limit of
them, where the dynamics of the source is given, and we examine the GWs production at far
distance from it. In general, GWs carry energy and momentum, which affect the motion of
the source through a “back reaction” effect; then, a near-field solution is also needed in order
to compute the equations of motion that describe the source dynamics. We will ignore this
aspect in this treatment, referring to [3, 49] for the results.

In the far-field region the distance from the source, r, is much greater than the GW wave-
length λ = c/ f , which in turn is much greater than the characteristic size of the source R.

9These second order terms correspond to the GWs stress-energy tensor [49, §1.4].
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This means that we can approximate:

|x− x′| ' r

meaning that there is no relative delay between waves emitted from two different sides of
the source, and

h̄µν(t, x) ' 4G
c4r

∫
d3x′ Tµν

(
t− r/c, x′

)
. (1.30)

If we work in the TT-gauge of section 1.1.2, the only interesting components of the pre-
vious equation are the spatial ones:

h̄ij(t, x) ' 4G
c4r

∫
d3x′ Tij

(
t− r/c, x′

)
.

It is convenient however to rewrite the components Tij in terms of the T00 term only. From
the time component of the matter equation of motion in the linearised theory, ∇µTµ0 =

∂µTµ0 +O(h2) = 0, which is actually a conservation law to the second order in h, by differ-
entiating with respect to time and multiplying by xixj, we can obtain the tensor virial theorem:

0 = xixj 1
c

∂

∂t

(
−1

c
∂T00

∂t
+

∂T0k

∂xk

)
= xixj

(
− 1

c2
∂2T00

∂t2 +
∂2Tk`

∂xk∂x`

)

whose integrated form is:

∫
xixj 1

c2
∂2T00

∂t2 d3x =
∫

xixj ∂2Tk`

∂xk∂x`
d3x = 2

∫
Tijd3x. (1.31)

The integral in the last step has been evaluated by parts, where the surface terms obtained
from the spatial derivatives vanish for a “bounded system” (Gauss’s theorem). The spatial
part of the metric perturbation can then be written as:

h̄ij(t, x) ' 2G
c4r

∂2

c2∂t2

∫
x′i x
′
jT

00 (t− r/c, x′
)

d3x′. (1.32)

The integral on the right-hand side is called the source quadrupole tensor:

Iij(t− r/c) :=
1
c2

∫
x′i x
′
jT

00 (t− r/c, x′
)

d3x′ (1.33)

then:
h̄ij(t, x) ' 2G

c4r
Ïij(t− r/c). (1.34)

This is the Einstein’s quadrupole formula for the GW field. If we consider only linear terms
in h, the stress-energy tensor includes only the matter contribution and T00 = c2ρ′, with ρ′

the matter density of the source as measured by an observer at rest relative to the gauge
coordinate frame (1.10); this differs from the proper density by corrections of order c−2.

To project the right-hand side to TT-gauge, for radially propagating GWs, we need the
transverse projector operator:

Pij = δij − Ω̂iΩ̂j, where Ω̂i := xi/r
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which is used to obtain the transverse, traceless quadrupole tensor:

ITT
ij := Pik Ik`P`j −

1
2

PijPk` Ik`. (1.35)

It is immediate to check that the previous quantity vanishes once projected onto r̂i, and that
it has zero trace.

In conclusion, the far-field TT-gauge solution can be written in the compact form:

h̄TT
ij (t, x) ' 2G

c4r
ÏTT
ij (t− r/c). (1.36)

In the presence of matter, the metric perturbation have more than just two degrees of
freedom, but it can be shown that only the TT-part propagates as a wave; there is also a
“Newtonian”, non-radiative part which instead obeys a “static” Poisson equation [64]. This
justifies the application of the projector operator Pij to the quadrupole moment in (1.35).

1.1.4 Effects of GWs on test masses

In this section we will derive how “test particles” respond to the passage of a GW, with par-
ticular attention to what concerns the working principle of interferometric detectors. Let’s
start with a single particle, whose geodesic (free fall) trajectory is described in GR by

d2xµ

dτ2 + Γµ
νρ

dxν

dτ

dxρ

dτ
= 0 (1.37)

for any space-time metric gµν and coordinate system {xµ}. Here τ is the particle’s proper
time, as measured by a clock attached to it all along the whole geodesic. From the latter, we
can obtain a differential equation for the spatial coordinates xi, differentiated with respect to
the coordinate time x0 = ct instead of τ [64]:

1
c2

d2xµ

dt2 = −
(

Γi
00 + 2Γi

0j
vj

c + Γi
jk

vj

c
vk

c

)
+

vi

c

(
Γ0

00 + 2Γ0
0j

vj

c + Γ0
jk

vj

c
vk

c

)
(1.38)

where vi := dxi/dt is the i-th component of the coordinate velocity. If we now specialise to
the linearised theory, described in TT-gauge, and to non-relativistic motions, vi � c, whose
a special case is that of a particle at rest in that specific frame, vi = 0, we can neglect all the
velocity dependent terms in the previous equation, and be left with:

d2xi

dt2 =− Γi
00 +O(v/c)

(1.4)
=

1
2

(
2 1

c ∂thi0 − ∂ih00

)
+O(v/c, h2)

(1.24)
= 0. (1.39)

This result implies that, in TT-gauge, coordinates of freely falling, non-relativist particles are
left unchanged by the passage of a GW, at the considered order. This is a property already
implicit in the equivalence principle.

Let us consider instead two neighbouring, test particles at rest (vi = 0 for both). Their
coordinates will be left unchanged as well, so lets put one at the origin of the coordinate
system and the other at a coordinate distance Lx along the x-axis. We want to study the
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Plus mode

�

Cross mode

�

Breathing mode

�

x mode y mode Longitudinal mode
Figure 1.1: Polarisation modes of GWs in Einstein’s GR, represented by the variation of

the proper distance from the centre they induce on a circular array of test masses set
at rest with respect to the gauge, and perpendicular to the waves direction of prop-
agation (� symbol). The effect in time is represented by different shades of grey,
which justifies the names given to a purely plus-polarized (left) and a purely cross-
polarized GW (right). The lightest contour represents an argument of the right-
hand side of equations (1.42) and (1.43) equals to 2nπ, the intermediate, circular
contour to arguments π/2 + nπ, and the darker one to π + 2nπ, with n any integer.

propagation of a light beam between the two masses and derive the effects of the wave on
it; for concreteness we will focus now on a +-polarised wave travelling to the z-direction:
hTT
+ (t, z = 0). The null space-time interval of the light in the TT-frame will be (ref. to (1.27)):

0 = ds2 = −c2dt2 +
(
1 + h+(t)

)
dx2

from which we can extract an equation for dx:

dx = ±
(

1− 1
2

h+(t)
)

cdt +O(h2).

Plus and minus signs are referred to a light ray travelling in the positive and negative x
direction respectively. The latter equation can be integrated between the fixed coordinates of
the two test masses, and the times t0 and t1 at which the light passes the two:

Lx =
∫ Lx

0
dx =

∫ t1

t0

(
1− 1

2
h+(t′)

)
cdt′ +O(h2)

=c(t1 − t0)−
c
2

∫ t1

t0

h+(t′)dt′ +O(h2). (1.40)

In the last line, the second term makes evident the effect of the incoming GW. For sim-
plicity, if we assume the amplitude of the wave not to change significantly in a time t1 − t0

(long wavelength approximation), the previous equation reduces to:

Lx ≈ c(t1 − t0)
(

1− 1
2 h+(t)

)
.

The term c(t1− t0) := L corresponds to the proper distance travelled by the light beam, which
is different from the (constant) “coordinate distance” Lx. We can rewrite indeed:

c(t1 − t0)− Lx

c(t1 − t0)
:=

∆Lx

L
≈ 1

2
h+(t) (1.41)
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which tells us that the relative separation, ∆Lx/L, between the two test particles oscillates as
the GW strain h+(t). For a monochromatic wave, as in (1.26):

∆Lx

L
≈ 1

2
h+ · cos (2π f t) . (1.42)

If the second mass was positioned on the y-axis, at coordinate Ly, a similar computation
would have led, according to (1.27), to:

∆Ly

L
≈ −1

2
h+(t)

monoc.
= −1

2
h+ · cos (2π f t) (1.43)

which differ from (1.42) by a global “−” sign. It is clear then how GWs act tidally on test
masses, contracting the proper distance along one axis and stretching along the other. This
interpretation will result useful in the next section, when we will discuss the working princi-
ple of interferometric GW detectors and the orders of magnitudes of the effect on them from
various possible sources.

Repeating the previous computation for a circular array of test masses in the (x, y) plane,
and for the other×-polarisation, it can be shown that the resulting pattern of the effects of an
incoming (“�” symbol, representing the z-axis) GW is that represented in figure 1.1, where
different shades of grey correspond to different values of time. This motivates the origin of
the names “plus and cross” given to the two polarisation modes in TT-gauge.

Although it was derived specifically in TT-gauge, the previous result is gauge indepen-
dent (to the linear order in h),10 and in section 1.3 we will describe a detector configuration
able to measure a gauge-independent observable related to the proper distance variation
induced by GWs. Usually, many authors prove the previous statement directly computing
the effect of GWs also in the so called “detector frame”, which is the natural one used in the
laboratory [3, 5, 49, 64], while others derive it in a gauge-independent way, specialising only
later to a specific coordinate frame [67–69].

1.2 Sources of gravitational waves

From equation (1.36) it is clear that GWs are emitted every time there is an accelerating (sec-
ond time derivative), non-axisymmetric ( Ï 6= 0), energy/mass density, and that this emission
is weighted by the tiny factor G/c4. Let’s start with an order of magnitude estimate on the
characteristic strain amplitude we may expect from a typical source, having in mind a coa-
lescing binary but making some considerations easily generalisable to other systems. First
of all, the (non constant part of the) quadrupole moment (1.33) of a system is approximately
equal to the mass M of the part of the system that “moves”, times the square of the charac-
teristic size R of it. Then, calling v the mean velocity of the moving part, and T the time scale
for a mass to move from one side of the system to the other:

d2 I
dt2 ≈

M R2

T2 ≈ M v2

10This is a consequence of the invariance of the Riemann tensor in the linearised theory.
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and the quadruple formula can be approximated as:

h ≈ 2GM
c2r

(v
c

)2
. (1.44)

The term 2GM/c2 is the Schwartzschild radius of the mass M, which for a celestial body of the
size of the Sun corresponds to ∼ 3 km. A reasonable value for the distance r of the source
from us is of the order of some Mega-parsecs (Mpc)∼ 3× 1019 km. Then, for a binary system,
characterised by a mass corresponding to that of the Sun, distant 1 Mpc and moving at 10%
the speed of light in the last stages of their coalescence,11 the characteristic GW amplitude is
about h ∼ 10−21. Looking at (1.41), the corresponding effect ∆L on a detector is of only 10−21

times its characteristic length L. For example, for a kilometre-scale, interferometric detector
this would correspond to 10−18 m, that is one thousandth the size of the atomic nucleus.
In the section 1.3 we will briefly describe how we can achieve such sensitivities with laser
interferometric detectors.

As regards the possible sources, the previous estimate implies that GWs require very
large masses and relativistic motions. Clearly the best candidates must be compact and
dense, and therefore the archetypal ones are the coalescences of pairs of compact stars (e.g. neu-
tron stars or black holes) in a tight binary system.

Similarly to the previous estimate on the strain amplitude, we can use Kepler’s third law
to make some previsions about the expected characteristic frequency of the waves emitted
by various systems. With the same notation as above, we have:

f ∼ 1
T
∼
√

GM
R3 ∼ 1/

√
ρ (1.45)

with ρ a characteristic mean-density of the system. Let’s consider for example a coalescing
binary system composed of two neutron stars in a narrow orbit around each other. Their
typical masses are 1.4 M�, while we can assume a value of ∼ 100 km for the radius of
their orbit. This results in a characteristic frequency for the emitted GWs of ∼ 100 Hz.12 At
merger, the resulting object will have a total mass of ∼ 2.8 M� and an estimated radius of
∼ 10 km [70]. If we assume that a fraction of ∼ 0.1% of its mass contribute to its dynamics,
we obtain a frequency at merger of ∼ 1 kHz. Analogously, a black-hole with a mass of ∼
100 M�, and a Schwarzschild radius of∼ 300 km, will have an oscillation frequency f ∼ 100
Hz. These are the main targets of ground-based, interferometric detectors, and, at December
2018, ten BBH and one BNS systems have been detected during the first two observing runs
of the Advanced detectors. Further details on this will be presented in section 1.4.13

11This may seem an unreasonably high value for the speed of a macroscopic system like a star, but it is indeed
the actual one estimated for the coalescence of a BBH system. Refer to figure 1.10 and reference [8].

12Although the proposed numbers seem a little bit the result of a “cherry picking”, these are indeed consistent
with what actually measured for the BNS coalescence GW170817 [14].

13In the Introduction to this work, and also to this chapter, we have repeatedly compared GWs with electromag-
netic ones. From the previous estimates we can notice an important difference between the two. Electromagnetic
waves are usually generated at microscopic level by moving charges; therefore they have wavelengths smaller than
the size of the emitting system, and so can be used to form an image of it. By contrast GWs are generated by the
bulk dynamics of the source and corresponding wavelength, as described in the previous order of magnitude esti-
mates, is typically comparable to or larger than the size of the radiating source. As a consequence, GWs cannot be
used to resolve the image of the system, and only indirectly its structure [64].
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Figure 1.2: Strain amplitude and frequency ranges expected for various astronomical
sources of GWs (colored boxes), and sensitivities of current and proposed detec-
tors (black lines). The figure was generated using gwplotter. Ref. to [73] for the
description and for the assumptions used in creating it.

Repeating the previous estimate for other kinds of sources, like massive (104 ÷ 107 M�)
and super-massive (& 107 M�) black-hole binary systems, allows to define a whole spectrum
of possible sources and their characteristic strains. The results of more accurate calculations
are reported in figure 1.2, together with the sensitivities of some of the current and proposed
GW detectors.

Referring to that figure, a first way of classifying the possible sources is by the frequency
band in which they produce GWs, or, equivalently, by the sensitivity range of the detectors
able to detect them. Then, from right to left, in decreasing frequencies, we can distinguish
an high frequency region, between 1 Hz and 10 kHz, which is the typical one of ground-
based GW detectors and the emissions of stellar-mass objects. The low frequency band,
with frequencies between 1 mHz and 1 Hz, is the characteristic one of space missions, like
LISA [71], and GWs emitted by more massive stars. Pulsar timing experiments [72] are
sensitive to gravitational waves in the very low frequency band, between 1 nHz and 1 mHz,
the characteristic frequencies of emission of super-massive black-hole binaries.

An exception to this classification scheme, and also to the way the previous orders of
magnitude estimates are thought, is the cosmological stochastic background of GWs, not shown
in figure 1.2. There are strong theoretical reason to believe that a background of this kind,
similar to the cosmological microwave background radiation (CMB), has been produced in the
early Universe, and several possible mechanisms have been proposed [74–76].14 In general,

14For the Astrophysical sources of stochastic GW background, given by the incoherent superposition of a large
number of the aforementioned astrophysical sources, refer to [77, 78].

http://gwplotter.com/
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all of them describe a GW spectrum spanning several orders of magnitude of frequencies.
Further details about it will be discussed in section 1.2.4.

In the rest of this section, we will provide some further details about the most important
sources of GWs for ground-based interferometric detectors, with particular attention to those
already detected. A comprehensive and up to dated review on the subject can be found in
the second volume of the monograph by Maggiore [50]. The physics of compact sources of
GWs is comprehensively studied in [79]. A review of the science that can be learned from
them is presented in the Living Review article [80].

Besides the previous classification, from a Data Analysis point of view, LIGO and Virgo
scientists have defined four categories of signals, based on the method used to study them.
These categories are: Continuous Gravitational Waves, Compact Binary Coalescences (CBCs),
Stochastic Gravitational Waves, and Burst Gravitational Waves. Each one generates a unique
“fingerprint” or characteristic signature in Advanced detectors data. We will proceed to re-
view them.

1.2.1 Compact binary coalescence

From the previous estimates we have seen that any binary system loses energy in the form of
gravitational radiation. However, among all of them, the most important sources of GWs are
binaries made of compact objects, which are the most likely ones that can reach separations
small enough and relative velocities large enough to produce detectable waves. These are
typically systems formed by neutron stars (BNS), black holes (BBH), or mixed systems of
neutron stars and black holes (NS-BH). These three classes are represented, as functions of
the various masses of the objects involved, in figure 1.3. There is also a fourth class of objects,
belonging to the so called “mass gap”, with masses above those of the observed neutron stars
and below that of black holes, for which we don’t have evidence yet.

As a consequence of their emissions, the distance between the components decreases,
producing an inspiral motion. The resulting GW signal will be a sinusoid whose amplitude
and frequency increase with time, as the system gets tighter, and it is called a chirp. This
phase can be studied, in first approximation, by means of adiabatic corrections to the New-
tonian dynamics. An analytic approach to include further relativistic effects is, for example,
that provided by the post-Newtonian (PN) approximation, in which corrections to the New-
tonian emission are provided in increasing powers of the velocities of the objects, relative to
that of light: v/c. This approach has been reviewed for example in [81, 82].

Next, when the separation of the two components becomes comparable with their size,
the two objects “collide”, producing a merger phase characterised by a strong emission of
GWs. The evolution of the orbit is no longer adiabatic, and this phase is typically studied by
means of numerical simulations [83].

Finally, there is the ringdown phase, where the resulting object, typically a Kerr black
hole, relaxes toward a stable state, emitting waves in the form of damped sinusoids. Their
frequencies are those typical of the quasi-normal modes of the final black hole [84].15 These

15It should also be mention the Effective One Body (EOB) formalism, which consists of mapping, through the use of
gauge-independent functions, the real two-body problem (two spinning masses orbiting around each other) onto
an “effective one-body” problem: one spinless mass moving in some “effective” background metric, which is a
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three phases of a CBC evolution are represented in the top panel of figure 1.10 for the first
confirmed event of such type, GW150914 [8].

In the adiabatic Newtonian approximation for the circular orbit inspiral, the characteris-
tic amplitude of the two GW polarizations is [5, §2]:

h(t) ' 2.6× 10−23
(M

M�

)5/3 ( f (t)
100 Hz

)2/3 ( r
100 Mpc

)−1
, (1.46)

with the chirp mass of the systemM := µ3/5M2/5, which is the fundamental quantity that
describes the GW emission at this level of approximation, and which is related to the total
mass M := m1 + m2 and the reduced mass µ := m1m2/M. The frequency of the waves f is
twice that of the orbit, and r is the distance of the binary form us. The two polarisations can
be expressed as:

h+(t, x) =− h(t− r/c)
1 + cos2 ı

2
cos

(
2π
∫ t−r/c

t0

f (t′)dt′ + 2φ0

)
, (1.47a)

h×(t, x) =− h(t− r/c) cos ı sin
(

2π
∫ t−r/c

t0

f (t′)dt′ + 2φ0

)
, (1.47b)

with ı the angle between the orbital angular momentum vector of the binary and the line of
sight, and φ0 the phase at the initial time t0 when the observation starts.

The increase with time of the GW frequency is described by the characteristic time τ :=
f / ḟ , equals to:

τ ' 8.0 sec×
(M

M�

)−5/3 ( f
100 Hz

)−8/3
. (1.48)

Because ground-based detectors have a sensitivity window (further details in the next
chapter) that starts from few tens of Hertz, signals from CBCs are observable as transients
of excess power, whose typical time scales can be estimated from the previous equation. As-
suming to start observing a coalescence at a frequency of 30 Hz, the characteristic time for
a BBH (M ∼ 10 ÷ 30) is τ ∼ 0.1 ÷ 1 sec, while for a BNS (M ≈ 1) τ ≈ 1 minute. For
the former, the most of the detectable GWs come from the merger phase as well as from the
vibrational ringdown of the final BH. Instead, for the BNS coalescences the most of the GW
emission happen during the inspiral phase.

GWs from BNS and NS-BH coalescences can provide information on the neutron stars
equation of state [70, 86]. These phenomena are also candidates for triggering short Gamma-
Ray Bursts (GRBs) [87]. The joint GW and GRB observation achieved on the 17th of August
2017 [14] (GW170817 and GRB170817a), accompanied by electromagnetic radiation emis-
sion in several other frequency bands, down to the low-frequency radio, has provided an
unprecedented opportunity to study the mechanism of production of short GRBs, as well as
a number of fundamental Physics concepts, like the possible evidence of higher dimensions
of space-time, the propagation speed of GWs compared to that of light, and the polarisation
modes predicted by GR [88, 89]. Also BHs are usually surrounded by matter (the accretion
disk), which is expected to produce an electromagnetic counterpart at the time of the merger.

deformation of the Kerr one. This provides an accurate quasi-analytical description of the motion and radiation of
a coalescing black-hole binary at all stages of its evolution [85].
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Figure 1.3: Map of the four class of CBCs as functions of the masses m1 and m2 of the
components involved, that is neutron stars, black holes, or objects belonging to the
so called mass gap. Figure adapted from [26], licensed CC BY 3.0.

However, its amount, together with the typical distance at which BBH events are observed,
make the detection of such a signal unlikely, and no evidence for that have been confirmed
to-date [90].

Moreover, GWs from CBCs offer potential “standard sirenes”, independent of the “stan-
dard candles” represented by type IA supernovae [91], with which to measure cosmological
distances. Indeed, the waveforms (1.47) can be used to determine the (luminosity) distance
from the source [92]. If independent information are available on the possible location of the
source, for example identifying its host galaxy from a joint GRB, the information on its red-
shift allows a determination of the Hubble constant H0 [93]. This was the case for GW170817,
which was used to make the first measurement of this kind [94].

The number of detectable CBCs depends on the number of coalescences per unit time in a
certain volume of Universe. This is conveniently expressed by means ofR, the rate of event
in a Milky-Way Equivalent Galaxy (MWEG) [95, §2]. This number can be predicted in two
ways: empirically, based on the observations of compact binary systems that are thought to
coalesce within a timescale comparable to the age of the Universe; and theoretically, based on
models of binary star formation and evolution [95, §2]. Large uncertainties, however, arise
on this number. For a comprehensive review refer to [96], while an up-to date estimate for
BBHs, based on the detection accomplished by Advanced LIGO and Advanced Virgo, can
be found in [97]. MultiplyingR by the estimated density of MWEGs, ρMWEG ' 0.01 Mpc−1,
we can obtain a rate density of CBC events. This is shown in figure 1.4 for the different kids
of CBCs, together with the upper limits on its values based on the data collectd by Virgo and
LIGO during the S5 and S6 science runs.

Of course, the actual number of detected CBCs depends on the sensitivity of the detectors
(and other factors that will be commented in section 1.3.4). We will describe this quantity
and how to combine it with the rate density of CBCs in section 1.3.3.

https://creativecommons.org/licenses/by/2.0/
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Figure 1.4: CBC rate density estimates. The light grey regions represent the constraints
obtained from the LIGO-Virgo S5/VSR1 data analysis, while the dark grey ones are
those obtained with S6/VSR2-3 data, using the S5/VSR1 limits as priors. The lower
(blue hatched) regions are the predictions based on population studies, as described
in [98]. Figure adapted from [99].

1.2.2 Periodic sources

We call periodic those sources that radiate GWs at constant or nearly constant frequency, like
radio pulsars. These compact stars are characterised by a spinning motion of up to several
hundred revolutions per second. If they possess an asymmetry with respect to the rotational
axis, hence Ïij 6= 0, from (1.44) they are expected to emit GWs. Such an asymmetry can
arise for example if they have small “bumps” (∼ 1 cm high, according to current theoreti-
cal models [100, 101]) on their surface, which could result from the turbulent environment
characterizing a new born neutron star, frozen in the crust as it cools down in the first few
seconds after its birth, or from “star-quakes”, fractures in the crust originating from changes
in the surface stresses as the star’s spin rate slows. Global asymmetries can also result as
a consequence of the strong inner magnetic fields that, if not aligned with the rotational
axis, can produce pressures that distort the entire star. Refer to [102–104] for a review of the
possible mechanisms of GW emission from pulsars.

Besides the mechanisms that can produce such an asymmetry, the consequent GW emis-
sion is well understood and can be computed, at a sufficient level of accuracy, entirely using
Newtonian mechanics and Newtonian theory of gravitation, employing the so called weak-
field, slow-motion, and small-stress approximation of GR [5, §2.5].

We can start from (1.36), approximating Ï ≈ (4π f )2εI, where ε is the ellipticity of the star,
defined for example for a triaxial body rotating around the z-axis as:

ε :=
Ixx − Iyy

Izz
.
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This factor is approximately ε ≈ 10−6 for a one centimetre “bump” on th neutron star crust.16

The dimensionless amplitude of the corresponding wave can then be approximated as:

h ≈16π2G
c4

εI f 2

r

'10−26
(

I
1038 kg cm2

)(
10 kpc

r

)(
f

100 Hz

)2 ε

10−6 (1.49)

where, in the second line, the typical values of the momentum of inertia I of a neutron star,
the rotation frequency, and plausible values for its “ellipticity” ε, have been exposed [95,
§2.4]. From the previous equation, we can notice that these sources are expected to produce
comparatively weak GWs with respect to the “catastrophic” binary star mergers (h ∼ 10−26

vs. h ∼ 10−21). However, on their side they have the fact that this emission is continuous,
hence the name Continuous Wavess (CWs), and the detectors sensitivity can be significantly
enhanced integrating their signal over time. The details on the related data analysis tech-
niques are out of the scope of this dissertation, and we refer to the corresponding collabora-
tion articles [105–107] or to the monograph [108].

Moreover, the number of possible CW sources is very large: 108 ÷ 109 neutron stars in
the Milky Way alone, on the basis of the supernova rate (about 1 every 50 years), the Milky
Way age (about 13 billion years) and the assumption that most supernovae evolve in NS and
not BH; further details in the next section. This, together with the simplicity in modelling
their emission, makes periodic sources one of the preferred target of GW detectors.

From (1.49), the wave polarisations can be written as:

h+(t, x) =− h
1 + cos2 ı

2
cos 2φ(t− r/c), (1.50)

h×(t, x) =− h cos ı sin 2φ(t− r/c) (1.51)

with φ(t) = φ0 + 2π
(

f (t− t0) +
1
2! ḟ (t− t0)

2 + . . .
)

the star’s rotational phase.
This signal is essentially monochromatic, up to correction of the order of the observation

time over the spin-down time ( ḟ ∼ 10−8 Hz s−1). The rotational energy losses through
the emission of GWs and electromagnetic radiation, causes a gradual decrease of the signal
frequency. The actual signal frequency received at the detector is also modulated by the
Doppler effect caused by the detector’s motion as the Earth rotates on its axis and revolves
around the Sun.

Currently, an approximate number of 2500 neutron stars have been observed from their
emission of electromagnetic radiation, and are monitored as candidate GW sources. No
evidence of CW signals have been found so far. The most recent results on targeted searches
by Advanced detectors have been published in [105, 106].

Without knowledge of the spin frequency, the spin-down rate and sky position, an enor-
mous number of signal waveforms is possible, making searches extremely complex and
computationally demanding. The updated results on an all-sky searches for insulated pulsar
by the Advanced detector can be found in [107].

16For the well studied Crab pulsar, the upper limit on its ellipticity is εmax(Crab) ' 1.2× 10−4.
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Recently, growing attention have been given to another “exotic” possible source of peri-
odic waves. This is a “cloud” of ultralight bosons, such as QCD axions [109], surrounding a
fast-spinning black hole. When the Compton wavelength of these bosons is comparable to
the size of the black hole (so m . 10−10 eV/c2), these can bind to the black hole, forming a
“gravitational atom”. Through the superradiance process, the number of axions occupying the
bound levels grows exponentially, extracting energy and angular momentum from the black
hole. This enables long-lasting, coherent and monochromatic GW emission from boson an-
nihilation or from level transitions. Some constraints have been put on their masses and the
GW emission mechanism. These can be found for example in [110, 111] or in [112] making
use of Advanced detectors data.

1.2.3 CCSNe and burst signals

Compact objects, like neutron stars and black holes (of stellar masses), are formed in the
gravitational collapse of a massive (& 8 M�) star, which leads to a type II supernova explo-
sion, called a core-collapse supernova (CCSN) [113]. In this process, large amounts of mass
(1÷ 100 M�) flow in a compact region (hundreds to thousands of kilometres) at relativis-
tic speeds (v/c & 0.1). If this is not spherically symmetric, from (1.44), we expect to find
an associated emission of GWs [114]. As in the case of CWs, also in this case the degree
of asymmetry is the key aspect for determining the strength, and hence the detectability, of
the associated GW emission. Contrarily to neutron stars, however, this asymmetry is not
well modelled and predictable yet for supernovae. In general, we expect the relevant part
of GW emission to be very fast, of the order of some tens of milliseconds, and the radiated
energy . 10−8 M�c2 [115].17 This fact, together with the limited knowledge of the wave-
form emitted, partially reduce the prospects of detection mostly to our galaxy and the local
group.

In the Milky Way, CCSN events are estimated by the Integral experiment to happen at
a rate of one every 50 years, 25÷ 30 in the local group, as deduced from the gamma rays
produced by the radioactive decay of the rare isotope 26Al [116]; the last one of such events
was the famous SN 1987a in the Large Magellanic Cloud (51.4 kpc). Recently, the LIGO
and Virgo Collaborations have published the constraints on the GW energy emitted during
core-collapse for an optically targeted survey at distances up to 20 Mpc [117]. The results are
4.27× 10−4 M�c2 and 1.28× 10−1 M�c2 for emissions at 235 Hz and 1304 Hz respectively.

Because of our incomplete knowledge of the process of collapse and the emission mech-
anisms, GWs from these sources are typically described as unmodelled “bursts” of energy.
Numerical models of stellar collapse are extremely challenging because of the complexity,
and diversity, of the physical processes involved (electromagnetic, high-energy cosmic rays,
neutrinos, etc.), that are important for such systems. This gives rise to a large variety of
possible waveforms, depending on the particular scenario [118, 119]. For the same reason,
research in this field is very active because the observation of the GWs from CCSN can po-
tentially give a rare observation of the dynamics that are occurring in the core of the star,
which is entirely obscured from electromagnetic observations.

17For comparison, the radiated energy in BBH events is O(1 M�c2).
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Making an order of magnitude estimate, partially based on the ideas discussed at the
beginning of section 1.2, one can obtain the dimensionless amplitude h of the emitted pulse
of GWs:

h ' 1.4× 10−24
(

∆Egw

10−8M�c2

)1/2 ( τ

1 ms

)−1/2
(

∆ fgw

1 kHz

)−1 ( r
15 Mpc

)−1
(1.52)

where ∆Egw is the total gravitational energy carried away during the explosion, τ is the
characteristic duration of the pulse and ∆ fgw ∼ 200÷ 800 Hz is its frequency bandwidth.
The reference distance in the last term is that of the Virgo cluster of galaxies, while for a
galactic supernova r ∼ 10 kpc. Further details on this can be found in [5, §2.6].

Many other mechanisms have been proposed for the rapid emission of GWs. As for the
case of CCSNe, these are generally described as unmodelled bursts of radiated gravitational
energy. An example of a possible source is the radiation from cosmic strings [120]. These
are one-dimensional topological defects that may have been formed in the early Universe
during phase transitions due to symmetry breaking. Informally, they have been compared
to the “cracks” (topological defects) that form when water freezes [121]. When two strings
intersect each other at two points, or when a string crosses itself, they reconnect and an
isolated cosmic loop is formed. These loops oscillate and radiate energy, mainly through GW
emission. The strongest bursts of radiation are produced by cusps and kinks on the string,
while also their fundamental vibration modes, for all the loops present in the Universe, are
expected to superimpose into a stochastic background signal, as described in the next section.
Their theory, as well as the various form their signals can take, has been reviewed in [122],
while the constraints on their models parameters from the Advanced detector observations
have been published in [121].

Burst searches are either all-sky or targeted. All-sky searches use multiple time shifts
to target different points in the sky, and for this reason they are typically very resource de-
manding. Targeted searches use prior information from electromagnetic observations to aim
at a specific sky direction, and they are usually more sensitive than the former.

1.2.4 Stochastic background

Whether weak or too distant to produce, individually, a signal strong enough to be detected,
there are in the Universe a huge number of potential GW sources. However, the incoher-
ent superposition of all of them can produce a “background” that could actually reach a
detectable level. Differently from the signals described in the previous sections, such a back-
ground is not originating from a single resolvable source in the sky, but conversely it comes
from everywhere. Having in mind the aforementioned astrophysical sources (CBCs, pulsars
and supernovae), the uncertainties in the GW emission mechanisms and the parameters
characterising each of them add up in this background, and the resulting signal is some-
thing that can’t be modelled as a deterministic one. A stochastic model is preferred, where
the signal can be characterised only statistically, in terms of expectation values of the Fourier
components of a plane-wave expansion of hµν (1.20), and for this reasons we refer to this as
an astrophysical Stochastic Gravitational-wave Background (SGWB) [123].
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After the discovery by the Advanced detectors of a population of merging black holes,
we expect that, at some level, a stochastic background does exist, produced by all binary
black holeBBH mergers over the history of the Universe [124]. This is hypothesised to be-
come the principle observable in the not too distant future. Similarly, it is expected a back-
ground produced by BNS coalescences [125]. Other possible sources of an astrophysical
background, of interest for ground-based detectors, are extragalactic supernovae [114] and
non-axisymmetric highly spinning neutron stars, such as pulsars and magnetars, abundant
in our galaxy [126, 127].

In addition to that, a background of gravitational waves is formed by all of the unre-
solvable galactic and extragalactic binaries in close orbit [128, 129]. This is expected to be
relevant for future space-based detectors, like LISA; refer to figure 1.2.

Moreover, a cosmological SGWB could have been generated in the early Universe via a
variety of possible mechanisms: amplification of primordial fluctuations in the Universe’s
geometry via inflation [130, 131], phase transitions as previously unified interactions sepa-
rate [132, 133], a network of vibrating cosmic strings [134, 135], or the condensation of a brane
from a higher dimensional space [64, 75]. Again, due to the large uncertainties in the pro-
posed mechanisms and in the environment at the time of production, a stochastic model for
the signal is preferred. Being the only known way to investigate the earliest moments after
the Big Bang, the cosmological background is often referred to as the “Holy Grail” of GW
astronomy [136].

The statistical characterisation of the SGWB resembles that of the detector noise, which is
the main topic of the next chapter. This constitute a complication, also due to the smallness
of the expected amplitude of this background, that makes practically impossible to detect it
using only one detector. We will come back to the detection technique for this background
in section 2.1.4.

The magnitude of the SGWB is usually reported in terms of cosmological units of energy
density per logarithmic frequency interval, Ωgw( f ), corresponding to its energy density ρgw

normalised to the critical density for a closed Universe:

Ωgw( f ) :=
1
ρc

dρgw

d log f
, ρc =

3c2H2
0

8πG
' 1.90× 10−26h2

100 kg m−3

with h100 = 0.70(2) the dimensionless Hubble parameter: H0 = h100 × 100 km s−1 Mpc−1.
Due to the relatively large uncertainty on h100, it is often preferable to quote the value of
h2

100 Ωgw( f ) in order to separate the knowledge on h100 from that on the SGWB itself. Fol-
lowing [5], its characteristic dimensionless amplitude can be expressed as:

hc( f ) = 2.8× 10−23

(
h2

100 Ωgw( f )
5× 10−6

)1/2 (
f

100 Hz

)−1
. (1.53)

The value at the denominator in the first parenthesis is the constraint on h2
100 Ωgw( f ) from

the observed abundances of light elements according to Big Bang Nucleosynthesis. This con-
stitutes an upper limit on the expansion rate of the Universe at the time of Nucleosynthesis,
which constraints the total energy density at that time, including the one of a cosmolog-
ical SGWB [74, 137]. Currently, this is the most important broadband constraint, although
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tighter ones are available for narrower frequency bands, as for example at extremely low fre-
quencies from the observed anisotropies of the cosmic microwave background, and at high
frequencies from ground-based interferometric detectors. The updated value of the latter
upper limit on an isotropic SGWB have been published in [138], and it corresponds to

Ωgw < 6.0× 10−8

at 95% credible level for a frequency-independent (flat) background and

Ωgw( f = 25 Hz) < 4.8× 10−8

for a background of CBCs. Directional limits for an anisotropic background are described
in [139].

Last but most important, there are all those sources of GWs that have not been pondered yet, and
which will (hopefully) surprise the researchers, yielding to new discoveries in the future.

1.3 Gravitational wave detectors

In section 1.1.4 the effects of GWs on test masses (at rest with respect to the TT-gauge) have
been described as variations of their proper distance. For their ability to measure distance
differences very accurately, laser interferometers have been soon realised to be the perfect
instrument for detecting GWs. One of the pioneers of such an idea was the Nobel laure-
ate Rai Weiss [140], while the key theoretical aspects of using interferometry for this scope
were firstly studied by Gertsenshtein and Pustovoit [141, 142]. The (main) optical layout of
a modern laser interferometric detector of GWs, like Advanced LIGO and Advanced Virgo,
is shown in figure 1.5. This consists basically in a kilometre-scale, Michelson interferometer
configuration, where the light coming from a laser source (left) is split in two beams by a
semi-reflective mirror (beam splitter, at the centre of the figure) before travelling in the two
(orthogonal) arms of the detector, and being reflected back by the end-mirrors, which are
highly reflective test masses positioned at the end of each arm.18 The interference of the
recombined light at the asymmetric port of the beam splitter (on the bottom of the picture) is
used to measure variations in the relative distance of the end-mirrors and the beam splitter.
In the next two sections we will describe the detection principle of laser interferometric de-
tectors, as well as the modifications required to achieve the high sensitivities necessary to
detect GWs.

A slight modification of the previous idea is that hypothesised for space-based detectors,
like the LISA mission [71]. This will consist of three satellites forming an equilateral triangle,
of about 2.5 million kilometre size, with one spacecraft at each vertex. The centre of it will
be placed at the Lagrangian point L1 of the Sun-Earth system, trailing the Earth by about
20 degrees. Each spacecraft will have its own laser, whose phase is “locked” to match that
of the others by means of laser beams exchanged by the three. This will allow to keep track

18The Michelson interferometer configuration is currently considered the optimal one for detecting GWs. Other
possibilities, like the equilateral triangular shape proposed for the Einstein Telescope [143], have been studied for
example in [144, 145].
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of the relative distance between them; observing phase differences (at higher frequencies
than those expected from the motion of the spacecrafts) in the frequency of the laser beam
that returns to a spececraft with respect to that of the local laser, will be a witness of the
transit of a GW. Of course, differently from ground based detectors, no mirror reflections
are involved in this mechanism, which would have suffered of significant diffraction loss in
the propagation back and forth between different spacecrafts.

A similar strategy is exploited making use of pulsars instead of the “artificial” reference
provided by lasers. These rapidly rotating, magnetised neutron stars are in fact extremely
stable clocks. If we monitor simultaneously an array of them (from this the name Pulsar
Timing Array to this technique), the time of arrival of each pulse can be correlated, and,
accounting for their angular separation, the effects of an incoming GW observed as irregu-
larities in this value [72, 146]. Currently, there are three major collaborations active in this
project, which are PPTA, EPTA and NANOGRAV [147].

Historically, large efforts have also been put into the development of resonant mass de-
tectors, that is mechanical systems consisting of some tons of Aluminium alloy or Niobium,
which are put into resonance by the passage of a GW. Contrarily to the previous ones, these
are only sensitive to GWs with very specific frequencies, equal to their excitation ones, usu-
ally of the order of a kHz, and for this reason they are called “narrow band” detectors.
Examples of such detectors are ALLEGRO [148], AURIGA [149], NAUTILUS [150], EX-
PLORER [151] and NIOBE [152]. A thorough description of their working principle, sensi-
tivity and noise sources, is described in [49, §8], or in [142, §13] including an historic account
on Weber’s pioneering experiments [153].

1.3.1 Ground based interferometric detectors

In this section we describe the main ideas behind the working principle of ground-based,
interferometric detectors. The goal is to obtain, as a consequence of the effects of GWs on
test masses, as derived in section 1.1.4, the phase shift induced on the recombined light at the
antisymmetric port of the detector, in a simple Michelson configuration. This is the funda-
mental observable related to their working principle, and, as we will discuss momentarily,
it is a gauge independent quantity. The following treatment has been readapted from [142, §2]
and [49, §9].

Let’s consider an orthogonal arms, Michelson interferometer configuration, as in fig-
ure 1.5. We are working in TT-gauge, where the beam splitter is put at the origin of the
coordinate system, while the position of the end-mirror that terminates the x-arm defines
the point with coordinates (Lx, 0), while that of the other end-mirror defines the point with
coordinates (0, Ly), along the y-arm. We recall that in this gauge the coordinates of masses
at rest are left unchanged by the transit of a GW. Let’s start from equation (1.40); calling t2

the time at which the light, reflected by the end-mirror at time t1, returns back to the beam
splitter, we have, for the x-arm:

∫ 0

Lx
dx = −c

∫ t2

t1

dt′
(

1− 1
2 h+(t′)

)
+O(h2)
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where the minus sign holds for the wave travelling towards the origin of the coordinates.
Summing the implicit solution for t2 − t1 of the previous equation to (1.40), we obtain the
back and forth time spent by the light into the detector x-arm:

t2 − t0 =
2Lx

c
+

1
2

∫ t2

t0

dt′h+(t′) +O(h2)

=
2Lx

c
+

1
2

∫ t0+2Lx/c

t0

dt′h+ · cos(2π f t′) +O(h2)

=
2Lx

c
+

h+
4π f

(
sin
(
2π f (t0 + 2Lx/c)

)
− sin(2π f t0)

)
+O(h2)

=
2Lx

c
+

Lx

c
h+(t0 + Lx/c) sinc

(
2π f Lx/c

)
+O(h2) (1.54a)

In the second line, the “zeroth order” approximation t2 = t0 + 2Lx/c +O(h) has been used
in the integration limit since the integrand is already to the linear order in hµν. In the last,
line the cardinal sine sinc(x) := sin x/x has been introduced, after the application of the
prostaphaeresis formula for the difference of sines. Again, the effect of the GW, with respect
to the “unperturbed” propagation of the laser light, is visible in the second term in the last
line, proportional to the arm (coordinate) length Lx and the GW strain h+(t0 + Lx/c).

In the y-arm, a similar analysis leads to a difference in sign in the term proportional to
h+, due to the nature of the +-polarisation; ref. to (1.27):

t2 − t0 =
2Ly

c
− Ly

c
h+(t0 + Ly/c) sinc

(
2π f Ly/c

)
+O(h2). (1.54b)

Notice a slight abuse of notation in the last two equations: t2 and t0 are, in general, different
quantities, referred to each individual arm. However, if we consider the light recombined at
the beam splitter at a common time t(2), we can compute at what previous times, t(x)

0 and t(y)0

(different, in general), the light has left the beam splitter to travel into the two arms. Multi-
plying it by the laser angular frequency ωL = kL · c, with kL the laser light wave number, we
can express the effect of the GW as an additional phase to the “unperturbed” propagation;
for the x-arm:

∆φx(t) := kLLxh+(t− Lx/c) sinc
(
2π f Lx/c

)
+O(h2) (1.55a)

where we made the substitution: h+(t
(x)
0 + Lx/c) = h+(t− 2Lx/c+ Lx/c)+O(h2) = h+(t−

Lx/c) +O(h2). Analogously, for the y-arm:

∆φy(t) = −kLLyh+(t− Ly/c) sinc
(
2π f Ly/c

)
+O(h2). (1.55b)

In (1.54a) and (1.54b) notice also an “unperturbed” phase difference, for the possible case the
two interferometer arms are not of equal length. It is convenient to write the corresponding
contribution as:

2kL Lx = kL(Lx + Ly) + kL(Lx − Ly) := 2kL L + φ0

where L := (Lx + Ly)/2 is the average arm length, and the term φ0 vanishes if they are
equal. For the y-arm:

2kL Ly = 2kL L− φ0.
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In general, the two arm lengths should be as close as possible, modulo odd multiples of
half the laser wavelength, in order to cancel many common mode noises,19 except for a micro-
scopic difference (smaller than half a laser wavelength), whose utility shall become clear in a
moment.

The recombined light at the antisymmetric port of the beam spitter will be given by the
superposition of two electromagnetic waves, with phase differences given by the previous
terms. There is also an additional π difference, equivalent to a global “−” sign between
the two fields, given by the fact that the light travelling in different arms has been reflected
by opposite sides (of the same face) of the beam splitter; from this the name “asymmetric
port”. This is a consequence of the Stokes’ relations for transmission and reflection, and the
two kind of reflections are called hard (π phase difference, in the less dense medium) and
soft (no phase difference, in the more dense medium); ref. to [66, §7.3] for further details. Let
us assume to attribute this sign difference to the y-arm.

Then, besides common amplitude factors, the recombined wave will be given by the sum
of the two phase terms:

e2ikL L+iφ0+i∆φx(t) − e2ikL L−iφ0+i∆φy(t). (1.56)

To simplify the previous expression, two approximations can be exploited. Firstly, in the
long wavelength approximation, the two terms h+(t− Lx/c) and h+(t− Ly/c) in (1.55) are
almost equal, up to corrections of the order of the ratio between the arm length difference
(∼ 0.1 m) and the GW wavelength (100÷ 104 km): negligible. Secondly, also the cardinal
sines are approximately equal, and in particular equal to 1 up to corrections of the order of
1
6 ( f L/c)2, which for current kilometre-scale detectors is . 10−6, negligible if multiplied to
the already small GW amplitude. Under these approximations, the two (1.55) become one
the opposite of the other, ∆φx ≈ −∆φy := ∆φ(t), and (1.56) simplifies to:

e2ikL L
(

ei(φ0+∆φ(t)) − e−i(φ0+∆φ(t))
)
= e2ikL L2i sin

(
φ0 + ∆φ(t)

)
. (1.57)

The effect of the wave is evident in the sine term. Comparing the “unperturbed” φ0 term
with ∆φ(t), defined in (1.55), we see again that the effect of the GW is equivalent to a varia-
tion of the relative difference of arm lengths:

∆(Lx − Ly)

L
' h+(t− L/c). (1.58)

This variation can be measured as a time dependent power by the photodetector at the
output of the beam-splitter, on the bottom of figure 1.5. Taking the square amplitude of
equation (1.57):

P(t) =P0 sin2 (φ0 + ∆φ(t))

=
P0

2
(
1− cos

(
2φ0 + 2∆φ(t)

))
(1.59)

where P0 is the power of the light injected by the laser into the interferometer. Looking again
at the left-hand side of equation (1.57), this variation of power can also be understood as due

19What we want is to maximise the detector sensitivity to differential mode variations, typical of the transit of a
GW, whilst minimising those of common mode, involving the average arm length [95, §3].
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to the “beating” of the acoustic sidebands (10÷ 104 Hz) produced by the GW on the carrier laser
frequency. As we will see in the next section, this idea is at the base of the working principle
of the resonant cavity called signal recycling.

With (1.59) at hand, we can make some considerations about the optimal configuration, in
terms of arm lengths, a detector should have to maximise its sensitivity. As anticipated, the
two arms should be as similar as possible to cancel many common motion noises. However,
from the previous equation we see that if they were chosen to be exactly equal, φ0 = 0, as
it is the case for the classical Michelson interferometer working at dark fringe, the effect of
∆φ(t) ∝ h+(t) would be only quadratic to P(t). This would make impossible, in practice, to
detect GWs, both for the smallness of h and for the sources of noise in P0 and, inside ∆φ(t),
in kL [95, §3]. Let’s take than φ0 6= 0, and expand to linear order in ∆φ(t):

1− cos
(
2φ0 + 2∆φ(t)

)
= 1− cos(2φ0) + sin(2φ0)∆φ(t) +O(h2). (1.60)

From the previous equation, it is then evident that, choosing a microscopic arm length dif-
ference, φ0 = kL(Lx − Ly) 6= kπ, we can obtain a time dependent variation of the laser light
power at the detector output proportional to ∆φ(t) and then to h. This is a tunable parameter
in the interferometer readout, and it is typically chosen of the order of some tens of picome-
tres.20 With such a choice, the recombined light at the asymmetric port of the beam splitter
is said to be at grey fringe [155], and this method is at the base of the homodyne or DC detection
principle [156].

In this discussion we have shown how a simple Michelson interferometer can be consid-
ered as a prototype GW detector, acting as a transducer from (proper) length, or light travel
time, differences to output optical power, corresponding to a certain gauge invariant number
of detected photons. In the next section, we will briefly review the enhancements needed
by actual interferometric detectors to achieve the sensitivities required to detect GWs. Then,
in chapter 2 we will discuss how many non-gravitational effects may enter equation (1.59),
representing a noise source for the detection of GW.

1.3.2 Advanced interferometric detectors

In the previous section, we have described an idealised Michelson GW detector, whose mir-
rors act as test masses to the passage of a GW. Of course, these masses are not in free fall
and their movement is also affected by many other non-gravitational causes, which are in
general several orders of magnitude more intense than the expected gravitational strain. To
attenuate these effects, the mirrors of the actual interferometers are suspended by sets of
pendulums in cascade, which have the role to filter out ground motion at frequencies larger
than the proper ones of the pendulums. In Virgo, such devices are called superattenators,
and consists of 10 metres high towers of multi-stage, inverted pendulums. LIGO detectors
adopt similar solutions that mix active and passive insulation. With this expedient, detector
mirrors are made to behave, at a certain level of approximation, as free falling test masses in

20This microscopic arm difference should not be confused with the “macroscopic one”, much larger than the laser
wavelength, called Schnupp asymmetry and equals to 23 cm in Advanced Virgo, 83 cm in the previous Virgo design
and 27.8 cm in LIGO. This was at the base of the radio-frequency (RF) read-out scheme, and it is still used to “lock”
part of the interferometer, like the Fabry-Pérot cavities through the Pound-Draver-Hall technique [154].
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Figure 1.5: A simplified scheme of the main optical layout of the Advanced Virgo de-
tector, showing the power-recycling mirror (PRM), the beam-splitter (BS) that sep-
arates the light into the two beams that travel the West and North arms, formed by
Fabry-Pérot cavities with input and end mirrors labelled WI and WE, and NI and
NE respectively. Image credit Virgo public media gallery.

the horizontal (x, y) plane. Still, part of this displacement noise pass to the detector output,
and its effect will be studied in the next chapter in relation to the detector sensitivity.

Other enhancements are needed to the detection principle of the simple Michelson con-
figuration in order to achieve the required sensitivities for the expected GW strain of the
sources described in section 1.2. We can introduce them starting with an order of magni-
tude estimate of the sensitivity of the Michelson interferometer and adding step by step the
various modifications.

Equation (1.58) tells us that, in order to detect a GW, we should be able to measure rel-
ative length difference ∆(Lx − Ly)/L ∼ h. At the denominator, L ' 3 km for Virgo, and 4
km for the two LIGO detectors. At the nominator, the main scale of reference to which we
can measure length differences is the wavelength of the laser: λL := 2π/kL. For the main
Nd:YAG laser used in Advanced detectors, this equals to 1064 nm. Comparing the ratio of
the latter two quantities with the target h ∼ 10−21 of the most promising sources (ref. to
section 1.2) reveals nine orders of magnitude of difference. However, with a sensitive pho-
todetector, we can relate the smallest measurable distance not to the wavelength of the laser
but to the number of photons detected by the photodiode in a time T. In turn, the maximum
acquisition time for such photons should be of the same order of the period of the GW we
aim to measure:

NPhotons =
P0

hc/λL
T ∼ P0

hc
λL
fgw

. (1.61)

The uncertainty on the previous number is given by the Poisson statistic, ∆NPhotons ∼
N1/2

Photons, and then in order to detect a change of length beyond the fluctuation given by

http://public.virgo-gw.eu/index.php?gmedia=Rv7bB&t=g#PhotoSwipe1589389875106
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the chance (shot noise) we must have:

∆(Lx − Ly) &
N1/2

Photons
NPhotons

λL.

Putting all together:

h ∼ ∆(Lx − Ly)

L
&

N−1/2
PhotonsλL

L
∼ 10−17

for a 1 W laser power and fgw = 300 Hz.
The previous sensitivity can be improved in two ways. Firstly, we can reduce the shot

noise increasing the power of the laser. Unfortunately this doesn’t come without conse-
quences, since higher power implies an increment of the radiation pressure noise, besides the
technical limitations in having an high power laser with the required stability; further details
will be given in section 2.2.2. Secondly, one can think of increasing the arm length L. This
solution, however, would be quite costly, and at most would produce a benefit of one order
of magnitude for ground-based detectors of reasonable sizes. The neat solution to that was
to implement Fabry-Pérot resonant cavities in the detector arms, as shown in figure 1.5.

A Fabry-Pérot cavity is an optical resonator that, when “locked on resonance”, that is,
to a length equals to an integer number of laser wavelengths, forces the light therein to
be reflected back and forth, making many round trips, and increasing in such a way the
“effective” optical path travelled. This behaviour is characterised by a parameter called the
“finesse” of the cavity, approximately equal to:

F ≈ π · √rITM

1− rITM
(1.62)

where rITM is the reflectivity of the Input Test Mirror (ITM) of the cavity. This is a number
close to 1, and typical value of the finesse was 50÷ 100 for first generation detectors while it
is about 450 for the Advanced ones [95, 157]. The effect of the wave on the phase shift in a
Fabry-Pérot cavity can be computed to be [49, §9.3]:

∆φ(t) =
2F
π

kLLh+(t), (1.63)

which shows an increment, if compared to (1.57) (after the simplification discussed at the
end of the previous section), by a factor GFP := 2F/π ∼ 290, called the cavity optical gain.21

Modern interferometric GW detectors exploit this idea adding to each arm an input mirror,
with the aim of creating a Fabry-Pérot cavity in it; refer to figure 1.5. Then, repeating the
computation of the previous section, and the argumentation at the beginning of this one for

21For simplicity, in the previous equation the frequency dependency of the optical gain has been omitted. This is
due to the fact that, if the cavity length changes, the resonance condition gets lost and light power stored therein
leaks away. Therefore, there is a characteristic time needed to “refill” it, and a characteristic low-pass, cut-off fre-
quency, fc = c · (4FL)−1, above which the effect of the optical gain start to diminish [95, §3]. The characteristic
“low-pass” behaviour, GFP( f ) ∼

√
1 + ( f / fc)2, is clearly visible at high frequency (where the shot noise is domi-

nant) in the sensitivity curves of the Advanced detectors, fig. 1.6 and 1.7. In Advanced Virgo fc ' 50 Hz, wile in
LIGO fc ' 80 Hz.
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deriving the expected sensitivity to h, we have:

h &
N−1/2

PhotonsλL

GFPL
∼ 10−20.

The previous estimate is closer to the requirement ∼ 10−21, but not enough still. Then,
similarly to the considerations about increasing the laser power, one may wonder why not
to increase the finesse by one or two orders of magnitude. Unfortunately, besides the techni-
cal difficulties for a cavity some kilometres long, this would have the same consequences of
the radiation pressure on the mirrors. As an alternative, one can instead put an additional
mirror before the beam splitter. Indeed, if the two detector arms are (almost) equal, there is
almost no light at the asymmetric port of the detector, arriving to the detection photodiode,
as derived in the previous section; all the power is reflected back towards the laser source.
Adding a new resonant cavity before the beam splitter, called Power Recycling (PR) cavity,
has the twofold effect of avoiding high laser power going back towards the laser, while in-
creasing the one circulating in the “enhanced” Michelson interferometer. The corresponding
optical gain can be calculated as:

GPR =

(
tPR

1− rPR · rMICH

)2
(1.64)

where tPR and rPR are the transmission and reflectivity of the PR mirror, respectively, and
rMICH is the reflectivity of the rest, the Fabry-Pérot enhanced, Michelson interferometer. This
cavity increases the number of photons (1.61) by GPR, which for the Advanced detectors is√

GPR ∼ 10, hence:

h &
N−1/2

PhotonsλL

GFP
√

GPRL
∼ 10−21.

These enhancements are those implemented in Advanced interferometric detectors to
achieve the “reference” sensitivity of h ∼ 10−21. Additional improvements have been stud-
ied and partially implemented or scheduled for the next upgrades. One of these consists
into inserting another mirror after the asymmetric port of the beam splitter, creating in such
a way a resonance cavity for the light before reaching the detection photodiode, which is
called Signal Recycling (SR) cavity. This cavity is (usually) tuned to be on resonance with the
acoustic sidebands of the carrier laser light that are generated by the GW interaction with
the detector, as reported in equation (1.55). In this way, the gravitational “signal” encoded
in these sidebands is amplified with respect to the power of the “anti-resonant” carrier, as
previously described for a Fabry-Pérot cavity. This is called SR cavity, and its net effect is
a broadening of the response of the interferometer to GWs [158]. Currently (2019), it is in-
stalled in Advanced LIGO detectors, while it is foreseen to be added to Advanced Virgo
before the next observing run (O4). An account of its effect is visible in figure 1.6 comparing,
for example, the Advanced Virgo sensitivity achieved during O3a and that planned for O4,
with SR active.

Quantum squeezing of light is an advanced Optics technique meant to improve the detec-
tor sensitivity by reducing the effects of quantum noise. These effects include the photon
shot noise, already encountered as readout noise in (1.61), and the quantum radiation pressure
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Figure 1.6: Sensitivities of the Advanced LIGO and Advanced Virgo detectors, ex-
pressed as the Amplitude Spectral Density (ASD) of the detector output assuming
the absence of any GW signal. Estimates based on actual data are shown for science
runs until O3a, whilst the bands shown for O4 and O5 are projections based on the
scheduled improvements. Details about this quantity are described in section 1.3.3.
Figure adapted from [26], licensed CC BY 4.0.

due to the variable number of photons impinging on test masses and transferring momen-
tum to them; refer to figure 2.6. Together they constitute the so-called standard quantum limit
to the sensitivity, which we will come back to discuss in section 2.2. To understand the origin
of this noise, we recall, from the Heisenberg uncertainty principle, that there are unavoidable
uncertainties in the conjugate variables amplitude and phase of the electro-magnetic field
inside the detector. In a normal vacuum state, these fluctuations are uncorrelated. By using
a crystal with non-linear optical properties, it is possible to prepare a special state of light
where the fluctuations are mostly concentrated in one of the two variables, still without
violating the uncertainty condition on their product [159, 160]. This technique has been pio-
neered in the GEO 600 detector [161] and used in the Advanced detectors to reduce the shot
noise at frequency above 50÷ 80 Hz by means of a “squeezed” vacuum state with phase un-
certainty smaller than that of the normal vacuum [162, 163]. As a consequence, the radiation
pressure noise, related to the higher amplitude uncertainty, has been observed to increase at
low frequency. This constitutes, to some extent, a limit to the application of this technique
to bypass the standard quantum limit. Radiation pressure can be reduced making use of
larger masses for the interferometer mirrors, which however is quite a costly solution and
has consequences also on all the suspension mechanisms. A neat work around to this has
been studied and consists in the injection of a frequency-dependent squeezed light, with smaller
amplitude uncertainty at low frequencies, in order to limit radiation pressure, and smaller
phase noise at high frequency, to limit shot noise [164, 165]. This will constitute probably the
major upgrade to the Advanced interferometers for their upcoming observing runs.

The sensitivities of Advanced LIGO and Advanced Virgo achieved during the first two
observing runs (O1 and O2), and the first part of the third one (O3a), are reported in fig-
ure 1.6, together with the projections for the fourth and fifth runs. In particular, the im-
provements expected for the Virgo sensitivity due to the introduction of a signal recycling

https://creativecommons.org/licenses/by/2.0/
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Figure 1.7: Prospects on Kagra sensitivity, expressed by means of the projected detec-
tor output Amplitude Spectral Density (ASD) (2019 update). Figure taken from [26]
licensed CC BY 4.0.

cavity are clearly visible at high frequency of fig. 1.6b [26].
In December 2019, during the second half of the third observing run (O3b), the Japanese

detector KAGRA [166] is expected to join the Advanced detector network. The previsions
about its sensitivities are reported in figure 1.7. The optical design and general infrastructure
of KAGRA is similar to that of the other detectors, except for two significant improvements.
First of all, the whole detector will be underground, in the Kamioka mountain site. This will
reduce the micro-seismic noise on test masses, as the associated waves propagates mostly on
surface, and the Newtonian gravity gradient noise, being smaller the relative changes of the
mass density in the environment around the detector. The second improvement is that all
the test masses will be cryogenically cooled to 20 K. This will have the advantage of reducing
the thermal noise produced by their vibration. Further details about these and others noise
sources will be described in the next chapter. These additions will also provide a testing
ground for the development of the next generation of GW detectors, such as the European
Einstein Telescope [143] or the American Cosmic Explorer [167].

What we discussed here is just a simplified sketch of the working principle of actual
detectors. In reality, the whole infrastructure is a much more complex apparatus, made of
many interacting subsystems [LVC5]. This brief description is only meant to introduce the
fundamental concepts related to the quantity we shall describe in the next sections, or that
we will refer to in the rest of this manuscript.

1.3.3 Some sensitivity benchmarks: DARM, hrec(t), BNS range

In the previous sections we have repeatedly made use of the term sensitivity, referring to,
loosely speaking, “how good” a detector is able to measure the effects of GWs. In this section
we will elaborate on this concept. We will present the sensitivity evolution of the Advanced
detectors, and, in relation to that, their detections in section 1.4.

For the output of the simplified Michelson interferometer described in (1.59), a first way
to represent its sensitivity is as the variation of output power for a given input variation,

https://creativecommons.org/licenses/by/2.0/
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equals in this case to the phase shift ∆φ(t) produced by the wave, which in turn is propor-
tional to the strain h:

∂P
∂∆φ

= sin(2φ0) +O(h).

Neglecting the contribution of the wave, this quantity is maximum for φ0 = π/4 + kπ, which
corresponds to a grey fringe condition where the response to the incoming GW is approx-
imately linear. This “naive” working point however doesn’t take into account the possible
noise sources entering in (1.59) [49, §9.3], like the aforementioned common mode noise.
Noise will be the main subject of the next chapter, where we will describe its sources and
how they dominate the detector output. Most importantly, we will proceed there with its
statistical characterisation as a stochastic process. Hence, also the description of the detector
sensitivity should be properly done statistically. Details on this will be formally presented
in section 2.1.

Going back to the effects of GWs on the detector, we have described how they primar-
ily affect the differential arm length (DARM), ∆(Lx − Ly). This corresponds to a degree of
freedom that is constantly controlled by actuating differentially on the two end-masses in
order to keep the interferometer locked on resonance.22 Hence, from the record of the corre-
sponding control channel, named LSC_DARM, we can obtain a primary information about the
possible presence of a GW signal and the general performance of the detector to this aim.
This is indeed one of the main target for the studies that we will present, and in particular it
was considered as the fundamental one during the commissioning phase in in preparation
to the O3 science run.

The information about the strain produced by the passing GW can be reconstructed from
DARM by removing the contributions of the control signals and calibrating for the interfer-
ometer optical response transfer function. This is reconstructed from signal injections that
simulate the effects of the passage of a GW with known waveform [168, 169]. The resulting
time series corresponds to the reconstructed value of the strain, hrec(t), whose record is saved
into the readout channel called Hrec_hoft in Virgo and CALIB_STRAIN in LIGO. This is the
main input for GW searches and for the analysis described in section 1.4.

Again, due to the many noise sources that can enter into hrec(t), a priori this is not meant
to represent an actual signal of astrophysical origin. No claim about the presence of a GW
can be made before some statistical test is able to validate it. For this reason, what hrec(t)
actually represents is the so called strain equivalent noise, n(t), plus (hopefully) a true gravi-
tational signal, whose presence is the objective of our inference: hrec(t) = n(t) + h(t). Some
detection algorithms aimed at this will be described in section 1.4.

As we will discuss in the next chapter, the properties of the noise, n(t), are conveniently
described in the so called frequency domain, where specific noise sources have very character-
istic signatures. Then, the detector, frequency dependent, strain sensitivity is defined as the
amplitude spectral density of n(t) (square root of its one-sided power spectral density,

√
S1s.

n ( f );
refer to the conventions discussed in the Notation section), or equivalently of hrec(t) in the

22As well as DARM, other important degrees of freedom, one for each independent resonant cavity in fig-
ure 1.5 [95, §5], are constantly controlled by the longitudinal stability control (LSC) system in order to keep the various
detector cavities “locked” on resonance and the whole apparatus to work around its optimal configuration [12].
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null hypothesis of the absence of any GW signals (h̃rec( f ) = ñ( f )), and it represents the min-
imum value of h̃( f ) detectable by our instrument.23 Moreover, under the assumption of
stationary and Gaussian noise, this quantity provides a complete statistical characterisation
of the detector output, hence its sensitivity. We will justify this claim in section 2.1.2. The
evolution of the strain sensitivities of the Advanced detectors are reported in figures 1.6 and
1.7.

The strain sensitivity represents, frequency by frequency, a figure of merit for the capa-
bilities of the detector. Often, such a detail is not necessary, or it is just preferable to quote a
single number rather than a full spectrum of values. A common benchmark for the “overall”
detector sensitivity to GWs, which answers the recurrent question “how many coalescences
of compact objects belonging to a certain population can we detect?”, is represented by the
detector range. This is defined as the distance, averaged over polarisations and directions in
the sky, at which a single detector can observe with Signal-to-noise Ratio (SNR) equals 8 the
inspiral of compact objects with chirp massM [98, 170]:24

drange

1 Mpc
=

1
2.26
× 1.95× 10−20

(M
M�

)5/6
√∫ fISCO

f1

f−
7
3

S1s.
n ( f )

d f (1.65)

The factor 1/2.26 accounts for the average on polarisations and possible source directions.
The dependency on f−7/3 is characteristic of the inspiral phase in the adiabatic Newtonian
approximation [170, §III], while fISCO is the frequency of the innermost stable circular orbit,
where the inspiral ends and begins the merger, equals, to lowest order Post-Newtonian ap-
proximation, to [50, §4]:

fISCO ' 4.4 kHz
(

M�
M

)
.

As a reference, it is convenient to consider the coalescence of two neutron stars, whose
mass range is typically well clustered around 1.4 M�, instead of (stellar mass) black holes,
which are known to posses masses spanning several decades of solar masses. In this case,
we define, for m1 = m2 = 1.4 M�, the so called BNS range substituting in the previous equa-
tionM ' 1.22 M� and fISCO ' 1.57 kHz. This value, together with the density rate of BNS
coalescences discussed in section 1.2.1, provides an estimate of the number of events of this
kind detectable by Advanced detectors [95, §2]. For example, with the median estimated
density rate of figure 1.4 (dashed black line), 10−6 Mpc−3yr−1 [98], and the Advanced Virgo
target sensitivity of 60 Mpc for O3, we should be able to have an average of 0.9 BNS events
per year. With the LIGO Livingston sensitivity (130 Mpc) this number equals 9.2 yr−1. These
estimates can be significantly improved operating with a network of detectors, as we will
describe in the next section, which allows to increase the collective SNR of an event, and re-
duce the effects of non-stationary noise, as described in section 1.4 in relation to the analysis
pipelines.

In figure 1.8 the evolution of the BNS range, for the current and projected GW detectors,
is reported during their past and planned observation runs. Compare this values also with

23This shouldn’t be confused with the upper limit that the detector can establish on the strain amplitude of a
certain GW signal, which, conversely, accepting the presence of that signal, corresponds to the maximum value of
its amplitude that our instrument could have missed to detect.

24From the matched filter technique that we shall describe in section 2.1.6, a value of 8 for the SNR in stationary
and Gaussian noise is usually considered safe for calming a detection [171].
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Figure 1.8: Timeline of the planned observing runs of the Advanced GW detectors, in-
cluding Kagra [166], which should join Advanced LIGO and Advanced Virgo for
the end of O3, and the third LIGO detector located in India [172], currently under
construction. The sensitivity (range) of each detector for the various runs is ex-
pressed in terms of its past or projected BNS range (updated Sept. 2019). Picture
taken from [26].

the detailed evolution of the strain sensitivities in figures 1.6 and 1.7.

1.3.4 A network of GW detectors

In the previous sections, we have mainly examined one single detector at a time. Instead, in
the context of GW research primary importance has been addressed, by the collaborations
involved, to the establishment of a network of detectors, by means of which to confidently
identify and triangulate the origin in the sky of potential sources of GWs, especially tran-
sients. Indeed, interferometers are intrinsically non-directional. However, when a GW sig-
nal reaches the Earth it will arrive at the different detector sites at slightly different times, of
the order of some milliseconds (the light travel time between the sites, which is up to 10 ms
for the two LIGO detectors, and 26.39 and 27.20 ms for Virgo). The observed arrival time
delay, and also the amplitude of the GW signal measured at each location, allows to localize
the direction in the sky from which the signal has come. Using gravitational wave informa-
tion alone, two detectors can constrain the direction to lie somewhere on a “broken ring” on
the sky (refer to figure 1.11); it is necessary to have at least three detectors for localising it
within the intersection of two of such rings, hence providing much better precision.25 This
information is of fundamental importance in order to alert the partner observatories to focus
on that area of the sky in search for possible electromagnetic counterparts, as it was the case
for GW170814 [13] or GW170817 [14, 15]. In the latter case, also a low signal amplitude in
Virgo was useful to locate the source in those regions where the detector was less sensitive,
which, combined with the ring identified by the two LIGO detectors alone, helped to reduce
the network 90% credible sky localisation area to 28 square degrees.

25A detailed analysis of the reconstruction of the sky position of a transient source, mainly based on the time
delay of the signal received by the detector network, is presented in [173, §15].
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In practice, also three detectors are not always sufficient for an accurate sky localisation.
Indeed, the sky sensitivity, called “antenna pattern function”, of each interferometric detec-
tor doesn’t cover the entire sky but only a fraction 2/5 of it, obtained averaging over all the
directions. A figure of merit about this is the so-called sky-coverage, defined as the fraction of
the sky over which the detector antenna pattern function is greater than half of its maximum
value. This equals 33.6% for a single detector [80], which means it is able to efficiently detect
GWs only from one third of the sky, and, most importantly, that there are regions where it is
completely “blind”. Having multiple detectors increases the network antenna pattern function.
For example, it can be shown that with the addition to the LIGO detectors of Virgo, the total
sky-coverage rises to 71.8%. With the further addition of KAGRA (expected for the end of
O3) this will be 73.5%. Refer to [174] for further details and for other means by which to
characterise the network sensitivity of the planned and upcoming detectors.

Another fundamental aspect is that related to the rejection of instrumental artefacts and
the avoidance of false detections. Indeed, some transient signals of terrestrial origin, for ex-
ample from system malfunctions or environmental disturbances, may randomly mimic a
waveform compatible with a certain GW model in the data from one detector. However, if a
compatible waveform is not present, within the light travel time, in the other detectors that
could have seen a similar signal, because acquiring data at the time of the putative event
and with antenna pattern function sensitive to the direction identified by the first detector,
then these events are discarded.26 Coincidence of the signals detected by multiple interfer-
ometers is at the base of the analysis pipelines that we will describe in section 1.4. Also, the
preliminary identification of instrumental artefacts potentially resembling a GW signal is of
fundamental importance, and it will be thoroughly discussed in chapter 3.

Last but not least aspect of importance in the establishment of a network of GW detec-
tors is related to their duty cycle. Transient periods of noise excesses or maintenance can
let one detector temporary out of observing mode, reducing their effective number for GW
searches [24]. This is quite a common situation, indeed maintaining the optimal working
point outlined in section 1.3.2, with all the cavities locked on resonance, is sometimes diffi-
cult, especially in the presence of instrument malfunctions or external disturbances, like bad
weather conditions. For reference, during O2 the individual duty cycle of the two LIGO de-
tectors was approximately 60%, and about 45% that of the LIGO network, corresponding to
118 days of data suitable for coincident data analysis [1]. During August 2017, when Virgo
joined O2, its individual duty cycle was above 80%, and the network one, with at least 2
detectors, reached about 86%.27

All these reasons motivated the establishment of the current network of GW detectors,
and the construction of newer ones, as we momentarily comment in the next section. Also,
the causes that may reduce the detector duty cycle have been one of the main objective of

26Only recently, thanks to the improved detector sensitivities, the confidence on the waveform to expect, both for
the known astrophysical signals and the noise, and the analysis pipelines to detect the former and reject the latter,
the LIGO and Virgo collaborations have opened to the possibility to consider also single detector candidate events,
which of course require a dedicated validation procedure [175].

27The duty cycle of the LIGO-Virgo network during O3 was of about 62.52% with two detectors, 23.21% with
three, 8.90% with one, and only 5.37% of the time with no detector observing the sky. Notice that these are only
preliminary estimates, further subject to quality cut (as we will discuss in section 2.4.4), gathered form the Virgo
interferometer monitor [LVC6].
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the studies that will be presented in this manuscript. We will come back to this subject in
several occasions in the next sections and chapters.

1.3.5 New detectors and next generations

Following the motivations discussed in the previous section, in the next years, the current
network of GW detectors will be enlarged with the already mentioned Japanese detector
KAGRA [166], and a third LIGO detector located in India [172]. When all of them will
be operating, the sky coverage will be almost complete and it is estimated that they will
be able to achieve localisations of just 9÷ 12 square degrees (median) [26]. Moreover, the
most significant improvement will arguably be the possibility to have, almost always during
science runs, at least three detectors observing in low noise conditions and able to provide
accurate sky localisations.

Besides the increase of number of second generation detectors all over the world, there are
under study improvements to upgrade further the current ones. For example, within the
LIGO and Virgo Collaboration, there are plans to upgrade Advanced LIGO and Advanced
Virgo detectors to A+3 and AdV+4 phases respectively, by around 2024 [26]. Their sensi-
tivities are improved over the current version of detectors by roughly a factor of two. This
is in part realized by reducing the coating thermal noise either from reducing the mechani-
cal losses of the coating material or from implementing larger beam size. Also, broadband
quantum noise reduction is expected by using a 300 metres filter cavity to generate frequency
dependent squeezing [176], as described in section 1.3.2.

Completely new infrastructures have also been envisioned for the future, such as the Ein-
stein Telescope [143] or the Cosmic Explorer [167, 177]. Besides state of the art technologies,
for which Kagra will be a demonstrator, one of the major improvements in these detectors
will be the increase in their arm length by about one order of magnitude (10÷ 40 km) with
respect to LIGO and Virgo. This modifications will not change significantly the sensitivity
band, except for some improvements down to 10 Hz for the reduced seismic noise,therefore
the target sources for these detectors will be the same as for the second generation ones.
However, their better sensitivity will allow to reach furthest and weakest sources [178].

A complementary point of view can be obtained with detectors based on different design,
as for example the space-borne Laser Interferometer Space Antenna (LISA) [179], whose
working principle has been briefly described at the beginning of section 1.3. As visible from
figure 1.2, these detectors will open up to a new band of observation of the GW signals.
Combined with that of ground based interferometric detectors, it will be possible that, for
some sources, there will be multiband GW observations, with these detectors providing an
“early warning” and sky localization for ground based ones [180]. Also, the data in this
new band could provide additional information on system parameters [181] and new tests
of general relativity [182].

1.4 Detections of the Advanced detectors

We conclude this chapter joining “sources” (more precisely, CBCs) and “detectors”, describ-
ing some of the fundamental aspects of the GW detections achieved by Advanced LIGO and
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Advanced Virgo detectors as of December 2019. For brevity, we will mostly focus on the
“first detection” event, GW150914 [8], slightly touching the general features of all the other
detections achieved during the first two observing runs, and summarised in the first Grav-
itational Wave Transient Catalogue [1]. In particular, we will present those aspects, most
closely related to the detector characterisation, of importance for assessing the significance
of the events.

1.4.1 GW150914: the first detection

The first direct detection of GWs has been accomplished on the 14th of September 2015, at
the very beginning of the first observing run of the Advanced LIGO detectors. In fact, the
two detectors were still in “engineering mode” at the time of the event, meaning that they
had finished the “commissioning” activities, and they were testing the behaviour of the ap-
paratus; it was both surprising and rewarding the observation of such a strong signal right
after the five years of upgrades spent to improve the sensitivity of the first generation of
LIGO detectors. Then, the two detectors continued taking data for 38.6 days (∼ 17 in coin-
cidence), without modifications to the apparatus, in order to achieve the sufficient amount
of information to trustworthy characterise the detectors and assess the significance of the
event. Further details will follow momentarily.

This event comprised two major discoveries (merging stellar-mass black holes and direct
GW observation) and two further confirmations for Einstein’s GR (GW prediction and CBC
waveform), as summarised in the conclusions of the “Discovery paper” [8], which we will
quote:

The LIGO detectors have observed gravitational waves from the merger of two stellar-
mass black holes. The detected waveform matches the predictions of general relativity for the
inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole.
These observations demonstrate the existence of binary stellar-mass black hole systems. This
is the first direct detection of gravitational waves and the first observation of a binary black
hole merger.

The result was worldwide announced by the LIGO Scientific Collaboration and Virgo Col-
laboration (LVC) on the 11th of February 2016. For this discovery Reiner Weiss, Barry Barish
and Kip Thorne were awarded the 2017 Nobel Prize for Physics, “for decisive contributions
to the LIGO detector and the observation of gravitational waves” [183].

A total of twelve Collaboration articles accompanied the one announcing the detection,
and several more were published later, elaborating on various aspects ranging from the de-
tector working principle and status at the time of the event [23, 184, 185], the assessment of
its statistical significance [186], and the inference on black hole populations [187] and tests of
GR [188]. Here we will mostly focus on those aspect in which the characterisation of the de-
tector and its noise are most relevant, in particular for assessing the significance of the event.
These are also important for the analysis that we will present in the rest of this work. A side
aspect of fundamental importance, which however we will not have occasion to touch, is
that of the detector calibration and its uncertainties, which allows to convert the intensity of
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Figure 1.9: Search results for PyCBC (left) and GstLAL (right) pipelines, showing the
histograms of the background distributions of the detection statistics (blue and
black lines) together with the candidate events (orange squares). The second square
from the right is “the boxing-day event”, GW151226 [192], while the third one,
slightly above the background level, is GW151012, labelled at the time as a “LIGO-
Virgo trigger” (LVT) [186] and only later promoted to an actual GW event after
reanalysis [193]. Figure adapted from [8], licensed CC BY 3.0.

the laser light at the output photodiode (1.59), and several other controls, to the gravitational
strain (1.47); the details have been published in the Collaboration paper [185].

At the time of this event, data from GW detectors were constantly monitored by two
data analysis algorithms (pipelines) explicitly devoted to CBC searches, PyCBC [17] and Gst-
LAL [18]. These use the matched filter technique, which we shall outline in section 2.1.4, to
compare detectors data to templates representing the expected GR waveform for the coa-
lescence of two BHs. These templates are obtained by two independent waveform models,
SEOBNRv2_ROM_DoubleSpin [189] and IMRPhenomPv2 [190], both based on EOB and numer-
ical relativity, and yielding consistent predictions. Once the best match has been found,
within a huge template bank covering (the most of) the parameter space (masses, direction,
distance, etc.),28 the two pipelines compute the probability that this match would happen
just by chance, from the random fluctuations of the detector noise. This part is evaluated
in a slightly different way between the two pipelines, although they both use a detection
statistic based on the SNR.

PyCBC makes use of a “reweighted” SNR ρ̂c that evaluates the consistency of the signals
of the two detectors in different frequency bands; this helps taking into account for random
fluctuation of the signal, which may lower the consistency in certain frequency bands, or
loud glitches, which may, conversely, have an high consistence in some bands but none in
others.29 The consistency is quantified by a reduced χ2-statistic, used to reweight the SNR.
To calculate the false alarm rate given by the random fluctuation of the previous statistic, that
is the probability to obtain a detection statistic as high or more if we only had noise, PyCBC
uses the time slide method, shifting in time the data of one detector with respect to the other
by an amount larger than the coherence time of a gravitational signal, and making in such a
way the coincidence by two matches just due to the chance.

28Further details can be found in the “Parameter estimation” paper [191].
29Both these possibilities are clearly evident from the time-frequency plots for GW150914 and LVT151012, as

reported in figure 10 and 12 of the Detecto Characterisation paper [23].

https://creativecommons.org/licenses/by/2.0/
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GstLAL instead, after the best matching template and the corresponding SNR has been
found, computes the residuals of its subtraction to the detectors data. Then, it evaluates the
likelihood-ratio statistic L between the probability of finding those particular values of the
SNR and the residuals in both detectors, and the probability of finding the same results in the
case of noise only. The latter background is evaluated looking at those “triggers” (high SNR
data) present in one detector only (and then assumed not to be of astrophysical origin; refer
to the discussion in section 1.3.4), and computing the corresponding distribution function
using Monte Carlo sampling methods. This gives the probability of having similar triggers
due to noise and, similarly to the other pipeline, it is a measure of the significance of an
event.30

The results of the two pipelines for O1 are reported in figure 1.9. GW150914, correspond-
ing to the rightmost orange square in the two plots, is the most significant event detected by
both searches. The corresponding false alarm probabilities are < 2× 10−7 and 1.4× 10−11

for PyCBC and GstLAL respectively.31

Two comments should be made about the aforementioned methods. First of all, the
matched filter technique used to compute the detection statistics is optimal on the assump-
tions that the detector “noise” is stationary, and the corresponding statistical properties are
known. In reality, however, these properties are themselves estimated from the data (usu-
ally assuming ergodicity), up to certain distribution moments (usually the second, making
the implicit assumption of Gaussianity), and known up to a certain limited statistical preci-
sion. Secondly, and even tightly related to the detector characterisation activities, there is
the problem of vetoing those segments of data that exhibit “unusual behaviours” and, most
importantly, we know with an high level of confidence that are not of astrophysical origin.
As we will elaborate in section 2.4, these are usually related to transient (with different time
scales) detector malfunctions, and often classified into glitches and slower non-stationarities.
It is important to exclude them from the analyses, once we know for sure their origin, since
otherwise they will introduce systematics in the noise properties estimation (related to the
previous point) and also they would spoil the “background” estimates in figure 1.9. These
aspects will be elaborated in the next chapters, where further details on the characterisation
of the detector will be provided, as well as the statistical tools devoted to this.

We can report then the properties of GW150914 source, obtained from the previous data
analysis pipelines, and arguably the most interesting part related to this event. The compo-
nent masses, which are the most important parameter governing the dynamical evolution
of the coalescence (in Newtonian adiabatic approximation (1.47)),32 are 35+5

−3 and 30+3
−4 solar

masses in the source frame (msource
1,2 ) at 90% credible level, obtained as an average between the

30To elaborate a bit on the difference between the two pipelines, and the importance of having both of them, it
should be mentioned the case of GW170818, reported in [1, §B.VI]. This was a triple detection event, where also
Virgo contributed with its data, but the SNR in LIGO Hanford (and Virgo, although PyCBC didn’t consider it in the
computation of the detection statistic) was not high enough to pass the consistency threshold required by PyCBC.
Instead, the analysis of the residuals made with GstLAL (and using all three detectors) identified this as an actual
event with a pretty decent (network) SNR of 11.3 (4.2 in Virgo, 4.1 in Hanford, therefore below the PyCBC threshold
of 5.5, and 9.7 in Livingston).

31Actually, PyCBC was able to calculate only an upper limit on this value. Further details on this and also on the
systematic errors on the value computed by GstLAL are reported in the corresponding Collaboration article [186].

32To be more precise, what we “directly” measure is the chirp mass during the inspiral phase, as described in (1.47),
and the total mass during the following merger and ringdown phases. From these, the values of the two masses are
extracted.
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results of the two waveforms, SEOBNR and IMRPhenom, in perfect agreement: refer to fig-
ure 1 from the corresponding “Parameter estimation” paper [191]. The mass of the resulting
post-merger black-hole is Mf = 62+4

−3 M�, implying that the missing 3.0± 0.5 solar masses
were radiated away as GWs; all quantities referred to the source frame.

In fact, the masses that we measure from Earth are slightly larger (frequencies are smaller)
as an effect of the redshift z at which the source is located. This, in turn, is related to the lu-
minosity distance of the source DL, which affects the amplitude of the detected wave (refer to
(1.47), where this quantity was labelled with r). This is the second most important quantity,
and was estimated to be 440+160

−180 Mpc (z = 0.09+0.03
−0.04). Also the inclination of the source has

a similar effect; instead of ı, which would be time-dependent for a precessing system, it is
more convenient to report the inclination of the total angular momentum (which typically
is approximately constant throughout the inspiral) with respect to the line of sight: θJN (at
fref = 20 Hz). The two quantities DL and θJN , which are strongly correlated, are usually
reported on the same plot; refer to figure 2 in [191].

After the masses, the most important quantity describing the evolution of the coalescence
are the spins of the two components. These are measured, for example, from the precessing
IMRPhenom waveform model, and reported in figure 5 in [191]. The results favoured two
components with small values of the spins, or larger values but anti-aligned with the orbital
angular momentum.33

The Numerical Relativity waveforms, for each phase of the coalescence (top cartoon),
for the inferred source parameters are shown in figure 1.10 for the LIGO Hanford detector.
The shaded grey region is the strain reconstruction using as a linear combination of sine-
Gaussian wavelets [195, 196]. In the same picture, on the bottom, the Keplerian effective
black hole separation, in units of Schwarzschild radii, and the effective relative velocity are
reported.

We conclude the section reporting briefly also the results on GW150914 from the un-
modelled searches, and described in the Collaboration article [196]. Three pipelines of this
kind analysed the data in correspondence of the event: coherent Wave Burst (cWB) [21],
which most notably identified for first the event, omicron-LALInferenceBurst (oLIB) [197],
and BayesWave [195], which followed up on cWB trigger. All of them are meant as “excess
power” detection algorithms, to identify “burst-like” signals. The first two are similar in
many aspects; they both use a short duration, time-frequency representation based on some
kind of wavelet transform to spot bins (or clusters of them) with transient excess power. Then,
cWB classifies transients on the base of the shape of their time-frequency pattern; there is one
class for known families of glitches [23], one for “chirp-like signals”, and one for everything
else. Transients matching the first class are automatically discarded. The two algorithm then
compute a measure of SNR based on the correlation between high power bins/clusters of

33More specifically, it is the dimensionless effective inspiral spin parameter, χeff, the second most relevant factor to the
evolution of the inspiral gravitational waveform [194], and it is the combination of the spins (and the masses) that
we measure most accurately. This is the mass-weighted linear combination of the components of the black holes
spins aligned with the orbital axis, χeff := (m1a1 cos θLS1 + m2a2 cos θLS2 )/(m1 + m2), and has values between −1
and +1. The individual dimensionless spin parameters are a1,2 := cS1,2/(Gm2

1,2). The results for O1 and O2 all
favour values of χeff compatible with zero [1] (with possibly the exception of GW151226 and GW170729 [1, fig. 5]),
meaning, from the previous equation, either small spins, or misaligned spins, or spins pointing towards the plane
of the orbit. The part of the spin pointing to the orbital plane is expressed by the dimensionless effective precession
spin parameter, χp, less constrained than the latter, as visible from [1, fig. 5] spanning almost all the allowed range
of values.
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Figure 1.10: Representation of some key results on GW150914. In the top figure the
black hole horizons at various stages of their coalescence are shown. The middle
part of the figure shows the strain reconstruction and its agreement with numerical
relativity predictions. In the lower plot the evolution of the spacial separation
and relative velocity of the two black holes is reported [8]. Figure readapted in
fulfilment of license CC BY 3.0.

different detectors. The false alarm probability obtained for GW150914 was 2 × 10−6 for
both of them.

BayesWave instead fits the detector signals with a variable number of sine-Gaussian
wavelets. Than, comparing the coefficients of the fits in different detectors, it asses the
probability that what observed is a glitch (different coefficients) or the same signal (simi-
lar coefficients).34 In such a way, the false alarm probability estimated for this event was
7× 10−7.

The reconstructed waveforms from cWB and BayesWave were then fitted with the wave-
form templates of EOBNR and IMRPhenom for black holes, yielding results consistent with
those found with the previous template-based searches. An interesting comparison between
the aforementioned five search pipelines can be found in figure 3 from [26], showing the
estimated false alarm rates for the O1 events.

Unmodelled searches are more flexible than template-based ones, but also less sensitive,
in general. The fluctuations of the noise in both detectors, in particular unclassified glitches,
have indeed the effect to increase the false alarm probability, masking possible underlying
astrophysical signals. For this reason, accurate detector characterisation and vetoing proce-
dure are a critical aspects also for this kind of searches.

34Very remarkably, in correspondence of GW170817, this technique was able to insulate the astrophysical signal
in Livingston data from the part of it corresponding to a saturation glitch [198]; refer to figure 4.1. Further details on
this will be discussed in the next section and in particular in chapter 4, when we will discuss about deglitching and
artefact mitigation algorithms.

https://creativecommons.org/licenses/by/2.0/
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1.4.2 GWTC-1: an overview of current gravitational wave detections

Following GW150914, several more BBH coalescences have been observed during the first
two observing runs of the Advanced detectors, plus the BNS event GW170817 [14]. The in-
formation acquired from them where collected in the masterpiece first Gravitational Wave
Transient Catalogue (GWTC-1), which also contains the updated values of the O1 events
parameters, and in the follow-up article reporting the inference about the population of ob-
served stellar-mass black holes [97]. These two articles can be acknowledged as the initiation
of gravitational-wave Astronomy, where the new messenger constituted by GWs is used to
study the Universe.

In this conclusive section, we will briefly summarise the most important aspects pre-
sented in the two aforementioned articles.

The new black hole detections have been consistent with GW150914. One convenient
and concise way of grouping them35 is respect to the stellar-mass black hole population
previously known from X-ray binaries, whose known most massive object is IC 10 X-1,
24÷ 33 M� [199]. Reported BBH events, where both component masses are greater than
the previous threshold, are GW170104 [200], GW170729, GW170809, GW170814, GW170818,
GW170823, and of course GW150914. There were no evidence for the existence of such ob-
jects before the advent of GW astronomy. The Advanced Virgo detector officially joined the
O2 run on the 1st of August 2017, although data from the 29th of July was also used for
the reanalysis of the event GW170729, giving important contribution in the detection of the
events of August 2017, and in particular to GW170814 [13] (as evident from figure 1 therein)
and GW170818, with an SNR > 4.

On the lower mass side, there are GW151012, GW151226 and GW170608. These where
also the closest events to us, which also justifies their small number with respect to the most
massive ones (refer to (1.47)).

For the reasons explained in the previous section when talking about the search pipelines,
having three detectors is of great importance in distinguishing coincident triggers due to
noise fluctuations and actual events. Indeed, it shouldn’t be surprising that 5 out of 7 black
hole events detected in O2 occurred from the 29th of July to the end of the run. Also, as
discussed in section 1.3.4, having three detectors constitute a major improvement for the sky
localisation of the source. As visible from figure 1.11, the triple detection events are those
with the smallest credible area in the sky; notice in particular GW170814, GW170817 and
GW170818.

Very remarkably, on the 17th of August there was the discovery of the first BNS coa-
lescence event, GW170817. This was the CBC with the smallest masses involved, m1 =

1.36÷ 1.60 M� and m2 = 1.16÷ 1.36 M�, compatible with two neutron stars, and also the
loudest event, in terms of SNR, ever detected. A total of ten Collaboration papers accom-
panied the one reporting the detection [14], with most of them signed also by the collabo-
rations of the experiments that analysed the electromagnetic emission, and the cosmic rays.
Indeed, the emission of GWs was followed by a short gamma-ray burst, GRB170817A, as
observed by the Fermi-GBM and INTEGRAL telescopes 1.74± 0.05 sec after the merger of

35Credit C.P.L. Barry.
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Figure 1.11: Sky localisation of the O1-O2 events, represented by the 90% credible re-
gion of the incoming GW signal, as inferred by the analysis pipelines and the trian-
gulation method described in section 1.3.4. Figure readapted from [1], in fulfilment
of license CC BY 3.0.

GW170817; this reinforcing the hypothesised of a BNS coalescence [201]. The “Multimes-
senger paper” [15] summarises the whole observation campaign, from GWs to the entire
spectrum of the electromagnetic radiation, and even to neutrinos and cosmic ray particles
(not observed), associated to this event.

From the point of view of the data, this event represented a major task for the team in
charge of analysing it. Specifically, in the LIGO Livingston data, there was a glitch super-
imposed to the signal, few tens of milliseconds before the time of the merger. This usually
comport the corresponding chunk of data to be automatically vetoed from the analysis. Re-
fer to figure 2 from [14], also reported in chapter 4. However, the evidence of the signal in
LIGO Hanford data, suggested the analysis team to throw away only the minimum amount
of information from Livingston, just to remove the glitch and maintain a decent sky locali-
sation (fundamental for the investigation of the electromagnetic counterpart). Fortunately,
also Virgo contribute on this aspect, which, with its low SNR, pointed towards the region of
the sky where it was less sensitive at that moment, hence improving upon the localisation
obtained with the two LIGO detectors alone.36

Fortunately, the glitch was short and the signal long, and this difference in the time evo-
lution of the two allowed to clearly distinguish them and perform the subtraction of the
former. This have been done by means of a model constructed out of the superposition of
a certain number of sine-Gaussian wavelets [198]; with respect to this base, the components

36The contribution of Virgo to the localisation of GW170817 is very effectively explained in the video realised by
Leo Singer: Impact of Virgo on the localization of the binary neutron star merger GW170817.

https://creativecommons.org/licenses/by/2.0/
https://www.youtube.com/watch?time_continue=18&v=L2j6xmQRrUg&feature=emb_title 
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Figure 1.12: Estimated component masses (left plot) and final masses and spins for O1-
O2 events. All the contours represent the 90% credible region. Figure readapted
from [1], licensed CC BY 3.0.

corresponding to the impulsive glitch are very different from those of the long lasting inspi-
ral, hence their separation has been feasible. If this signal had been a high-mass BBH, things
would have been probably different.

Glitches are common features of the detector noise. Those with SNR (with respect to
the “background, stationary noise”) between 5 and 8 are expected at a rate of one every ten
seconds, although things may change significantly in different frequency bands and during
different detector operation conditions. This means that it is very likely to find one superim-
posed with long BNS signal (GW170817 lasted about 100 seconds in the detector sensitivity
band). Moreover, it is just a matter of time until we will find one overlapped with a BBH
signal as well, for the increasing rate of events detected with the new sensitivities of the
Advanced detectors.

These reasons motivated to develop some techniques to remove the possible glitch super-
imposed to a signal, without altering the properties of the latter, and affecting its parameter
estimation. This will be the subject of chapter 4, and, as we will discuss, it is of fundamental
importance for fast sky localisation and for sending rapid alerts for possible electromagnetic
counterparts.

To conclude, we report in figure 1.12 some fundamental results from the analysis of the
O1 and O2 events. On the left-hand side, the 90% credible regions for the component masses;
we used the same convention of figure 1.3 that m1 > m2 (grey area). On the right-hand
side of the same figure the estimated 90% credible regions for the spins of the final objects,
af := cSf/(GM2

f ), and the final masses Mf are reported. These values have been found per-
fectly consist from the two waveform models (the newest versions) described in the previous
section.

Besides those described in this section, the release of the LIGO and Virgo data [202]
allowed other research group to investigate the GW data and to perform their indepen-
dent analyses. Some of them reported a few more confident BBH events, like [203] for O1
and [204] for O2.

https://creativecommons.org/licenses/by/2.0/
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2 Detector Noise

Data from GW detectors are dominated by noise. In practical terms, this is everything at
the detector output that can produce an effect equivalent to a strain, in the sense of equa-
tion (1.59), but is not of astrophysical origin. For the most of the GW sources described in
section 1.2, the noise is comparable or even more intense than the expected gravitational
effect we aim to measure. For this reason, we don’t simply “read” the GW signal at the
detector output, but its “extraction” is accomplished by means of accurate modelling and
statistical inference on the properties of both the noise and the GW signal itself.

This chapter, and the rest of this dissertation as well, will be focussed on detector noise.
Some aspects of its characterisation have been already presented in section 1.3.3, where we
introduced some figure of merit for its sensitivity and range. Moreover, the key ideas imple-
mented in GW data analysis pipelines have been discussed in section 1.4 in relation to the
events detected by Advanced LIGO and Advanced Virgo during their first two observing
runs [1]. In that discussion, a central role was played by the correct evaluation of the SNR,
either by means of the matched filter technique or by the unmodelled detection of excess of
power with respect to the noise background, and the related false alarm probability. This was
then used for assessing the credibility of an event and the estimates on its parameters. In this
chapter we will provide further details on this, starting from detector noise description and
characterisation, mostly from a statistical point of view; this have the twofold intent of con-
stituting the statistical basis on which the detector is studied and characterised, in particular
during the commissioning phase, and also serves as the workbench on which the extraction
of the GW signal is performed.

In the first section we will introduce some concepts in stochastic processes theory and
signal analysis, which will be used henceforth for the description and characterisation of the
data. Although quite general and common to many fields of Physics, we decided to include
this material in the main body of the text, instead of in an appendix, because it constitute
the base and the “language” of all the material presented in this dissertation. In section 2.2.2
we will present the typical noise sources affecting a ground based interferometric detector.
Part of them, the so called fundamental noises, like the shot noise, upon which we have based
our estimates on the achievable sensitivity (equation (1.61)), are inherent to the detection
principle described in section 1.3.1 and 1.3.2 [8, 12]. These can’t be mitigated, unless by
modifying the apparatus. Overall, these noises produce a main “background noise level”,
whose properties are assumed not to change with time (i.e., they are “stationary”), as long
as the detector is not altered by purpose, for example for some maintenance or calibration
activities. This is represented by the curves, for the various detectors, in figures 1.6 (the O4
and O5 projections) and 1.7. Our analysis will mainly focus on the so called technical and
environmental noise sources, described in the same section. These limitations come from, for
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example, anthropogenic activity and weather conditions, or from systems malfunctions [22,
23]. Moreover, there is some occasional noise of unknown origin, whose causes and coupling
mechanisms are a very active field of research for commissioners and the so called “noise
hunters” [205]. Their manifestation is usually transient, with time scales that can vary a lot
depending on the origin and the coupling mechanisms. This will be the subject of the third
section, which will serve as an introduction for the third chapter.

In the last two sections, we will present the effects that both stationary and non-stationary
noise may have on GW searches. We will describe the standard method for characterising
the former, plus some extensions (sec. 2.3.3 and 2.3.3), and the usual “vetoing” procedure for
dealing with the former.

2.1 Prelude: statistical description of data

Detector noise is modelled as a stochastic (or random) process. We consider a physical phe-
nomenon random when we don’t, or we can’t, know everything about it, as for example the
evolution of its status with time, or simply because we have convenience in such a modeli-
sation.1 Some of the sources of noise that we will consider are non-deterministic in nature,
for example because originating from quantum processes, like the shot noise, which is the
archetype of random processes. Very important is also the thermal noise, caused by the move-
ment of the particles of a medium as a consequence of their temperature/energy; even if we
knew the position and velocities of all of these particles, the description of their individ-
ual motion would be highly impractical, and we prefer to recover to statistical description
of some “average” collective properties. Analogous considerations arise for seismic noise.
Moreover, there are errors inherent to the measurement process that we are able to describe
only statistically, and also their data are naturally modelled as random processes.

For the above reasons, the outcome of any experiment that we will consider, that is, the
(real) quantities that we read at the output of the data acquisition systems, is a realization of
a stochastic (or random) process. It can be described only statistically, by means of its proba-
bility density function (p.d.f.), and characterised with the values of some statistics computed
from its realisations. Before digging deeper into more formal notions about stationarity, we
shall clarify part of the formalism and the concepts that we will make use of in the next sec-
tions. This section is meant primarily to fix the notation and to provide a quick overview of
basic concepts in stochastic process theory and time series analysis. All of the material pre-
sented here has been selected from some standard reference textbook in statistics and signal
processing like [6, 206–208].

2.1.1 Probability spaces and random variables

The processes of measurement (experiment) of states of Nature that occur randomly (opposed
to deterministically) is mathematically modelled by probability spaces. This mathematical
construct due to Kolmogorov consists of different parts, which we shall describe shortly.

1In the same sense, refer to the discussion in section 1.2.4 about why we have convenience into model the
expected signal from a background of GW as a stochastic process as well.
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The results of single execution of a certain experiment are commonly referred to as out-
comes, ω. The (non-empty) set Ω of all the possible outcomes is called sample space or observa-
tion set. In general, it is of more practical use to deal with and characterise sets of outcomes,
called events; these are represented by F , the σ-algebra of subsets of Ω, consisting of a family
of subsets closed with respect to countable union and complement with respect to Ω, rep-
resenting all the possible outcome sequences and combination of them. The pair (Ω,F ) is
called a measurable or Borel space, and it can be equipped with P, a probability measure, which
is a way to assign to all members of F a real valued number in the interval [0, 1], satisfying
the property of additivity with respect to F , and which specifies the “likelihood” for each
event to happen. Finally, the probability space, characterising a certain experiment, is the
triplet (Ω,F , P).

When performing an experiment, it is assumed that the probability space corresponding
to the particular system under study is fixed, and we randomly select a single outcome out
of it: ω ∈ Ω. All the events in F that contain the selected outcome ω are said to “have
occurred”. This selection is done in such a way that if the experiment were to be repeated
an infinite number of times, the relative frequencies of the occurrence of each of the events
would correspond to the probabilities prescribed by P (frequentist interpretation of P).

As a classical example, for a die roll Ω = {1, 2, 3, 4, 5, 6}, F is composed by the 26 possible
subsets (power set) of Ω, and for an event A ∈ F , e.g. A = {2, 4, 6}, P(A) = |A|/6, where
|A| is thecardinality (number of elements) of the set A, in this case 3, and P(A) = 1/2. For
Ω = Rn, we can define the σ-algebraF generated by the open subsets of Rn (or, equivalently,
by the open balls), which is called the Borel σ-algebra and is denoted by B(Rn) or just Bn [209,
§1]. Similarly, we can define a Borel algebra for any closed subsets of Rn.

A random variable is, loosely speaking, a quantity whose values depend on the random
outcomes of an experiment, which allows for probabilities to be assigned to sets of its po-
tential values. More precisely, given a probability space containing the observation set,
(Ω,F , P), and a second measurable spaces (S, Σ), a random variable X is an S-valued mea-
surable function X : Ω→ S such that the event

{ω ∈ Ω : X(ω) ∈ A}

belongs to F for arbitrary A ∈ Σ. Often the values assumed by this variable are real, S = R

equipped with its Borel σ-algebra Σ = B, and the previous definition can be replaced with

{ω ∈ Ω : X(ω) 6 x} ∈ F for all x ∈ R.

In this case, we can define the cumulative distribution function PX of the variable X as the
function PX : R→ [0, 1] for which

PX(x) := P(X 6 x)

where P(X 6 x) denotes the probability of the event {ω ∈ Ω : X(ω) 6 x}. Similarly, we can
define the joint cumulative distribution function of two (or more) random variables X and Y
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defined on the same probability space (Ω,F , P) to (R,B) as:

PX,Y(x, y) := P(X 6 x, Y 6 y).

The variables are said to be independent if the events {ω ∈ Ω : X(ω) 6 x} and {ω ∈ Ω :
Y(ω) 6 y} are such that, for all x, y ∈ R, their joint cumulative distribution function satisfies

PX,Y(x, y) := P(X 6 x, Y 6 y) = P(X 6 x) · P(Y 6 y) := PX(x) · PY(y).

A continuous random variable X is defined as one with a continuous cumulative distribu-
tion function PX(x). If the derivative of the latter quantity exists everywhere we can define
the p.d.f. of the variable X as:

pX(x) :=
dPX
dx

, (2.1a)

or implicitly as:

∫ x

−∞
pX(x′)dx′ = PX(x). (2.1b)

As PX is a non-decreasing function on R, pX is going to be a positive definite, real function.
Similar definitions hold for the joint p.d.f. of two or more variables; if X and Y are contin-
uous, and the mixed derivatives of PX,Y(x, y) exist, we can view them together as a random
vector from Ω to R2, and define the joint probability distribution function:

pX,Y(x, y) :=
∂2PX,Y

∂x∂y
(x, y), PX,Y(x, y) =

∫ x

−∞

∫ y

−∞
pX,Y(x′, y′)dx′dy′.

We can extend the above definition to random vectors of arbitrary finite dimensions.
We can use the distribution of a random variable to compute expectation values. For a

continuous random variable X with p.d.f. px, its expectation value is defined as

E[X] :=
∫ +∞

−∞
x pX(x)dx =

∫ +∞

−∞
x dPX(x).

The latter can be generalized to the variable Y := f (X):

E[Y] = E[ f (X)] =
∫ +∞

−∞
f (x) pX(x)dx,

and in particular we can define the n-th moment of X about a value c as

µn(c) := E[Xn] =
∫ +∞

−∞
(x− c)n pX(x)dx. (2.2)

Particularly important are the mean, which is the first moment about the centre, µ := E[X],
and the variance, which is the 2nd order moment about the mean, σ2 := Var[X] = E[(X −
µ)2].

In the following, as it is common habit in GW literature, we will also adopt the “Quantum
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Mechanics” notation of the angle brackets “〈. . .〉” to represent the expectation values, e.g.
〈X〉 ≡ E[X].

2.1.2 Stochastic processes and time series

If T is an ordered set, called the index set, a stochastic or random process is a family of (S-
valued) random variables X := {Xt(ω), t ∈ T} all defined on the same probability space
(Ω,F , P) to the measurable space (S, Σ). This can be viewed as a function of both t ∈ T and
ω ∈ Ω, that is Xt(ω) ≡ X(t, ω); in this sense, for any fixed sample point ω ∈ Ω, the function
X(·, ω): T → S is called a realization (or trajectory) of the process X, and the records x(t) are
the (real) observed values that it has assumed out of a whole collection of possible values, the
“ensemble”. Very often the variable t ∈ T has the meaning of time, and consequently x(t)
is called a time series.2 A very large amount of data from gravitational-wave detectors are
represented in first instance as time series. For the reason that we will clarify in a moment,
from now on, we will omit the dependency on ω and focus on that on the index variable t.

For a finite set T = {t1, t2, . . . , tn}, n ∈ N, the stochastic process is called a random se-
quence and its values are often denoted with the subscript corresponding to the time index:
xi := x(ti). Intuitively, this may be seen as a projection of the process onto a finite dimen-
sional vector space.

For such a process , the joint n-dimensional cumulative distribution function is defined by:

PXt1 (ω),...,Xtn (ω) (xt1 , . . . , xtn) = Pt1,...,tn(x) =

PX(x) :=P (Xti (ω) 6 xi, i = 1, . . . , n) .
(2.3)

The finite dimensional distribution of a stochastic process is then defined to be the set of all
such joint distribution functions for all finite integer sets T of any size n.

Stationary processes

The previous definitions were necessary to introduce one of the leading concept of the anal-
ysis contained in this work, that is the stationarity of a certain stochastic process.

Intuitively, a stationary stochastic process is one whose statistical properties do not change
over time (the index set). It is important to stress from now that this is a property of the pro-
cess, and not of any finite (or infinite) realization of it, nor of the values assumed by this.
More formally, stationarity (often called strong or strict sense stationarity) is a mathemati-
cal property that a stochastic process has when all of its finite-dimensional joint cumulative
distribution functions (2.3) are shift-invariant along the index axis (usually, the time), that
is if the set of points {t1, . . . , tn} ∈ T is shifted by a constant amount τ (usually integer or
real-valued):

Pt1+τ,...,tn+τ(x) ≡ Pt1,...,tn(x) (2.4)

2Another frequently encountered meaning for the index set is that of frequency, and we will describe several
example of this kind in what follows. Also, in many applications the index set is that of the spatial coordinate(s),
as for example in a photographic image. We will make use of the latter interpretation in section 3.6.2, when we
will face the problem of attributing the statistical significance of certain quantities in bidimensional time-frequency
domain.
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for any n ∈ N, and t1, . . . , tn, t1 + τ, . . . , tn + τ ∈ T. From the previous definition trivially
follows that all the sets of i.i.d. variables are stationary processes. This is the strongest and
the most common definition of stationarity, though of little practical use since we don’t have
access to the full (i.e. arbitrary n) joint cumulative distribution of the process. We will discuss
shortly other weaker definitions of stationarity.

Expectation values and distribution moments

To characterise the statistical properties of stochastic processes it is customary to consider
their “simplest” numerical characteristics, embodied in their lowest order distribution mo-
ments; the following equation generalises (2.2) to the case of a random sequence:

µm1,...,mn :=E [X(t1)
m1 · · ·X(tn)

mn ]

=
∫ +∞

−∞
· · ·

∫ +∞

−∞
xm1

1 · · · xmn
n dPt1,...,tn(x1, . . . , xn). (2.5)

The previous integral should be meant in the sense of Riemann-Stieltjes [210], accounting
for the possibility of non-continuous variables X, e.g. with a discrete distribution, for which
a probability density function (ref. to (2.6)) can’t be defined, and for which the previous
integral is not well defined in the usual sense of Riemann [5, §3.2].3

If the cumulative distribution function Pt1,...,tn(x1, . . . , xn) is differentiable, its joint prob-
ability density function can be defined, analogously to (2.1), as:

pt1,...,tn(x1, . . . , xn) :=
∂nPt1,...,tn(x1, . . . , xn)

∂x1 · · · ∂xn
. (2.6)

This can also be defined implicitly, as in (2.1b). Equation (2.7) becomes then an ordinary
Riemann integral:

µm1,...,mn :=E [X(t1)
m1 · · ·X(tn)

mn ]

=
∫ +∞

−∞
· · ·

∫ +∞

−∞
xm1

1 · · · xmn
n pt1,...,tn(x1, . . . , xn) dx1 . . . dxn. (2.7)

The most important distribution moments are the first- and the second-order ones, µ1

and µ1,1, that is the mean and the auto-correlation functions:

µ(t) :=E
[
X(t)

]
(2.8a)

and:

C(t, s) :=E
[
X(t) X(s)

]
(2.8b)

3More precisely, the Stieltjes integral generalises that of Riemann realizing the notion of integrating an “inte-
grand” function with respect to another “integrating” one. It can be shown that one sufficient condition for this
integral to exist is that the integrand is continuous and the integrating function is of bounded variation within the
integrating interval, as it is in general the case for equation (2.7). This integral is linear in both the integrand and
integrating functions, but differently from the Riemann integral is not additive.
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with t, s ∈ T. Moreover, from the previous definitions, another useful quantity is the auto-
covariance function:

Cov
[
X(t), X(s)

]
= K(t, s) := E

[(
X(t)− µ(t)

)(
X(s)− µ(s)

)]
=

= C(t, s)− µ(t) µ(s)
(2.9)

which equals the ordinary variance, Var
[
X(t)

]
= σ2

X , when t = s.
From (2.4), if the process {X(t), t ∈ T} is stationary, its mean value is constant:

E
[
X(t)

]
= µ = const. (2.10)

and its auto-correlation function C(t, s) does not depend on the “epoch”, that is the global
values of t or s, but only on their difference τ = t− s:

C(t, s) = E
[
X(t) X(s)

]
= C(t− s, 0) := R(t− s) = R(τ). (2.11)

A normalized version of the previous quantity, with respect to lag τ = 0, is called the corre-
lation coefficient between X(t) and X(t + τ):

ρ(τ) =
R(τ)
R(0)

. (2.12)

This quantity measures the “similarity” between a realisation of X(t) and an index shifted
version of the same realisation. Intuitively, as |τ| increases we would expect the “memory”
between X(t) and X(t + τ) to decrease. A complete list of properties of R(τ), and their
proofs, can be found for example in [6, §3.3]. For what concerns us, the most important thing
to notice is that, from the definition, we can show that R(ti − tj) is a positive semi-definite
matrix in the indices i, j.

Then, a weaker condition of stationarity, often called wide-sense stationarity (or weak-sense
stationarity), only requires the shift-invariance of the main statistical properties of the pro-
cess, usually the first and second-order moments (2.8) (second-order or covariance stationarity).
Strong stationarity does not imply weak stationarity, and vice versa.4

Gaussian processes

As we will comment in detail in the next sections, another very important property for data
analysis purposes is Gaussianity. A stochastic process {X(t), t ∈ T} is said to be Gaussian if
its joint p.d.f. is a multivariate Gaussian for any t1, . . . , tn ∈ T:

pt1,...,tn(x) =
1√

(2π)n det K
exp

[
− 1

2 (x− µ)TK−1(x− µ)
]

(2.13)

4The reason why strong : weak is quite intuitive, while the classical counterexample [211] for the opposite
relation, strong ; weak, is that of a process with a i.i.d. Cauchy distribution, which has no finite mean and second-
order distribution moments, though its joint cumulative distribution function is always the same, and then it is
strictly stationary. Extensions to the definition of weak-sense stationarity to this class of processes can be found
in [212].
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where the bold right-hand side quantities are expressed in vectorial and matricial form with
respect to the index set (x := (x1, . . . , xn)T , Kij := K(ti, tj)), and to be well define it assumes
the auto-covariance matrix to be non-degenerate: det K 6= 0.

As evident from (2.13), a key fact of Gaussian processes is that they can be completely
characterised by their first second-order moments, and weak stationarity does indeed imply
strong stationarity.

Gaussian random processes are very often encountered in physical contexts, and often
may be mathematically predicted by the multidimensional central limit theorem. Also, it can
be shown that if a Gaussian process undergoes a linear transformation, then the output will
still be a Gaussian process. Moreover, a linear transformation of a weakly (strongly) station-
ary random process will form a weakly (strongly) stationary random process as well [213,
§5.3].

In the remaining of this chapter we will motivate how GW detector noise can be consid-
ered, at least in first approximation, as stationary and Gaussian, and on the base of this we
will describe the basic principles of the data analysis techniques used to study GWs. We will
also clarify the limits of validity of the previous approximations, and discuss in which way
they may influence the analysis.

Spectral representation of stationary processes

First of all, let us assume without much loss of generality that the stationary processes under
consideration have zero mean, E

[
X(t)

]
= 0, as the general case can be easily recovered

adding at the end the (known) constant mean. Two important theorems shall follow and
will be useful for the characterisation of stationary stochastic processes.

One of the results of the renowned Wiener-Khinchin theorem [214] proves that a neces-
sary and sufficient condition for ρ(τ) to be the correlation coefficient (2.12) of a continuous
stochastic process5 {X(t), t ∈ T} is that there exists a function F( f ), having the proper-
ties of a cumulative distribution function on (−∞,+∞) (that is F(−∞) = 0, F(+∞) = 1,
and F( f ) non decreasing) such that, for all τ, ρ(τ) my be expressed by the Fourier-Stieltjes
transform:

ρ(τ) =
∫ +∞

−∞
e2πi f τdF( f ). (2.14)

Of course, the previous integral should be interpreted in the Riemann-Stieltjes sense. This
result tells us that any stationary stochastic process can be characterised by an (infinite) sum
of sine and cosine functions of frequency f , which can be interpreted as the spectrum of the
signal, weighted by the amplitudes dF( f ); the integrating function F( f ) is therefore called
the process spectral distribution function.

This provides a spectral representation of the auto-correlation function of a stationary
stochastic process, without it to satisfy the usual assumptions for the Fourier integral or
series, that is absolute integrability (

∫ +∞
−∞ R(τ)dτ < ∞). Indeed, the necessary part of the

5The analogue for discrete parameter, stochastic sequences of the Wiener-Khinchin theorem is due to Wold [215].
Assuming the elements of the index set to be equally spaced by 1/ fS, with fS the sampling frequency in the case of T
representing time, the discrete index autocorrelation function R(l/ fS) := Rl admits the inverse Discrete Time Fourier-
Stieltjes transform: Rl =

∫ + fS/2
− fS/2 e2πi f l/ fS dP( f ). Now the spectral function P( f ) is defined only for frequencies in the

“Nyquist range”− fS/2 6 f 6 + fS/2 [6, §4.8.3]. Detectors data are sampled at discrete times, so the latter is the form
we will use in practice. However, it is more convenient for now to deal with continuous parameter processes.
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Wiener-Khinchin theorem directly follows from the positive semi-definite property of ρ(τ),
and the Bochner’s therom [216, §1.3], which ensures that any continuous function of such a
kind have a Fourier-Stieltjes transform of the form (2.14). The continuity of ρ(τ) follows
directly from the assumption that X(t) is stochastically continuous [6, §4.8].

A similar definition (except for the normalisation) holds for the auto-correlation function:

R(τ) =
∫ +∞

−∞
e2πi f τdP( f ), (2.15)

with P( f ) = F( f ) · σ2
X and P(−∞) = 0, P(+∞) = σ2

X .
In the case when P( f ) (or F( f )) is differentiable everywhere, we have a purely contin-

uous spectrum and we can rewrite the previous integral as a standard Riemann one, intro-
ducing the function S( f ),

dP( f ) := S( f ) d f (2.16)

called the two-sided Power Spectral Density (PSD) of the stationary stochastic process {X(t), t ∈
T}. Then equations (2.14, 2.15) can be immediately inverted giving an explicit expression for
the power spectral density:

S( f ) =
∫ +∞

−∞
e−2πi f τ R(τ) d f . (2.17)

The previous result, that any stationary stochastic process can be represented “as a Fou-
rier(-Stieltjes) integral”, is one of the most important in the theory of stationary processes.
It provides a “canonical” representation of them, with a physical and mathematical well-
defined notion of power spectra. Moreover, if the process is also Gaussian, since R(τ) pro-
vides a complete description of its statistical properties so does S( f ).

In the context of GW detectors, the noise (hence the sensitivity, as for the discussion in
section 1.3.3) is given, with some exceptions to be discussed in the next chapter, approxi-
mately by a superposition of stationary Gaussian processes, with very characteristic spectral
signatures. It is therefore convenient to use this spectral representation to describe it, as we
did with the familiar sensitivity curves shown in figures 1.6 and 1.7.

Cramèr representation and physical interpretation of the PSD

It can be shown that any continuous index, stationary stochastic process admit a spectral or
Cramèr representation in terms of the form:6

X(t) =
∫ +∞

−∞
e2πit f dZ( f ) (2.18)

where Z( f ) is a stochastic process with E
[
dZ( f )

]
= 0 and orthogonal increments:

Cov
(
dZ( f ), dZ( f ′)

)
= E

[
dZ∗( f ) dZ( f ′)

]
= δ( f − f ′)dP( f ) (2.19)

6The analogue to (2.18) for discrete index, stochastic process has the integration interval defined between − fS/2

and + fS/2 [6, §4.11]; refer also to note 5.
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with dP( f ) the (non-normalised) spectral function introduced in (2.15). The previous Fourier-
Stieltjes stochastic integral is a generalisation of the Fourier integral, where Z( f ) is itself a
stochastic variable, and is therefore defined in the mean-square sense [6, §3.6]:

E
[ ∣∣∣∣X(t)−

∫ +∞

−∞
e2πi f tdZ( f )

∣∣∣∣2 ] = 0.

Taking the complex conjugate of the representation in (2.18), evaluated at index t + τ,
from the expectation value of

E
[

X(∗)(t) X(t + τ)
]
=
∫∫ +∞

−∞
e2πi( f ′− f )te2πi f ′τ E

[
dZ∗( f ) dZ( f ′)

]
one can immediately recover the Wiener-Khinchin theorem (2.15).

Equation (2.18) provides the physical interpretation of dP( f ), that is the mean-square
amplitude of the component in X(t) with frequency f . More precisely, when X(t) represents
some physical process it may be shown that P(+∞) = σ2

X is a measure of the average total
power dissipated by the process, and dP( f ) (= S( f )d f ) represents the contribution to the
total power from the components in X(t) with frequency between ( f , f + d f ). The function
S( f ) thus represents the distribution of the power density over frequency, thus the name
power spectral density function.

Ergodic theorem

In many practical situations, we have no or little prior theoretical knowledge on the “un-
derlying” statistical structure of the process under study, represented by its joint cumulative
distribution function (2.3). A central problem in statistical inference is the extraction of this
information from just one (or a finite number) of its realisations. In this respect, the practical
value of stationary processes is that, under some further conditions very often satisfied in
practice [5, §3.2], the expectation values (2.7), obtained by averaging over the whole space
of experimental outcomes ω ∈ Ω, can “usually” be replaced by time averages of the same
quantities using just one, “sufficiently long”, realisation of it. This is a consequence of the
ergodic theorem (or law of large numbers). In the case of the lowest order moments, the mean
and the auto-covariance function (2.8), we can define, with a suitable choice of the limits:

µ(ω) = lim
T→∞

1
T

∫ T

0
X(t, ω) dt, (2.20a)

R(τ, ω) = lim
T→∞

1
T

∫ T

0
X(t, ω) X(t + τ, ω) dt (2.20b)

and similarly for discrete index processes, with summations substituted to integrals; in this
case, the existence of the first limit is provided by the Birkhoff ergodic theorem [217, §11.1]. In
general, these quantities are themselves random variables, functions of the particular real-
isation chosen, X( · , ω) (while the time dependency has been averaged away). If it turns
out that they equal the values of the corresponding ensemble-averaged ones (2.8), indepen-
dently on ω, then the process {X(t, ω), t ∈ T} is said to be weakly ergodic.
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As for stationarity, there is a distinction between a “weak” version of the ergodic theorem,
limited to moments up to a certain order, and a “strong” version of it, where all the ensemble-
averaged statistical properties are deducible from the corresponding time averages. Thus,
strong ergodicity implies weak ergodicity, but not conversely. Instead, if a Gaussian process
is ergodic it is of course in both senses.

The idea at the base of this theorem is that any sufficiently large collection of random
samples, regardless of what the individual samples are, must represent the average statistical
properties of the entire process. Each sample function X( · , ω) must then be representative of
all the others in the sense described above, and it does not matter which particular realisation
is used in the time-averaging calculations.

Of course, stationarity (to a certain level) is a necessary condition for an arbitrary random
process to be ergodic, otherwise the previous limiting procedure will be time-dependent.
Anyway, this is not also sufficient.

For the convergence of the sample (time-averaged) mean, in the limit T → ∞, to the
ensemble mean, it can be shown that the sufficient condition is that the integrated spectrum
P( f ) is continuous at f = 0, that is it has “no jumps” at that frequency. Jumps in P( f ) at
non-zero frequencies don’t cause the same difficulty. An alternative form of the same result
is given by the Slutsky’s theorem [208, §12.1], which asserts that a weakly stationary stochastic
process is mean ergodic if:

lim
T→∞

1
T

∫ T

0
R(τ)dτ = 0. (2.21)

The sufficient condition for convergence of the covariance is provided, for stationary
Gaussian process, from the condition that P( f ) is continuous everywhere, that is, no delta
functions appear in the auto-spectra corresponding to infinite spectral densities at discrete
frequencies. Related to this, another class of process that can be said in advance to be covari-
ance ergodic is the class of stationary Gaussian Markov processes [218]; a Markov process is a
discrete process whose relationship to the past does not extend beyond the immediately pre-
ceding observation. The auto-correlation function of a stationary Gaussian Markov process
may be shown to be of a simple exponential form. We will make use of a Markov process
model in section 3.4 when describing an algorithm to track “drifting lines”.

Further details and the proof of the previous conditions for a process to be mean- or
covariance-ergodic can be found in [217, §11.1]. A thorough discussion about the mathe-
matical conditions under which processes have the ergodic property are presented in [219,
§11].

The results discussed here about the conditions under with it is possible, form a single
realisation, to estimate the mean and the covariance of process, are at the base of the most of
the data analysis, in particular to what will be discussed in sections 2.1.4 and 2.1.6.

2.1.3 Some “finer-grain” notions of non-stationarity

Theory of stationary stochastic processes is well developed and is usually the basis for char-
acterising the detector noise in most of the methods adopted in GW analyses. On the other
hand, the assumption of stationarity is too restrictive in many practical situations, where
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most measured signals exhibit significant changes over time, as it will be discussed in sec-
tion 3.1, and data may require different analysis procedures and/or interpretations from
those appropriate for stationary Gaussian random processes.

An appropriate general methodology does not exist for analysing the properties of all
types of non-stationary random data from individual sample records. This is due partly to
the fact that a non-stationary conclusion is a negative statement specifying only a lack of a
property, rather than a positive statement defining the precise nature of the non-stationarity.
It follows that special techniques must be developed for non-stationary data that apply only
to limited classes of these data [213, §11].

Different approaches have been considered in literature to take into account time-varying
behaviours. For example, segmentation techniques into stationary frames are common GW
literature [220–222], where often piece-wise stationary models, such as time-varying Auto Re-
gressive (AR) and Auto Regressive, Moving Average (ARMA) models, are used; it is often
possible to force the data to be at least piecewise stationary for measurement and analy-
sis purposes [213, §11]. An alternative approach revolves around classes of processes with
desirable properties extending the stationary case; examples of these are the Wiener (also
called Brownian) processes, and those allowing a generalised Cramèr representation. Refer to [5,
§3.7] for an overview of these techniques in the context of GW data analysis. Moreover, the
concept of a time-varying spectral representation of non-stationary processes were initially
approached in [223], where the author developed the concept of “evolutionary spectrum”, a
time dependent spectral function. A statistical test based on this concept will be discussed
in section 3.1.1. Related to segmentation techniques and piece-wise stationary processes, of
particular importance for many non-stationary noise manifestation in GW detectors is the
class of Locally Stationary Processes (LSP) introduced by Silverman in [224].

In this section some extensions to the concept of non-stationary process, relevant for the
analysis that shall be presented, will be discussed. In particular we will focus on LSPs and
non-stationary process which can be model out of some stationary ones.

Locally stationary stochastic processes

The intuitive idea behind LSPs is that their statistical properties “change slowly” over time
or, alternatively, that locally, at each time point, they are close to a stationary process but
whose characteristics (covariances, parameters, etc.) are gradually changing as time evolves
(refer to [225] or [226] for a complete review on the subject). The theory of LSPs is based
on the principle that a non-stationary process can be locally approximated by a stationary
one if the time variation of the model parameters is sufficiently smooth. This behaviour can
be modelled qualitatively with a covariance equal to a stationary one multiplied by a time-
dependent “sliding power factor”, which renormalizes the average instantaneous power to
a representative local level. Besides being a natural generalization of stationary processes,
another appealing feature of this definition is that it avoids time-varying parameters, as
instead it is the case for the class of processes that will be described shortly. They have pro-
vided a sound statistical methodology for modelling data exhibiting non-stationary features
without resorting to data transformations, trend removals and other related techniques.
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In the context of GW detector data, we have experiments with finite durations. Moreover,
we have some prior knowledge about a process containing the information of interest (the
signal) with some characteristic time scale/duration, to which is superimposed (additive noise
model assumption) a second process whose knowledge is not of interested for us (the noise).
In both of this case we are usually not concerned with the possibility that stochastic process
under study is not stationary “outside the observation window” or, more formally, with time
scales longer than that of interest for our experiment and for the signal.

Also, in the context of noise studies, we have examples of noises that vary slowly with
respect the characteristic times of the frequencies in the detector sensitivity band. For char-
acterising this region of the spectrum (refer to its definition in section 2.1.2) we can assume
that the underlying process is stationary. This is at the base of some of the coherence analysis
described in section 2.3, used to study (quasi-)stationary noise features.

Stationary models and parametric notion of stationarity

The definitions of stationarity presented so far have been non-parametric, i.e., it did not as-
sume a model for the so called underlying data-generating process (DGP), and thus apply to
any stochastic process. In this respect, linear models are very important because, as previ-
ously stated, if the underlying DGP is stationary and Gaussian, also the resulting data will
be Gaussian, and under a suitable transformation also the stationary behaviour can be re-
covered. So, linearity can be regarded as the third most important property for stochastic
processes, after stationarity and Gaussianity.

In general stochastic process modelling can have many forms and represent different
processes. The simplest example of a non-stationary process originating from a stationary
model is that of a linear trend:

Y(t) = a · t + X(t), (2.22)

where X(t) is a stationary process. A generalised version of the previous trend to an arbi-
trary deterministic function a(t) is:

Y(t) = a(t) + X(t).

It is immediate to check that the previous models have the effect to change the mean of the
process X(t) as a time dependent function. If this is the case, and if the function a(t) is
“sufficiently simple/common”, under a suitable definition of sample averages, one can try
to reconstruct its functional form, and test the stationarity of the residual difference between
this estimate and the observed process Y(t).

Other more complex models include variance varying models (heteroscedastic), like:

Y(t) = a(t) · X(t)

and frequency varying models, like

Y(t) = X
(
a(t)

)
Further details in [213, §11].
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The previous models do not assume any form of “memory” (or just a deterministic one).
Two of the most commonly used models in literature, that include memory information, are
Auto Regressive (AR) and Moving Average (MA) models. In particular, we will make use of
the former in section 3.7.1 when studying models to infer the causality relation between two
processes. For a discrete index process, Xn, an AR(p) model of order p can be expressed as

Xn = ϕ0 +
p

∑
i=1

ϕiXn−i + εn (2.23)

where the coefficients ϕn are some (constant) parameters measuring the influence of past
values of Xn, and εn is an uncorrelated (i.e. white, in order to condense all the correlation
structure in the coefficients ϕn) stationary process (often assumed to be also Gaussian, that
is least informative among all the distribution with finite variance). The previous model is
called VAR if the process Xn is instead vector valued. In terms of the lag-operator, LXn = Xn−1,
the previous model can be rewritten as:

(
1− Lϕ1 − . . .− Lp ϕp

)
Xn := Φ[L] Xn = εn.

The part inside the parenthesis on the left is called the characteristic equation of the model.
We can find the roots of this equation, Φ[L] = 0; it can be shown that the resulting process is
weakly stationary if all of its roots lie inside the unit circle [227]. If 1 is a root of the equation
then the stochastic process is said to be a difference stationary process, or unit root process,
or integrated of order 1. This means that the process can be transformed into a weakly-
stationary process by applying to it a certain type of transformation, called differencing. Unit
root processes, and difference stationary processes generally, are interesting because they are
non-stationary processes that can be easily transformed into weakly stationary processes.
The simplest example for such a process is the following AR model:

Xn = Xn−1 + εn.

This is also true if the multiplicity of the root 1 is grater, by applying a corresponding number
of differentiations.

An MA(q) process is mathematically defined as:

Xn = εn +
q

∑
i=1

ϑiεn−i (2.24)

Contrary to the AR model, the finite MA models are always stationary. It can be shown
that any AR(p) model is invertible, that is it can always be rewritten in terms of an MA(∞)

process, whereas for an MA(q) process to be invertible, all the roots of its characteristic
equation must lie outside the unit circle.

Stationary models will be exploited in chapter 3 for the characterisation of non-stationary
noise. In particular, they will be adopted in section 3.4 for modelling the frequency evolu-
tion of “drifting lines”, in section 3.5.3 when studying regression analysis to characterise the
correlations between the detector strain signal and other sensors data, and in section 3.7.1
for modelling the causal relation between two processes.
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2.1.4 Signal detection and the matched filter technique

When searching for a GW signal, we usually adopt the additive noise model, assuming that
our detectors data, x(t), is represented by the superposition of the strain equivalent noise,
n(t), and the actual (unknown) gravitational signal, s(t):7

x(t) = n(t) + s(t) (2.25)

where the latter can be both a deterministic signal, as in the case of a CBC or a continuous-
wave signal, or a stochastic one, like n(t), as in the case of the SGWB. Moreover, it can be
a completely unmodelled signal, as in burst searches, or one for which templates exists and
are provided by IMRPhenom or SEOBNR [189, 190], for example. Although a wide variety of
pipelines exists for investigating the previous classes of signals, all have fundamentally in
common the assessment of whether the detector output is statistically different from our
model for the noise. An accurate knowledge of it is therefore fundamental for all the GW
data analysis searches, and motivates the importance of the Detector Characterisation activ-
ities.

For simplicity, in this section we will consider modelled searches only, and discuss the
problem of finding the model h(t) that best “match” the unknown signal s(t). In CBC searches,
most of the pipelines use the predictions of GR to construct the template h(t), as it is done by
the already mentioned IMRPhenom and SEOBNR waveform models. Then, h(t) is considered a
good model if the residuals of the subtraction to the data, x(t)− h(t), is consistent with our
model for the instrument noise, n(t). More formally, the likelihood that the data x(t) contains
a possible signal s(t), modelled by h(t), is given by the conditional probability that x(t)− h(t)
is a realisation of the noise model h(t) [2]. Using the vectorial “bold-face” notation for the
data records in all the detectors,

x :=
{

xnI : n = 0, . . . , N − 1 and I = H, L, V, . . .
}

(2.26)

and similarly for n and h, from (2.13), for Gaussian noise we have:

p(x|h) = 1√
det(2πK)

exp
[
− 1

2 (x− h)TK−1(x− h)
]

(2.27)

where now K is the noise covariance matrix in all the detectors, I = H, L, V, . . . (Hanford,
Livingston, Virgo, ...). Explicitly,

(x− h)TK−1(x− h) = ∑
n,m

∑
I,J
(xnI − hnI)K−1

nI,mJ(xmJ − hmJ). (2.28)

If the noise is uncorrelated between the detectors, the covariance matrix is diagonal in the
corresponding indices: KnI,mJ = δI JK I

nm. Currently, the only known potential correlated

7Notice from equation (2.25) two aspects related to the notation. From this section on, we will move the focus
from the properties of the data, thought as a stochastic process, to what we can expect for their realisations. Hence,
as stated in the Notation section, we will indicate it with lower-case letters, as customary in GW literature. Also, we
adopted a different notation for the GW signal in this equation, labelled by s(t), with respect to that in the previous
chapter, h(t). This is justified by their different meaning. In GW data analysis the actual signal is never known;
what we aim to do is to provide the representation, h(t), based on GR and the arguments provided in section 1.2
for example, that better describes it. This is indeed the main subject of this section.
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noise sources, even for detectors several thousands kilometres apart, are Schumann reso-
nances, that is low-frequency magnetic field excitations transmitting between the Earth’s
surface and the ionosphere [228, 229]. Their effects are well below today’s detector sensitivi-
ties [138], but in the not so distant future they may influence in particular SGWB searches [230].
For this reason, they are monitored by magnetometers installed at each detector site, and
some subtraction techniques have been developed, in order to mitigate their effects [231].

In addition to the above assumptions, if the noise is stationary, the covariance matrix will
depend only on the relative difference between the two times, meaning that it is diagonal in

the frequency domain: K I
mn = K I(tm, tn)

(2.11)
= RI(tm− tn), whose Fourier transform provides

the definition, according to (2.17), of the PSD of the I-th detector noise, SI( f ). This allows
to rewrite equation (2.28) in the popular form of GW literature as the noise-weighted inner
product (x− h|x− h), where:

(a|b) :=
∫ +∞

−∞

ã( f )b̃∗( f ) + ã∗( f )b̃( f )
S( f )

d f (2.29)

and the likelihood (2.27) becomes:

p(x|h) = exp
(
−1

2∑I

(
xI − hI

∣∣xI − hI
)
+
∫

log SI( f )d f
)

. (2.30)

Given the previous noise model for the (residuals of) the data, the statistical detection
problem consists into distinguishing the two hypothesis:

H0 : the “null hypothesis” of absence of a GW signal, s(t) = 0, and

H1 : the “alternative hypothesis” of a GW signal at the detector output: s(t) 6= 0

on the base of whether the detector data x are better described by the “noise only” model of
hypothesis H0, or by the presence of a GW signal, modelled by h(t). Several criteria exist to
distinguish the previous two hypothesis: Bayes’ theorem and the odds ratio [232], Von Neu-
mann minimax criterion [233], and that based on the Neyman-Pearson lemma, of maximum
detection probability at fixed false alarm rate [234]. As shown in [5], quite remarkably all of
them return the same “optimal”, in their respective sense, detection statistic. This is given
by the likelihood ratio for the detector data in the two hypothesis, or equivalently, under the
assumption of known stationary and Gaussian detector noise:

(x|h) (2.29)
=

∫ +∞

−∞

x̃( f )h̃∗( f ) + c.c.
S( f )

d f . (2.31)

This is called the matched filter detection statistic, which is basically a noise weighted corre-
lation between the detector data and the putative GW signal. Notice also that in terms of
the whitened data xw(t), whose Fourier transform is x̃( f )/

√
S( f ), the previous quantity is

obtained by means of the normalised filter h̃( f )/
√

S( f ) of the GW signal template.
In the case of an SGWB, h(t) is modelled as (a realisation of) a stochastic process, which

is the same for each detector in the network. For this reason, the previous matched filter is
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modified in such a way to match the output of the I-th detector with that of the J-th:8

(
xI
∣∣xJ
)
=
∫ +∞

−∞

x̃I( f )SI J( f )x̃∗J ( f ) + c.c.

SI( f )SJ( f )
d f (2.32)

where SI J( f ) := 〈x̃∗I ( f )x̃J( f )〉 is the cross-PSD between the two detectors data. Assuming
for I 6= J the detector noises uncorrelated, the previous quantity represents the PSD of the
gravitational signal, that is [235]:

〈x̃∗I ( f )x̃J( f )〉 = 〈h̃∗I ( f )h̃J( f )〉 = ΓI J( f )Sh( f ) (2.33)

where ΓI J( f ) is called overlap reduction function, and represents the loss of coherence between
the GW signals measured by the two detectors due to their separation and different orienta-
tion, and Sh( f ) is the PSD of the SGWB. Further details on the optimal detection techniques
for this kind of signal can be found in [230] or in the seminal articles [236, 237].

The application of the matched filter technique and the corresponding modifications to
equation (2.31) in the other case of interest, like unmodelled bursts or continuous waves,
will not be presented in this manuscript, and we refer to their description in [3, 5, 50].

As we will discuss in the next section, it can be shown that (2.31) is the optimal linear
filter for maximizing the SNR in the presence of additive stochastic noise. Also (2.32) is
traditionally derived as the statistic maximising the SNR, e.g. in [75, 235]. Moreover, the
considerations that we will make in the next section about the “non-optimal” filter apply to
it as well.

To assess detection, the previous quantities should be compared to a threshold chosen on
the base of the adopted optimality criterion, like the false alarm probability for the Neyman-
Pearson criterion, or the value of the odds ratio for the Bayesian approach. This is also
the base for parameter estimation, since the GW signal parameters θ are chosen as those that
produce the model h(t; θ) (or Sh( f ) in the case of an SGWB) that maximise the previous
quantities [3, §7.2].

2.1.5 Non-stationary noise and the “non-optimal” detection statistic

In (2.31) we have reported the expression for the “optimal” detection statistic, according to
various criteria, and under the assumption that the noise is additive, stationary and Gaus-
sian. In this section we will derive the optimality of its SNR in relation to a modified version
of it. The latter can be the result, for example, of the failure of some of the aforementioned
assumptions about the noise. For example, if the noise is not Gaussian, the likelihood (2.27)
used to derive the expression of the filter, is no more valid, and so the expression in (2.31).
Some authors have addressed the problem of deriving an alternative form of the matched
filter statistic in the case of (usually small) deviations from the Gaussian distribution of the
noise [238, 239]; e.g., Student’s t-distribution [240]. Others, have proposed to truncate the
detection statistic dropping those samples that make it not compatible with the previous
assumption [241, 242].

8We have maintained the same notation of (2.29) since, when I = J, it reduces actually to (xI |xI) in the sense of
that equation. For the formal derivation of (2.32), refer to [74] or [230].
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Following [243], in this section we will consider the case of a “non-optimal” detection
statistic arising from a wrong noise PSD, Sw( f ).9 This can be, for example, the consequence
of the inherent statistical uncertainty in the estimation of the noise PSD (more details in sec-
tion 2.1.6), or the result of non-stationarities in the data that make the standard estimation
methods no more valid. From a theoretical point of view, in the latter case we can’t even
apply the Wiener-Khinchin theorem discussed in section 2.1.2, and also the notion of a PSD
is ill-defined. As mentioned in section 2.1.3, in this case one should refer to other definitions
for the spectral content of a process, as for example evolutionary spectra or LSPs. To avoid
complications, what we usually do in GW data analysis is to divide (from a formal point of
view, at least) the detector noise in two subprocesses; a background noise, satisfying at a suf-
ficient level of approximation the hypotheses of stationarity and Gaussianity, to which there
are superimposed other noise transients. These are typically spurious excesses of power,
called glitches [38], which of course are not compatible with the assumptions of the matched
filter technique. If this is the case, and none of these glitches overlap with the signal we aim
to detect (occurrence to be faced in chapter 4), we can refer to the PSD of the background
noise in the expression of the matched filter, without any consequence but one: in practice,
we don’t know in advance its value, which should be estimated from the recorded data. This
problem will be discussed in the next section and, as we will see, the presence of glitches
usually implies a bias in the PSD estimate. On the other hand, if the non-stationarity occurs
with slower time scales, there is no clear distinction between this and the subprocess that
constitutes what we have previously called “background”, and the previous separation of
scales becomes ambiguous.

Let’s examine what are the effects that this incorrect value of the noise PSD on the
matched filter SNR. For simplicity, let us assume that the GW signal has compact support
in both time and frequency, and that the statistical properties of the (Gaussian) noise don’t
change within the duration of the signal template h(t). We can define our “wrong” PSD as:

Sw( f ) = Sc( f ) (1 + ε( f )) (2.34)

where ε( f ) is the (frequency-dependent) fraction of power that the estimate has incorrectly
taken into account. In practice, we want this quantity to be small with respect to one but, as
it is written, it can be quite general and both positive and negative.

Let us also assume to have strain data (in the frequency domain) of the form:

x̃( f ) = $h̃( f ) + ñ( f ) (2.35)

where h̃( f ) is the template waveform and $ is its SNR with respect to the “hypothetically”
known noise; if we knew its spectral content, the normalisation of the template waveform

9Looking at (2.31), another factor that could make the matched filter non-optimal is the template waveform
h̃( f ; θ). This is a function of the source parameters θ and, of course, it is not possible to grid up the parameter
space infinitely finely in order to cover exactly every possible value of them. It is important then to minimise the
systematic error associated to a non-perfectly matching template, designing a “sufficiently fine” template bank of
filters. This problem has been addressed for example in [244–246] and carefully reviewed in [3].
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would have been such that

∫ +∞

−∞

h̃( f ) h̃∗( f ) + c.c
Sc( f )

d f = 2
∫ +∞

−∞

|h̃( f )|2
Sc( f )

d f :=
∫ +∞

−∞
I( f ) d f = 1 (2.36)

as we will derive in a moment. Let us stress the fact that the previous normalisation remains
unknown as long as we have a wrong estimate of the noise PSD. Notice also that I( f ) satisfies
the conditions for being a p.d.f. (refer to the definition in section 2.1.2); this interpretation
will prove to be useful in what follows.

We can compute the normalised matched filter output with the wrong PSD estimate:

(x|h)w =
∫ +∞

−∞

x̃( f ) h̃∗( f ) + c.c.
Sw( f )

d f . (2.37)

In the absence of a signal $ = 0, the expectation value of the previous quantity is clearly
zero, and its variance can be computed as:

σ2
w =

〈∣∣(x|h)w
∣∣2〉 = 2

∫ h̃( f ) h̃∗( f )
Sw( f )2 Sc( f ) d f

= 2
∫ |h̃( f )|2

Sc( f )
1(

1 + ε( f )
)2 d f =

∫
I( f )

1(
1 + ε( f )

)2 d f . (2.38)

However, this quantity is unknown since it implicitly contains the correct value of the noise
PSD at the time of the putative signal; we can (incorrectly) estimate it as:

σ′2w = 2
∫ |h̃( f )|2

Sw( f )
d f =

∫
I( f )

1
1 + ε( f )

d f .

Instead, if a signal is present, $ 6= 0, the expectation value of the previous quantity is not
zero: 〈

(x|h)w
〉
= 2$

∫ |h̃( f )|2
Sw( f )

d f = $
∫

I( f )
1

1 + ε( f )
d f . (2.39)

Thus, if we use the previous “wrong” estimates of the noise PSD we have for the SNR of
the wrong detection statistic:

ρ2
w =

〈
(x|h)w

〉2

σ2
w

= $2

(∫
I( f ) 1

1+ε( f )d f
)2∫

I( f ) 1(
1+ε( f )

)2 d f
(2.40)

which is clearly not equal to $2, as we may have expected (except in the case ε = const.).
On the other hand, if we had the correct estimate of the noise PSD, the detection statistic

would be:

(x|h)c =
∫ +∞

−∞

x̃( f ) h̃∗( f ) + c.c.
Sc( f )

d f (2.41)

whose expectation value is

〈
(x|h)c

〉
= 2$

∫ |h̃( f )|2
Sc( f )

d f = $
∫

I( f )d f = $ (2.42)
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and variance, in the absence of a signal ($ = 0):

σ2
c =

〈∣∣(x|h)c
∣∣2〉 = 2

∫ |h̃( f )|2
Sc( f )

d f =
∫

I( f )d f = 1. (2.43)

Hence, the SNR in the correct case is, as expected:

ρ2
c = $2.

The latter relation justifies the normalisation (2.36) chosen for the template h(t).
We can then evaluate what is the loss of SNR that we have making use of the wrong PSD

estimate, by means of the ratio of the correct estimate and the wrong one:

ρ2
c

ρ2
w
=

∫
I( f ) 1(

1+ε( f )
)2 d f(∫

I( f ) 1
1+ε( f )d f

)2 . (2.44)

A couple of comments on the previous results shall follow. First of all, if ε( f ) is frequency
independent, the ratio in the previous equation is equal to one, and we have no loss of SNR
due to a “scale” misestimate of the noise PSD. This is a property of the matched filter, which
weights more those frequency components that are relatively less noisy, so it is insensitive
to global (frequency independent) rescaling of the noise level. To put it in another way, in
the language of Audio Engineering, the matched filter is most proficient to detect “colour
differences” between the noise and the signal. For the same reason, the previous quantity is
independent on the value of the theoretical SNR $. Second observation is that this ratio is
always smaller than or equal to one, implying that (2.31), with the correct noise PSD at the
denominator, is actually the optimal detection statistic that maximises the SNR. Indeed, if
we had to interpret I( f ) as the p.d.f. for the random variable f , and we define the stochastic
variable z := (1 + ε( f ))−1, the previous result can be read:

ρ2
c

ρ2
w
=
〈z2〉
〈z〉2 > 1

which is greater than, or equal to one for the positiveness of the variance of a real random
variable: Var[z] = 〈z2〉 − 〈z〉2 > 0.10 We can expand the previous result for small ε( f ):

ρ2
c

ρ2
w
=

∫
I( f )

(
1− 2ε( f ) + 3ε( f )2 +O(ε3)

)
d f

(
∫

I( f ) (1− ε( f ) + ε( f )2 +O(ε3)) d f )2

=
1− 2

∫
I( f ) ε( f ) d f + 3

∫
I( f ) ε( f )2d f +O(ε3)

(1−
∫

I( f ) ε( f ) d f +
∫

I( f ) ε( f )2d f +O(ε3))
2

=
(
1− 2

∫
Iε d f + 3

∫
Iε2d f +O(ε3)

)
×
(

1 + 2
∫

Iε d f − 2
∫

Iε2d f + 3 (
∫

Iε d f )2
+O(ε3)

)
10This can also be seen as a special case of the Cauchy-Schwarz inequality. Indeed the expectation value of a square

is always positive,
〈
(z − 〈z〉)2〉 = 〈z2〉 − 〈z〉2 > 0, and therefore 〈z2〉 > 〈z〉2, where the equality holds only for

constant (non-stochastic) z, i.e. 〈z〉 = z. In general, the larger the variations of z (or of ε( f )), the bigger the ratio
ρ2

c /ρ2
w, and the loss of SNR due to (2.34).
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= 1 +
∫

I( f ) ε( f )2d f −
(∫

I( f ) ε( f ) d f
)2

+O(ε3) > 1 (2.45)

The leading order correction to ρ2
c is then quadratic in ε( f ), and of course it does not

depend on its sign, that is whether the estimate error in the PSD is positive (less power) or
negative (more power).

As commented by the authors of [243], for a typical PSD estimate by means of the Welch’s
method (refer to the next section) on M data segments, the relative error in this estimate is
≈ 0.7M−1/2 for each frequency bin, where the constant factor is obtained from numerical
simulations and encompass the effects of the windowing and the overlap. In turn, from
(2.45), the authors quote that this implies a relative error in the estimated SNR of order
0.5M−1 (although this results clearly depends on the waveform model, through the param-
eter I( f ) and, for comparison, the shape of the noise PSD).

2.1.6 Time series analysis and spectral estimations

As noted before, except for those cases where we have prior theoretical knowledge, we usu-
ally don’t have access to the statistical structure of the stochastic process under study. What
we have is just one, or few, finite realisation(s) of it, recorded in the form of time series, which
we will assume to be evenly sampled at frequency fS: xn := x(t0 + n/ fS), with index n =

0, . . . , N − 1. The ergodic theorem, when valid, provides an important recipe for reconstruct-
ing, from these values, some properties of the process. In particular, we are usually inter-
ested in the lowest order moments, the mean and the covariance, which comprise all the
information needed to fully characterise a stationary Gaussian process. In this case, we are
assuming to know that the data under study is stationary (no dependence on the epoch t0)
and Gaussian (described by (2.13)) , with unknown parameters though. From (2.20) we can
find the estimators (“hat” symbol) for the time averaged quantities related to the process. For
example, the sample mean:

µ̂ :=
1
N

N−1

∑
n=0

xn, (2.46)

which is immediate to verify that, if considered itself a random variable of xn, is an unbiased
estimator, E[µ̂] = µ, whose variance equals:

Var[µ̂] =
1

N2

N−1

∑
n=0

N−1

∑
p=0

Cov(xn, xp) =
1
N

N

∑
l=−N

(
1− |l|

N

)
Rl

with Rl := R(l/ fS) = K(n/ fS − p/ fS, 0) = K
(

n/ fS, p/ fS) the auto-covariance sequence of the
stationary process, which therefore depends only on the “lag” l = m − p. This variance
approaches zero as N → ∞, making (2.46) a consistent estimator.

There are two definitions for the sample correlation function:

R̂′l :=
1

N − |l|
N−|l|
∑
n=1

xn+|l|xn, |l| < N (2.47)
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which is unbiased, E
[
R̂′l
]
= Rl , and consistent, but has the major drawback of being not

always positive semi-definite [6, §5.3]. This issue is avoided with the biased estimator [247,
248]:

R̂l :=
1
N

N−|l|
∑
n=1

xn+|l|xn, |l| < N. (2.48)

This is the preferred choice of estimator (refer to the discussion in [6]), especially in the
context of spectral estimations.

Spectral estimations: the periodogram and the Bartlett’s method

From equation (2.17) we know that the PSD of a stationary stochastic process is defined as
the Fourier transform of the auto-correlation function. Therefore, the most natural estimator
for the PSD is the so called periodogram [249], given by the discrete Fourier transform of the
previous auto-covariance sequence estimator:

Ŝ( fk) :=
1
fS

N

∑
l=−N

R̂le−2πik l/N (2.48)
=

1
fSN

∣∣∣∣ N−1

∑
n=0

xne−2πik n/N
∣∣∣∣2 :=

fS
N
∣∣x̃k
∣∣2, (2.49)

with discrete frequencies fk := k/T, −dN/2e 6 k 6 dN/2e.11 Therefore, the periodogram
is simply the squared modulus of the DFT of the data, normalised by fS/N = 1/T. Its
expectation value can be computed as:

E
[
Ŝk
]
=

1
fS

N

∑
l=−N

E
[
R̂l
]

e−2πi kn/N =
1
fS

N

∑
l=−N

N − |l|
N

Rle−2πi kn/N

:=
1
fS

+∞

∑
l=−∞

wB
l (N) Rl e−2πi kn/N (2.50)

where wB
l (N) is the Bartlett’s (or triangular) window of length N [250]:12

wB
l (N) =


N−|l|

N |l| < N

0 otherwise
(2.51)

The discrete-time Fourier transform of the product wB
l (N) Rl in equation (2.50) is equals,

from the Wiener-Khinchin theorem, to the convolution of their Fourier transforms, that is,
the true PSD and the so called Fejér kernel [251] (i.e. the Fourier transform of the triangular
window):13

E
[
Ŝk
]
=
∫ + fS/2

− fS/2
S( f ′)FN( f − f ′) d f ′ (2.52)

11Refer to the convention on the Discrete Fourier Transform (DFT) in the Notation section, and the cyclic symmetry
property, with respect to N, of this transform.

12This window is implicitly contained in the definition of the DFT x̃k in (2.49). This equals indeed a “truncated”
version of the discrete-time Fourier transform x̃( f ) by means of a rectangular window of length N. Being the
periodogram the square modulus of the DFT of the data, this implies the convolution of two rectangular windows,
hence a triangular or Bartlett window.

13The analogous computation for the unbiased estimator (2.47) would have led to an estimator for the PSD
with expectation value given by the convolution of S( f ) with the Dirichlet kernel DN( f ) := sin

(
2π(N +

1/2) f
)
/ sin(2π f /2). Differently from the Fejér kernel, the latter is not always positive, and so is the PSD esti-

mate [252].
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with:

FN( f ) :=
1
N

sin2(2π f N/2)
sin2(2π f /2)

.

This term implies a bias in the PSD estimate,14 dependent on the finite sample size N,
known as spectral leakage. The origin of this is clearly the “window function” (or taper)
wB

n (N), which, for the case of the periodogram, is simply the Fourier transform of the tri-
angular window. Therefore, the presence of this bias can be mitigated changing the win-
dow, that is, multiplying the data xn by another windowing function wn(N) (w̃k(N) :=

∑N−1
n=0 wn(N) exp(−2πi kn/N)), before computing the DFT (tapering); details on this proce-

dure and the window choice are thoroughly described in [250, §10.2.1].15

Another (major) problem of the periodogram estimate is that, asymptotically, the vari-
ance of the estimate is equal to the expected value squared:

Var
[
Ŝ( f )

]
≈ S( f )2, for f ∈ (− fS/2, fS/2) (2.53)

In particular this will never decrease to zero at large values of N, implying that the peri-
odogram is not a consistent estimator of the true PSD.

We will briefly discuss the modification to the periodogram PSD estimate needed to over-
come the previous issues, leading to how PSD are usually measured in GW data analysis.
The first modification to the aforementioned method is due to Bartlett [253], and consists
into dividing the whole data sample into M non-overlapping segments of N data: xn+iM

for n = 0, . . . , N − 1 and i = 1, . . . , M. Then M periodograms are computed, as in equation
(2.49), and the final Bartlett’s PSD estimate is computed as their mean:

ŜB( f ) :=
1
M

M

∑
i=1

Ŝ(i)( f ). (2.54)

In this way, it can be shown that the resulting estimator is still biased, as in (2.52), but now
its variance decreases as 1/M, making it a consistent estimator in the limit of large M.

This result masks a subtlety inherent to the averaging method. If the data are collected
for a time T and evenly sampled at a frequency fS, x(tn) = x(n/ fS) with n = 0, . . . , N − 1
and N = T · fS, the usual selection of discrete frequency values for the components x̃k is
(refer to Notation section):

fk :=
k
T

=
k fS
N

, for k = 0, . . . , N − 1.

These frequencies are unique only to k = dN/2− 1e, which corresponds to the Nyquist fre-
quency associated to the sampling fS, thus the frequencies range from fS/N to fS/2. Hence,
in the Bartlett’s method, for a fixed number of sample data N′ = N · M, computing M
averages reduces the variance of the estimate by a similar factor, but also the frequency res-
olution from N′ points to N = N′/M. This is a trade-off one should take into account when
choosing the parameters for the spectral estimation.

14Except in the case the process is white, that is the auto-correlation function is a delta: Kjk = δjk , S( f ) = const..
15As observed in [2], windowing is of primary importance in GW data analysis, since an improper application of

this method (or no windowing at all) can result in spurious phase correlations in the Fourier transform of the data;
refer to figure 4 therein.
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Data segment

Padded segment for fft
Zero

padding

discarded dataData sample overlap region

window function

Figure 2.1: Representation of the basic ideas behind the Welch’s method for PSD esti-
mation. The recorded data sample (top of the figure) is divided into windowed,
overlapping segments, which may also be zero-padded.

The previous choice of the sampling of the spectrum, in some sense, may not provide
a good representation of the continuous PSD S( f ). The zero padding technique provides an
efficient interpolation method, by means of the addition of intermediate frequencies, simply
by increasing the sample length to L > N points with the addition of zeroes before and after
the actual data [250, §14.1.3]. It is important to note however that this doesn’t provide any
improvement in the frequency resolution; it is just an interpolation at more frequencies, as
visible from the top-right frame of figure 2.2, where the padding (dashed black line) doesn’t
increase the resolution to which the 100 Hz spectral line is reconstructed with respect to the
non-padded estimate (blue). The usefulness of this method is due to the fact that the com-
putation of the discrete Fourier transform (an operation of typical complexity O(N2)) can
be significantly speed up choosing L as the “next power of two” of N, and exploiting the
increased speed of the Fast Fourier transform (fft) algorithm, which is of typical complexity
O(N log N), for example by means of the Cooley-Tukey algorithm [254]. This operation must
be done after applying any windowing function to the signal, in order to avoid the spectral
leakage due to the sharp transition between the data and the zero padding.

Welch’s method

The most popular modification [255] to the simple periodogram PSD estimate is due to
Welch [256]. This is based on the Bartlett’s method, of averaging several periodogram es-
timates, with two important improvements. Firstly, as previously noted, one can multiply
the data to an adequate window function, before computing the discrete Fourier transform,
in order to reduce the spectral leakage (and marginally the variance):

Ŝ(i)( f ) :=
1

N fS

∣∣∣∣ N−1

∑
n=0

wnx(i)n e−2πi f n
∣∣∣∣2, i = 1, . . . , M

ŜW( f ) :=
1
M

M

∑
i=1

Ŝ(i)( f ) (2.55)

where the window function is normalised such that:

1
N

N

∑
n=1

w2
n = 1.
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Figure 2.2: One-sided amplitude spectral density (ASD) of Hrec_hoft_20000Hz of June
7, 2019. The top right plot shows a zoom in of the region around 100 Hz.

Secondly, Welch proposed to use overlapping segments, by an amount that is usually taken
around 50% of the segment data. The reason for that is to rebalance the degree by which all
the samples in the various segments are weighted, in the estimation of the spectrum, for the
effect of the windowing; refer to its depiction in figure 2.1. On the other hand, the use of
overlapping segments implies correlations between them, which has the effect of increasing
the variance and, usually, making more complex the computation of quantities related to
them. The choice of the overlap is, in a certain sense, an optimization problem seeded in the
choice of the window itself, and the final result thus depends on the shape of the particular
window one aims to adopt. For the Blackman window, which is usually the preferred choice
for reducing the leakage, the optimal overlap turns out to be 67%, as a generalization of
Kaiser α-4 type windows [257]. For GW data analysis, the preferred choice is however 50%
for the reason that we will discuss momentarily, in the next section.

The key ideas behind the Welch’s method are summarised in figure 2.1. The effects of
the padding are represented in figure 2.2, where the ASD (square root of the PSD, S( f )1/2)
of Advanced Virgo strain data is estimated over 20 seconds of data, sampled at fS = 20 kHz
(4× 105 data points), averaging (39 times) 50% overlapping segments of 1 second of duration
(2 × 104 data per segment). The resulting frequency resolution is 1 Hz. The black line is
obtained zero padding the previous segments to the next power of two: 20000 → 32768 =

215 data points.
To be precise, the quantity represented in figure 2.2, over positive frequencies only, is

the so called “one-sided” ASD, whilst (the square root of) that defined in (2.17) is usually
referred to as “two-sided” (PSD). For a real signal, the latter quantity is an even function of
the frequency (R(τ) is real), so it is redundant to show both the contributions at positive and
negative frequencies. Hence, they are usually shown one-sided spectra, where the power in
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the negative frequency components is “folded” to the positive semiaxis:

S1s.( f ) = 2S2s.( f ) =
∫ +∞

0
R(τ)e−2πi f τdτ (2.56a)

=4
∫ +∞

0
R(τ) cos(2π f τ)dτ, for f > 0. (2.56b)

The two-sided spectral density is the most convenient one to use for calculations, and ba-
sically it is the only one used throughout this dissertation; we will therefore omit any sup-
script “2s.”for referring to it. Instead, the one-sided version of it is the quantity that is most
convenient to report in graphics; therefore, in fig. 2.2 and all the others, when we say they
represent the ASD or PSD, we actually mean the one-sided version of it. Moreover, the latter
is sometimes the preferred version to Electronic Engineers since it can be directly measured
by band-pass filtering(-squaring-averaging) procedures of the target signal; refer to its de-
scription in [213, §5.2.3].

Median averaged spectrum

The estimators provided by the Bartlett’s and Welch’s methods, (2.54) and (2.55), are some-
times referred to as “mean averaged” spectral estimates, for they are basically mean averages
of the squared discrete Fourier transforms (2.49), computed in the various data segments.16

In the context of GW data analysis, for the application of the matched filter technique,
we need to estimate what we have called in section 2.1.5 the background noise (i.e. the sup-
posedly dominant part of it that is stationary and Gaussian) PSD. The problem with using
the Welch’s method for power spectral estimation is that for detector noise containing sig-
nificant excursions from its background behaviour, due to glitches or even to the transient
GW signal we aim to detect, the mean used in (2.55) can significantly bias the estimate of this
PSD.17 Indeed, typical GW detector data exhibits transient power excesses at a rate of one
every 10 seconds for SNR ∼ 7 glitches,18 and at about one every 10 minutes for loud SNR
∼ 20 glitches [258].

To be more “robust” against these noise transients, the idea pioneered in [255, 259] has
been to replace the mean by a median, which, as an estimator, is less sensitive to the tail of
the distribution with respect to the central tendency. The following19

Ŝ1/2
med( f ) = b−1median

[
Ŝ(1)( f ), Ŝ(2)( f ), . . . , Ŝ(M)( f )

]1/2 (2.57)

16Notice also that, for the same reason, the corresponding estimator for the ASD, Ŝ( f )1/2 =√
fs/N

(
M−1 ∑M

i=1 |x̃(i)( f )|2
)1/2

, is often referred to as the Root Mean Square (rms) ASD estimator.
17In reality, in the analysis of a potential GW transient signal, the PSD estimation is generally done “off-source”,

that is, the stretch of data corresponding to the putative signal is gated, and the data therein not used for the estimate.
The same gating procedure is also applied in correspondence of the loudest glitches.

18In this case, due to the high rate of this kind of non-stationarities, it is sometimes preferable to describe the
detector noise, instead of a stationary Gaussian background plus transients, with a modified Gaussian distribution
with “heavier tails”, like a t-distribution, as for example in [238].

19Notice that, since the square root is a monotonically increasing function, the square root of the median is equiv-
alent to the median of the square roots of the values.
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is called median averaged ASD,20 and the factor b is a constant inserted in order to have con-
sistent estimates, in term of expectation values, between this method and the usual mean
averaged spectrum obtained with the Bartlett’s or Welch’s methods.

The normalisation factor b can be computed in the hypothesis of stationary and Gaussian
noise. If the stochastic process corresponding to the strain X(t) is Gaussian, this means that
the real and imaginary parts of its Fourier transform (Cramèr representation, to be more
precise; sec. 2.1.2), Y := <X̃( f ) and Z := =X̃( f ), are, at each frequency f , independent and
identically distributed Gaussian random variables with zero mean and variance σ2( f ).21

Ignoring, for now, the frequency dependency, this means that:

pY,Z(y, z) = pY(y) · pZ(z) =
1

2πσ2 e−
y2+z2

2σ2 . (2.58)

In the estimations of the PSD we are interested in the squared modulus of X̃( f ), |X̃( f )|2 =

Y2 + Z2 := R2. We can than perform the change of variables, expressing the previous bivari-
ate Gaussian distribution as a p.d.f. for the variable R:

pR(r; σ2) :=
d
dr

PR(r) =
d
dr

PY,Z

(√
y2 + z2 = r

)
=

d
dr

∫∫ r=
√

y2+z2

0

1
2πσ2 e−

y2+z2

2σ2 dy dz

=
d
dr

∫ 2π

0

∫ r

0

1
2πσ2 e−

r′2
2σ2 dr′ r′dφ =

d
dr

∫ r

0

r′

σ2 e−
r′2
2σ2 dr′

=
r

σ2 e−
r2

2σ2 , for r > 0. (2.59)

Some properties of this distribution are reported in Appendix B.1. The important thing to
notice here is that, under the assumptions of stationarity and Gaussianity, the noise ASD is
distributed, at each frequency, as a Rayleigh variable. Instead, the PSD is an exponential
distributed variable with scale parameter 2σ2 (R2 ≡ S ∼ exp(−s/β)/β, β = 2σ2), also
equivalent to a Gamma distribution with shape parameter k = 1 and scale parameter θ = 2σ2;
further details in Appendix B.2. This property will be useful later.

Then, for non-overlapping segments of data, the rms ASD estimator (square root of (2.55))
provides an estimate of the rms of a Rayleigh distributed variable, while the median estima-
tor (2.57) gives an estimate of its median. It can be shown that the expectation value of the
first quantity, at each frequency, converges to the distribution rms

√
2σ while the latter con-

verges to the distribution median (log 4)1/2σ, for M → ∞. Thus, asymptotically, the bias in
the median ASD estimate is b∞ = (log 2)1/2.

This is not exact for a finite number of averages (M < ∞) and if the segments are over-
lapping, since adjacent data segments will not have N data out of which to obtain M inde-
pendent estimates of the ASD. In [255, §B] the authors discuss the value of this bias for finite
values of M, for non-overlapping segments, obtained from the analytical expressions of the

20It will be clear momentarily the reason why it is preferred to work with the ASD.
21Notice that the multiplication by a windowing function doesn’t usually change this property. Notice also the

for this section we have temporarily recovered the upper- lower-case distinction between random variables and the
values assumed by their realisations.
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Figure 2.3: Spectrogram representing the ASD of 600 seconds of Advanced Virgo strain
data. Notice at 02:06:10 UTC a vertical line representing a loud glitch in the data.

biasses in the expectation values of the estimates (2.54) and (2.57) [260]:

b(M) =


(

∑M−1
i=0

(−1)m

m−1

)1/2
for M odd

b(M− 1) for M even
(2.60)

As regards the overlap, in the case this is6 50%, in [255] the authors suggest to compute two
median spectra (2.57), one containing the “odd” i’s, corresponding to Mod non-overlapping
segments, and the other with the Mev non-overlapping “even” i’s. These are multiplied by
the corresponding (finite M) bias factors, and their quadrature sum weighted by the number
of segments in each of them:

Ŝ1/2
mm( f ) :=

(
ModŜod

med( f ) + MevŜev
med( f )

M

)1/2

. (2.61)

This is known as mean-median averaged ASD estimate, and it is currently the preferred ap-
proach implemented in many GW data analysis pipelines.

To understand the difference between the standard Welch’s method and the mean-median
averaged ASD, in figure 2.3 we reported the spectrogram of 600 seconds of Advanced Virgo
data. This corresponds to a time-frequency map where at every time bin is shown (ver-
tical axis) the ASD computed over the corresponding bin of data. The third dimension
(colormap), represent the intensity of the ASD in the particular time-frequency bin. Spec-
trograms are in many circumstances the most immediate method to spot variations in the
spectrum of a certain signal. For example, in this figure is visible a sharp vertical line, on the
right-hand side of the map, at about 02:06:10 UTC. This is a quite loud glitch, not that infre-
quent over similar data lengths; many other fainter glitches are likely to be present in this
data, although not evident from the spectrogram. Overall, the background noise appears
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quite uniform, horizontally, during the entire stretch of data. In figure 2.4 the ASD is esti-
mated for the first 300 seconds of figure 2.3 (no glitch), fig. 2.4a, and for the last 300 seconds,
fig. 2.4b, where the glitch is present, using the the two methods described: Welch’s method
(solid blue line) and mean-median average (dashed black). In the plots on the bottom, the
relative differences between the two estimates are reported. It is clearly visible their differ-
ence when the glitch is present. Also, the mean-median spectrum is almost left unchanged
by the presence of the glitch, showing the robustness of this method against transients.

Let’s comment this result. The mean-median averaged method, being robust against
noise transients, is able to provide a more trustworthy estimate of the background noise than
the standard Welch’s method. Hence, its application should be preferred for the matched
filter technique. This however doesn’t imply that this estimate comes without any potential
bias or systematic error with respect to the “true” background noise PSD. Moreover, if the
non-stationarites are slower, or the glitches occur at an high rate, the median is altered as
well, and in general it can’t be identified any stationary background noise. Also, it is not
unlikely, especially with the improved sensitivities of the advanced detectors, that some
GW event occurs in the vicinity of a glitch/non-stationarity, as we will face in chapter 4.

What we have described here is a first technique for the mitigation of non-stationary
noise effects in GW data analysis. The next chapter will be entirely devoted to other strate-
gies aimed at this fundamental task.

2.2 Noise sources in GW detectors

As we derived for a simple Michelson interferometer, noise is everything at the detector
output that can affect equation (1.59) but that is not of astrophysical origin. In section 1.3.1,
we already started a classification of it on the base of how it can affect this equation and
the assumptions on the base this was derived. We called displacement noise everything that
can alter the position of the test masses, modifying for example Lx,y, and phase (or timing)
noise what affects the phase of the light during its propagation between them. As we will
discuss in this section, many noise sources can enter in the former class, producing a residual
movement (after the suspension mechanisms and the corresponding filters) on the optical
benches and the test masses. Some sources for the latter are instead: the scattering with
the residual gas that makes the propagation of light not actually in a vacuum, the quantum
vacuum fluctuations (briefly touched when talking about squeezing in section 1.3.2), and
the light back scattering. Moreover, related to the readout principle, we discussed about
the measurement noise relative to the fluctuating number of photons arriving at the detection
photodiode (shot noise).

This section contains further details about noise sources in ground based interferometric
detectors, particularly focussed on their origin. Part of the material presented here is taken
from the Advanced detectors technical design reports [7, 12] and from some “standard”
textbooks on the subject, like [95, 173, 261].
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2.2.1 Noise origins and general classification

In “order of relevance” for the actual detector performances, the noise sources that limit the
detector sensitivity can be classified on the base of their origin as [28]:

• Fundamental noises, arising from the physical limitation of the detection principle, as
outlined in section1.3.2, and its implementation. They are for example the shot noise
(1.61), due to the quantum nature of light, or the thermal noise, from the vibrational
motion of the various detector components related to their temperature, or the residual
seismic noise, from the ground vibrations, not completely filtered out by the suspension
systems. These are typically stationary, and their effects can be conveniently repre-
sented in the frequency domain. This is reported by the continuous lines in figure 2.5.
As anticipated, in this domain most of them have a very distinguishable signature (or
color), hence the convenience of this representation.

• Technical noises, coming from the actual implementation of the detector with compo-
nents that are not optimal or that have imperfections that prevent them to work by
design. Examples are the residual gas present in the optical cavities where the laser
beams circulate, or the electrical and mechanical resonances due to the excitations of
some components; the latter are responsible of some of the sharp spectral lines in fig-
ure 2.3 [262]. Moreover, this class also includes control noise, which is reintroduced in
the system by the feedback control loops used to maintain the correct operating point
of the various parts of the detector, as a consequence of non-optimal control filters or
to the unavoidably noisy error signals or actuators. Most of the contributions of this
family of noise (at least the stationary ones, representable by a PSD) is modelled by the
dashed lines in figure 2.5.

• Environmental noise, in a sense, comprises all the causes of noise that are not included
in the previous categories. Usually these are originated from the outside of the de-
tector, and can affect several systems and sensors through different kind of couplings.
In building the detector infrastructures, state-of-the-art hardware has been adopted to
insulate the instrument from the local environment, but nothing is perfect and part
of these disturbances are transmitted to the strain signal measured by the detectors.
Some examples are acoustic and seismic vibrations and electro-magnetic fields, poten-
tially of anthropogenic origin (people on site, traffic, airplanes) or weather conditions
(wind, thunderstorms, sea-storms). In general their effects may change over the time,
producing non-stationary noise, and they are not depicted in figure 2.5.

The superposition of all the previous noise sources is called noise budget. Of course, this
is just a simplistic classification scheme; some ambiguity are possible and, most importantly,
these classes are interconnected. An example is the sea and wind activity (environmental),
which influences the ground motion vibration (seismic noise), and in turn can excite one of
the characteristic resonance frequencies of some component of the apparatus.

Relevant for the statistical description provided in the previous section, and most impor-
tantly for the matched filter data analysis technique, is the fact that most of the contributions
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Figure 2.5: Reference design sensitivity (solid black line), including all of the funda-
mental sources of noise, and the expected noise budget for Advanced Virgo (dashed
black line). The reference values are for the Dual Recycling configuration (PR+SR)
with 125 W of laser input power. Figure readapted from [12].

from the previous noises can be modelled as a stationary and Gaussian process. This consti-
tutes the “background noise” we have talked about, for which it make sense a representation
in terms of PSD, and guarantees the validity of the matched filter technique.

The stationarity of the fundamental and (part of) the technical noises is motivated by the
fact that, if the detector working point is not altered, by purpose for some realignment and
calibration procedures or by some (usually slow) accidental drifts, these are expected to be
fixed and under control.22 This is generally not true for environmental noise, which usually
varies with different time scales.

The Gaussianity of the noise is usually invoked as a consequence of the central limit theo-
rem [263]. If the number of individual contributions that compose a particular noise source,
like the components thermal vibrations, is large, and there are no dominant contributions
among them, or, to be more precise, the variances and cross-correlations of each single con-
tribution are small compared with the total variance, then the so called Lyapunov’s conditions
for this theorem are satisfied and we can indeed describe this noise as Gaussian. This is also
true for shot noise; although this is inherently a Poissonian process, the number of photons
is typically so high that the distribution of their number is practically indistinguishable from
a Gaussian.23 However, part of the technical noises, most noticeably the resonances of some
components or some not-perfectly filtered calibration lines, are excluded from this criterion
and their noises are likely to be non-Gaussian.

To have an idea of how different is the “noise budget” taking into account only the fun-
damental noises with respect to the actual one (in reality, limited to the differences in the
PSD only) refer to figure 1.6, and compare the measured sensitivity curves during the first

22Instrument malfunctions are a counterexample of technical noises that may manifest in a non-stationary man-
ner, as for example as glitches.

23The typical intensities of the grey fringe beam at the detection photodiode are of the order of some mW, and,
from (1.61), the corresponding number of photons per unit time is: NPhotons/T = PλL/h ∼ 1030 s−1, for λL ' 1064
nm.
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three observing runs and the projections for those of the next runs. In the latter, only the
fundamental noises are taken into account. Besides a vertical offset, there are significant
differences, mostly represented by “sharp” spectral lines and some broader noise features
like“bumps”; a close-up example of them is visible in figure 2.7. The former represent quasi-
periodic contributions to the noise. These are usually originating from the resonant excita-
tions of the components of the apparatus, like the “wires” of the superattenuators and other
mechanical parts, or from the coupling with a periodic signal, such as the 50 Hz power
line or a cooling fan generating acoustic and magnetic noise with a frequency related to its
angular speed [22]. Some of these line structures may originate from non-linear coupling
mechanisms between two (or more) noise sources individually characterised by some sharp
spectral features. The latter usually manifest in the form of “sidebands” of a central line, and
they are visible in particular around the 50 Hz main line and its harmonic at 150 Hz. Other
non-linear mechanisms may be at the origin of the bumps in the vicinity of the spectral lines,
as in the case of the 50 Hz line. Others are manifestations of non-stationarities, like scattered
light [264].

2.2.2 Fundamental noise sources and sensitivity

The most of the contributions to the detector sensitivity come from the fundamental noises.
Looking at figure 2.5, the main one at low frequency is due to the seismic noise, characterised
by the steep descent of the noise ASD. At high frequency, instead, the noise is dominated
by the shot noise and the linear behaviour in f , characteristic of the Fabry-Pérot arm cavity;
refer to note 21. In the centre part, many effects overlap, most noticeably those due to coating
thermal noise. Relevant are also the “sharp”, high amplitude noise features, called spectral
lines, at 50 Hz and at about 400 Hz. The former correspond to the frequency of the AC main
power (60 Hz for LIGO detectors), while the latter correspond to the main vibrational of
the mirror suspensions, called violin mode. In practice, also the harmonics of the previous
spectral lines are visible in the detector sensitivity; see for example figures 1.6 or 2.5, and
refer to [262] for a detailed analysis of them.

In this section we will provide some further details on the sources that produce it.

The standard quantum limit

Quantum noise is a consequence of the quantum nature of light used as the “sensing ruler”
in the interferometric detectors. It comprises the shot noise (dominant at high frequencies)
and the radiation pressure (dominant at low frequencies). We have already accounted for the
former, deriving its characteristic amplitude and frequency dependence; refer to note 21.

The latter is the consequence of the force that the photons exert on the test masses, which,
arriving at not equally spaced times, cause a fluctuating displacement of the mirrors. Con-
trarily to the shot noise, this effect is more important when the power increases since the
force is larger as well. Its behaviour depends on the frequency as 1/ f 2, which is the reason
why it is more important at low frequencies.

The effects of shot noise and radiation pressure are depicted in figure 2.6, and their com-
bined effect is called the standard quantum limit.
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Figure 2.6: Depiction of the radiation pressure and shot noise. Picture adapted from [95,
Fig. 11.2].

The impact of radiation pressure can be reduced increasing the mass of the mirrors, as
it was done in the upgrades between the first generation of detectors and the Advanced
ones [95]. For mitigating the effects of shot noise at high frequency, we have already de-
scribed the injection of squeezed light with smaller phase uncertainty with respect to the
normal vacuum [162, 163]. For the future, it is planned to make use of frequency dependent
squeezing in order to jointly reduce both of these effects [164, 165].

Seismic noise

Seismic noise is a consequence of the fact that our detectors are not in free fall but lie on
ground, and hence they are subject to its motion. At frequencies around 0.1 Hz (microseismic
peak) this is generated by the sea activity [265] (and the wind), whilst at frequencies of ∼ 1
Hz this is mostly of anthropogenic origin [266].

This has a significant impact on the interferometer performance, and if it is not atten-
uated, it would dominate the sensitivity at low frequencies. To this purpose, in Virgo test
masses are suspended to seven stages of inverted pendulums called superattenuators. A pen-
dulum acts as a passive filter, attenuating the noise above its resonance frequency f0 as
( f0/ f )2. In a LIGO a similar solution is obtained with four pendulums stages, plus some
active control electronics.

The effect of these devices is to attenuate seismic noise at frequencies above 10 Hz to a
level sufficient for the required sensitivities.

Newtonian

In the low frequency regime (< 10 Hz), density perturbations caused by a variation of the
mass distribution induced by seismic waves in the ground and density fluctuations in the
atmosphere, give rise to direct Newtonian couplings to the test masses of the interferom-
eter [267]. This constitutes a “hard limit” to the low frequency sensitivity of detectors, as
the gravitational field from these perturbations cannot be shielded. Nonetheless, some ad-
vanced subtraction techniques are under study to mitigate its effects by means of an array
of auxiliary gravity sensors [268, 269].
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Thermal noise

Thermal noise is a consequence of the vibrations of the atoms that constitute a system, as
an effect of their temperature. This is described by the fluctuation-dissipation theorem [270],
and its effect is visible in the “noise floor” of figure 2.5, from the coating Brownian noise,
but it can also excite resonance modes of the mirrors and their suspensions, giving rise to
spectral lines, with an energy proportional to the temperature of the system. As regards the
former, the coating noise is distributed over the mirror surface where impinges the laser; by
increasing the beam size, the noise vibrations can be mitigated averaging their value. This
strategy has been adopted for the Advanced detectors, changing the geometry of the beams
in the resonance cavities.

Another mitigation strategy is that implemented by KAGRA taking the test masses at
cryogenic temperatures [271]. Moreover, for the same purpose, in the past new designs for
the coating layers have been studied by means of genetic algorithms [272].

2.3 Stationary noise

In section 2.2.1, when we characterised the various sources of noise on the base of their
origin, we have claimed that the fundamental noises, which are typically the best under-
stood ones, can be considered stationary. Nonetheless, control noises, and the most of the
technical noises in general, are essentially constant over “long enough” periods of time.24

Under this assumption (to be checked, of course; refer to section 3.1), we know from the
Wiener-Khinchin theorem discussed in section 2.1.2, that the corresponding processes can
be conveniently described in the frequency domain, by means of their PSDs.

In this section we will firstly describe the impact of particular noise features, like spectral
lines etc., on various search pipelines. Then we will present some of the techniques used
for studying this noise. In general we will limit to study the second order moments only,
that is the PSD, except in section 2.3.4, where we will describe some “higher order” spectral
techniques.

2.3.1 Effects of stationary spectral noise on search pipelines

Regions in the sensitivity curve with high noise power, typically corresponding to spectral
lines and other related structures, can affect searches for long duration signals, like continu-
ous waves and SGWB. For the former, if the nearly monochromatic GW signal has character-
istic frequency close to that of a spectral line, once reported to the Solar System barycentre
and corrected for the Doppler shift from the motion of the Earth, this line can overlap with
the putative signal. This causes periods of data where the corresponding search is almost
blind to any underlying GW signal. The same effect is present in both targeted searches and
in all-sky surveys.

Searches for SGWB look for correlated excess power in the signals from pairs of detectors;
refer to eq. (2.32). Regions corresponding to spectral lines are set to zero in that equation in

24We will clarify momentarily what we mean here with the statement “long enough”. Basically, it refers to the
fact that some spectral analysis techniques can be used for such intervals of time.
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order to avoid systematic errors in correspondence of lines that are typically non-Gaussian,
and also because the coherence between the spectral components of the putative signals
in the two detectors is usually negligible with respect to such high power regions. This
reduces the search sensitivity by a factor equals to the fraction of frequency bins that have
been removed, or “notched”, from the analysis for this reason.

For both CW and SGWB searches, the lists of known spectral lines and instrumental arte-
facts are created during the commissioning phases that precedes the observing run, and
updated constantly. In Virgo, the analysis tool NoEMi has been developed for this pur-
pose [273], and currently maintained by G. Hamming and O.J. Piccinni. Then, depending
on the search, these lists are used to: 1) clean the data before performing the analysis, by
removing the frequency bands corresponding to spectral artefacts, and interpolating them
with Gaussian noise measured in the nearby frequency bins; 2) notch these frequencies, com-
pletely removing them from the analyses that are impacted by them; or 3) reject outliers that
are clearly caused by the detector artefacts. These “countermeasures” are used to make the
analysis pipelines to concentrate the computational resources only on regions of parameter
space that are not degraded by those spectral features. If any of these searches returns a
signal candidate which does not coincide with any known artefact, more detailed investiga-
tions are needed in order to trustworthy exclude the possible presence of other effects due
to noise [262].

2.3.2 Investigation of stationary noise

Differently from fundamental noises, the contributions to the detector sensitivity of tech-
nical noises can, in some cases, be mitigated by means of specific hardware interventions
(substitution of a noisy component or adjustments on the control loops) or with some re-
fined software strategies [274, 275]. To this purpose, it is important to proceed first to their
statistical characterisation, including the investigation of their potential causes.

Even before that, the “vulnerability” of the various parts that compose the detector are
tested against known noise solicitations. This operation is called noise injection, and the anal-
ysis of its consequence on the detector is referred to as linear noise projection [276, LVC7].

When noise injection are not feasible or previous knowledge about the origin of the noise
is not available, one may usually want to make a comprehensive search of the noise sources
over the very large variety of sensor channels, typically O(10k) or even O(100k) [22, 23],
that continuously monitor the status of the detector. The idea is that some of these channels
may witness the noisy behaviour of the detector, as manifest in its ASD, and consequently
on the BNS range, as described in section 1.3.3. This approach is usually referred to as
“brute force” and can lead to significant discoveries and insight about what’s going on in
the detector. We will also make use of this in section 3.5, when describing characterisation
strategies for non-stationary noise.
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2.3.3 Coherence analysis

In studying the relations between different detector signals, each modelled as a stochastic
process, we will extend part of the notions already discussed in section 2.1.2. We start con-
sidering two stationary random processes x(t) and y(t). For the purpose of this section, it
will be sufficient if they are just wide-sense (or covariance) stationary. In this case, since
their means are constants (2.10), without loss of generality we can assume both to be zero:
E[x] = E[y] = 0. We can define the following correlation functions:

Rx(τ) = E [x(t) x(t + τ)] (2.62a)

Ry(τ) = E [y(t) y(t + τ)] (2.62b)

Rxy(τ) = E [x(t)y(t + τ)] (2.62c)

where the first two quantities are the auto-correlation functions already introduced in (2.11),
while the latter is the cross-correlation function between the two processes. Now it is necessary
to add the labels to declare which stochastic process the various quantities are referred to.

From the stationarity hypothesis, it follows that the auto-correlation functions are even
functions of τ, while the cross-correlation function is neither odd nor even, but satisfies the
relation

Rxy(τ) = Ryx(−τ). (2.63)

If the previous quantities are absolutely integrable, namely,

∫ +∞

−∞
|R(τ)| dτ < ∞

which will be always true for finite length records, we can define the spectral density functions:

Sx( f ) =
∫ +∞

−∞
Rx(τ)e−2πi τ f dτ (2.64a)

Sy( f ) =
∫ +∞

−∞
Ry(τ)e−2πi τ f dτ (2.64b)

Sxy( f ) =
∫ +∞

−∞
Rxy(τ)e−2πi τ f dτ (2.64c)

From the symmetry properties of stationary correlation functions it follows that:

Sx(− f ) = S∗x( f ) = Sx( f ) (2.65a)

Sy(− f ) = S∗y( f ) = Sy( f ) (2.65b)

Sxy(− f ) = S∗xy( f ) = Syx( f ) (2.65c)

thus the auto-spectral density functions Sxx( f ) and Syy( f ) are positive definite, real-valued
even functions of the frequency, while the cross-spectral density function Sxy( f ) is a complex-
valued function of f .
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We can separate real and imaginary part of Sxy( f ):

Sxy( f ) =
∫ +∞

−∞
Rxy(τ)e−2πi f τdτ = Cxy( f )− iQxy( f ) (2.66)

where Cxy( f ) is called the coincident spectral density function, or co-spectrum, and Qxy( f )
is called the quadrature spectral density function, or quad-spectrum. Both functions are real-
valued, the former being even while the latter odd function of f .25 We will make use of
this complex representation shortly; let’s consider firstly the information provided by its
amplitude.

Magnitude squared coherence

From the previous quantities, we can define the magnitude squared coherence (often simply
called coherence) [277]:

C2
xy( f ) =

∣∣Sxy( f )
∣∣2

Sx( f ) · Sy( f )
(2.67)

which is a measure of the amount of overlap in the spectral structures of the processes x(t)
and y(t) [213].

As a consequence of the Cauchy-Schwarz inequality between the correlation functions
(2.62), and hence between the spectral density functions (2.64), it follows immediately that
0 6 C2

xy( f ) 6 1 for all f . Moreover, as in the case of ordinary correlation coefficient, the
closest the previous quantity to 1, the more linearly related are the components at frequency
f of the two signals. This claim will be motivated with the following example.

A remarkable property of the previous quantity is that it is left unchanged if we make
linear transformations of the two processes. Indeed, if the signal y(t) is just a “transformed
version” of x(t), obtained for example via a linear time-invariant filter of impulse response
function g(t),

y(t) = (g ∗ x) (t) :=
∫ +∞

−∞
g(τ) x(t− τ) dτ, (2.68)

it can be shown that their auto- and cross-correlation functions are

Ry(t) = g(t) ∗ Rx(t) ∗ g∗(−t), and Rxy(t) = (g ∗ Rx) (t)

and their power spectral densities, obtained from the property of the convolution product
under Fourier transform, are:

Sy( f ) = |g̃( f )|2 Sx( f ), and Sxy( f ) = g̃∗( f ) · Sx( f ).

Substituting the previous result into (2.67) we obtain that the coherence of these signals is
equal to one: C2

xy( f ) = 1.
In practice it is unlikely to find two channels that are linked by a simple linear transfor-

mation as the one in equation (2.68). Usually we may expect some more complex relation

25From their definition, we can notice that Cxy = |Sxy| cos(2π f τ) and Qxy = |Sxy| sin(2π f τ), hence they repre-
sent the in-phase and out-of-phase contributions to the total cross-spectral density.
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between x(t) and y(t). For example, we can consider the simple additive noise model:

y(t) = (g ∗ x) (t) + z(t), (2.69)

where z(t) is a further source of (stationary) noise, which we will assume for simplicity to
be uncorrelated with both x(t) and y(t); the correlated case will be considered momentarily.
Repeating the previous computation we find that the coherence of the two signals y(t) and
x(t) is now:

C2
xy( f ) = 1− Sz( f )

Sx( f ) + Sz( f )
(2.70)

which shows a reduction in its value proportional to the ratio of the PSDs of the signal and
the additional noise (that is, the spectral SNR), making it harder, in practice, to uncover the
underlying relation (2.69) between the two signals y(t) and x(t).

In the practice of noise investigations, the quantities entering equation (2.67) are esti-
mated, typically by means of the Welch’s method described in section 2.1.6.

For investigating this kind of noise it has been developed for Virgo and LIGO by G. Va-
jente the analysis tool named Bruco, which computes the “brute force” coherence of a tar-
get channel (e.g. the strain signal) and a large set, O(1000), of auxiliary channels over time
slices of some hundreds of seconds [LVC2, LVC8]. Then, in each frequency bin, the highest
value of the coherence among all the auxiliary channels is selected, and the resulting curve
constitutes a measure of the so-called “explained spectral content” of the target signal. A
modification to this algorithm to take into account, simultaneously, the contributions from
all the auxiliary channels, providing the total explained spectral content of the target, has been
developed by the author, and will be discussed in the next section.

The noise characterisation method provided by coherence analyses has proven to be the
reference technique for studying stationary noise, or, for example, for comparing the ex-
plained noise PSD in two different epochs (although in each of them the noise is assumed
to be stationary for the whole time of the analysis); if new noise structures appear in one
epoch or the other, it is interesting to understand what may have caused this change. This
technique is also one of the checks produced in the Data Quality Report (DQR), when one
candidate GW event is observed. If the coherence budget during the time of the putative
event is different from what it used to be, this may be the manifestation of some unexpected
noise contamination, and further analysis are demanded.

In the context of the aforementioned noise injections, a known signal, which should em-
ulate a possible noise source, is used to excite a system, not necessarily the detector output.
From its response, if a linear coupling between the injected signal and the output of the
system is present, an estimation of the coherence and of the transfer function between the
input and output signal is representative of the sensitivity of the system under study to that
particular potential disturb.

Multiple-coherence

For the cases in which we want to study the linear spectral relations of one target signal,
say y(t), with a set of p auxiliary channels X(t) := {x1(t), . . . , xp(t)}, we can extend (2.67)
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introducing the multiple (magnitude squared) coherence [278]:

C2
Xy( f ) :=

S†
Xy( f ) S−1

XX( f ) SXy( f )

Sy( f )
(2.71)

where SXy( f ) :=
(
Sx1y( f ), . . . , Sxpy( f )

)T is the p-dimensional cross-spectral density vector
between the xi’s auxiliary channels and the target y(t), and, analogously, SXX( f ) is the p-
by-p matrix the cross-spectral densities. The “dagger” symbol, “†”, means the transpose
conjugate of the corresponding complex vector or matrix.

To estimate the unique contribution of the k-th channel alone to the previous equation,
we can define the k-th partial coherence as:

C(k) 2
Xy ( f ) :=

C2
Xy( f )− C2

Xky( f )

1− C2
Xky( f )

=
RXky( f )− RXy( f )

RXky( f )
(2.72)

where C2
Xky( f ) is the multiple coherence (2.71) computed from all the channels in X but the k-

th, and RXky( f ) := 1− C2
Xky( f ) is the corresponding residual, or unexplained spectral content

of y(t) at frequency f . With the previous normalisation, it is immediate to show that this
quantity is bounded by 0 and 1: 0 6 C(k) 2

Xy ( f ) 6 1, where the former limit corresponds to a
null contribution, either because xk(t) and y(t) are uncorrelated or because its contribution is
already completely encoded in C2

Xky( f ), and the latter to a zero residual after the inclusion of
xk(t) (which however doesn’t account for the total contribution of it but only to the original
part).

Of course, the previous equations make sense as long as SXX( f ) is invertible. If this is
not the case, mathematically this means that the individual spectral contributions from the
various channels can’t be separated. In practical situations, when working with the estima-
tors for the previous quantities, it is also important that ŜXX( f ) is not ill-conditioned. Further
details will be discussed in section 3.5.3, when we will introduce the multiple linear regres-
sion technique. In practice, to avoid this issue we must select in advance auxiliary channels
that are not coherent. An alternative to this could be represented by a principal component
decomposition, as we will describe in the next chapter.

Unfortunately, signals with very similar spectral contents are quite common among all of
those that typically monitor the detector, which makes this technique not suitable for “brute
force” searches (unless the aforementioned decomposition in uncorrelated components is
preposed to the analysis). This constitute a limit with respect to the more immediate simple
coherence analysis implemented by Bruco. Moreover, the increased knowledge we can ob-
tain with the latter extended analysis has proven to be no worth the significant augment of
computational cost.

This technique has been used by the author to investigate the “rich” spectral structure
in correspondence of the 150 Hz resonance in the spectrum of Advanced Virgo [LVC9]. In
figure 2.7, the ASD of the LSC_DARM channel (y(t)) is shown in correspondence of this it.
Besides the main sharp line, there are clearly visible another line at lower frequency and a
“bump” centred at 158 Hz. We tried to investigate the relations of this with a selected set
of auxiliary channels (X(t)) taken from the environmental sensors (ENV_) and the angular
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Figure 2.7: Example of some spectral features in the Virgo LSC_DARM channel. From left
to right, they are visible a sharp spectral line at 138 Hz, a strong harmonic line of the
main AC power at 150 Hz, surrounded by at least two pairs of sidebands (±.5 and
±1.3 Hz), and a wide bump centred at 158 Hz. The red line represents the values
> 50% of the explained multiple coherence (2.71) with a set of auxiliary channel.

control sensors (ASC_) of the mirror suspensions. Values of the multiple coherence higher
than 50% are represented by the continuous red line, equals to CXy( f ) ·

√
Sy( f ). The vertical

distance between the two curves is what we have called the (square root of the) unexplained
spectral spectral content of the LSC_DARM signal with the described model: RXy( f ).

This linear technique was unable to explain the sidebands of the 150 Hz harmonic line,
which are likely due to a non-linear coupling of the signal responsible to the central line (the
mains current channel) with something else. We will discuss the analysis technique suitable
for this case in section 2.3.4.

Complex coherence and phase angle spectrum

Usually, only the amplitude (or squared magnitude) of the coherence is used to characterise
the relations between signals. Since it is a complex valued variable, like the cross-spectral
density Sxy( f ), further insight can be obtained studying its phase value, as we are about to
describe.

The complex valued cross-spectral density function (2.64c) can be represented in complex
polar notation as:

Sxy( f ) =
∣∣Sxy( f )

∣∣ e−iθxy( f ) (2.73a)
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where the absolute value (magnitude) and phase angle are determined, at each frequency, by

∣∣Sxy( f )
∣∣ = √C2

xy( f ) +Q2
xy( f ) (2.73b)

θxy( f ) = tan−1 Qxy( f )
Cxy( f )

(2.73c)

The signs of Cxy( f ) and Qxy( f ), and therefore the quadrant of the value of θxy( f ), deter-
mines at each frequency f whether y(t) “leads” x(t) or vice versa [213]. We will clarify this
statement immediately with an example.

Let us consider the simplest case of a signal y(t) leading a second one x(t), which is just
a retarded copy of the former, plus some uncorrelated noise:

y(t) = x(t− τ0) + n(t), 〈x(t) n(t′)〉 = 0

with τ0 > 0 their relative delay. This implies that:

Sxy( f ) =
∫ +∞

−∞
Rxy(τ)e−2πi f τdτ =

∫ +∞

−∞
〈x(t)y(t + τ)〉 e−2πi f τdτ

=
∫ +∞

−∞
〈x(t− τ0)y(t + τ − τ0)〉 e−2πi f τdτ

=
∫ +∞

−∞
(〈y(t)y(t + τ − τ0)〉 − 〈n(t)y(t + τ − τ0)〉) e−2πi f τdτ

=
∫ +∞

−∞
(〈y(t)y(t + τ)〉 − 〈n(t)n(t + τ)〉) e−2πi f (τ+τ0)dτ

=
(
Sy( f )− Sn( f )

)
e−2πi f τ0 = Sx( f ) e−2πi f τ0 (2.74)

and therefore, from (2.73), the phase angle spectrum is θxy( f ) = 2π f τ0, which is a linear
function of f , proportional to the delay between the two processes.

Normalising by the square root of the two signals PSDs, we obtain the complex coherence:

Cxy( f ) =
(

1− Sn( f )
Sx( f ) + Sn( f )

)1/2

e−2πi f τ0 ,

which improves on (2.70) for the presence of the phase information.
The causal direction is estimate to go from y(t) to x(t) if τ0 > 0 (opposite relation if nega-

tive). The notion of “causality” will be thoroughly discussed in the next chapter, as well as
the application of this concept to the study of noise.

Of course, this example has little practical relevance, since it is usually not very inter-
esting to study two stationary signals that are simply shifted copies of one another. If they
even exist, they are usually already known to have such property. This however constitutes
the base for a technique that we have developed to infer both short-time correlation and co-
herence, in a time-frequency representation of the signals, and their causal relation. Further
details about this will be presented in section 3.6.2.
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2.3.4 Non-linear noise

In the coherence method described so far, only linear relations between signals are taken into
account. However, as visible from figure 2.7, some peculiar structures are present in GW
detectors data as consequences of non-linear couplings between different noise processes.
In this case, these structures constitute the two pairs of sidebands around the 150 Hz har-
monic line, which are not explained by means of the linear coherence method of section 2.3.3.
In general, a large variety of possible manifestations of non-linear couplings exists, whose
shapes are quite not obvious a priori. The simplest, and best understood, example of this
kind of noise is bi-linear noise, generated by the coupling of two noise sources that jointly af-
fect a third signal. Usually this kind of noise is sub-dominant with respect to the linear one,
which, however, in many circumstances is subtracted, making the non-linear one to stand
out. Moreover, in the presence of strong spectral lines, the linear approximation is just not
sufficient. In GW detectors, the main cause of bi-linear noise is due to the upconversion of the
low frequency seismic noise, influencing for example the mirrors angular controls, which
couples with some narrow-band noise processes, like power lines, calibration lines, violin
modes and other narrow-band features in the noise spectrum [22, 274]. We will report here
the theory and an example of investigation of this kind of noise.

Let’s consider, for simplicity, the multiplicative mixing model of a narrow-band noise,
manifesting approximatively as a spectral line of “carrier frequency” f0, represented by
e2πi f0t, and a generic second noise X(t).26 Their relative phase is unknown, and we can
model it as a random variable: Θ ∈ [0, 2π). Once the experiment has been preformed, and
the realisation randomly drown, the value of this phase becomes constant over time. If X(t)
is a wide sense stationary process, than also the multiplicative process:

Y(t) := X(t)e2πi f0t+iΘ (2.75)

is (wide sense) stationary.27 Its auto-correlation function becomes:

RY(τ) =
〈

X(t)e2πi f0t+iΘ X(t + τ)e−2πi f0(t+τ)−iΘ
〉

=
〈

X(t) X(t + τ)e−2πi f0τ
〉
= RX(τ)e−2πi f0τ (2.76)

whose Fourier transform yields the PSD:

SY( f ) =
1
2
(SX( f − f0) + SX( f + f0)) . (2.77)

If also the process X(t) is a narrow-band noise with characteristic frequency f1, the previous
equation shows that the result of the multiplicative model (2.75) comprises two sidebands
at frequency ± f1 with respect to the carrier f0, called modulating frequency. This is approxi-
mately the situation in figure 2.7, where a carrier signal with f0 = 150 Hz is modulated by

26We recovered for this section the distinction between random variables, labelled with capitol letters, and their
realisations in lower-case. This choice is of help in making clearer a point related to the extraction of the PSD of the
resulting modulated process.

27This is a consequence of the fact that the p.d.f.s of 2π f0t + Θ and 2π f0(t + τ) + Θ are the same, modulo
2π. Notice that without this random phase Θ, the process Y(t) = X(t) cos(2π f0t) is not stationary, and the usual
notion of spectrum doesn’t apply. Its formal definition is a cyclo-stationary process, whose statistical properties
vary cyclically with time, and a specific definition of spectrum should be introduced [279].
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Figure 2.8: Modulated noise model analysis for the sidebands of the 150 Hz harmonic
line. This view represent the detail of the central frequencies of figure 2.7. The
carrier signal has been chosen to be ENV_CEB_UPS_VOLT_R, representing the main
current power in the Virgo central building, while the modulating one, in the sense
of (2.75), is the “pitch” angular control of the beam splitter ASC_BS_TX. The coher-
ence of the resulting signal and LSC_DARM is represented by the red line.

two multiplicative noise processes, respectively with frequencies f1 ≈ 0.5 Hz and f2 ≈ 1.3
Hz. Hence, from a detector characterisation point of view, the task is to fund some channels
peaked at these frequencies.

If the spectrum of the multiplicative process X( f ) is more “broad-band”, this results in
the characteristic, quasi symmetric “bump” of excess power, centred around the spectral
line. This is also partially visible around the 150 Hz line, and even more clearly around the
50 Hz line (whose central contribution is subtracted, though): figure 2.2.

To study this kind of noise, B. Patricelli and G. Cella have developed a data analysis
tool called MONET (MOdulated NoisE Tool) [LVC10], which computes the coherence between a
target signal and a “synthetic” one, constructed multiplying a signal representing the carrier
(or even a representative sinusoidal one) with a set of modulating auxiliaries. In figure 2.8,
we reported the analysis of the same central noise feature of figure 2.7 making use of this tool,
and documented in [LVC11]. The carrier channels has been chosen to be one measuring the
main power current in the Virgo central building (ENV_CEB_UPS_VOLT_R), representing the
“culprit” of the 150 Hz line in LSC_DARM, whilst the set of modulating channels are taken
among some of the alignment control channels used for the mirror suspensions of Virgo.28

As visible from the red curve, the sideband at ±1.3 Hz is explained with the model (2.75)
using ASC_BS_TX channel as modulator. Only part of the other sideband is explained with
this method and the previous choice of signals.

28A similar result is obtained choosing, as a carrier, the “artificial” signal constituted by a sinusoid of frequency
f0 = 150 Hz. Of course, using actual signals may shade light on not evident manifestation of this multiplicative
coupling in other regions of the spectrum. This is the preferred strategy when we have prior inform, for example
from previous application of the coherence method and the identification of the potential “carrier” signal. Refer to
figure 2.7 and the corresponding discussion.
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2.4 Non-stationary noise

The analysis methods presented in the previous sections rely on the assumption that the
processes under study are (wide-sense) stationary, and ergodic, during the observed pe-
riod of time. Concepts like PSD, the coherence function (2.67), and the matched filter tech-
nique are not defined for non-stationary signals. However, as a matter of fact, GW detec-
tors data present non-stationarities, whose extent and influence must be understood and
taken into account. Many attempts to extend these analysis to non-stationary signals can be
found in the specialized literature [280–282]. We will discuss about the characterisation of
non-stationary noise, as well as the implementation of some of these strategies in the next
chapter. In this section we will just introduce some of the “phenomenology” with which
non-stationary noises typically manifest in GW detectors data, and the methods commonly
adopted to cope with it.

We already presented the “mathematical” definition of (non-)stationarity in section 2.1.
Here we will elaborate further with an “operative” classification of the kind of non-stationa-
rity that may be present in our data. In GW community we commonly divide non-stationa-
rities into fast transients, colloquially referred to as glitches [38, 39], manifesting as short du-
ration “bursts” of excess power, and slow noise transients. There is no net threshold between
the two classes. From an “experimentalist” point of view, one can choose as a typical time-
scale that of variation of the position of the mirrors and the optical benches that constitute
the interferometer.29 These components are suspended to the chains of pendulums that con-
stitute the superattenuators, whose cutoff frequency is at about O(1) Hz, as visible from the
steep drop off in the sensitivity curves: figure 2.5. Then, according to this criterion, one can
classify as a glitch the transient noise that has typical duration shorter than, or comparable
to, a few seconds, and slow non-stationarities everything occurring over longer time scales.

There is a second viewpoint, which yields to a similar conclusion, and is that of the “GW
data analyst”. We already made use of it in section 2.1, when talking about the matched filter
technique and spectral estimations. This is based on the effects that noise non-stationarities
produce on the search pipelines for various sources. Glitches are those “fast” noise tran-
sients that could be misleadingly confused for GW transient signals, like CBCs and bursts:
false positive. Slower non-stationarities has an indirect effect on these searches, like the mis-
estimation of the background noise PSD, which results in a lower value for the detection
statistic SNR (refer to the discussion in section 2.1.5): false negative, and systematics in the
parameter estimation with the matched filter technique.30 This sets a scale of reference that
is again of the order ∼ 1 sec, where the typical time of BBH events only has been taken into
account since the longer BNS chirp has a characteristic waveform and “shape” in a time-
frequency map that no other noise sources are known with similar features; see eq. (1.48).
This shades importance on another aspect, that is, the classification of glitches on the base of
their morphology. We will come back to this aspect later.

29Perhaps D. Hoak should be credited by the author for this idea, since the first person who introduced me to
this concept, with all of the consequences about “where to look for” when doing noise characterisation.

30The systematics in parameter estimations due to slow non-stationarities are visible, for example, for GW170814
in figure 3 of [13], where the 90% credible area obtained by fast sky localisation and that obtained after noise removal
and improved detector calibration are reported, and only partially compatible.



98 Chapter 2. Detector Noise

Figure 2.9: Characteristic example of scattered light glitch in Advanced Virgo data. The
top plot represents its whitened time series, where the “signature” of this kind of
noise is visible oscillations with increasing frequency towards the centre of the fig-
ure. The bottom plot is a time-frequency map representing the wavelet transform
of the data. Its definition, choice of normalisation and significance levels (dashed
white contours) will be presented in section 3.6.2.

2.4.1 Glitches

Probably “the most famous glitch” in GW literature is that affecting LIGO Livingston data
during GW170817 event [14], and reported in figure 4.1. This high-amplitude transient orig-
inated from a short-duration excess noise in the DARM control loop, which is transferred then
to the calibrated strain signal sensing the GW [198]. The morphology of this glitch, in a
time-frequency representation called Q-scan, which will be described in the next chapter, is
clearly different from that of the BNS signal upon which it is superimposed. Actually, it is
different from the most (all, to the best of our knowledge) of the astrophysical waveform
predicted by GR. This difference is exploited as a method for distinguishing, at least in first
analysis, candidate events from “known” classes of glitches, from their shape [283]. For ex-
ample, as discussed in section 1.4.1, the cWB data analysis pipeline [21] implement it in its
search for coherent signals between the detectors, which don’t resemble the shape of known
glitches. Moreover, this is implemented in the DQRs as a preliminary classification based on
a Convolutional Neural Network (CNN) model to generate glitch categorisation confidences
for candidate events.

Fast glitches, with time scales of the order of 1 msec, are usually caused by the electronics
in the sensing chain, while slower ones can be caused by optics misalignments, or external
disturbance (ground motion induced by anthropic activity, thunderstorms, etc.). A specific
manifestation of the previous disturbances is through scattered light glitches [22, 23]. This is a
non-linear effect caused by some unfiltered excess ground motion or acoustic noise coupling
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Figure 2.10: Median normalised spectrogram of the ASD corresponding to figure 2.3.

in to the detector, which produce the movement and misalignment of some of the mirrors
and optical benches. This, in turn, causes part of the laser light to be scattered off moving
surfaces and coupled back to the main beam [258]. The resulting glitches are characterised
by arch-like shapes, as visible in figure 2.9. It is important in this case to understand the part
of the detector which are more vulnerable to the disturbances causing these glitches. This is
done by means of the noise injections described in section 2.3.2.

More details on the characterisation of glitches will be discussed in the next chapter. We
will report in section 2.4.3 what are the common, and immediate, “countermeasures” to cope
with glitches, and their consequence on GW searches.

2.4.2 Slow non-stationarities

Slow non-stationary noise can be usually associated with (external) environmental distur-
bances, operation cycle of some apparatus or tidal fluctuations [22, 23]. Its characterization
goes then through identifying the typical time-scales of the variations, the spectral shape,
including the characteristic frequencies (if any), and how sudden is its onset and/or fade
off. These operations are conveniently done inspecting the signal spectrogram, already in-
troduced in figure 2.3. A useful way to make the non stationarities to stand out is by normal-
ising it, along its time axis, with the value of its mean-median ASD (2.57). The idea behind
this strategy is the same already discussed for that modified spectral estimate. An example
of this kind of map is shown in figure 2.10, where the glitch at 2:06:10 UTC is clearly high-
lighted. Moreover, we can notice that the spectral lines, in particular that at about 470 Hz, are
highly stable: uniform yellow colour. Some other weaker non-stationarities stand out from
this map at low frequency; these were not evident in the classical spectrogram representation
in figure 2.3. We will discuss a method for efficiently detecting them in section 3.1.2.

Usually, different noise sources can affect the target at different characteristic frequen-
cies; for example, magnetic noise associated with the electric main is centred in a band
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Figure 2.11: Example of amplitude non-stationarity in a frequency band around 50 Hz
of the LSC_DARM channel. The left-hand side plot shows its spectrogram, while the
right-hand side one its amplitudes at two different times, corresponding to during
the noisy phase and after it. Figures obtained with Virgo dataDisplay [LVC13].

around 50 Hz (see figure 2.11), scattered light has typical noise contributions below some tens
of Hertz, glitches due to the misalignment of the pre-mode cleaner have typical frequencies
at 1 kHz and above, etc. If these noises involve mostly variations of the power intensity
in the specific frequency band, as in the example in figure 2.11, we talk about amplitude
non-stationarities. It is useful to characterise them by means of their Band-limited Root Mean
Square (BLRMS), that is, the time series corresponding to the total energy of the signal in
a specific frequency band band. This approach in Virgo was pioneered by G. Vajente with
the NonStatMoni analysis tool [28, LVC12]. It has been rebuilt and improved with some
modification that will be described in the next chapter 3.5.4, and now it constitutes the “pre-
processing” stage of some of the tools developed by the author.

The non-stationarities can also affect the characteristic frequency of some spectral fea-
tures. For example, particular spectral lines have proven to changing their frequency over
time, as can be seen in figure 2.12; this kind of noise is therefore colloquially referred to as
drifting or wandering line, and is a particular kind of spectral noise [22].31 These frequency
variation can be due to resonant modes of the mechanical components that are in the optical
path of the beams, which may change over time. We would like to investigate these features
relating the characteristic frequencies of these lines, for example corresponding to their max-
imum values changing over time, with the information provided by the auxiliary channels.
In the example of figure 2.12, it is shown that the evolution of the frequencies of the line
in LSC_DARM was correlated with the temperature measured at the ring heater in correspon-
dence of the West-end mirror (ENV_TCS_WE_RH_TE), and at the filter-7 of the corresponding
suspension (ENV_WE_F7_TE1) [LVC14].

Frequency non-stationary noise has been one of the main issues in June 2017, right be-
fore Virgo joined the O2 science run [LVC15]. Also during O3 some wandering lines were
present, and in particular the one at reference frequency 83 Hz that has been the subject of
extensive investigations by the author [LVC16], which will be described in appendix A.3.

31Usually, we prefer the adjective “drifting” when the origin of the line is somehow known, and the varying
frequencies assumed by the line are driven by it. Instead, we call “wandering” lines those that appear to wander
in the spectrum without an apparent reason. We discuss both cases in section 3.4, and elaborate the study of an
example of the latter in appendix A.3.
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Figure 2.12: Example of frequency non-stationary noise in Advanced Virgo data during
the pre-O2 phases. Bottom plot: spectrogram of a “drifting” or “wandering” line
(a fainter one is also visible in green in the lower part of the spectrogram) in the
Advanced Virgo LSC_DARM channel. In the top plot two thermometer channels
exhibiting a similar behaviour. Image taken from [LVC14], courtesy of I. Fiori.

For this purpose, we have developed a tool that extract the information about these lines,
and correlates it with that available from the auxiliary channels.32 We will describe the “line
tracker” in section 3.4, and the tools developed for correlation analyses in 3.5. Also, the
aforementioned NoEMi tool [273] can be useful to this purpose, especially for very slow vari-
ations with time, for the way it is conceived to the purpose of continuous wave searches.
Indeed, it has demonstrated not to be sensitive to variations frequency taking place in few
hours,33 hence the relevance of our tool as a useful complement.

Mixed situations, where non-stationary noise induces both frequency and amplitude
variations, are not uncommon and usually imply much complex underlying coupling mech-
anisms. “Ad hoc” applications of the available analysis tools, including the ones that we
shall describe, can be performed.

2.4.3 Data Quality flags

Non-stationarities are unavoidably present in detectors data, despite the efforts in trying to
prevent them by intervening on the systems and the controls that are more likely to produce
them. Removing them by performing some sort of subtraction is not a simple task, as we will
comment in chapter 4, although various groups have started investigating new approaches

32The first attempts to this kind of study have been successfully conducted by S. Koley, in the case of the afore-
mentioned noise during the pre-O2 phases [LVC14, LVC15]. Based on this, a similar analysis tool has been de-
veloped, in more recent times, by B. Swinkels [LVC17]. This differs from ours for the way the time series of the
frequency maxima is extracted. A comparison of the two methods will be discussed in section 3.4.

33We will further comment this in appendix A.3, in relation to the study o a specific noise line in O3 Virgo data.
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based on state of the art techniques in Machine Learning [284, LVC18, 285]. Hence, the most
immediate intervention to mitigate their effect is to exclude the corrupted data segments
from the analysis, imposing Data Quality (DQ) flags that constitutes a sort of “veto”. In
the “Advanced Virgo DQ model”, two kinds of vetos exist [LVC1], which we are going to
describe.

“Interferometer Status Flags” are mostly generated by the automatic processes that mon-
itor the status of the subsystems and the control loops of the interferometer. A combination
of them is used to determine the segments of data where the interferometer is working in
nominal, stable conditions, and than producing valid data for GW searches or, to be more
precise, good for evaluation by the next level of DQ. This process is also supervised by the
operator and the run coordinator in charge, also ensuring that there are no human interven-
tions or other “known” interferences occurring on or near the instrument. If the previous
checks are passed, the interferometer is said to be in “Science mode” (Virgo terminology) or
“Observing mode” (LIGO). This kind of flag is produced in real-time [22, 286].

Of course, the interferometer status is independent on the particular GW search and
pipeline used (but not the opposite). To this purpose, there is another level of DQ flags,
marking specific conditions of the instrument, or subparts of it, which are likely to affect
the quality of the searches. Since periods of noisy data will affect each type of analysis
differently, these are separately defined for each of them, like those for CBC searches, bursts,
CW and stochastic backgrounds; refer to section 1.2 for the description of these sources and
to 2.1.4 for the Data Analysis basis of some of them (also mentioned in 1.4 in the case of
CBCs), or to [17] for the details on the gating procedure adopted by PyCBC. Contrarily to the
previous flags, these are only partially produced online. Some of them also require longer
analysis times, and are added later.

The first, and arguably most severe flag of this kind, is the so called “CAT1” flag. Failing
the corresponding check indicate some known critical issue in a detector component, which is
not operating in its nominal conditions and compromising the quality of the data, or at least
of a part of it. This corresponds to a major issue for GW searches, and it is almost identical
for all the sources, and pipeline independent.

Two less severe flags are the so-called “CAT2” and “CAT3” flags. These differ among
different kind of searches and pipelines. The former is referred to some issues in the strain
channels, with known origin,that are likely to affect the corresponding analysis. This may
include bad weather conditions and high micro-seismic activity, visible in the higher level of
noise in the low frequency region and, most importantly, in the higher presence of scattered
light glitches entering the sensitivity band, as described in section 2.4.1, plus other effects
(like the ones described in appendix A.1). The latter flag is usually referred to some statistical
coupling between the strain channel data and that of some other auxiliary sensors, which are
likely to affect the analyses but in not a fully understood way.

Of course, the previous flags are used in a cumulative way: what doesn’t pass CAT1
automatically does the same for CAT2 and CAT3. However, having different definitions
of them for the various groups allows them to be independent, as well as the data at their
disposal for searches. This constitutes an efficient usage of all the available information
gathered by our detectors, although it comes without saying that form a Commissioning
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and Detector Characterisation point of view, we should work for maximising the quality
and amount of data for all of them. This point will be elaborated further in the next section.

2.4.4 Effects of vetoing in GW searches

The previousDQ flags have proven to be of fundamental importance, in terms of the benefits
they provide to the search sensitivity, especially for transient searches. For example, one
search for compact binary coalescences had as much as a 90% improvement in its sensitivity
in parts of O1 [24]. This however comes at the price of “throwing away” some potentially
valuable data, as we will elaborate in this section. Moreover, for the previous reason some
noise-subtraction and deglitching procedures are under study by different grous (including
ours), as we will describe in chapter 4.

The discussion presented in this chapter had the purpose of convincing why having a
good strain sensitivity curve is important but not sufficient. In order to maximize the chances
of detection, it is mandatory that the detector has a good amount of full functioning operat-
ing time. This quantity has been called the detector’s duty cycle, as introduced in section 1.3.4.
During the Advanced Virgo O2 run this was about the 86% of the total time, and about 60%
for the two LIGO detectors [1]. However, such amount must be slightly reduced, to the pur-
pose of the Data Analysis, by the further application of the DQ flags described before. In the
case of Virgo, this resulted in 80% of the time with valuable data for GW searches.

For the most of the analysis however, an even more important aspect than the previous
one is the actual coincident time between two, or possibly three detectors, for achieving good
sky localisations by triangulations. We have already touched this aspect in section 1.3.4
when describing the importance of having a network of multiple GW detectors constantly
monitoring the sky. This coincidence time reduces further the total amount of valuable data
for GW searches.

For transient searches, the previous aspect has mostly relevance for the total number of
events detected during an observing run. For persistent signals, like CWs and SGWB, where
the detection statistics take advantage of the integration time, it is important to avoid also
spectral features containing dominant non-Gaussian components, which would introduce
systematics in the analysis if not otherwise corrected. We have already presented the char-
acterisation of this kind of noise in section 2.3.3, while the detection methods for identifying
this particular issue will be described in section 3.3.1.

As a result, for the isotropic SGWB search in the Advanced LIGO first observing run, 35%
of the time series data T (“delta-sigma” cut [LVC19], on the variance of the detection statistic
described in (2.32)) and 21% of the frequency domain observing band ∆ f were removed
from the analysis [287]. The sensitivity to this background can be estimated, in cosmological
units of energy density Ωgw, from [74] as:

Ωgw ∝
Sn( f )√

T ∆ f
.

The previous vetoes have then implied a reduction of sensitivity of about 28%. In the second
observing run these numbers where significantly reduced to 16% T and 15% ∆ f , thanks to
the improvements to the detectors [138]. However, this issue come back more severe in the
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first part of O3, where due to non-stationarities in the data a relevant amount (∼ 57%) of
the times were discarded from the analysis [LVC20]. This motivates the very high impor-
tance that Detector Characterisation studies aimed at non-stationarities identification, and
the investigation of their causes, have to this kind of search.

Continuous GW searches share the same dependence on the observation time T but,
especially for targeted searches, where the emission of known pulsars is investigated, they
are mostly sensitive to narrower frequency bands [108]. The effects of non-Gaussianitites,
namely those associated to spectral lines, have been previously discussed in the context of
stationary noise in section 2.3.1.
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3 Methods of investigation of
non-stationary noise

Statistical Data Analysis is easier when the underlying process that generates the data is sta-
tionary. If this is the case, the Ergodic Theorem (section 2.1.2) is often taken into account,
allowing to substitute ensemble averages with time ones, and in this way defining the esti-
mators for the statistical properties of interest [6, 213]. As presented in section 2.1.4, this is a
common practice in Gravitational Wave (GW) data analysis, mostly based on some fashion
of the matched filter technique, whose filter function is made assuming to know the sta-
tistical properties of the detector noise from which to extract the astrophysical signal. It is
crucial for the validity of this technique and the consequent detection significance and pa-
rameter estimation that the hypothesis underlying the noise distribution are satisfied. In the
previous chapter, we have discussed when this may not be the case and the consequences
on various kind of GW searches; sections 2.3 and 2.4.

To this purpose, within the LIGO Scientific Collaboration and Virgo Collaboration (LVC),
the Detector Characterisation group has the role of checking the validity of the previous
assumptions, and the investigation of the causes that may have led these to break down.
This has to be done before any inference on the possible presence of a GW signal in the data
is made.

In this chapter, we will describe the methods developed to identify non-stationarities and
non-Gaussianities in the data, and then the analysis strategies to investigate their causes. In
section 3.1 we will present some tests for non-stationarity, including an original one devel-
oped by the author [LVC21, LVC22], which improves upon other test known in the literature
and commonly used in GW searches. Since the beginning of O3b (the second half of the
third Advanced detectors observing run), this test has become part of the standard checks
present in the Data Quality Report (DQR) for the preliminary validation/retraction of can-
didate events. Connected to that, we will also present in section 3.3 what is known in the
LIGO-Virgo community as the “Rayleigh test” for Gaussinity [LVC23].1 We will provide an
overview of the method, plus some proposals of improvements [LVC24].

Once the non-stationary and non-Gaussian behaviour of the data has been identified, the
next step is to try to correlate it with the signals from the thousands of auxiliary sensors
that monitor the detector and its environment. This analysis will be described in section 3.5
and 3.5.3, where we will present the rebuilt and extension of the analysis tool called NonNA,
developed by G. Vajente [28, LVC2].

1Although its base version is now standard in many GW Data Analysis libraries, like GWpy [288], and in the
DQR, it was surprisingly hard to find any documentation for it. Apparently, the first to introduce it were S. Finn,
G. Gonzalez and P. Sutton in [289]. Some reference to this in a collaboration article are also present in [290].
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In section 3.6 we will present a possible extension of the previous analysis, based on
correlation and coherence, to the case of glitches. This will make use of the wavelet transform
representation of the data [291]. We will also introduce an original “instantaneous” causality
statistics based on the phase angle spectrum of the wavelet coherence between two signals.
While all the methods based on correlations and coherences are simply measures of the
similarity in the time or frequency domain between two signals, the latter is an attempt to
infer whether a causation relation between them is present. This concept will be elaborated
in section 3.7, where we will present the application of three methods for the assessment of
causality on GW detectors data.

3.1 Detection methods of non-stationary noise

In order to apply the standard data analysis techniques described in section 2.1.4, we must
ensure that the data (the noise component) that we are analysing is stationary. Or, to be
more precise, we have to test whether we have reasons to reject the null-hypothesis that the
available data sample is representative of (a realisation of) a stationary stochastic process, as
defined in section 2.1.2. Actually, this implicitly assumes the “zeroth order assumption” that
any given sample record will effectively reflect the (non-)stationary character of the random
process in question [213].

In signal analysis literature, many tests are available to investigate specific (non-)statio-
nary models, like those described in section 2.1.3. Some examples are the Augmented Dickey-
Fuller (ADF) test for unit roots [292] or those based on AR and MA models discussed in sec-
tion 2.1.3. In general, these are too restrictive for the analysis of interferometers data, and
only seldom used in practice, except than for checking specific hypotheses about the noise
behaviour. Moreover, due to the very rich frequency structure of the detectors data, and
to the presence of processes that are known to have influence only on restricted bands of
the spectrum, it is most convenient to characterise the non-stationarities in a time-frequency
map. We have already discussed how an immediate information about this comes from the
inspection of the spectrogram, representing the signal energy content in each time-frequency
bin. In particular, the median normalised version of it, shown in figure 2.10, highlights the
deviations from the “central” tendency of its distribution. Basically, what we want is to
quantify this “deviation”, formalising it in a statistical hypothesis test.

In this section, we will describe some of the statistical tests currently adopted in GW Data
Analysis to check stationarity. For the reasons previously explained, all of them rely on some
statistics based on the estimated PSD, or related spectral representations, of the data over
short periods of time. Loosely speaking, the tests aim to verify whether this estimates (don’t)
remain constant over time. In this sense, they can be considered as test for “covariance” or
“wide-sense” stationarity, according to their definitions of section 2.1.2.

All the concepts that we are going to discuss momentarily are closely related to the treat-
ment on spectral estimation of section 2.1.6. The basic ideas behind the tests are already
present there, at least in some crude form.
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3.1.1 Stationarity of the PSD: the Priestley-Subba Rao test

The Priestley-Subba Rao test (PSR), from the authors of the concept of evolutionary spectra [223],
is based on the time-varying Fourier spectrum of a signal [293]. Without introducing the for-
mal definition of processes described by evolutionary spectra, for our purpose, we can take
the series of PSD estimates (2.49), over various data segments, to be an effective representa-
tion of it.

If the process that generated the data sample is stationary, the previous estimate shouldn’t
vary with time, except for its inherent statistical uncertainty, as reported in (2.53). Then, the
PSR test aims to reject this hypothesis studying “how non-constant” that function of time is.
It does this by looking at the test statistics given by the logarithm of the previous estimator:2

Y(i)( f ) = log Ŝ(i)( f ), i = 1, . . . , M,

with i the “temporal” index that labels the segment where the PSD has been estimated.
Here the logarithm acts as a “variance stabiliser transformation” [294], allowing to focus on
changes in the mean structure of Y. Asymptotically, we may expect it to be a consistent
estimator of the logarithmic PSD: E[Y(i)( f )] ≈ log S(i)( f ), and the variance of Y(i)( f ) can
be proved to be approximately constant [295].3 These actions allow us to write Y(i)( f ) as
a linear model with constant variance and test the constancy of S(i)( f ) using a standard
one-way analysis of variance (ANOVA) on the residuals: F-test statistics.

This method has three advantages: firstly, as requested, it tests the stationarity of the
PSD estimate frequency-by-frequency; it doesn’t make any assumption on the data distribu-
tion,4 which is useful if we want to test Gaussianity independently; and, lastly, the ANOVA
provides p-values, on the base of which we can decide to reject the null hypothesis of sta-
tionarity or not. The disadvantage is that some of the assumptions that the authors, and the
references therein, make are valid only asymptotically (or not thoroughly justified at all).5

Some tests on simulated models, taken from 2.1.3 (and partially already included in [293])
have shown good performances, but, on real interferometer data, at fixed data sample size
its sensitivity has proven to be worst than that of the test that we will discuss momentarily.

2Notice that the Y(i)( f ) are meant as stochastic variables, hence we have indicated them with upper-case letters.
Refer to the convention discussed in the Notation section.

3As already discussed in section 2.1.6, and in particular for the periodogram estimator (2.52), the standard de-
viation of the estimate is proportional (or even equal) to its mean: fixed relative error estimator. It is often desir-
able to “disentangle” the two quantities. In the case of an exponential distributed variable S (refer to the com-
ments after equation (2.59)), with scale parameter 2σ2, also equal to its mean and standard deviation, the variable
Y ≡ log S = log 2σ2 + 1

2σ2 (S− 2σ2)+O
(
(S− 2σ2)2) has expectation value E[Y] ≈ log 2σ2 and variance Var[Y] ≈ 1,

where a Taylor expansion of S with respect to 2σ2 has been performed (delta method [296]), and all the moments of
order two or higher have been omitted. This is justified by the fact that E[Sn] = n!(2σ2)n, as characteristic of an
exponential variable, and σ2 � 1 (as typical of hrec or, in general, after a suitable rescaling).

4Although it ignores any distribution moment beyond those of order two, as implicit in the fact that it is based
on the PSD estimates.

5Specifically, this is a consequence of the fact that this method actually implies a χ2 test on the linear model
residuals for Y(i)( f ). A comparison of this with the Kolmogorov-Smirnov test that will be discussed in the next
section, including the evaluation of their sensitivity in relation to the sample size, can be found in [297].
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3.1.2 A BLRMS based test for noise stationarity

We will describe here the statistical test developed by the author to check the stationarity
of the data. This is based on the empirical distribution of the signal BLRMS, whose sta-
tionarity is verified, in each frequency band, comparing their empirical distributions in two
neighbouring data segments, by means of a two-sample Kolmogorov-Smirnov test [298].

First of all, we proceed to describe the method for computing this BLRMS, which is based
on that developed by G. Vajente in [LVC12], and recently improved in collaboration with
him [LVC21]. The content of this section has been taken from an article in preparation by the
author [37].

Method of computation of the BLRMS

The BLRMS is (the square root of) the total power of a signal in a limited frequency band:6

BLRMS
(
t; [ f min, f max]

)
=

√∫ f max

f min
S( f ; t)d f (3.1)

where S( f ; t) is the signal PSD referred to the time t [223]. In practice, without recurring to
the theory of evolutionary spectra, we will be interested in its estimate from the value of the
PSD in the i-th segment: Ŝ(i)( f ), defined in (2.49).

There are two reasons to prefer, in the context of GW detectors data and non-stationary
noise analysis, the previous quantity with respect to the usual ASD estimate. Firstly, as al-
ready noted and clearly visible in figure 2.7, the spectral properties of the data are very rich
but also very diverse. There are regions with characteristic features, like lines, bumps and
structures due to non-linear couplings, where we would need a better frequency resolution,
and regions where the spectrum is flatter. For the latter, averaging over a certain frequency
range has a variance reduction effect similar to that obtained with the Welch method (equa-
tion (2.55)), averaging in time. In practice, if we don’t need to resolve detailed frequency
structures, we can average on fewer time segments and more frequency bins to obtain a
similar variance for the corresponding estimate.7

Secondly, we know from the discussion in sections 2.1.3 and 2.3 that many kinds of dis-
turbances affect specific frequency bands only.8 If we know a band division of the spectrum,
for example provided by somebody in charge of the commissioning of the detector, where
different kind noise sources have their support, we can use this to compute the BLRMSs.
This is more practical than retaining one time series Ŝi( f ) per every frequency in the spec-
trum. Moreover, it has the advantage that once a non-stationarity stand out in a specific band
known to be affected by a particular disturbance, the person who is investigating the noise
is immediately triggered about the possible cause. For example, the band around 30 Hz in
LIGO Hanford was known to have some disturbances related to scattered light at the begin-
ning of O3, the 60 Hz main line also has some glitches in LIGO Livingston, while the same

6With this normalisation, the BLRMS has the same units of the signal. If it has to be interpreted as an “average”
ASD, one can divide (3.1) by the frequency interval f max − f min.

7This is certainly true for a white noise process. For coloured ones, and more specifically in the presence of
spectral lines, the latter will dominate the estimate and the consequent variance. We will discuss shortly the modi-
fication implemented to deal with them.

8With the exception of fast electric glitches, which are broadband.
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happens in Virgo around 150 Hz; refer to the noise study in appendix A.1 for an overview of
the latter. In the case this prior information is not available, one can provide a “sound” band
division of the spectrum.

However, these averages have the drawback of “masking” the frequency non-stationarity
of a wondering line, like that in figure 2.12, if this is entirely contained within a single band.
For this reason, the BLRMS method is best suited for studying amplitude non-stationarities;
we will describe how to attack wandering lines in section 3.4.

As described in [LVC7], there are two methods to compute the BLRMS. One operates the
frequency selection directly on the PSD, and the other simply consist in a band-pass filter
applied to the signal, whose details can be found in [213, §5.2.3]. For few bands, the latter is
usually faster but less precise in the frequency selection. This issue is particularly relevant
in the vicinity of spectral lines, as we will discuss shortly, therefore we have preferred the
direct, frequency-domain method.

Then, given a set of n bands (which can be pretty general, overlapping, etc.), we proceed
to compute the corresponding n time series:

BLRMS(t; b), with b ∈
{
[ f min

1 , f max
1 ], . . . , [ f min

n , f max
n ]

}
.

Three scales are involved in computing this by means of the Welch’s method. With the
same notation of section 2.1.6, we have: i) the segment length N, in number of data points,
used to compute the fft, which gives the actual frequency resolution, ii) the chunk length
N′ = M · (N − overlap), where M segments are averaged to reduce the variance, which,
including the overlap, gives the actual time resolution with which our BLRMS estimates
are computed, and iii) the total data sample, which, divided by N′ gives the number of
independent chunks over which the BLRMS is computed. A trade-off between the previous
quantities should be decided in advance, before performing the analysis, in order to have an
adequate time-frequency sensitivity to the problem under study.

Lines removal

As previously noted, if a spectral line is contained in the band where we are about to com-
pute the BLRMS, this is going to dominate the estimate. This is sometimes undesirable,
especially if one is mostly interested in testing the stationarity of the “noise floor”, since
lines are already usually notched in most of the search pipelines. Also, we will describe in
appendix A.1 an example of noise study where this strategy was necessary. One could then
proceed to define ad hoc bands, very narrow around the frequencies of interest of the par-
ticular line or broader and without lines at all. This is often not practical nor dynamical
enough.

For this purpose, we have inserted in the method for computing the BLRMS the possibil-
ity to identify spectral lines and remove them automatically. The method is similar to that
developed for NoEMi for the identification of spectral lines, and documented in [299, LVC25],
but optimised for the opposite scope. We report here its steps:

1. Computation of the “flattened PSD” (without lines):
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Figure 3.1: Effects of lines removal on the ASD of Virgo strain channel. The blue line
represents the ASD with all the lines, while the orange line is the “flattened” ASD
with them removed. The dashed lines is a reference median for the application the
method.

(a) A first PSD estimate is done over one or more chunks. If the spectral lines are
reasonably stable (which is usually the case), we can increase the number of data
(chunks) to include in this estimate in order to have better frequency resolution
and less variance. Otherwise, we can repeat this computation and that in the next
steps for every chunks, with a consequent higher computational cost due to more
iterations;

(b) In order to reduce the contribution of strong lines in the computation of average
values, we define the logarithm of the previous quantity. The reason is the same
already mentioned for the PSR test [293], and elaborated in note 3. We divide then
the spectrum in a certain number of bands, containing several frequency bins, and
in each of them we compute the median over the frequencies;

(c) The resulting log-PSD medians are linearly interpolated, attributing their values
to the central frequency of each band;9

(d) The Median Absolute Deviation (MAD) [301] between the interpolated median val-
ues and the actual log-PSD are computed over the entire spectrum. Those values
of the log-PSD that differ more than a fixed number of MADs (usually 3 or more)
from the interpolated values are removed and the corresponding values linearly
interpolated;

9Actually, this choice is quite arbitrary. However, we have verified that this doesn’t really change the result as
long as the previous band division is done in a suitable way. Typically, a linear division is done until a reference
frequency of ∼ 100 Hz, than a logarithmic one. An alternative approach could have been that implemented by
N. Cornish and T. Littenberg in the BayesWave search pipeline [195, 300], where, given a set of pivotal frequencies,
the noise floor is estimated by means of a spline on them.
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(e) For the resulting interpolated PSD, steps from (1b) are repeated for a fixed num-
ber of iterations (usually two or three are sufficient) or according to some other
criterion, like the Mean Squared Error (MSE) with respect to the interpolated me-
dian values. This will constitute the flattened PSD interpolant function.

2. Lines removal: if just one chunk has been used for point (1a), proceed to compute
the BLRMS on the flattened PSD obtained at point (1e), and go ahead with the other
chunks. Otherwise:

(a) In each of the chunks used for the PSD estimation at point 1a, estimate the PSD;

(b) Compare the logarithm of the previous estimate with that of the interpolant PSD
function obtained in (1e). As before, remove those values exceeding a certain
threshold, in terms of MADs, and interpolate their values;

(c) In each chunk, proceed to compute the BLRMS on these interpolated PSDs.

An example of application of the previous algorithm is reported in figure 3.1; the yel-
low curve represents the flattened spectrum, where the spectral lines have been removed.
The BLRMSs for the Virgo strain data in six bands around the 50 Hz electric mains line are
reported in figure 3.2. Far from this frequency, the effect of line removal is absent or min-
imal, whilst close to it this becomes relevant, as visible from the plots in the central row.
Notice also that by removing the energy content of the main spectral line, the visibility of
the glitches is enhanced, as they mostly contribute to the increase of the power level in the
noise floor surrounding the spectral line.

Glitches identification and removal

Since the BLRMS represents a time series of (the square root of) the energy in a certain fre-
quency band, it is also suitable for identifying glitches. These are clearly visible in figure 3.2
as “sharp”, i.e. fast, excesses of power. Many other methods are in use for that within the
GW community; some of them will be described in section 3.2. Thanks to them, glitches
are already identified and cross-checked, and DQ flags attached to the corresponding data
segments; refer to the discussion in section 2.4.3. Instead, very few tools are available for in-
vestigating slower non-stationarities. For this reason, we developed a “glitch identification
tool”, which, in the same way of the previous line removal algorithm, acts to remove the
glitches from the BLRMS’. We did this because we want our stationarity test to be sensitive
only (preferably) to slow non-stationarities.10

For the identification of glitches we have developed a “rolling” thresholding MAD algo-
rithm:11

1. The “rolling” median for a certain duration of BLRMS data is computed, and progres-
sively shifted forward in time.12 At the edges, a “mirror padding” is applied, adding
a time reversed copy of the first or last data;

10An example of study where the difference between working with the BLRMS with the glitches and that with
them subtracted will be presented in appendix A.1.

11The term “rolling median” has been borrowed from the same name method in the Pandas Python library [302].
12To this purpose, it is important to notice that the complexity of the median computation through the

quickselect algorithm is O(n) [303].

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.Rolling.median.html
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Figure 3.2: Effects of line removal for the BLRMS computed in different frequency
bands of Virgo strain data. Notice the reduction in those values close to the 50 Hz
main line: plots in the second row. Notice also the increased visibility of glitches,
which mostly contribute to an increased noise level in the noise floor surrounding
the spectral lines.

2. A modified version of the MAD is computed, adding an optional increased weight value
to the last data points. This solution has no effect with glitches, but is useful in order
not to “trim” the possible inset of a slower transient. Also, the previously found “out-
liers” are excluded from this computation, in order not to bias it;

3. Data exceeding a fixed threshold based on the previous modified MAD are identified
as glitches and optionally discarded (holes in the data) or interpolated. For the purpose
of the stationarity test that we will describe shortly, we removed the data correspond-
ing to the glitch, in order not to alter the distribution of the BLRMSs. In other circum-
stances, evenly sampled data are preferable and the interpolation solution should be
adopted.

An example of application of this algorithm is reported in figure 3.3. Some loud glitches
are clearly visible in the BLRMS in the top plot, while the effect of their removal is evident
from the plot on the bottom.

The next step is to infer whether the time series reported in the previous figure is com-
patible with the hypothesis of being generated by a stationary process.

Test on the empirical distribution function of the BLRMS

From these BLRMS’, we wanted to develop a test sensitive to a large variety of non-stationa-
rities: slow trends, seasonal effects, the models described in section 2.1.3, end possibly also
glitches. Some of them are already visible in figure 3.3. Recalling the definition of strict sense
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Figure 3.3: Effects of glitch removal in a BLRMS time series. In the top plot, the blue
line represent the value of the this function, where some glitches are clearly visible.
The yellow line is the moving median, computed over 5 minutes of data, while the
shadowed band is that corresponding to 7 times the value of the modified MAD. In
the bottom plot is visible the effect of removal of these glitches.

stationarity (2.4), it seems natural to make use of a statistic that compares the “empirical”
cumulative distribution function (c.d.f.) of the BLRMS time series at two different epochs,
but also that is able to provide the information about when the possible non-stationarity
appeared.

For this reason, we firstly divided the BLRMS data sample in intervals containing a num-
ber ∼ 100 of points. More details about the choice of this number will be discussed in the
next section. Then, in each of the intervals, we compute the empirical c.d.f., which, for a set
of n i.i.d. random variables {Xi}, is defined as:

Fn(x) =
1
n

n

∑
i=1

I(Xi 6 x) (3.2)

where I(. . .) is the indicator or characteristic function, equals to 1 if its argument is true, zero
otherwise. The previous quantity counts the proportion of the sample points below level x.
To compare it between two different (neighbouring) intervals, with n and n′ samples respec-
tively (which may also differ), we can use the metric provided by the two-samples Kolmogorov-
Smirnov test [304, 305], equals to the maximum “vertical” distance between the two functions



114 Chapter 3. Methods of investigation of non-stationary noise

Figure 3.4: The top plot shows an example of BLRMS of LIGO Hanford strain data.
The shadowed red regions mark those intervals where the stationarity test has been
rejected, according to the p-values reported in the bottom plot, and the chosen sig-
nificance level α = 5%.

(supremum norm, or ‖ . . . ‖∞ metric):

KSnn′ =

√
nn′

n + n′
sup

x
|Fn(x)− Fn′(x)| . (3.3)

The normalisation factor has been introduced in such a way that, asymptotically, the pre-
vious function approaches the Kolmogorov distribution, which is independent on the kind of
distribution under test (Kolmogorov Theorem). This will also be useful when making inference
by means of the previous test statistic, as we will discuss momentarily. The critical values
of (3.3) have been derived numerically by Massey [311], and are provided by many Data
Analysis software libraries, like Python’s scipy.signal [312], which we have made use of.

Analogously to the supremum norm, another possibility was to use the L2-norm, given
by the squared absolute difference between the empirical c.d.f.s; this would have led to
the Cramér-von Mises test [306, 307], whose generalisation to the two-samples case is due to
Anderson [308]: CvMnn′ =

nn′
(n+n′)2

[
∑n

i
(

Fn(xi)− Fn′(xi)
)2

+ ∑n′
j
(

Fn(x′j)− Fn′(x′j)
)2
]
.13

Then, for every BLRMS interval, two p-values are computed, according to the chosen
test statistic, for the null hypothesis of stationarity of its empirical c.d.f., with respect to
those of the two neighbouring segments. These represent the probability of obtaining more
“extreme” values for the test statistic (3.3) assuming valid the null hypothesis. The maximum
of these two values is compared to a significance level α, chosen before performing the test
(typical values are 5% or 1%); if this value is lower than the threshold, we reject the stationary
hypothesis at a significance level α. The choice of the maximum has been made in order to avoid

13Also the L1 [309] and Lp metric versions of the previous test statistic exist [310], although they have not been
examined yet for the purposes of our stationarity test.
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Figure 3.5: Time-frequency map of the p-values of the stationarity test for each time in-
terval and frequency band the BLRMSs have been computed into. Darker shades
of red denote those regions where the null hypothesis of stationarity should be re-
jected with a significance corresponding to the values reported in the colour-bar.

to consider as non-stationary both the interval before (or after) the actual problem and that
containing it. This may create some ambiguity in the unlikely case there is a discontinuity
falling exactly in between two intervals; we will discuss how to remedy to it in the next
section.

In figure 3.4 the BLRMS, with glitch removed, of the LIGO Hanford strain channel in the
band [28, 30] Hz is reported for one hour of data. The sampling frequency of this series is 1
Hz, and it has been divided into 90 seconds intervals, overlapping by 30 seconds. In this way,
the test resolution is 1 min, although it is able to resolve non-stationarity both slower and
faster than even 1 second, since they all change the point-wise BLRMS value, and than its
distribution in the interval. In the bottom plot the p-values for the stationarity hypothesis
are reported, together with a reference significance level α = 5%. Then, those intervals
exceeding this threshold have been marked in red in the top plot; in there, the hypothesis of
stationarity should be rejected with the (previously) chosen significance level.

Non-stationarities in this region was a known issue in LIGO Hanford data for the first
part of O3, which was likely related to scattered light.

In figure 3.5 the time-frequency map of the p-values is reported for the previous test,
performed on each time interval and frequency band onto which the BLRMS has been com-
puted. The darker the colour, the most likely the null hypothesis is to be rejected.14 Again,

14In figure 3.5 no significance level has been fixed. Then, in performing the test, one should choose the desired
α, identifying form the colour-bar the corresponding shade of red, and then reject in the p-map the null hypothesis
everywhere is present a darker colour. In the DQR version of this test, this operation is simplified with a value of
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the band around 30 Hz presents evidences of non-stationarity, as well as that at 300 Hz. It
is also visible, about 1500 seconds after the central time, a non-stationary rage of frequency
between 500 and 3000 Hz. Another application of this test will be discussed in the context of
a specific noise study in appendix A.2 (notice there the double colour-map, to highlight the
regions where the test is passed and where it should be rejected according to a significance
level fixed in advance; refer to the comment in note 14.) [LVC26].

This analysis test has been named BRiSTOL (Band RMS Stationarity Test toOL) by the au-
thor, and presented in [LVC22, LVC24]. The material discussed in this section constitutes
also the body of an article in preparation by the author on this new method, to be submit-
ted in 2020 [37]. Since the beginning of O3b in November 2019, it has become part of the
DQR produced in low latency in correspondence of every candidate GW event, and used to
assess the stationarity of the data in correspondence of it. Moreover, it has also been used
for commissioning purposes to monitor the changes on the detector when some adjustment
operations were performed on it. Refer for example to [LVC27] or to the example described
in appendix A.2.

Comments and choice of parameters

This test has all the properties demanded at the beginning of this section: time-frequency
representation of the inferred non-stationarities, independence on the underlying distribu-
tion of the data, quantitative statements about the level of rejection of the null hypothesis
(p-values). Since, in principle, every kind of non-stationarity, measurable by the BLRMS,
alters its distribution, this test is sensitive to a wide variety of them; not just glitches, trends,
etc. Form the computational side, it is highly parallelisable, since every test is performed
independently on the intervals and the bands. The complexity is due to the BLRMS com-
putation, which is basically O(N log N) like the fft, and repeated application of the sorting
algorithm (usually O(N)) to obtain the empirical distributions.15

Some parameters and method choices enters in this algorithm, which we shall justify.
First of all, they apply all the choices of parameters and time-scales in the computation of
the BLRMSs, with their consequences on the time-frequency resolution, and estimate vari-
ance; refer to the discussion at the beginning of this section and in 2.1.6. Moreover, the
number of BLRMS estimates entering the test, hence the length of the intervals, influences
the test outcome. For the Kolmogorov-Smirnov test a number n & 50 of samples is de-
sirable [313], although some authors have advertised its application also in smaller sample
cases [314].16 what we have observed is that, with less samples, the test tends to be more
conservative in rejecting the stationarity hypothesis, and less sensitive to smaller variations
in the distribution parameters.

α = 1% chosen in advance and a two-colour colour-bar palette. This is also shown in another example of application
of this tool in appendix A.2.

15The BRiSTOL tool that implements it on LIGO and Virgo data requires about 2 minutes to read and analyse one
hour of data with a typical parameter configuration.

16To be precise, Lilliefors in [314] and [315] makes explicit evaluations, on the small sample case, referring to
Gaussian and Exponential distributions, respectively, with unknown parameters. This may not be the case for
other generic distributions but, under the assumption of stationary and Gaussian noise, the PSD estimator is indeed
distributed, at each frequency, as an exponential variable, as derived in section 2.1.6.
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(a) (b)

Figure 3.6: Dependency of the test sensitivity to parameters variations, according to
model (3.4), for different interval size n. The axes represent percentage variations
on the corresponding parameters. In darker regions the null hypothesis is rejected
with significance corresponding to the contour.

We have tested the dependency on the sample size n generating our dataset form a
“shifted” Rayleigh distribution,

pX(x; σ, A) = θ(x− A) · x− A
σ2 e−(x−A)2/2σ2

(3.4)

where A represents a constant offset in the values of the variable X, and θ( · ) is the Heaviside
step function (equals 1 if the argument is positive, zero otherwise). Fixed the reference value
σ = A, we have made these parameters to change smoothly, and run the test comparing
the empirical c.d.f.s of the data from the reference distribution and its shifted and scaled
versions. In figure 3.6 the p-values as functions of the relative variations in the shape and
shift parameters, σ and A, have been reported averaged and smoothed over a large number
(O(104)) of sample sets. The left-hand side figure is referred to n = 100, and, at a significance
level α = 5%, it shows that the test is able to identify variations in both the parameters
smaller than 15%. For n = 200, it was able to detect variations smaller than 10% at the same
significance level. We have repeated the same test for other continuous distributions and
models, obtaining similar dependency on the length n.

From the previous observations, one may want a test able to spot even small variations
in the underlying distribution parameters. This can be done increasing n. However, at the
same time this implies a reduced time resolution. To overcome this, we have included in our
test the possibility to use overlapping intervals (typically ∼ 20÷ 30% of n). In this way, the
test time resolution is usually given by the non-overlapping part of it, while its sensitivity to
distribution variations is given by the total n.

We have verified the last claim on the null hypothesis. We have generated, from the
same p.d.f. (Rayleigh), a set of 103 samples of duration n, and we have estimated the empir-
ical distribution of (some of) their Kolmogorov-Smirnov test statistics (3.3). Than, we have
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constructed a similar set of samples of duration n′ > n, where only n of them where inde-
pendent, and analogously estimated the empirical p.d.f. for their test statistic. Notice that in
the first case the normalisation constant in front of (3.3) was

√
n/2, while in the latter case

it was
√

n′/2. Than, we have tested that, again with a Kolmogorov-Smirnov test, the two
distribution were equal. Up to values of the overlap ∼ 30%, this was indeed the case, with
a tendency of the test to be more conservative as this overlap increases. This is somewhat
a desirable property, since an increased number of samples has proven to be more able to
spot differences in the distribution parameters (fig. 3.6) and the overlap have reduced the
number of false-positives.

Lastly, let’s comment on the choice of the test statistic. The Kolmogorov-Smirnov test was
motivated by the fact that it is moderately sensitive to all characteristics of the distributions,
including location, dispersion and shape [313]. Other tests have been tried as well, like the
two-samples Anderson-Darling test [316, 317] or the Cucconi test [318]. These have proven
to be usually more sensitive to tails in the distributions, like glitches, and, on simulated data,
more powerful in detecting even small changes in the distribution parameters for small sam-
ple sizes. The Kolmogorov-Smirnov test is more conservative in these cases. However, for
the typical parameter configuration in the test performed on LIGO-Virgo data, on BLRMS
intervals of 60 + 30 seconds, with glitch removed, both the Kolmogorov-Smirnov and the
Anderson-Darling tests have proven to produce similar results.17 Anyway, the BRiSTOL

tool developed for Virgo implements natively both of the options, and can be run either
ways [LVC22].

3.1.3 Other stationarity tests

Before proceeding to discuss Gaussianity tests we report here a couple more stationarity
tests (among the many available), in use within the LIGO-Virgo collaboration. These have
been selected because involving concepts and ideas already encountered in this dissertation,
or because useful complement of the two previous tests.

Variance of the detection statistics

In a recent work, S. Mozzon, L. Nuttal and A. Lundgren have presented a very effective test
to determine the influence of non-stationarities (but also of non-Gaussianity) on the matched
filter statistic of equation (2.31) [LVC28]. We report here a brief description of their method,
which is entirely based on what already discussed in section 2.1.5, as an interesting example
that provides also an immediate way to account for the effects of non-stationarity on CBC
searches.

As shown in section 2.1.5, the optimal detection statistic, under the assumptions of sta-
tionary and Gaussian noise, whose PSD has not being misestimated, is provided by equa-
tion (2.41). Its variance should be equal to one, while it is different, in general, if some of the
previous assumptions is not valid. The case for Gaussian noise but wrong PSD estimate has
been faced in equations (2.43) and (2.38). The idea of the authors is then to monitor the value

17After the initial testing, we ended up preferring the Kolmogorov-Smirnov test over the Anderson-Darling one
because the python implementation of the latter, by means of the scipy library v0.19, tended to present some bugs
in the extrapolated p-values. This is a known issue, which will be possibly fixed in new versions of that library.

https://github.com/scipy/scipy/blob/v0.19.1/scipy/stats/morestats.py#{}L1693
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of the detection statistic in time, and check if its variations are compatible with 1, as under
the assumption of stationary and Gaussian noise.

This test is very effective in the sense that, for a signal model, which for a typical CBC
inspiral can be something like |h( f )| ∝ f−7/8 [103], the loss of SNR (2.44) due to PSD mis-
estimate can be directly evaluated, quantifying how much of the potential signal, under
favourable detector condition, we are losing. This method however doesn’t take into ac-
count (at least, not directly) the potential effect of non-Gaussianity, which may alter the
previous variance in a non-obvious way.18 It is also an “integrated test” over the whole fre-
quency spectrum (which is not an issue for a modelled search, as long as the model has been
previously specified, but maybe it is not optimal for noise investigation purposes), and it
doesn’t consist in a formal hypothesis test; the threshold proposed by the authors to reject
the null hypothesis of stationarity is somewhat arbitrary, although quite effective.

Discrete, orthogonal wavelet transform

We should mention here another interesting time-frequency method to assess stationarity,
which has been firstly presented in a LIGO-Virgo internal note by N. Cornish [LVC29], and
recently discussed also in the collaboration article [2]. This is based on a discrete, orthogonal
wavelet transform of the signal [319], which, similarly to the short-time Fourier transform, is a
way of mapping it onto a time-scale space, where the latter has a similar role as the frequency
for stationary signals. More details on the wavelet method, which we will use for the study
of glitches, can be found in section 3.6.

Instead of the spectrogram representation of figure 2.3, the author suggests firstly to
whiten the data, that is, divide their discrete Fourier transform by an estimate of their ASD
and then transform back to the time domain [320]:19

x(t) fft−→ x̃( f )→ x̃w( f ) :=
x̃( f )√
Sn( f )

fft−1
−−−→ x̃w(t). (3.5)

The effect of the previous transformation is that of making, overall, the whiten-signal spec-
trum “more uniform”, or, in the time domain, to make its auto-correlation function more
similar to a Dirac δ-function: R(τ) ∝ δ(τ). In this way, the onset of a transient signal or ex-
cess noise (a non-stationarity) is made more evident in the transformed time series; refer for
example to figure 2 from [2]. The matched filter (2.31) itself embodies this operation, and we
already commented how it can be thought as a “noise whitened” cross-correlation, which
makes the resulting SNR optimal. Lastly, it turns out to be particularly convenient to refer
to a standard “white” background to assess the significance of other noise features standing
out from it, as we will see shortly and as we will elaborate in section 3.6.

The discrete wavelet transform is then applied to the whiten data, producing the so called
scalogram, which is the equivalent of the spectrogram but with wavelet scales on the vertical
axis instead of frequencies, and where at each time-scale bin the amplitude of the corre-
sponding wavelet is reported. Of course, in order to help the intuition that we have for the

18Nonetheless, in practical situations the expectation is of course that its value should increase. This is the case
for example of glitches.

19This operation has been already described in section 2.1.4 in relation to the matched filter technique. In many
aspects, it is also analogous to the median normalisation for the spectrogram reported in figure 2.10.
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latter, the scales are usually converted to “equivalent frequencies”, following the method of
Mayers et al. [321]. The squared amplitude of each of the previous coefficients represents a
measure of the signal power at the corresponding time-scale (or frequency).

However, as commented for the periodogram PSD estimate in 2.1.6, these coefficients
has a natural statistical error whose variance is equal to the estimate itself.20 Then, some
sort of averaging procedure, as for the Welch’s method in (2.55), is needed in order to better
distinguish the statistical fluctuations of the estimate form other kind of non-stationarities.
To this purpose, the author computes the scale-averaged power, summing the squared am-
plitude of the wavelet coefficient in each time bin, completely losing any frequency depen-
dency of this power; refer to figures 7-9 from [2]. Maybe, an intermediate smoothing between
the “fine grain-high variance” of the wavelet coefficients, and the scale-averaged spectrum
could have been useful to maintain both the informations with a decent estimate variance.
We will discuss about a procedure for that in section 3.6.

To quantify the presence of non-stationarities, the author considers the null hypothesis
of a stationary and Gaussian process, for which the previous scale-averaged spectrum is
distributed, in each time bin, as a χ2 with a number of degrees of freedom Ns equals to
the scales/frequencies over which it has been averaged.21 He proceeds then comparing the
measured values with the theoretical ones by means of a (one-sample) Anderson-Darling
test [322].

It is interesting to note how conceptually this method and the one discussed in sec-
tion 3.1.2 are very similar for the way they attack the problem of assessing stationarity.
Nonetheless, it is relevant the different ways they aim to solve them: discrete orthogonal
wavelets instead of short-time Fourier transforms, scale-averaging in place of time and fre-
quency band averaging, one-sample Anderson-Darling test of a reference χ2 distribution
instead of a generic two-samples Kolmogorov-Smirnov test.

3.2 Detection and investigation of glitches

Although the BLRMS method is in principle suitable also to identify glitches, more specific
algorithms have been developed within LIGO and Virgo. Some of them have the primary
aim to detect transient GW signals, and distinguish their morphology from noise artefacts.
The most common, and arguably the reference, method to search for such transient excesses
of power is Omicron, by F. Robinet [LVC30]. This is based on the search pipeline called
Q-pipeline or Omega, described in S. Chatterji Ph.D. Thesis [323]. Similar to the previous
wavelet transform method, it project the whitened data stream onto a template bank of sine-
Gaussian wavelets, finding time-frequency localised excesses of power. This is used to pro-
duce “triggers” in quasi real-time, to which is attributed the central time and frequency (and
Q-factor, that is the ratio of the central frequency and the characteristic wavelet bandwidth)
of the wavelet they are referred to. Neighbouring triggers in the wavelet space are usually
clustered together, resulting in just a single one for the whole power excess. Moreover, an

20We will face the same issue when discussing about glitches and wavelet-coherence in section 3.6.
21This distribution is also equivalent to a Γ(Ns/2, 2) distribution, as already found for the Bartlett’s PSD estimate

in section 2.1.6, for σ2 = 1. The latter is a consequence of the whitening, which makes the Fourier transformed
(complex) time series to have unit variance.
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SNR is associated to them on the base of the expectation of a similar wavelet coefficient due
to white noise. This is similar to the way p-values are computed for noise excesses in the
previous discrete orthogonal wavelet method.

Other matched filter based search pipelines, which in low-latency inspect the strain data
stream for transient GW signals, produce a list of triggers that turn out not to be coincident,
both in time and parameter space, with those of the other detectors. Or, to be more precise,
whose occurrence has low significance, according to the criteria described for PyCBC and
GstLAL in section 1.4. These triggers are usually removed form the search, and, interpreted
as glitches, used for Data Quality purposes. An example of Data Analysis pipeline that
produce this kind of triggers is the “live version” of the already mentioned PyCBC [193], that
is PyCBC live. Another search pipeline that produces in very low latency the information
about excess power triggers is the Multi-Band Template Analysis (MBTA) pipeline [324].
This is a template based, CBC search pipeline, similar to PyCBC and GstLAL, which uses
the expedient of dividing the matched filter in two frequency bands, low and high with
respect of the pivotal frequency of 100 Hz, to speed up the production of the results. The
corresponding templates h(t) in each band are indeed shorter, as discussed in section 1.2,
and consequently the matched filter is less computationally demanding, allowing for lower
latency results.

Both PyCBC and MBTA triggers are available, together with those form Omicron, in the
Virgo Interferometer Monitoring (VIM) web page for noise studies [LVC6]. Similar infor-
mation, on the LIGO side, with the exception of MBTA, is reported in the detectors status
summary pages [LVC31].

Once these glitch triggers have been generated, it is interesting to find correlations with
the other “auxiliary channels” in the detector, in order to trustworthy exclude the astrophys-
ical origin and, possibly, to identify the causes that may have generated them. This operation
is analogous to the search for coincident triggers in the strain channels of two different de-
tectors, to which is attributed a probability of being of astrophysical origin, as described in
section 1.4.

One of the reference data analysis tools to investigate this is the LIGO Hierarchical Veto
(HVeto) algorithm, by J. Smith et al. [325]. This compares the triggers found in a target
(e.g. the strain or DARM) channel with those in other auxiliary channels. The statistical sig-
nificance of coincident glitches is evaluated, and those channels that appear “to glitch” at
the same time of the target are marked as possible causes, and further investigations are de-
manded. A similar tool, customary used in Virgo analysis is the Use Percentage Veto (UPV)
tool, firstly developed by T. Isogai [326]. This computes the coincidence significance of a
glitch trigger in the target channel and in the auxiliary ones by means of the percentage of
time they “glitch together” in various frequency bands.

It is important to stress from now that coincidence and correlation are not logically related
to causation. We will elaborate on the latter in section 3.7. For now it is important to have
in mind that if similar features, like glitches, are found in two or more channels, this is not
a proof of a causation relation. Instead, this should be just the starting point for further
investigations, as for example to which part of the detector to start looking at, and acting
on it try to solve to occurrence of the particular noise feature. The previous considerations
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will be relevant also in the next sections when discussing about other tools for correlation
analysis.

Another important aspect that we should mention is that of “unsafe channels”. These
are usually signals used for the reconstruction of the calibrated strain channel, hrec, or with
known relationships with DARM, as for example other longitudinal control channels. It is
not surprising to find correlation between them, but this is usually of little interest when
looking for the causes of the glitches in a set of them.22 Moreover, the excess of power
corresponding to a transient GW signal can be simultaneously present in some of them.
If these were not previously “flagged” and excluded from the analysis, this would have
misleadingly lead HVeto or UPV to consider this signal as a glitch. The identification of safe
and unsafe channels is part of the Detector Characterisation activities, and it usually done
by means of noise injections, as described in section 2.3.

3.3 Detection methods of non-Gaussianities

Once some reliable test have convinced us about the stationarity of the data, we can proceed
by applying the Ergodic Theorem, computing statistics and expectation values in all those
frames where this hypothesis has not been rejected. The next step is to test Gaussianity,
which is fundamental for the application of the matched filter technique in the form dis-
cussed in section 2.1.4. Notice that most of the Gaussianity tests are automatically rejected
if the underlying process is still Gaussian but not stationary, just for the way test statistics
are computed by means of time averages. For the same reason, a Gaussianity test may be
rejected both because the data are non-Gaussian but also because they are non-stationary.

We have repeatedly insisted on the importance of testing stationarity and Gaussianity
separately. Then, before proceed to describe the tests for the latter, let us comment on why
this should be the case. Of course, from the point of view of the process properties, these
are clearly very different aspects, with usually different origins. In the spirit of the Detector
Characterisation, these are studied with various approaches, as described in section 2.4.4.
From a practical point of view, the immediate “countermeasure” to mitigate the effects of
non-Gaussianities and non-stationarities on GW searches is to apply notches to the frequen-
cies, and cuts to the data segments. This however has the drawback of throwing away
information simply because we are not able to analyse it with standard methods without
introducing systematics. Quite remarkably, some techniques have been recently developed,
and some others are currently under study, able to perform the subtraction of particular noise
features, like spectral lines [274, 327, LVC32], non-linear sidebands [328] and other kinds of
broadband, bi-linear couplings [275], like for example the oscillations, or “jitter”, of the pre-
stabilised laser (PSL) [329]. Refer to their description and characterisation in section 2.3.3. In
general, all of these techniques assume a certain level of stationarity, either for the durations
needed to estimate the signals transfer functions or for the underlying noise model, which
however may generate a non-stationary process, as in the case of [274] and [328]. Instead,
Gaussianity is not always required; this motivates our choice of studying the two aspects
separately.

22It is interesting instead the opposite situation, when, for example, a glitch or a particular noise feature is present
in hrec but not in DARM.
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We proceed then describing how to test Gaussianity of GW detectors data. For the same
reasons discussed at the beginning of section 3.1.2, a good test for detector characterisation
purposes should be able to investigate this property frequency-by-frequency. Hence, the
popular one-sample Kolmogorov-Smirnov test [298, 304], for data with known mean and
variance, or the Lilliefors test if these are unknown [314], or the Anderson-Darling test [316],
just to mention a few of the most common, are not particularly useful if applied to the whole
data. Any small or “narrow” non-Gaussianity may be averaged away with these methods.23

One can then think to apply the previous tests to each frequency component of the signal
DFT. This is a possibility, but the one we are about to describe yields a similar result and is
computationally less expensive.

3.3.1 The Rayleigh test

The common way the hypothesis of Gaussianity is tested in LIGO and Virgo is by means
of the so called Rayleigh test [LVC23, 289]. Refer to note 1 for a brief account of its origin.
Recalling the theory of spectral estimation discussed in section 2.1.6, if a stochastic process
is stationary, it possess a well defined PSD, which we can estimate with the various tech-
niques described in that section. In particular, if the data is Gaussian, the Bartlett’s method
ASD (2.54) can be considered an estimator for the rms of a variable |X̃( f )| distributed like a
Rayleigh with scale parameter σ. Its rms is

√
2σ. Instead, the median-averaged ASD (2.57), is

an estimator for the median of this variable:
√

log 4σ. Hence, if the Gaussianity hypothesis
is valid (as well as stationarity), one can compute, from a single fft of the signal (complexity
O(N log N)), the previous two quantities and then define the statistic:

Ry1 :=
rms(|X̃( f )|)

median(|X̃( f )|)
Gauss.
=

1√
log 2

' 1.20 (3.6)

besides normalisation factors due to the finite averaging size M [330], as in (2.60). Most
noticeably, this doesn’t depend on the distribution scale parameter σ, i.e. it is the same at
all frequencies. Another nice property of the previous quantity is that the denominator, the
median, is a robust measure of the central tendency of the distribution, which is barely influ-
enced by the possible presence of non-stationarities, while the numerator, the rms, is highly
influenced by them. This makes the test also very proficient in detecting non-stationarities.
In the next section we will investigate its performances both on non-Gaussianities and non-
stationarities.

Let us mention a couple more forms of the Rayleigh test statistic before discussing their
performances and the method we used to derive their critical values for proper hypothesis
testing.24 Exploiting the fact that most of the Rayleigh distribution properties are factorisable
by the scale parameter σ, as shown in appendix B.1, one can define many other test statistics
independent on σ (but not on M). For example, in [290] the authors suggest as a figure of
merit to compare the estimated 95th and 99.7th percentiles with their theoretical value for

23This is a consequence of the central limit theorem. To be more specific, the Anderson-Darling test is likely to
identify them as “tails” in the distribution, and then reject the null hypothesis. At this point however there is no
information about “where” these non-Gaussianities are, andone could be tempted to discard the whole data.

24To this purpose, I’m thankful to N. Sorrentino, who greatly helped me in performing these tests, and for the
related discussion about which statistic was the most suitable to use for Detector Characterisation.
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a Gaussian distributed variable of known (previously estimated) parameter σ. Although,
they don’t formally quote any critical value to assess rejection, the plot shown in figure 15
therein, and the corresponding discussion, would suggest to reject Gaussianity everywhere
below 100 Hz, which is obviously a bit too extreme. Presumably, this is a consequence of
the high uncertainties on the estimation of these quite high percentiles, where there are few
point for moderate values of M, and a consequent high tendency to oscillate.

The original version of the test, implemented at LIGO in the Rayleigh monitor tool, is
instead [289]:

Ry2 :=
std(|X̃( f )|2)

mean(|X̃( f )|2)
Gauss.
=

2σ2

2σ2 = 1 (3.7)

except for the usual corrective factors for finite M [331]. The previous values are referred
to a Γ(1, 2σ2) distribution, like that in the arguments of the standard deviation (std) and
mean functions under the hypothesis of Gaussianity. Notice that in this formulation of the
Rayleigh test, it is evident its interpretation as a measure of the dispersion of the stochastic
variable |X̃( f )|2 with respect to its expected value [332]. Moreover, an equivalent form of
the previous quantity is:

Ry2 =

√√√√E[|X̃( f )|4]−
(
E[|X̃( f )|2]

)2(
E[|X̃( f )|2]

)2 =

√√√√ E[|X̃( f )|4](
E[|X̃( f )|2]

)2 − 1
(2.2)≡

√
µ4(0)
µ2(0)2 − 1

where µi(0) is the i-th distribution moment about zero for the variable |X̃( f )|; refer to its def-
inition in section 2.1.2. This makes the fraction inside the square root similar to a kurtosis,
µ4(µ)/µ2(µ)

2, which is a measure of “tail propensity”, that is the presence of “outliers” in
the tails of the distribution [333].

Then, if the fluctuations of the measured noise PSD are smaller than those expected for
a Gaussian noise, as for the case of the coherent amplitude oscillation of a spectral line, the
values of the Rayleigh statistic are expected to be smaller than 1. Conversely, incoherent
variations, as it is typical for glitches, are expected to produce values for Ry2 higher than 1.
We will verify this momentarily.

Similar to the previous one, let’s introduce also the Virgo version of the Rayleigh test
[LVC23], regularly produced for the DQRs:

Ry3 :=
std(|X̃( f )|)

mean(|X̃( f )|)
Gauss.
=

√
2− π/2

π/2
' 0.52. (3.8)

All the comments made about the interpretations of Ry2 in terms of dispersion and kurtosis
for the variable |X̃( f )|2, also apply to Ry3 for the variable |X̃( f )|. Since the two are linked
by a monotonic transformation, which preserves the percentiles, the two test statistics Ry2

and Ry3 are in fact equivalent.

3.3.2 Critical values and analysis of real data

We have commented that many possible versions of the previous Gaussianity test can be
built exploiting the properties of the Rayleigh distribution. However, for brevity, we report
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(a) (b)

Figure 3.7: Left: median normalised spectrogram of a stretch of 600 seconds of Virgo
strain data, where a loud glitch is present at about 8 minutes fro the beginning, as
well as some low frequency non-stationarities. Right: Gaussianity test by means of
the Ry3 test statistic, for the two halves of the data; fft length of 2 seconds, corre-
sponding to M = 150 averages.

here only the results about the tests we made on Ry1 and Ry2,3, to assess their performances,
which made us to prefer the latter.

As it should be the case for every proper hypothesis test, firstly we constructed a table
of critical values25 for these three test statistics. We did this by generating a large (O(105))
number of Gaussian data samples (null hypothesis), and computing, for various M from 5 to
1000, their critical values from 10−5 to 1− 10−5. These turned out to be smoothly distributed
on the (M, percentile) plane. Then we proceeded to construct the cubic interpolant (and
extrapolant) function, which was used later to find the corresponding critical value for any
M and percentile.

Applying the previous test statistics to real data, it turned out that Ry1 was very good at
spotting non-stationarities in the data, but it was not the same in making “non-Gaussianities”
to stand out with an high significance from the statistical noise of the null hypothesis. This
is probably a consequence of using the rms at the numerator of (3.6), which is too sensitive
to even random fluctuations in the data, which in turn broadens the distribution of this test
statistic. The other statistics, Ry2 and Ry3, instead turned out to be quite good at detect-
ing both non-Gaussianities and non-stationarities, as opposite outliers in their distributions
according to the null hypothesis of (stationary and) Gaussian data.

In figure 3.7 we report the analysis of a stretch of 600 seconds of Virgo data, containing
some interesting noise features. First of all, it obviously contains the spectral lines typical
of Virgo strain sensitivity curve, fig. 2.2; it also contains some low frequency noise, likely
due to bad weather conditions and scattered light, and a loud glitch on the second half of
the data, about 8 minutes after the beginning. Figure 3.7a contains a median normalised

25Which in modern programming language is actually an instance of the class griddata of the scipy.signal

Python library [312].
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Figure 3.8: Rayleigh-gram corresponding to figure 3.7 obtained by means of Ry3 test
statistic. Red and blue lines on the colour-bar represent the .5 and 99.5th percentiles
for the null-hypothesis distribution of Ry3. Image obtained with RAGoUT.

spectrogram where the previous non-stationary features stand out in darker shades of red.
In figure 3.7b the results for the Gaussianity test by means of Ry3 are shown for the first and
second half of the data. The ffts have been computed on segments of 2 seconds of duration,
which implies M = 150 averages. For the latter number, the corresponding critical values
for the 0.5, 50 and 99.5th percentiles, implying a two-sided hypothesis test of significance
α = 1%, are represented with dashed lines.

First of all, the test on the second half of the data, where there is a loud glitch, is com-
pletely out of the critical region for the null hypothesis of Gaussianity. This is the same effect
already noted for the Welch’s ASD estimate in figure 2.4b. The test for the first half instead
behave more or less as expected. It is altered at low frequency for the presence of non-
stationary noise; it correctly identifies as non-Gaussian the calibration line at ∼ 60 Hz, the
100 and 200 Hz main harmonic lines, and the wide region from 443 to 454 Hz, correspond-
ing to the violin modes for the large mirrors suspensions, as measured by T. Hardwick and
Y. Michimura in the pre O2 commissioning phase [LVC33]. Interestingly, the 150 Hz region
behave, overall, as incoherent noise (Ry3 > 0.52), and not like the other harmonic lines.
This is likely to be a consequence of the non-linear noise couplings in this region, already
described in section 3.5.

To have another perspective on the effects of non-stationarities and the presence of non-
Gaussianities, we can make use of the so called Rayleigh-gram, representing a “short-time”
version of the previous test, as reported in figure 3.8 for ffts of 0.5 seconds and M = 10. The
corresponding critical values for a 1% significance two-sided Gaussianity test are reported
on the colour-bar; blue regions are those corresponding to incoherent noise, like glitches,
while purple ones are those typical of spectral lines and coherent variations.

This tests have been implemented in the Virgo Detchar tool RAGoUT (RAyleigh GaUssiani-
ty Test), developed by the author in collaboration with N. Sorrentino [LVC24]. Another
example of application of this in the context of a noise study is described in appendix A.2.
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(a) (b)

Figure 3.9: Example of a “triplet” of wandering lines in Advanced Virgo LSC_DARM data
of August 2018 (during the upgrade phase after O2). Left: spectrogram with these
lines represented by the curves ranging between 24 and 28 Hz. Other noise features
are visible as well, like glitches (vertical lines) and a (horizontal) spectral line at
23.8 Hz. Right: application of a Sobel vertical transform, which enhance the pres-
ence of the wandering lines and removes the glitches. The red dots constitute the
frequencies time series corresponding to the tracking of the line.

3.4 Line tracker tool for frequency non-stationary noise

In the previous sections we have presented several techniques to identify, mainly, ampli-
tude non-stationary noise, according to the definition we gave in section 2.4. We want to
focus now on “frequency non-stationary” noise, like the drifting line visible in figure 2.12.
One possible strategy to attack this problem and identify its causes is to track the varying
frequencies assumed by this line with time, and relate them to the information provided
by some auxiliary channel [LVC15]. Indeed, as in the case of figure 2.12 (top plot), in some
circumstances these frequencies are linearly correlated with the amplitudes of other auxil-
iary sensor channels, like the two thermometers in the top plot of that figure, which witness
a similar non-stationarity behaviour, hence providing a hint about the possible causes that
make this line to drift.

Let’s start from describing the algorithm to extract the information about the varying
frequencies of this line. This has been implemented in the LineTracker pre-processing stage
of the analysis tools that we are going to describe in section 3.5 [LVC34]. The starting point
is the spectrogram of the stretch of data containing that particular feature. From this, what
we track the frequencies of the local maxima of this line, and record them into a time series.
If we had only that feature, that is, a single wondering line in a certain frequency band,
everything we need is to find the maximum of the PSD amplitude in that interval, in each
time bin. This was the basic idea behind the first implementation of a similar algorithm in
2017 by S. Koley [LVC15]. We improved upon this in the way and for the reasons that will
be clarified momentarily.

Unfortunately having a single, “clean” wandering line is almost never the case with real
data, especially after the improvement of the detectors and the removal of all the principal
and most evident causes of these lines, as it has been done after the pre-O2 phase described
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in section 2.4.2. Indeed, for example in O3 or in the commissioning phases that preceded
it, the typical wandering lines had intensities not much greater than the noise background,
and very often they overlap with other (stationary) spectral lines and glitches. An example
of this is reported in figure 3.9a, comprising of a “triplet” of wandering lines in Virgo DARM

signal, overlapping with many glitches (vertical lines). The direct application of the simple
tracking of the maxima of the PSD would have probably led in this case to get stuck on the
23.8 Hz line, or jumping between one and the other of these lines, or to be influenced by the
presence of the glitches. An even more complex scenario was present (before the application
of the Hough transform to line masking) in figure 3.10 and in the noise study described in
appendix A.3.

3.4.1 Image filtering

To make the wandering lines to stand out with respect to other noise features, we borrowed
some imaging techniques form the field of Digital Image Processing [334, 335]. Referring again
to figure 3.9a, for example, one can notice that the disturbance produced by the vertical lines
due to glitches can be removed by applying some vertical differentiating operator. A typical
choice, popular for edge detection purposes, is the application of a “vertical” Sobel filter [336].
This acts on S( f ; t), at each point of the time-frequency map, image, computing the convo-
lution of it with a kernel, representing an approximate gradient, or a vertical derivative, for
our purposes. Its effect is to emphasise regions of high spatial frequency that correspond to
significant variations, edges, in the value of S( f ; t), e.g. glitches.26 Typical dimensions for
this kernel are 3× 3, or other odd integers, which makes its application quite inexpensive
in computational cost. For example, defining the “spectrogram matrix” S := {S( f ; t)}, its
Sobel vertical transform is [335]:

Gy :=

+1 +2 +1
0 0 0
−1 −2 −1

 ∗ S

An example of its application is visible in figure 3.9b, where the vertical lines have been
considerably attenuated by this operation.

In case the wandering line had overlapped also with some (stationary) spectral line, like
the one at 22.8 Hz in figure 3.9, instead of proceeding with an horizontal Sobel filter, which
would have removed significant portions of the wandering line too, we usually prefer to
make use of a Hough transform for detecting straight lines [337]. This allows to identify
the time and frequency regions corresponding to stationary spectral lines (horizontal) and
glitches (vertical). An adequate tuning of the transform parameters, such has the slope and
the length, are necessary to avoid the wandering line.27 Then we have proceeded to mask
the previous region and identified the wandering line in the rest of the image.

26In this interpretation, we consider an image as a realisation of a stochastic process whose index set is given by
the tensor product of two spatial dimensions; recall its definition in section 2.1.2. In this case, the spatial frequency
can be defined from the Wiener-Khinchin theorem analogously to what done in (2.15) for the times.

27To this purpose, we have made use of the OpenCV image processing library and its Python implementation
through the package cv2, and the function HoughLinesP.
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Figure 3.10: Example of line tracking with a preliminary identification, by means of a
Hough transform, of other noise features. These consist for example in the spec-
tral lines at 87 Hz and between 92 and 94 Hz, and in some thin vertical lines,
corresponding to glitches, and some broader ones, in correspondence of interfer-
ometer unlocks or high noise periods. The corresponding regions are interpolated
by means of the median ASD over all the image. With this preprocessing stage,
the line extraction algorithm was able to correctly track the wandering line also in
those region corresponding to the previous noise features.

Other techniques we have made use of, for the purpose of making the wandering line
more easily detectable, include the Prewitt transform [338] and the Canny’s edge detection
algorithm [334, 335], which consists into a series of Gaussian filter, some passages of the
Sobel operator, and hysteresis to suppress all those lines that are weak and not connected to
strong ones.

An example of masking after the application of the Hough transform is reported in 3.10,
together with the frequencies series reconstruction that we shall describe momentarily. This
line corresponds to a well known issue in Advanced Virgo data, present, to the best of our
knowledge, since June 2018 [LVC35]. We will cover the full story of the investigation related
to this line in appendix A.3.

3.4.2 Frequencies series reconstruction

Once we have pre-processed the spectrogram image to make the wandering line more evi-
dent, we proceed to reconstruct the time series of the frequencies corresponding to the max-
ima of the PSD at each time. We do that by modelling the evolution of the frequencies as a
Markov process, already introduced in section 2.1.3, where the value at a certain time depends
only on the previous one, through a fixed thought unknown probability function. Part of the
correct reconstruction of the frequencies time series consists into the adequate modelling of
this function.

The algorithm starts identifying the frequency at the maximum PSD in the first time bin
(i.e. column of the spectrogram). Then, the next frequency value is chosen as the next PSD
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maximum, weighted by the certain transition probability given by the previous model. This
should reflect the unknown distribution governing this Markov process, and the choice of
the metric has the role of down-weighting too wide transitions to other noise features. This
is useful in the presence of other spectral features, like the line in figure 3.9, where there
is the risk to jump from one line to the other, instead of following the path along a single
wandering line. We made use of both a Gaussian and an uniform p.d.f. models, and iterated
the frequencies series reconstruction (usually 2÷ 5 times) to find the best values for their
variances.

The first iteration is usually done with a pretty loose value of the variance. Then, step
after step, the frequencies of the weighted maxima are reconstructed through the whole line,
as visible in figures 3.9 and 3.10. In the second iteration of the algorithm, the sample variance
of the previously reconstructed frequencies series, which is usually quite high, is substituted
to the variance of the model p.d.f. for the Markov process. This iteration usually results in
a smaller value of the frequencies series variance, which corresponds to a reduction of the
random noise fluctuations of the frequencies time series.

Termination criteria for the previous algorithm depend in general on how net is the wan-
dering line with respect to other noise features. This fact, together with the other parameters
that should be tuned on the base of the frequency region and expected variations of the line,
makes this algorithm not suitable at present for automatic line identifications. It should also
be mentioned that in particularly noisy situations, the previous filtering techniques and line
reconstruction algorithm are prone to failed to correctly resolve the wandering line from the
rest of the noise.

Within the Virgo Detchar group there is another line tracking algorithm under develop-
ment by B. Swinkels [LVC17]. This is based on a different strategy that consists into the
manual selection, by means of graphical user interface, of the bounding region where to look
for the wandering line. In there, it performs the search for the maxima of the PSD, as de-
scribed before. From a computational point of view, this is clearly faster than ours, but it
is more sensitive to the presence of other spectral features, which should be manually ex-
cluded from the bounding region for the search. This is not necessary with the algorithm
previously described that is able (at least in not too pathologic situations) to automatically
remove all the glitches (vertical lines) and spectral lines (horizontal) before attempting the
search and reconstruction of the frequency evolution of the line, thought as a Markov pro-
cess. Several example of this, in noisy contexts and other overlapping features have been
reported in [LVC16] and will be described in appendix A.3.

3.5 Investigating the correlation with the auxiliary channels

Having identified some segments where the data can’t be considered stationary, or some
regions of the spectrum where non-Gaussianities are present, is usually just the beginning
of the Detector Characterisation activity. As regards the latter, we have already presented in
section 2.3.3 how to relate these features to the information provided by the auxiliary chan-
nels by means of the coherence method, and its extensions. For non-stationary noise we can
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apply a similar strategy but in the “time domain”. This can be done investigating the cross-
correlation of a target channel, namely the strain or the BNS range described in section 1.3.3,
with the time series corresponding to any of the hundred of thousands of auxiliary channels
that monitor the interferometer subsystems and their environment. The target can also be
the frequencies series of a wondering line or some transformed version of the data, as we
will discuss momentarily.

The cross-correlation technique will be presented in the next subsection, while its ex-
tensions to non linear terms and to the multiple linear regression will be discussed in sec-
tions 3.5.2 and 3.5.3. In section 3.5.4 the non-stationary Noise Analysis tool NonNA that the
author have implemented for Virgo will be described [LVC34]. Its application to the study
of environmental noise (refer to section 2.2) has been described in [29].

3.5.1 Cross-correlation analysis

The idea behind the auto-correlation function, as a measure of similarity between a time
series and a “time-shifted” version of it, has already been introduced in section 2.1.2. In sec-
tion 2.3.3 we have briefly touched the cross-correlation, which extends the previous concept
to two different time series. Assuming both of them to be sampled at the same frequency,
xt and yt, with t = 1, . . . , N, we have introduced in (2.47) the (unbiased) estimator for their
cross-covariance:28

R̂xy(τ) =
1

N − |τ|
N−|τ|
∑
t=1

(xt − µ̂x)
(
yt+τ − µ̂y

)
, τ = 0,±1, . . . ,±(N − 1) (3.9)

where µ̂x = (N)−1 ∑N
t=1 xt, and similarly for µ̂y, is the sample mean. The previous summation

goes from t = 1 to (N − τ) if τ > 0, or from t = 1− τ to N if τ < 0. We will be particu-
larly interested in making use of the “normalized” version of the previous estimator, whose
values range form −1 to 1, that is the sample cross-correlation function:

rxy(τ) =
R̂xy(τ)

sxsy

where the sample standard deviations of the series are obtained from sx =
√

R̂xx(0). Notice
that unlike the auto-correlation function, which assumes its maximum at zero lag, this is not
in general true for the cross-correlation; remember the example of two retarded signals in
section 2.3.3. Nonetheless, it is convenient to define the sample Pearson’s correlation coefficient
as the value at zero lag of the previous function:

rxy := rxy(0) =
R̂xy(0)

sxsy
=

∑N
t=1(xt − µ̂x)(yt − µ̂y)(

∑N
t=1(xt − µ̂x)2 ∑N

t=1(yt − µ̂y)2
)1/2 . (3.10)

28Previously we have usually labelled the time index with a lower case-letter from the middle of the alphabet,
like in xi or xn. In this section we will have to deal with multiple indices referring to different kind of quantities,
hence we decided to stress the meaning of temporal index by using the letter “t”. Also, notice that we prefer now to
make use of the unbiased estimator for the cross-covariance rather than the biased one used for spectral estimations
in section 2.1.6.
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Figure 3.11: Example of cross-correlation study, where the Virgo LSC_DARM BLRMS
in band [40, 47] Hz is correlated to the time series corresponding to the (max-
imum) intensities measured by a magnetometer in the Virgo Central Building,
ENV_CEB_MAG_V_max. In correspondence of this a malfunctioning chiller was even-
tually found to be the origin of the glitches, represented by spikes, visible in both
channels [LVC36].

This quantity measures the linear relationship between xt and yt, indeed, similarly to the
coherence, it is left unchanged by linear transformations of the two signals.29 The sign of rxy

represents the “direction” of the linear relationship, that is, whether to high (low) values of
the first signal correspond also high (low) values of the second one. The absolute value |rxy|
gives the strength of this relationship, hence the similarity of the two signals, in the time
domain.

The previous considerations can be applied to the study of non-stationarities. For exam-
ple, in figure 3.11 we have reported the BLRMS (without glitch removed) of the Virgo DARM

signal in the band [40, 47] Hz (blue line) in relation to the signal corresponding to the mag-
netic field measured by a magnetometer sensor in the Virgo Central Building (ENV_CEB_MAG_V,
red line). Several “spikes” in the former were coincident to those in the latter; the resulting
Pearson’s coefficient was rxy ' 0.65. Although this doesn’t constitute a proof of a causal link
between the two, it was a clear hint to look for something electric, activating at the times of
the spikes, located in the Virgo Central Building. The “culprit” was eventually found in a
malfunctioning chiller in the Laser Lab of the Central Building [LVC36].

Situations similar to this one suggest the importance of a Detector Characterisation tool
that, in the presence of a particular non-stationarity, like the previous glitches or some
“drops” in the channel measuring the BNS range, executes a “cross-correlation search” among
all the auxiliary channels, or in general large subsets ofO(1000) of them. As previously men-
tioned, this kind of approach is colloquially referred to as “brute force”. The tools developed
by the author to this purpose will be momentarily described in section 3.5.4 [LVC34].

29This claim can be easily verified in the frequency domain, as discussed in section 2.3.3, than transforming back
to times.
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3.5.2 Data transformation and non-linear methods

As for the case of the BLRMS, which allows to focus on the variations of power in a particular
frequency region, also for the auxiliary channels the possibility of making transformations
has been taken into account. One example is indeed to apply to them the same BLRMS
transformation of the target channel. This is the case, for example, if we find some noise
features in a specific band of the target and we want to investigate if this is present in the
same band in other channels.

We will describe here some common transformations implemented in the tools described
in section 3.5.4 as a pre-processing stage for the signals from the auxiliary channels before
executing on them cross-correlation or regression analyses. These are implemented in the
bottom passages of the flowchart in figure 3.13.

First of all, the various time series to be compared with the previous method must all
be sampled at the same frequency. So, a typical pre-processing step is that constituted by
the downsampling of the various auxiliary channels time series to the frequency of the target
(for example a BLRMS or the BNS range) or to a reference output frequency. This is done
by some iterations of an anti-aliasing low-pass filter and a decimation operation, which con-
sists in selecting only an equally spaced portion of the data sample. In case the sampling
frequency of the original time series and the desired output are not integer multiple, then
also a resampling operation is needed.

The most popular transformation is the standardisation of the data set, which converts all
the time series to have zero mean and unit variance. This has computational relevance, for
many numerical algorithms, when they have to compare data with very different variation
scales, as for example the strain ∼ 10−23, and others sensors like magnetometers ∼ 1 nT or
powers measured by photodiodes ∼ 0.1 mW. In particular, for the correct interpretation of
the principal components that we discuss momentarily, it is mandatory that the signals are all
converted to the same scale.

Another operation we have made use of is the computation of the derivative of certain
signals. For example, for step constant signals it could be relevant to the target not their
absolute value but only the instant when they change status. This is for example the case of
counter channels, which counts some transitions or some other happening.

Analogous to the previous idea is that to introduce in this brute force search for corre-
lations also non-linear terms. Indeed, as we previously mentioned, the cross-correlation is
a measure of the linear relationship between two time series. If X is a Gaussian variable,
Y ≡ X2 is the classical example of a stochastic variables that is un-correlated with the for-
mer, but not independent. For this reason, we have included in the pre-processing stage also
the possibility to compute powers of the auxiliary channels, and in this way to account for
non-linear terms, up to a specified order, usually 2nd or 3rd.

Mutual Information

A popular, consistent way to account for general, non-linear, dependencies between two
signals is to consider, instead of their cross-covariance, their mutual information [339]. This
quantity measures the reduction of uncertainty, or entropy, about a stochastic variable Y after
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observing X. It is defined as:30

I(X, Y) :=E
[

log
(

pX,Y(x, y)
pX(x) pY(y)

)]
=
∫∫

pX,Y(x, y)
(

log pX,Y(x, y)− log
(

pX(x) pY(y)
))

dx dy. (3.11)

The term within parenthesis in the last integral is the Kullback-Leibler divergence (also called
relative entropy) between the joint p.d.f. of X and Y and the product of the individual p.d.f.s,
which is a measure of how the first is different from the product of the latter [341]. From
the Jensen’s inequality [342], which relates the value of a convex function of an integral to the
integral of the convex function, it can be shown that the previous quantity is always grater
than, or equal to, zero [339].31 It is useful to understand what is the difference between it
and the cross-covariance rewriting the latter as:

Cov
(
X, Y

)
:=E

[
XY
]
− E[X] E[Y]

=
∫∫

xy pX,Y(x, y) dx dy−
(∫

x pX(x) dx
)(∫

y pY(y) dy
)

=
∫∫

xy
(

pX,Y(x, y)− pX(x) pY(y)
)

dx dy. (3.12)

From the previous expressions we can interpret the mutual information as the value of the
Kulback-Leibler divergence weighted by the joint p.d.f.. The cross-covariance is instead the
“usual” difference between the joint p.d.f. and the product of the individual p.d.f.s weighted
by the values of the variables, xy. In this sense, mutual information is more general and can
measure non-monotonic relationships32 and other more non-linear relationships between the
variables.

Equation (3.11) can also be extended to the case of n auxiliary variables: joint mutual infor-
mation, and marginal or incremental mutual information (or redundancy), which is the difference
in I when considering n auxiliary variables and n− 1.

Although quite promising, when applied to the search for relationships between non-
stationary noise features in GW detectors data, the previous method have shown two main
limitations that have made us to prefer the usual cross-correlation analysis. Firstly, to be ap-
plicable to sampled values from continuous random variables, we need to evaluate their em-
pirical p.d.f.s. This is done partitioning the observation space into M bins, and similarly to
what described for the Kolmogorov-Smirnov method in section 3.1.2, define p(xi) = ni/N,
where ni is the number of observations, out of the total N, falling into the i-th bin. Similarly
for two variables: p(xi, yj) = nij/N, with M2 bins. It can be shown that increasing the num-
ber of bins augment the value of the entropy. Conversely, reducing their number reduces the
variance of the estimation but has the drawback of making it less accurate, and with higher

30In terms of the Information Theory’s concept of entropy, for two discrete random variables X, Y, whose sam-
ple space is Ω = {xi , i = 1, . . . , n}, H(X) = −∑n

i=1 P(xi) log P(xi), the mutual information can be rewritten as:
I(X, Y) = H(X) + H(Y)− H(X, Y) [340].

31If f (x) is a convex function, and g(x) a non-negative Lebesgue integrable function, Jensen’s inequality reads:
f
( ∫

g(x)dx
)
>
∫

f
(

g(x)
)
dx. A sketch of the proof of the relation I(X, Y) > 0 can be found, for the discrete variable

case, in [343, p. 75].
32For this reason, it is also more general than the Spearman’s correlation coefficient, which measures the Pearson’s

cross-correlation between the “ordered” (or ranked) version of the values of the two time series [344].
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bias [345]; refer to the definition in note 30. The dependency on the number of bins makes
the results to vary significantly, with a consequent lack of credibility in them.33

The previous issue is a consequence of a more profound one that this method usually has
when applied to the study of non-stationary signals. This is the interpretation to give to any
estimate of a p.d.f., or to “the” p.d.f. itself, for a non-stationary signal.34

These considerations have led us to prefer the “standard” cross-covariance analysis, with
the possible introduction of non-linear terms or transformed versions of the signals, instead
of the Mutual Information. However, we will come across this concept again in section 3.7,
where it will be fundamental for the clarification of one of the possible interpretations to
give to the concept of causality between different signals. Moreover, it will be the criteria
by means of which to represent the signals in the application of the convergent cross mapping
causality test 3.7.2.

3.5.3 Multiple linear regression analysis

The quantities described so far are valuable for “one-to-one” comparisons between time
series. Often, greater contribution to the noise may come from more complex relations,
involving more than one auxiliary signal at the same time. This aspect, similar to what im-
plemented for the multiple coherence in (2.71), can be modelled with the statistical method
provided by the multivariate linear regression analysis.

As in the previous case, let us assume to have a target time series yt and we want to
investigate its relationships with a set of n auxiliary signals x1t, x2t, . . . , xnt. These can be the
outputs provided by the auxiliary channels or their transformed versions, as discussed in
the previous section, like their squares xkt = x 2

`t, cross-products xkt = x`t · xmt, or lagged
versions of them xkt = x`t−τ . The linear regression analysis consists into modelling the
target as a linear combination of the auxiliary signals:

yt := ŷt + et = p0 + p1x1t + . . . + pnxnt + et for t = 1, . . . , N (3.13)

where the pi’s are the n + 1 real model coefficients, assumed not to change over the time,
and et = yt − ŷt is an error term, or residual, introduced to account for the possibly non
perfectly linear relationship between yt and the xit’s. In practice this term accounts for the
addition “noise” our model has not being able to take into account; we’d want it to contain
the least residual amount of information in order to consider the model predictive. These
consideration will be formalised and elaborated momentarily, starting from equation (3.14).

33From a computational point of view, for the mutual information we have used the function
mutual_info_classif from the Python library sklearn.feature_selection. We have also confirmed its pre-
diction, and most importantly the annoying dependency on M, with an “hand written” version of it. It should be
mentioned that other techniques, less dependent on the previous choice, have recently (2018− 2019) started to be
investigated. Refer to [346] for an account about some of them. Unfortunately, none of these seem to be already
implemented in common Python libraries, and have not been taken into account so far by the author.

34To be precise, also the estimation of the cross-covariance between two non-stationary signals can be said to be
not fully legitimated operation, since the Ergodic Theorem is not valid. This however can be factually interpreted as
a measure of their time similarity, without recurring to any inference about their underlying statistical structures, as
explained at the beginning of this section. On the other hand, Mutual Information and the estimated p.d.f. require
many more assumptions, and the proof of facts has shown that the corresponding uncertainty is too large to be of
any practical use.
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It is convenient to collect the auxiliary signals xkt, together with the constant term in (3.13),
in a (n + 1)-dimensional row vector:

xt := (1, x1t, . . . , xnt) , for t = 1, . . . , N

and the regression coefficients as the column vector p := (p0, p1, . . . , pn)T . In such a way,
ŷt can be rewritten as an inner product: ŷt := xt p for t = 1, . . . , N. Even more compactly,
we can stack the various elements of the series corresponding to different times into column
vectors:

y =:


y1

y2
...

yN

 , X :=


x1

x2
...

xN

 =


1 x11 . . . x1n

1 x21 x2n
...

. . .
...

1 xN1 . . . xNn

 , and e :=


e1

e2
...

eN


and rewrite (3.13) as:

y = ŷ + e = Xp + e.

Next, the goal of the regression is to find the coefficients pi’s that make the fit, that is
the matching between the estimate ŷ and the target y, best according to some optimality
criterion. For this purpose, it can be shown, from the Gauss-Markov theorem [347], that under
the Classical Linear Model (CLM) assumptions the Ordinary Least Squares (OLS) estimator p̂
provide many desirable statistical properties, and in particular p̂ is BLUE [348]:

Best (minimum variance among all the other linear estimators)
Linear (as a function of the data)
Unbiased (E[p̂] = p)
Estimator (of p).

The CLM assumptions can be put in the form that the expectation values of the regression
errors must satisfy:

E [et] = 0, and E [etet′ ] = δtt′σ
2 (3.14)

The first assumption is automatically achieved with the inclusion of the constant term p0 in
the regression model (3.13). The last one implies that the errors must have equal variance
(homoscedasticity) and has to be independent; these are usually the most subtle aspects of the
analysis, and must be carefully taken into account when building the model (3.13) and in
order to make reliable inference on the regression results. We will discuss this in more details
in the next subsection.

Given the CLM assumptions, an overall goodness of fit measure is given by the error sum
of squares (ESS):

ESS := eTe = (y− Xp)T (y− Xp) =
N

∑
t=1

(yt − ŷt)
2 (3.15)

and the OLS estimator p̂ can be found minimizing this quantity:

∂ESS
∂p

= −2XTy + 2XTXp (3.16)
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which, equating to zero, gives the unique minimum of the positive definite quadratic form (3.15):

p̂ =
(

XTX
)−1

XTy. (3.17)

From (3.14), it is immediate to verify that this estimator is unbiased and its covariance is
given by:

Cov(p̂) = E
[
(p̂− p)(p̂− p)T

]
= σ2

(
XTX

)−1
. (3.18)

An unbiased estimate of the error variance σ2 is the mean squared error:

MSE =
1

N − n− 1

N

∑
t=1

e2
t . (3.19)

If, besides the CLM assumptions, the regression errors are also Gaussian distributed, p̂
will also be Gaussian. In this case, reliable t- and F-tests can be carried out on the coeffi-
cient estimates to asses predictor significance, and confidence intervals can be constructed
to describe estimator variance. Also, p̂ achieves the Cramèr-Rao lower bound, becoming an
efficient estimator [349].

Principal component regression

From the previous equations, it is evident a potential problem, already anticipated in the
context of multiple coherence (2.71). If the auxiliary channels have zero means (as provided
by a suitable pre-processing transformation) XTX/N = R̂X(0) is the zero lag (estimator of
the) cross-covariance matrix of these signals; compare it to (3.9). In the presence of collinear-
ity among them, implying that one can be linearly predicted from the others, the previous
quantity is singular (rank deficient) and the OLS solution (3.17) can’t be found. In practice,
also in the case of quasi-collinearity, meaning detR̂X(0) ≈ 0 although not strictly zero, the
previous estimate has a very large variance (3.18); this makes the OLS estimate very prone
to large variations from small changes in the data X (ill-conditioning), and in fact of little
practical use. More details will be provided momentarily. In order to avoid this situation,
which is very likely to occur with large number of auxiliary channels, we have to modify
the standard approach to regression, implementing some algebraic “countermeasures” and
approximations.

For the covariance matrix is real and symmetric, we can apply the spectral theorem [350,
§6.3]:

R̂X(0) · N = XTX = VΛVT (3.20)

where Λ = diag(λ1, λ2, . . . , λn) is a diagonal matrix of eigenvalues, corresponding, besides
the constant factor N, to the variances of the data in the orthogonal directions given by the
columns of V := (v1, . . . , vn), which constitute a basis of orthonormal eigenvectors.35 Then,
every data point xt can be reconstructed as a linear combination of these eigenvectors. If the
eigenvalues are ordered such that λ1 > λ2 > . . . > λn > 0, the previous decomposition

35For this operation is a projection of the original data onto directions which maximise the variance, it is funda-
mental for the consequent interpretation that the various signals have been previously standardised to unit vari-
ance, as discussed in section 3.5.2.
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Figure 3.12: Explained variance, normalised to 1, for a set of Virgo environmental chan-
nel signals (ENV). The dashed line represents the 95% of the variance, and the cor-
responding number of independent components. In this example, with just about
70 independent components we were able to explain 95% of the variance of 140
Virgo environmental channels.

is known as Principal Component Analysis (PCA). Then, if we retain only the first m < n
eigenvectors vk, it can be shown that every xt can be approximated with a mean squared
error equals to ∑n

k=m+1 λk [351]. To understand this in a practical situation, in figure 3.12
the explained variance ∑m

k=1 λk for the signals from a set of Virgo Environmental sensors is
reported as a function of their number. It is interesting to note that just m ∼ 70 of them, out
of about 140, are able to explain 95% of their variance, and with m & 100 their covariance
matrix (3.20) became singular. Indeed, it is not unreasonable to expect, with the thousands
of sensors that monitor the apparatus, that some collinearity shows up.

This gives a recipe to get rid of collinear signals, corresponding to null eigenvalues, and
find the OLS solution to (3.16) as [350, §7.3]:

p̂ =
(

VΛ+VT
)

XTy

where Λ+ = diag(1/λ1, . . . , 1/λm, 0, . . . , 0) is the pseudo-inverse of Λ, made with the inverses
of all the m non-zero eigenvalues, and zeros in the (n−m) remaining positions. This solution
is therefore insensitive to collinearity issues. Furthermore, the previous expression can be
simplified introducing the Singular Value Decomposition (SVD) of the data, X = UΣVT , where
ΣTΣ = Λ and the columns of U are given by the eigenvectors of XXT :

p̂ =
(

VΣ+UT
)

y. (3.21)

In the previous form the OLS solution becomes quite fast to compute numerically, even for
large data sets, for efficient algorithms exist for computing the SVD of X without having to
form the product XTX [40, 352].36

36Let’s report some considerations on the computational cost of the proposed solutions. OLS, where the decom-
position of XT X is usually done via the Cholesky algorithm [353], requires n3 + Nn2/2 operations and, depending
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This strategy can be also applied to the case of quasi-collinearity of the auxiliary signals,
that is, when some λk ' 0, although not strictly equals to zero. In this situation the prob-
lem of finding the OLS estimate is said to be ill-conditioned, being the condition number of
XTX very large: κ = λmax/λmin. Consequently, the solution p̂ will be affected by a corre-
spondingly high variance (3.18). To avoid this, it is often preferable to get rid of some of the
smallest eigenvalues, equating a number n−m of them to zero. This implies a reduction in
the covariance of the estimate p̂m with respect to the full OLS p̂, which we can compute to
be [348, §12.2]:

Cov(p̂)− Cov(p̂m) = σ2
n

∑
k=m+1

vkvT
k

λk
� 0

where vk is the k-th column of V, and the symbol “�” indicates a positive semi-definite matrix.
The price to be paid is that this estimator is no longer unbiased, being constrained to be
perpendicular to the last (n−m) eigenvectors vk. Its bias is usually very small, and can be
quantified by the approximation error ∑n

k=m+1 λk. This implies that, by choosing to exclude
only the very smallest λk’s, the loss due to the bias is usually less significant then the gain
in the covariance reduction, and than the estimator p̂m can still be more efficient than p̂. The
problem of finding the “adequate amount” of principal components to discard from the
analysis is very common in statistics and Machine Learning, and it is usually referred as “the
bias-variance trade-off ” [40], or dilemma, sometimes.

The previous technique, called PCA regression, natively allows to adjust towards which
direction make the bias-variance trade-off to lean. Moreover, the transformation from the
“space of the auxiliary channels” to their principal components directions can give a deeper
insight about what are the underlying uncorrelated mechanisms that are generating the
noise. The dimensionality reduction, accomplished discarding some of the lowest energetic
principal components, allows also to express the results in terms of a small number of un-
correlated contributions, instead of a possibly large sum of correlated ones.

However, it must be noted that all the previous considerations aim at improving the co-
efficients estimate, reducing its covariance, disregarding the overall regression prediction,
as can be quantified by (3.15). In general, neglecting part of the data increase the ESS (3.15),
and, as pointed out by some authors [351], even the lowest variance components of R̂X(0)
can play a crucial role in predicting the target y. To overcome this issue, finding a trade off
between a low covariance estimate and a predictive regression model, some authors have
proposed to use a supervised Principal Component Regression algorithm [40, 354, 355], which
we have implemented in the analysis tools we are going to describe in section 3.5.4. Instead
of zeroing all the smallest eigenvalues of the cross-covariance matrix, we can remove a sub-
set of them up to a fixed number or up to a fixed energy content ∑k λk, according to some
criterion such as the smallest cross-correlation of the corresponding eigenvectors with the
target signal y, or the smallest value of the ESS obtained in such a way. For our purposes,
we have chosen the latter criterion, and a total amount of discarded principal components
energy of 5÷ 10%.

All of these choices constitute part of the model construction. In order to compare differ-
ent models, we will introduce in the next subsection several goodness of fit benchmarks.

on the relative size of N and n, it can be numerically unstable. The same is for Lasso regression. SVD, through QR
decomposition, requires Nn2 operation and is usually more stable and faster [40].
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Other regression methods: subset selection and shrinkage methods

From figure 3.12 and the previous considerations, it should be clear that standard regression
analysis is not suitable for “brute force” investigations. This approach is generally doomed
to result in a singular cross-correlation matrix, or in an ill-conditioned model estimation.
PCA regression is just one method to overcome this difficulty. Some others have been inves-
tigated in GW literature, and many more in Statistics and Machine Learning ones, which we
are going to briefly describe.

To the best of our knowledge, the first attempt to correlate noise features in the strain
signal with the auxiliary channels, was implemented by G. Vajente in the original version of
the NonNA analysis tool [LVC7], which used to run on Virgo data back in 2013. The rebuilt
and update of the code was part of the work of the author and it will be described in sec-
tion 3.5.4. This method implemented a backward-stepwise selection [40]. It started with the full
set of channels by means of which we want to model the target, and, step by step, the least
contributing one to the estimation error reduction, or some other criterion, was discarded.
This process was iterated up to a fixed number of remaining channels, or until all of them
was ranked. Needless to say that this was computationally very expensive, hence suitable
only for quite a moderate number of channels. In general, without some sort of pre-selection,
the first iterations resulted in singular cross-covariance matrices, and a random channel was
discarded. For these reasons this approach was soon abandoned in the new version of the
code for Advanced Virgo.

In literature, a common solution to the previous problem can be provided by the so called
shrinkage methods, which can be characterised by the following Lagrangian form for the model
parameters estimator [40]:

p̂ = argmin
p

{∥∥y− Xp
∥∥2

+ λ
p

∑
j=1
|pj|q

}

for q, λ > 0. The first term inside braces is identical to (3.15). The additional one is a “penalty
factor” that weights the number of non-zero parameters for the model by means of the com-
plexity parameter λ; the larger its value, the more the shrinkage of the parameters to values
close to zero. For q = 2, corresponding to an `2 penalty, we have the so called Ridge regres-
sion, while for q = 1, `1 penalty, we have the least absolute shrinkage and selection operator or
Lasso regression, currently implemented in the same-name algorithm in LIGO [356]. This al-
gorithm is mainly used to relate the variations of BNS range of the two LIGO detectors to a
small (5÷ 10) subset of auxiliary channels by arbitrarily varying the parameter λ. As well as
PCA regression, these regularisation methods introduce a bias in the parameter estimation,
but posses a smaller MSE with respect to the OLS solution.

A thorough comparison of the previous methods, including PCA regression, can be
found in [40], by some of the authors and developers of these techniques. Since the `1

penalty has the effect of “truncating” the smallest coefficients to zero, Lasso is generally
preferred over Ridge when the solution is believed to have sparse contributions from the
auxiliary channels, and in general not strong multi-collinearity (which may or may not be
the case depending on the channels selection in noise studies). Instead, the `2 penalty does
a proportional shrinkage making to prefer Ridge regression n case of known multi-collinear
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channels. Sometimes, a weighted mixture of the two is desired, which is called elastic net.
Refer to [357] for an account about this, and also for some interesting considerations about
which shrinkage method to prefer, depending on the context and the prior information.
PCA regression does an “hard truncation”, like Lasso, but on the least energetic principal
components instead of on the channels themselves.

In the context of noise characterisation, it is interesting to notice that PCA regression and
Lasso regression (and “brute force” correlation) give substantially a complementary infor-
mation, being the former more focussed on the underlying uncorrelated noise contributions
and the latter on those from a main subset of individual channels. From a commissioners
point of view, maybe the first is more suitable to answer the question “what kind of noise is
affecting the detector?” while the latter to “where to intervene?”, since PCAs are not referred
to physical sensors and places in the detector, whilst the latter sensors channels are.

Residuals diagnostics and model selection

Before attempting to interpret any regression result and try to make inference from it, it is
necessary to verify the model assumptions, such as the CLM assumption described before.
If the model residuals et = yt− ŷt depart markedly from this, the estimate obtained in such a
way doesn’t benefit of the Gauss-Markov theorem, and the regression is unlikely to perform
well, either in explaining variable relationships or in predicting the target channel.37

Many statistical tests have been developed to asses the CLM assumption, and we have
implemented some of them in our regression analysis tool. To verify the Gaussianity of
the residuals, our algorithm performs some of the most common tests, including Shapiro-
Wilk [358], Kolmogorov-Smirnov [359] and Jarque-Bera’s [360] tests. Although not neces-
sary for the Gauss-Markov theorem, fulfilling the latter condition is of great help for testing
the CLM assumption and, most of all, for constructing confidence intervals and hypothesis
test for the prediction significance using standard techniques (refer to the discussion in the
previous section). As previously mentioned, despite being convenient, the interpretation of
having Gaussian and uncorrelated residuals is that all of the information in the target sig-
nal has been correctly captured by the regression model, leaving to the residuals only the
inherent stochasticity of the processes (and possibly a sum of all the other omitted variables,
which approach the conditions for the central limit theorem [263]).

Independence of the residuals can be visually investigated plotting their auto-correlation
function, Re(τ), and checking that for any lag τ 6= 0 this is smaller than 1 in absolute
value. The Durbin-Watson statistic is the traditional test for the presence of first-order auto-
correlation, and suitable p-values can be computed for it [361]. Both of these checks are
implemented in our tool, and reported in the example in figure 3.17.

Unequal variance of the residuals, or heteroscedasticity, can be tested by means of the En-
gle’s ARCH test for Auto-Regressive Conditional Heteroscedasticity [362]. It is meant to test
the null hypothesis that the squared residual e2

t can’t be predicted by a linear combination

37In modern Machine Learning applications, this seems to be no more a concern, as long as the estimation vari-
ance and the overfitting issue are taken under control. Indeed, the primary criteria on the base of which to judge
the goodness of a model, estimated on an observed set of data (namely the training set), is its ESS computed on a
different test set of previously unobserved data, and other related quantities to be introduced in equation (3.22). We
will come back to discuss this aspect related to the predictivity of a model momentarily.
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of its lagged values plus a white noise term, wt: e2
t = a0 + a1e2

t−1 + . . . + aLe2
t−L + wt; refer

to the discussion in section 2.1.3. In practice, this test makes a second regression analysis on
the squared residuals, verifying this CLM assumption.

As a consequence of the violation of the last two assumptions, one may usually obtain
less efficient estimators; this implies underestimating their confidence intervals and mak-
ing overly optimistic claims of accuracy. In this case, many countermeasures have been
developed, like the adoption of the generalized least square instead of the OLS method, and
variance stabilizing transforms [348, §5-6]. Instead of implementing these solutions in our
algorithm, the occurrence of this kind of violations has been interpreted as a consequence
of model misspecification, and hence we have consequently provided to modify the model,
rather then the analysis, adding additional terms, couplings or lagged variables to the re-
gression model under consideration. Indeed, the presence of correlated residuals is usually
a consequence of the exclusion of some relevant auto-correlated variable from the model,
while heteroscedasticity is often the result of interactions between model variables and omit-
ted variables.

A standard measure of goodness of fit of the adopted regression model is the coefficient
of multiple determination, or colloquially “R2 coefficient”, defined as the ratio of the regression
sum of squares (RSS) and the total sum of squares (TSS):38

R2 :=
RSS
TSS

= 1− ESS
TSS

=
(X p̂)T(X p̂)

yTy
= 1− eTe

yTy
. (3.22)

This number corresponds to the fraction of the varability of the target y that can be explained
by the regression model X p̂; the closer to 1 the better, but taking into account not to commit
the overfitting error (the “curse of dimensionality” [363]), including in the model a number
of variables greater than, or comparable to, the number of observations: n & N. For this
reason it is often preferable to make use of the adjusted determination coefficient R2

adj, defined
as:

R2
adj = 1− (1− R2)

N − 1
N − n− 1

(3.23)

which is always less than R2, and identical to (or smaller than) zero if the number of variables
is equal to (respectively smaller then) the number of observations. This quantity accomplish
the principle of parsimony, and ease of interpretability, in the selection of the variables to
include in the model. In the case of PCA regression, this metric can be used as the criteria by
means of which to discard certain least energetic components.

To formally infer whether the proposed model is effective in representing the target, one
can test the following hypotheses:

H0 : p1 = . . . = pn = 0 (no linear relationships)

H1 : ∃pk 6= 0 (at least one witness variable)

38Beware that many authors use “E” for explained and “R” for residuals, inverting their definitions of ESS and
RSS with respect to ours.
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From equation (3.19) we can notice that, under the assumption that the residuals are ek ∼
N(0, σ2), the ESS is distributed like a χ2

N−n−1, and the test statistic

MSR
MSE

=
RSS
ESS

N − n− 1
n

∼ Fn,N−n−1

that is, it is distributed as an F-variable with n and N− n− 1 degrees of freedom [348, §3.4].
Therefore, if the previous quantity is greater than Fα, the value corresponding to the 1− α

distribution percentile of F, we can reject the null hypothesis (H0) with a level of significance
α, and assess that our model has been predictive. Similarly, we can make t-test to assess
whether the inclusion of a particular variable is relevant or not for the model:

p̂k/
√

Cov(p̂)kk ∼ tN−n−1 (3.24)

where Cov(p̂)kk is the (k, k)-element of the covariance matrix of p̂ (3.18). From the previous
equation we can also define the confidence intervals:

C.I.(pk)α =

[
p̂k ± tN−n−1,α/2 ·

√
Cov(p̂)kk

]
where tN−n−1,α/2 is the critical value corresponding to the upper α/2 of the cumulative
t-distribution with N − k− 1 degrees of freedom. Similar results can be found for the confi-
dence interval for y [348, §3.8].

With the previous quantities and tests at our disposal, we can now face the problem of
model building. An adequate model (3.13) should accomplish the criteria of necessity, parsi-
mony, sufficiency and stability, meaning that all the variable included in the model should
contribute to the prediction and no additional variable should improve and/or change the
coefficient estimate significantly.

If we have several models among which to choose, assumed all to produce normally dis-
tributed residuals ei ∼ N(0, σ2), we can compute the likelihood function of their parameters:

L(p, σ2|y) =
(

2π σ2
)−N/2

exp
[
− 1

2σ2 (y− Xp)T (y− Xp)
]

.

Substituting the parameters estimate p̂ and MSE for each of them, we can compare different
models on the base of the value assumed by their likelihood, L̂; we will opt for the one with
the highest estimated likelihood.

Other criteria related with the likelihood function are the Akaike Information Criterion
(AIC) [364] and the Bayesian Information Criterion (BIC) [365]. The former provides a rela-
tive estimate of the information loss between different models, while the latter is based on
Bayesian arguments. Both of them introduce a cost for models with large number of param-
eters, usually more severe for BIC, penalizing their complexity:

AIC = 2n− 2 log L̂ (3.25)

BIC = n log(N)− 2 log L̂ (3.26)

In this case, a model with lower AIC or BIC is preferable.
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Parameter name Description
target Name of the channel to choose as a target for the analysis

aux name spec. Tags of the auxiliary channel names to include in the analysis
excluded spec. Tags of the aux. channel names to exclude from the analysis

gps start Start time, in gps or UTC units
duration, gps end Duration in seconds or end time in gps or UTC units
output frequency Downsampling frequency for studying slow variations

order Maximum power of the signals to include in the analysis
band(s) Frequencies where to compute the BLRMS(s)

Table 3.1: Main input arguments to pass to the NonNA analysis tools.

3.5.4 NonNA: Non-stationary Noise Analysis tools

The correlation and regression methods described in the previous sections have been im-
plemented in the rebuilt of the Detector Characterisation tool NonNA, Non-stationary Noise
Analysis tool [LVC34]. Two versions of it are available; one that performs a cross-correlation
analysis and the other a PCA regression. These have become a reference tool for noise in-
vestigations in Virgo, such as those related to environmental noise [29], and their results are
collected in the corresponding web area [LVC37]. They have helped understanding the ori-
gin of various glitches during O3, like those in figure 3.11 or those related to the pre-stabilised
laser and the pre-mode cleaner [LVC38, LVC39], of slow non-stationarities, for example related
to the weather conditions [LVC40], and of various BNS range drops [LVC41]. The cross-
correlation tool has also been routinely used for the investigation of the “infamous” 83 Hz
wandering line, whose overview is presented in appendix A.3. In this section we describe
their working principle, comprising the implementation and summary of the previous the-
oretical concepts, as well as their usual parameter configurations.

In figure 3.13 we have described a schematic flowchart of the preprocessing stage com-
mon to both the cross-correlation and regression analyses. The main configuration parameters
for our tools are listed in table 3.1, which we are going to comment.

Commonly chosen targets are the BNS range, whose drops and variations are typical
noise features it is important to understand, the BLRMS’ of LSC_DARM or the strain channel,
and also wondering lines, tracked with the method described in section 3.4. The auxiliary
channels can be chosen among the about 80k sensor channels that monitor the detector.
These can also undergo some of the transformations described in section 3.5.2. In the case
their BLRMS’ is desired, their acquisition is from the Virgo raw data frame, with channels
at their full sampling frequencies. Otherwise they are read form the trend data frame, with
all the channels sampled at 1 Hz, which is usually sufficient for slow non-stationary noise
investigations. Typical choices for them are the environmental channels and the alignment
control channels: ENV_, ASC_ and LSC_. A list of about 400 “standard” channels, customary
used for Detector Characterization purposes, is used by default. Some channels with known
correlations with the targets, strain and DARM, are excluded from the analysis; these include
all the channels related to the detection photodiode or used in the reconstruction of h(t).

It is important to note that the operation of reading hours or even few days of data,
in particular from the raw frame, is quite memory demanding. Large efforts have been
put into developing efficient acquisition and pre-processing algorithms for these analyses.
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Figure 3.13: Flowchart of the preprocessing stage for the cross-correlation and regression

analysis tools.

This was done implementing a parallel structure in the code, which exploits multiprocessing
computing over the up to eight cores of the Virgo farm machines [LVC4]. Some limitations
are still present when reading from the raw data frame and computing the BLRMS’ of large
lists of auxiliary channels, while for the single target channel the maximum data length can
be up to a week.

Usually, as a first step, our algorithm checks if the interferometer was locked, or in a
specified status as described in section 2.4.3, at the selected start time for the analysis and for
all the specified duration. If this is not the case, the start time is moved to the beginning of
the next interferometer locking and/or the duration is reduced up to the next unlocking. For
long duration correlation analyses, this option can be disabled, provided the data segments
corresponding to no data are filled in a suitable way.39

The auxiliary channels can be specified by their names or making use of some “wild-
cards”, like in “ENV_∗”, representing all the environmental channels. Similar operation is
done for all the channels that we want to exclude from the analysis, for example because
we already know of their correlation with the target or because not reliable, for example

39Usually with non-numeric values (NaNs), which are automatically ignored by the analysis.
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Figure 3.14: Flowchart of the cross-correlation analysis tool.

for some malfunctioning or undesired behaviour. All the available channels at the speci-
fied analysis time matching with the specifications provided are selected, and all the ones
whose names matching the exclusion specs excluded. Usually, this list comprises about 40k
channels for the “brute force” cross-correlation analysis, while for the regression analysis
the starting model usually comprises few hundreds of channels. Next, there is the pre-
processing phase described before, at the end of which all the channels should match the
desired output frequency, the same as the target.

The pre-processed signals are then correlated by means of the cross-correlation and the
regression analysis tools, whose flowcharts are represented in figure 3.14 and 3.15. The output
of the former is shown in figure 3.16. It consists into an html page with a table containing, for
every frequency band analysed, the names of the most correlated auxiliary channels, ranked
on the base of (the absolute value of) their Pearson’s correlation coefficient with the target.
The darker the colour the higher (the absolute value of) the correlation.40 The name of each
channel is a link to the corresponding plot of its time series, along with that of the target,
analogously to what shown in figure 3.11. In the same page we also put the link to a log file
containing a longer list of correlated channels. The results of the analysis are available at the
corresponding Virgo Data Analysis web page [LVC37].

The regression tool is more complex. Many model parameters are meant to change through
iteration of the algorithm, as described in the previous sections. For example, the glitch re-
moval algorithm, described in section 3.1.2, is applied to the target channel as an additional
pre-processing. This can be done with or without setting from the beginning the “outlier
threshold”. Its value can be decided by the algorithm itself on the base of the analysis of
the residuals and the value of the (adjusted) determination coefficient (3.23). For example,
it can start with none of the outliers removed, and it lowers the threshold until finding a
maximum for R2

adj (or a minimum of AIC or BIC (3.25-3.26), in case of Gaussian residuals).41

This choice has been made to account for the possibility that some of the auxiliary channels
is able to explain the “outliers” (mostly glitches) in the target; if not, these are removed and
the focus is given to the other non-stationarities.

40This design has been inspired by that of Bruco, for studying the “brute force’ coherence, already described in
section 2.3.3.

41Recall that R2
adj depends on the ratio of the parameters in the model and the number of observations; so,

removing too many outliers is penalized.
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Figure 3.15: Flowchart of the regression analysis tool.

Also, the choice of which eigenvector remove in the truncated PCA is computed for a
fixed amount of energy, ∑k λk, in order to maximize the R2

adj (or minimize AIC and BIC). Em-
pirically, it turned out that for ∑k λk ' 1%, the condition number was κ ' 20÷ 80, and none
of the lowest eigenvalue components influenced significantly the regression determination
coefficient. Other recursive operations (dashed line in figure 3.15) can be implemented in
order to reduce the model complexity, reducing the dimensionality of the witness channel
space, and to make the interpretation of the results easier.

The results of the regression tool are a log-file, containing all the relevant results for making
statistical inference as described in section 3.5.3, and the plots of the target prediction and
the residual diagnostics.42 In figure 3.17 we report the regression analysis of the amplitude
non-stationarity already shown in figure 2.11, consisting in an excess of power in the band
around 50 Hz of the channel LSC_DARM. A regressive model comprising 100 environmental
sensor channels was able to reproduce quite accurately the shape of this noise feature, with
an R2

adj ' 84%. Those that contributed the most, on the base of their t-statistic were some
magnetometer sensors in the Virgo Injection Electronic Room and in the West End Building.

3.5.5 Possible extensions: Machine Learning implementation

The previous correlation analyses have been tested during the commissioning phases that
preceded the third observing run of the Advanced detectors (O3), and in particular dur-
ing the commissioning runs C10 and C11, of August and October 2018 respectively [LVC43,
LVC44]. The main purpose was to correctly model non-stationarities in a main target, related
to the reconstructed strain, by means of the auxiliary channels, providing also the statisti-
cal quantification of their relationship. Related to this, it was also interesting to explore the

42Also, some attempts have been made to try to represent the principal components in a convenient format.
The idea was to exploit the Virgo channel names convention [LVC42], V1:SUBSYSTEM_LOCATION_SENSOR_extras,
in order to identify which subsystems, locations, and kind of sensors were witnessing particular noise compo-
nents. Unfortunately, this convention is not comprehensively adopted, and the simple inspection of the names that
resulted most correlated provided substantially an analogous information.



148 Chapter 3. Methods of investigation of non-stationary noise

Figure
3.16:Exam

ple
ofw

eb
page

outputofthe
N
o
n
N
A

cross-correlation
analysis

tool.The
table

in
shades

ofblue
represents

the
listofthe

m
ostcorrelated

channels
ateach

frequency
band

w
here

the
targetBLR

M
S

has
been

com
puted

into.



3.5. Investigating the correlation with the auxiliary channels 149

Fi
gu

re
3.

17
:E

xa
m

pl
e

of
re

gr
es

si
on

an
al

ys
is

w
it

h
th

e
N
o
n
N
A

to
ol

re
fe

rr
ed

to
th

e
am

pl
it

ud
e

no
n-

st
at

io
na

ri
ty

of
fig

ur
e

2.
11

,w
ho

se
BL

R
M

S
is

re
po

rt
ed

in
th

e
to

p
le

ft
pl

ot
.I

n
th

e
sa

m
e

pl
ot

is
sh

ow
n

(r
ed

)i
ts

be
st

pr
ed

ic
ti

on
an

d
90

%
co

nfi
de

nc
e

in
te

rv
al

.I
n

th
e

le
ft

bo
tt

om
pl

ot
th

e
re

si
du

al
s

be
tw

ee
n

ta
rg

et
an

d
pr

ed
ic

ti
on

is
sh

ow
n

in
or

an
ge

.O
n

th
e

ri
gh

t,
tw

o
te

st
s

ab
ou

tG
au

ss
ia

ni
ty

an
d

th
e

au
to

co
rr

el
at

io
n

of
th

e
re

si
du

al
s

ar
e

re
po

rt
ed

.



150 Chapter 3. Methods of investigation of non-stationary noise

possibility to predict future, unobserved values of the target by means of the estimated p̂ with
the past values of X and y. This is the typical interest of regression analysis in the context of
Machine Learning [366]; refer also to note 37.

Unfortunately, this “extrapolation process” applied to the context of non-stationary noise
resulted in very poor performances, as measured by (3.15) or (3.22), except for those cases
where the non-stationarities exhibited some recurring patten, and therefore it could have
been described by a stationary model, in the interpretation given in section 2.1.3. Also “in-
terpolation”, that is, randomly deselecting some of the observed data, and testing the algo-
rithm performance on them, produced results strongly dependent on their choice; this can
be clearly understood from figure 3.17. In the language of Machine Learning, our regression
models poorly performed in generalising to new data [40].

The main reason for that is in the assumption that the model coefficients p in (3.13) were
fixed, that is time invariant. For generic non-stationary noise studies, there is no need for
this to be true, and consequently the possibility to make predictions on the base of their
estimated values at a certain time.

Nonetheless, it is interesting to report a couple of situations where regression models,
similar to the one discussed in dissertation, have proven to contribute to understand specific
noise features in GW data, although not regarding non-stationary noise. These comprise in
particular the structures around the 60 Hz spectral line due to the electric mains in LIGO
detectors (similar to those around the 50 Hz line studied in section 2.3.3) and its harmonics.
In [274] the authors develop a regression model similar to (3.13) except for the inclusion of
a certain number (∼ 10000) of past and future values of the auxiliary channels (Volterra se-
ries [367]), representing their correlation structure with the target. Then, they make use of
a neat trick to reduce the complexity of the inversion af a normal equation with that many
parameters, transforming the model to a mixed time-frequency representation by means of
a Wilson-Daubechies-Meyer transform (WDM) [368]. In such a way, making use of some
witness channels related to the electric current monitors, they have been able to predict and
filter out the spectral lines corresponding to 60 Hz and its harmonics. Moreover, exploiting
a paradigm similar to the one discussed in section 2.3.4, they were able to predict the side-
bands of these lines, as consequences of the up-conversion of low frequency disturbances
non-linearly coupled with the previous resonances.

Another very recent example of application of a similar technique is that presented in
[328].43 The authors attack the same problem faced in the previous work by means of a Deep
Neural Network (DNN) [40] to model the Volterra series that represents the relation between
the target and a certain number of auxiliary channels, together with their past values. This
technique constitutes a modern approach to solve non-linear problems, and indeed it can be
proficiently applied to the subtraction of non-linear noise couplings in GW data, as shown
by the authors. We will describe an example of application of neural networks in the next
chapter, about the deglitching project of GW data [LVC18, 285].

43Beware to a subtle difference in terminology with respect to what we have described in this manuscript. The
authors indeed refer to non-stationarities in the data, rather than in the process generating them. For example, the
sidebands described in section 2.3.4 and originating from the non-linear coupling of some noise of characteristic
frequency ∼ 0.1 Hz and the mains (either 50 or 60 Hz) are considered by them as non-stationarities in the observed
data. To this purpose they clarify: “The distinction between a non-linear and a non-stationary noise coupling is simply a
matter of time scales or frequencies.”
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Figure 3.18: Different representations of a signal: (a) time series, (b) Fourier series, (c)
short-time Fourier transform, by means of which spectrograms are computed, and
(d) wavelet transform, with octaves frequency division (refer to equation (3.35)),
yielding a scalogram representation of the signal.

3.6 Wavelet coherence analysis of glitches

In the previous section and in 2.3.3 we have presented two methods for the study of detector
noise. The former, suitable for non-stationary noise, is completely implemented in the time
domain representation of the signals, while the latter, for stationary noise, is completely in
the Fourier domain. It was somewhat natural then to find an extension to the concepts of
correlation and coherence to accommodate a time-frequency representation, for those noise
features that exhibit both peculiar time and frequency characteristics.

This framework can be provided by the wavelet transform [291, 369], which naturally em-
bodies the concept of a time-frequency representation, and, most importantly, is also multi
resolution. This aspect is relevant for the fact that low frequency signals require long duration
windows to be estimated with a sufficient frequency precision, while high frequency signals
are better isolated in time using short duration windows. This is known as time-frequency
localization problem, and is a consequence of the Gabor uncertainty principle [370] (analogue of
the Quantum Mechanic’s Heisenberg principle). The standard “short-time” Fourier transform,
using windowed data, is inaccurate to this purpose, imposing at all frequencies a resolution
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Figure 3.19: Complex Morlet(-Gabor) wavelet for ω = 2π, together with the projections
of its real and imaginary parts, represented by the dashed and dot-dashed lines
respectively.

1/T, and at all times a resolution 1/ fS [371]. Refer to figure 3.18 for a depiction of the sig-
nals representations encountered so far and their resolution in the time and/or frequency
domain.

The implementation of a wavelet representation is well established in GW research.
Glitches, which are transient noise features with compact support and characteristic patterns
in a time-frequency map [23, 258], are naturally represented in this way, as well as transient
GW signals. Pinto et al. [372] have shown that many classes of glitches can be reconstructed
by a small sum of continuous Morlet(-Gabor) wavelet components [373], interpretable as
“glitch atoms”. To this purpose, we have already mentioned the Omega pipeline [323] and
Omicron [LVC30], which use this kind of representation. Also the BayesWave algorithm [195]
uses the same modellistion to “fit” glitches and GW signals. There are also examples of stud-
ies by means of discrete wavelets, which constitute an orthogonal basis on which to expand and
reconstruct the signals. The aforementioned cWB [21] and the stationarity test described in
section 3.1.3 [2, LVC29] exploit this strategy.

In this section we will formalise the definition of wavelet transform and we will introduce
the concepts of wavelet coherence [374] and wavelet correlation [375, 376]. The short-time
version of the phase delay introduced in section 2.3.3 will be descried in the last section.
This constitutes a new attempt to make inference on the “instantaneous causality” between
signals, whose concept will be clarified in section 3.7.

3.6.1 The continuous wavelet transform

In this treatment we will consider continuous wavelet transforms only, but many considera-
tions apply to discrete orthogonal ones as well. Loosely speaking, a wavelet is a finite energy
function representing a “brief oscillation”, with a limited time support and some kind of
periodicity assimilable to a “frequency” [377]. More formally, there are some conditions for
a generic function ψ(η) of the dimensionless time parameter η to be considered an “admis-
sible wavelet” [319]. Basically, this should be square integrable (ψ(η) ∈ L2(R)), in order to
admit some kind of Fourier transform, and satisfy an energy conservation condition analogue
to a generalised version of the Parseval’s Theorem, which ensures that no information gets
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lost in the transform corresponding the the convolution of the wavelet with the signal. From
the former, we can conveniently choose the function to be normalised to have unit energy,∫ +∞
−∞ |ψ(η)|2 dη = 1; this, in some sense, expresses the fact that the function ψ(η) should be

“localised”, with respect to the metric given by the L2-norm. The second requirement can
be imposed checking the ability of ψ(η) to “resolve the identity”, which can be shown to be
equivalent of demanding that its Fourier transform44 satisfies

∫ +∞
−∞ |ψ̃(ω)|2/|ω| dω < +∞,

which reduces to ψ̃(0) = 0 for sufficiently fast decay with ω [378, 379]. In the time domain,
the latter is equivalent to

∫ +∞
−∞ ψ(η) dη = 0, which actually means that ψ(η) should be a

“rapidly oscillating” function, in order for its average to be equals to zero.
The “archetypical” example, and a natural choice after the discussion at the beginning of

this section, is the complex Morlet(-Gabor) wavelet [373]:45

ψ(η) = π−1/4eiω0ηe−η2/2 (3.27)

representing a monochromatic wave of (non-dimensional) central angular frequency ω0, win-
dowed by a Gaussian function that accomplishes its localisation in time. Since ω0 is a free
parameter, the previous equation represents in fact a family of “candidate wavelets”. Its
value determines the number of oscillations in a wave packet; the higher the number of os-
cillations the better the frequency resolution, in spite of the temporal one [378]. Also, this
factor should be chosen in such a way to make ψ(η) satisfy the admissibility condition of
vanishing average. A common choice consists into making the second peak of the function
equals to half of the first: ω0 = π

√
2 ln 2 ' 5.336 [382].46 Historically, a very popular choice

is ω0 = 6, which makes it even closer to admissibility condition ψ̃(0) = 0 [291, 319]. In our
analysis, we have found particularly convenient, for its interpretability, to choose ω0 = 2π,
which slightly emphasise the “frequency resolution” with respect to the former options; the
reason for that will be clarified in a moment, and the admissibility condition is not spoilt
either. In general, this is a tunable parameter to choose on the base of the characteristic du-
ration and bandwidth of the signal to analyse. Some criteria about how to choose it will be
discussed after its interpretation will be clarified. Namely, lower values of ω0 (∼ 2π) are
more suitable for shorter, impulsive signal, while higher ones are better for longer lasting
signals and better frequency resolutions.

Moreover, the choice of a complex wavelet function is useful in order to return infor-
mation about both amplitude and phase and is better adapted, with respect to real one, for
capturing oscillatory behaviours [291]. We will exploit this aspect in section 3.6.3.

In figure 3.19 we reported the 3D plot of the complex Morlet(-Gabor) wavelet, for ω0 =

2π, together with the projections of its real and imaginary parts, represented by the dashed
and dot-dashed lines respectively. As commented before, higher values of ω0 correspond to
more oscillations of this function (the real and imaginary parts of it) and a better frequency
resolution, in spite of a worst time localisation.

44The existence of the Fourier transform ψ̃(ω) is ensured by the first condition: ψ(η) ∈ L2(R).
45The normalisation choice by means of the factor π−1/4 for the Morlet wavelet is the popular one adopted

in [291, 380, 381], which makes its squared norm simply equals to exp(−ω2
0).

46Given the Fourier transform of (3.27), ψ̃(ω) = π−1/4 exp
(
− (ω − ω0)

2/2
)
, this implies ψ̃(0) ' 7× 10−7 ≈ 0,

which is close enough to zero-mean for most practical purposes. In general, in literature are considered admissible
Morlet wavelet with parameter choice ω0 > 5.
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The wavelet transform (or coefficient) of a signal x(t) is given by its convolution with a
scaled and time-shifted version of the prototype “mother” (or analysing) wavelet, ψ(η, s),
acting as a time-scale projection kernel:

W(t, s) =
1√
|s|

∫ +∞

−∞
ψ∗
(

η − t
s

)
x(η) dη (3.28a)

:=
∫ +∞

−∞
ψ∗(η − t, s) x(η) dη (3.28b)

The scale parameter s represents here the analogue to a frequency f .47 The normalization by
1/
√
|s|maintains the energy invariance of the “daughter wavelets” as a function of scale.

For the Morlet wavelet (3.27):

ψ(η − t, s) :=π−1/4 1√
|s|

ψ

(
t− η

s

)
=π−1/4 1√

|s|
exp

(
− (t− η)2

2s2

)
exp

(
iω0(t− η)/s

)
(3.29)

where, choosing ω0 = 2π, makes evident the relation between scales and frequencies, s ≡
1/ f :

=π−1/4
√

f exp
(
− (t− η)2

2
f 2
)

exp
(
2πi(t− η) f

)
(3.30)

representing in fact, the Gaussian envelope about t of a monochromatic plane wave of fre-
quency f ; the former localise the wavelet in time and the latter determines its frequency.
When the mother wavelet can be interpreted as a windowed sinusoid, as in this case, the
wavelet transform can be interpreted as a constant-Q Fourier transform [323, 383].

For a time series sampled at discrete times n = 0, . . . , N − 1, with a frequency fS, equa-
tion (3.28) can be written as [291]:

Wn(s) =
N−1

∑
n′=0

xn′ψ
∗
(

n′ − n
s fS

)
. (3.31)

By varying s and translating along time n, one can construct a form of time-scale (or
frequency) representation, similar to the spectrogram, which is called the scalogram of the
signal. In figure 3.20 the scalogram of a typical glitch is reported (bottom colour-map) to-
gether with its whitened time series (top plot). Details on the algorithm that has created the
map, together with further information on the quantities shown therein, will be discussed
in the next subsections.

47Refer to the next section and to note 50 for the general relation between frequency and scale.
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Figure 3.20: Example of “glitch” in the Virgo strain channel. In the top plot the
whiten time series is reported, while the bottom map represents the time-frequency
wavelet transform of the signal, reported in units of SNR with respect to the back-
ground (white) noise. The dashed contours represent the 5% significance with
respect to white noise hypothesis.

Algorithm implementation

The map and the plot represented in figure 3.20 has been created with the Detector Charac-
terisation tool WATERLOO (WAveleT coERence anaLysis tOOl) [LVC45, LVC46].48

For the study of glitches, with durations . 1 sec, chunks of 50 ÷ 200 seconds of data
around the time of the maximum excess of power were loaded, and used for whitening the
corresponding time series. This process has already been described in equation (3.5); the
ASD used was computed with the mean-median method described in section 2.1.6, with
ffts of the size of the required window around the glitch, usually 0.5 ÷ 4 sec, depending
on its duration. This method helped to considerably speed up the computation of wavelet
transforms, avoiding redundant ffts. Indeed, instead of performing the N convolutions of
equation (3.31),49 from the convolution theorem for the Fourier transform, one can compute
them as multiplications from the frequency domain [384]. Indeed, for computing the ASD
for the former whitening step, we already have computed the DFT of the data in the window

48The author acknowledge the github project aprovecharLabb by C. Brown for having constituted the starting
point for the development of the WATERLOO tool, and L. Rei from INFN section of Genova for his help in adapting it
to run on Virgo farm machines.

49The choice of making one convolution per each time point of the series xn is natural but arbitrary. One could
have legitimately chosen to implement some sort of “downsampling”, skipping an arbitrary number points at each
step [291].

https://gist.github.com/aprovecharLab/7654032c64370672b933559f887afd56
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of interest around the central time of the glitch:

x̃k =
1
fS

N−1

∑
n=0

xne−iωkn/N , (3.32)

where k = 0, 1, . . . , N− 1 is the frequency index. Then, from the convolution theorem, equa-
tion (3.31) can be rewritten as:

Wn(s) =
fS
N

N−1

∑
k=0

x̃kψ̃∗
(
sωk

)
eiωk n (3.33)

where the normalised angular frequency (in units of radiants per sample) is defined as:

ωk =

 2πk
N for k 6 N

2

− 2πk
N for k > N

2

(3.34)

This “trick”, allows to compute, for each s, the wavelet transform simultaneously in parallel
for all the times n.

The scales s involved in the previous computation can be arbitrarily chosen. The WATERLOO
algorithm allows to choose them linearly spaced, useful for studying non-stationarities span-
ning only one order of magnitude of frequencies, or as fractional power of two (octaves), as
typical from Acoustics applications:

Noctaves = blog2 Nc, sj := 2j/Nnotes j = 1, . . . , Noctaves. (3.35)

The parameter Nnotes is the one giving the frequency granularity, in terms of “notes per
octave”: f j ≈ fS/sj. For optimising the computation of (3.33), the lower frequency region,
say below 10 Hz, is usually discarded since not of interest for glitch studies and not even
reconstructed in the strain channel. This choice is represented in panel (d) of figure 3.18.

Notice that the previous relation holds for a choice ω0 = 2π for the Morlet mother
wavelet (3.27). With other choices of this parameter, of for other mother wavelets, the rela-
tion between scales and frequencies should have been investigated following, for example,
the method of Meyers et al. [321]; this consists into computing the wavelet power spectrum
for a cosine wave signal of known frequency, and attributing to this frequency the scale
corresponding to the maximum value of |Wn(s)|2.50

Wavelet power spectrum and significance level

In the top plot of figure 3.20, we reported the whitened time series of a glitch in Virgo strain
channel, clearly visible in correspondence of the central time. The units are arbitrary or, to
be more precise, the typical normalisation of |x̃k| with unit variance, as a consequence of
the whitening, is implemented. The wavelet power spectrum |Wn(s)|2 is reported in the main
colour-map. Notice that as the Morlet wavelet is complex, also Wn(s) is so; we will make
use of the phase component of this transform in section 3.6.3. Notice that with the energy

50For the Morlet wavelet this relation is given by f−1 = 4πs ·
(
ω0 +

√
2 + ω 2

0
)−1 [321]. Therefore, with ω0 = 2π,

f−1 ' 0.99 · s, while with ω0 = 6, f−1 ' 1.03 · s.
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normalisation discussed in the previous section, if |x̃k|2 has expectation value σ2 (equals to
one with our whitening convention), then, for a white noise process:

E
[
|Wn(s)|2

]
= N σ2, for all s, n.

For convenience, it was given this normalisation, “relative to white noise”, also to the wavelet
power spectrum in figure 3.20.

To assess the significance of this spectrum, it is assumed that, in the absence of any non-
stationary noise, namely glitches, |Wn(s)|2 should be randomly distributed around its ex-
pected average for a white noise process (null hypothesis). If xn is a white Gaussian process,
we have already commented in section 2.1.6 that |x̃k|2 should be distributed as Γ distribu-
tion with shape parameter k = 1 and scale σ2, the latter also equal to its mean and standard
deviation (refer to appendix B.2), which is equivalent to a χ2 distribution with two degrees
of freedom if σ = 1. Then, according to the null hypothesis:

|Wn(s)|2
N σ2 ∼ 1

2
χ2

2

where the 1/2 in front of χ2
2 (necessary only for complex wavelets) scales it to the “reduced”

χ2 distribution [291]. The previous considerations are analogous to those discussed for the
non-stationarity test based on orthogonal wavelets in section 3.1.3. The validity of the previ-
ous assumptions has been checked by means of both “quiet data”, that is, in the absence of
glitches, for testing the normalisation of the whitening, and with white Gaussian simulated
data. In both cases, the distribution of the (normalised) wavelet power spectra was com-
patible with a χ2

2 distribution, according to a Kolmogorov-Smirnov test with significance
α = 1%; refer to section 3.1.2 or to [304, 305]. In particular, our results are compatible with
those in [385], where the authors describe a similar analysis. Of particular relevance was
also to repeat the computation in the case of a time-scale averaged spectrum, as we will de-
scribe in the next section. Moreover, the same sanity check was implemented for the wavelet
cross-spectrum, described in the section 3.6.2.

The dashed white contour in figure 3.20 represents the 95% confidence level for the null
hypothesis of white Gaussian noise, corresponding to a significance level α = 5%, represent-
ing the probability of wrongly rejecting the the null hypothesis when it is true. As expected,
the entire excess power of this “loud” glitch fall into this region.

Notice also the blue-shaded, “U-shaped” region at the borders of the map. This corre-
sponds to the cone of influence for the analysed data segment (the fft around the central time
of the glitch) and the chosen kind of wavelet. In this region, edge effects can occur due to the
fact that the wavelets are not completely localized in time, and this is where part of the them
fall outside the borders of the data segment. A common practice, implemented in WATERLOO,
is to zero-pad the data up to the next power of two, as already discussed in section 2.1.6,
in order to speed up the fft computation and, in this case, to extend the support for the
wavelets. Other possible choices, like cosine damping are discussed in [321]. The shape of the
cone is chosen as the time from the edge at which the power of the wavelets has decreased by
a factor e−2; the previous quantity is called the wavelet e-folding time [291]. This gives also a
measure of the decorrelation time for a single “spike” in a time series; by comparing the width
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of a peak in the wavelet power spectrum with this decorrelation time, one can distinguish
between a spike in the data (possibly due to random noise) and a harmonic component at
the equivalent Fourier frequency. We will exploit this property in the next section.

Averaging in the time-scale plane

Notice that the previous definition for the wavelet power spectrum |Wn(s)|2 is analogous,
besides the normalisation fS/N to a density, to that of the periodogram PSD estimate Ŝ( f ) ∝
|X̃( f )|2. As commented about the latter in section 2.1.6, and as expressed by the χ2 distri-
bution, its standard deviation is equal to its expected value. The “background texture” of
figure 3.20 (with a different colour palette they would have resembled flames, as often they
are colloquially referred to) represents these random variations. This has no effects when
studying a single glitch, which is “by definition” more intense than the background. How-
ever, when in the next sections we will compare the wavelet transforms of two signals, these
fluctuations may overlap, producing spurious coincidences.

Similarly to what was done with the Welch’s method in equation (2.55), the idea is to de-
fine some kind of averaging procedure, in order to suppress the effects of these random fluc-
tuations. Unfortunately, there is no obvious way to do that since, in this case, we have only a
single realisation of a non-stationary process (the glitch); the Ergodic Theorem is clearly not
applicable in this context, and the consequent meaning to attribute to an averaging is not
trivial.51

Again, if there is a clear distinction of scales (in the general sense of the term) between the
features we want to represent and those of the background randomness, some authors [386]
suggest the “compromise” of simply computing the local averages of consequent wavelet
spectrum in both times and scales. This allows to suppress the random fluctuation of the
background at the price of loosing part of the resolution about the glitch. In [291, 387] the
authors make some quantitative statements about the natural shapes and sizes one should
choose for these averages, in relation to the adopted wavelets. What they suggest is to make
a time smoothing with a filter given by the absolute value of the wavelet function at each
scale, normalized to have a total weight of unity, which for the Morlet wavelet (3.27) is just
a Gaussian function: ∝ e−n2/2s2

. The reason for that is related to the e-folding time and
the cone of influence described before. Similarly, the scale smoothing can be done using
a boxcar filter of width equals to the scale-decorrelation length of the particular wavelet (and
parameter ω0, in the case of the Morlet) chosen. We will represent the corresponding time-
scale averaged wavelet power spectrum by means of double angle brackets:

〈〈
|Wn(s)|2

〉〉
.

These filters are the best “compromise” as they provide the minimal amount of smoothing
necessary to include two independent points in both the time and scale dimensions. Larger
windows, covering more decorrelation lengths, can be chosen if an even smaller estimation
variance is required, in spite of the time-scale resolution. The characteristic width for these
filters, in both time and scales, for various wavelet choices can be found in [291, Table 2].

51Notice that here and in the following discussion, when talking about averaging we only refer to the ampli-
tude of the wavelet power spectrum. Indeed, for the same considerations about the inapplicability of the Ergodic
Theorem, for no stationary signals it doesn’t have any physical meaning to compute the time-scale averages of the
changing phases. These phases will be therefore excluded from all the following considerations about averages.
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This strategy has been implemented in the WATERLOO algorithm in the computation of the
wavelet cross-spectrum and, most importantly, the wavelet coherence, that will be described
in the next section. Indeed, being the latter the ratio of stochastically varying quantities, anal-
ogous to (2.67), it is important for these quantities to have a moderate variance, otherwise
the value of the resulting variable will be completely spoilt by their variations.

3.6.2 Wavelet cross-spectrum and wavelet coherence

Firstly, let’s comment the logic that has led to the development of the waterloo tool, and its
usage for noise studies. The typical situation is that the cross-correlation analysis described
in section 3.5 has highlighted two channels (the target and an auxiliary sensor) having an ex-
cess of power at the same time. We want then to gather more information on them studying
the time-frequency morphology of these power excesses, inferring in particular if the two
can be related. The available tools, like Omega [323] and Omicron [LVC30], and also the one
described in the previous section, allow just a “visual” comparison of the two. UPV [326]
partially tries to overcome this dividing this comparison in a small number of frequency
bands, and computing in there the percentage of the time the two channels “glitch together”.

The idea was then to improve upon this, extending to the wavelet representation the
previously described concepts of correlation and coherence, with the purpose of providing
new insights into the time-scale dependency between signals.52

We have already noticed that the coherence analysis is inapplicable (or at least mislead-
ing) if non-stationarities occur during the time scales of estimations of the auto- and cross-
spectral content of the signals involved. A similar, but quite more moderate, consideration
has been made for the cross-correlation. If the signals are non-stationary, the Ergodic Theo-
rem is not applicable; hence, strictly speaking, we are not really estimating the correspond-
ing distribution moment of the underlying processes, but just a quantity representing the
similarity between the records of the two. Wavelet coherence and cross-correlation represent
a practical framework to overcome the previous issues, but not without some limitations, as
we will discuss later.

Wavelet cross-spectrum and phase angle spectrum

Given two equally sampled time series, xn and yn, by means of equation (3.33) we can com-
pute their complex (if using a complex wavelet, like the one of Morlet) wavelet transforms:
WX

n (s), WY
n (s). We can then define their wavelet cross-spectrum as [388]:

WXY
n (s) := WX

n (s)∗WY
n (s). (3.36)

52In fact, this is more or less the same idea implemented by cWB for the search of coherent GW signals between
two detectors [21]. The focus here is on the noise studies of the non-stationarities in the detectors strain channel,
which motivated some choices different to those implemented in the cWB pipeline.
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Figure 3.21: Wavelet cross-spectrum between Virgo Hrec_hoft_20000Hz strain channel
and ENV_CEB_MAG_, that is, the environmental sensor corresponding to a magne-
tometer in the Virgo Central Building. The colour-map represent the amplitude
of the spectrum, while the small black arrows its phase. The dashed white line is
the 5% significance region for the hypothesis of two uncorrelated white Gaussian
processes. The bottom plot shows the instantaneous time delay statistic defined
in (3.47), together with its ±σ and ±2σ regions.

This quantity is complex, analogously to the usual cross-spectrum Sxy( f ) defined in (2.64c),
and can be rewritten as:

WXY
n (s) =

∣∣WX
n (s)

∣∣e−iθX
n (s) ∣∣WY

n (s)
∣∣e+iθY

n (s)

=
∣∣WXY

n (s)
∣∣ei
(

θY
n (s)−θX

n (s)
)

. (3.37)

Similarly to what commented in section 3.5, the wavelet phase angle spectrum reflects the phase
difference by which yn “leads” xn at the given scale and time. This aspect is potentially very
important for understanding the relation between the two signals. It will be exploited in the
next section, while for now we will mainly focus on its absolute value.

An example of wavelet cross-spectrum is reported in the colour-map in figure 3.21. This
is referred to a glitch in the Virgo strain channel, already shown in figure 3.20, and a quasi
coincident excess of power in an environmental sensor corresponding to a magnetometer in
the Virgo Central Building (ENV_CEB_MAG_N). Apparently, a large amplitude of their wavelet
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cross-spectra occurs when the two signals have large power at similar scales (frequencies)
and around the same times.

The normalisation, as well as the 95% confidence level are obtained assuming the null
hypothesis that both the wavelet spectra are realisations of white Gaussian noise processes,
and therefore are distributed individually as χ2

2 variables. The analytical form of the re-
sulting distribution for the (squared) wavelet cross-spectrum, given by the product of two
χ2 distribution, has been obtained in [389, 390] and discussed, in the context of wavelet
analysis, in [291, 391]. For convenience and for checking the various normalisations, in par-
ticular in the presence of time-scale averaging, as described in the previous section, we have
proceeded to double check the consistency with the previous distribution and, most impor-
tantly, to derive the numerical values corresponding to its percentiles. The technique used is
the same as that described in section 3.3.1 for the Rayleigh Gaussianity test [LVC24].

Notice that for the cross-spectrum in figure 3.21, a single correlation length averaging has
been applied, to reduce the estimation variance, in both times and scales, as described in the
previous section. Nonetheless, notice some spurious, although significant, fluctuation of its
value, especially at high frequency.

The information about the wavelet phase spectrum,

θXY
n (s) = (θY

n (s)− θX
n (s)

)
:= tan−1

(
=
(
WXY

n (s)
)

<
(
WXY

n (s)
)) , (3.38)

computed before any averaging procedure was applied to WXY
n (s), is represented in the

same map by the small black arrows, for only those regions with significance smaller than
10%.

Wavelet coherence

From the previous wavelet cross-spectrum is not clear if its high values correspond to coinci-
dent high values in both the signals or just one very intense component in only one of them
and some random background noise in the other. To distinguish these two cases, and quan-
tify only the degree of time-scale similarity between the signals, we can export the concepts
of coherence and correlation function already discussed. The first naive attempt to define a
wavelet coherence was [388]:

CXY
n (s) =

WXY
n (s)√

|WX
n (s)|2 · |WY

n (s)|2
=

∣∣WXY
n (s)

∣∣√
|WX

n (s)|2 · |WY
n (s)|2

eiθXY
n (s) (3.39)

=

√(
WX∗

n (s)WY
n (s)

)(
WX

n (s)WY∗
n (s)

)√
|WX

n (s)|2 · |WY
n (s)|2

eiθXY
n (s)

=

√
|WX

n (s)|2 · |WY
n (s)|2√

|WX
n (s)|2 · |WY

n (s)|2
eiθXY

n (s) = 1 · eiθXY
n (s).

This is a consequence of having made use of just one realisation of the process, and doesn’t
give any additional information with respect to the already introduced phase angle spec-
trum.53 Many authors have tried to overcome this impasse, modifying the previous definition

53The same issue would have occurred with a periodogram estimation of the usual coherence function.
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Figure 3.22: Time-scale averaged wavelet coherence, as defined in (3.40), for the
wavelet cross-spectrum represented in figure 3.21. Only the regions with 5% of
significance of the latter are shown.

or recurring to related quantities [376, 392, 393], although some of them too distant from the
original spirit of the coherence analysis and difficult to manipulate to make analytical pre-
dictions. The approach that we preferred was that of [381, 387], which redefined (3.39) in
terms of time-scaled averaged quantities discussed in the previous section, analogously to
how the standard coherence function is estimated in practice:

CXY
n (s) =

∣∣〈〈s−1WXY
n (s)

〉〉∣∣√〈〈
s−1|WX

n (s)|2
〉〉
·
〈〈

s−1|WY
n (s)|2

〉〉 eiθXY
n (s). (3.40)

The factor s−1 (present in the definition in [387] but not in [381]) is used to convert nominator
and denominator to units of energy density, in order to reinforce the similarity with (2.67).
Of course this choice was irrelevant for (3.39). The authors also notice that, since the wavelet
transform, with the normalisation described in section 3.6.1, conserves variance [291], the
wavelet coherence is an accurate representation of the (normalized) covariance between the
two time series [387]. Its normalisation is the one the we expect: 0 6 |CXY

n (s)| 6 1, where the
latter condition is true only for identical, and coincident, signal. The latter aspect represent
a difference with respect to the usual coherence for stationary signal; this is a consequence
of the time-scale localisation of implemented by the wavelet transform, as we will discuss in
section 3.6.3.

In figure 3.22 we have reported the (magnitude squared) wavelet coherence, correspond-
ing to the same signals of figure 3.21, in only those regions where the significance of |WXY

n (s)|,
with respect to the null hypothesis of two white Gaussian noise processes, was smaller than
5% (dashed regions of figure 3.21). This choice was made in order to focus only on those
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regions that the previous wavelet cross-spectrum analysis found relevant, and not being
distracted by other random fluctuations that, recalling the considerations at the beginning
of this section, were likely to produce high spurious fluctuation of this quantity.

Two important things emerge form this figure. First of all, the central region, which
appeared to posses large values the wavelet cross-spectrum, has instead a not that high value
of it if compared to the individual ones of the two wavelet power-spectra. This corresponds
indeed only to a wavelet coherence. 60%, which is only moderately relevant; that is, maybe
the glitch in hrec is not witnessed by that magnetometer. Moreover, the other small “drop-
like” regions, mostly at high frequency, which exhibited only moderate values of the wavelet
cross-spectrum in figure 3.21, are now indicating a very high value of the coherence. This
is clearly a spurious effect, corresponding to coincident small variations of the background
amplitude, where the fact that are were coincident implies a non-negligible value of the
numerator of equation (3.40), while their small amplitudes boost it from the denominator.

A clearer picture of the wavelet coherence could have come from increasing the lengths
of the averages used for computing (3.40), at the price of a worst time-frequency resolution.
This doesn’t constitute a solution to this issue though, which is rooted in the fact of esti-
mating statistical quantities, related to non-stationary processes, from just one realisation of
them.

Wavelet cross-correlation

It is worth mentioning another related quantity to describe the time-frequency similarity
between two signals. This is the wavelet cross-correlation, firstly introduced in [394]. Anal-
ogously to 3.9, or more specifically to the biased cross-correlation estimator (2.48), it can be
defined as:54

RXY
l (s) :=

1
N

N−|l|
∑
n=1

WX∗
n (s)WY

n+l(s). (3.41)

This quantity admits an interesting interpretation. Rewriting both of the wavelet trans-
forms in the form of equation (3.33), and applying the convolution theorem, we obtain that
the previous quantity can be rewritten as:

RXY
l (s) =

(
fS
N

)2
·

N−1

∑
k=0

x̃∗k ỹk
∣∣ψ̃(sωk)

∣∣2eiωk l

and, passing a factor fS/N = 1/T inside summation, we can interpret the term x̃∗k ỹk/T as
the periodogram estimate of the cross-power spectral density:

=
fS
N

N−1

∑
k=0

ŜXY
k
∣∣ψ̃(sωk)

∣∣2eiωk l . (3.42)

Compare it with the periodogram definition in (2.49). The product of this cross-spectrum
estimate and the kernel constituted by the squared modulus of the wavelet projects it to a

54Other analogous definitions for a wavelet cross-correlation have been discussed in [375, 376, 392]. In [395]
for example, the authors define wavelet cross-correlation a quantity identical th the coherence we defined in (3.40)
except for the presence at the numerator of the real part of WXY

n (s) only. This clearly doesn’t give any additional
information with respect to what already introduced here.
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specific scale component, providing a term that can be interpreted as a time-scale “localised”
cross-power spectral density. This is similar for many aspects to the windowing operation
in the Welch’s method in (2.55) (without averaging though). Equation (3.41) is therefore the
(inverse) DFT of the previous quantity (refer to the normalisation convention described in
the Notation section).

Being quite redundant with respect to the notions already encountered, we have not
directly exploited this concept in our analyses. More specifically, we are interested in an in-
dependent quantification of the relations between the two signals from their relative wavelet
phase spectrum, as we will discuss in a moment in section 3.6.3. This information is summed
over in the (3.42) and therefore no more available for this purpose.

3.6.3 Instantaneous time delay through wavelet phase angle spectrum

So far, we have never explicitly made use of the phase information provided by the cross-
spectra. In section 2.3.3 we have briefly shown that the phase angle θxy( f ), defined in (2.73c),
can be used to measure the delay between two (stationary) signals, which are one the re-
tarded copy of the other, plus some additive uncorrelated noise. However, it is unlikely to
discover, in practical situations, two such signals and them to be of any help for Detector
Characterisation purposes.

The phase angle of the wavelet cross-spectrum can provide a natural time-scale general-
isation of the previous concept for non-stationary signals. We will proceed then to verify the
previous condition for two such signals, in the framework provided by the wavelets, and
we will introduce then a new measure of the causal relationship between them.

Phase angle spectrum between retarded signals

For simplicity, let’s consider impulsive signals, like the glitch represented in figure 3.20, and
in particular let’s start for simplicity considering two unit pulse signals, xn = δn0 (equals 1
when n = 0) and yn = δnm (equals 1 after m time units), with the former “leading” (for
m > 0) the latter by m samples: yn = δn−m 0 = xn−m. Making use of the definition (3.31), we
can compute the two wavelet transforms:

WX
n (s) =

N−1

∑
n′=0

δn′0ψ∗
(

n′ − n
s fS

)
= ψ∗

(
− n

s fS

)
, (3.43a)

WY
n (s) =

N−1

∑
n′=0

δn′mψ∗
(

n′ − n
s fS

)
= ψ∗

(
m− n

s fS

)
. (3.43b)

The wavelet cross-spectrum of the two pulses consists in a comparison between the wavelet
and a complex conjugate, time shifted version of it. Its form is therefore dependent on the
particular wavelet choice. For the Morlet one (3.27), we have:

WXY
n (s) := WX∗

n (s)WY
n (s) =

1(
π1/4

√
s fs
)2

(
e
− n2

2s2 f 2
S e
−2πi −n

s fS

)∗(
e
− (n−m)2

2s2 f 2
S e
−2πi m−n

s fS

)
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=

 1√
πs fs

e
− (n−m)2+n2

2s2 f 2
S

 e
−2πi m

s fS . (3.44)

The exponential within parentheses is the product of two Gaussians, centred in 0 and in m
respectively, which represents the loss of coherence between the two pulses; this is due to the
already described decorrelation length for the Morlet wavelet, and it constitutes a difference
with respect to the previous coherence analysis of stationary signals. What interests us is the
last phase term, which, at all scales, is proportional to the delay between the two signals:

θXY
n (s) = −2π m/s fS. (3.45)

This means that the arrows in figures 3.21 and 3.22 should be “curled” in such a way to
rotate their angle proportionally to the frequency if a similar delay relation holds for the two
signals. The same result holds also for other choices of complex wavelet with a phase linear
with time, although the Morlet one is arguably the most common of this kind.

A similar condition on the wavelet cross-spectrum phase is expected to hold approxima-
tively also for other signal shapes, thanks indeed to the decorrelation term within parenthe-
ses in equation (3.44). We have tested this with simulated glitches, as it will be discussed in
the next subsection.

Instantaneous time delay statistic

We want to exploit the previous idea that the phase angle spectrum is a measure of the time
delay between the signals: τ0 := m/ fS. This represents the condition for one signal to lead
the other, and therefore it can be interpreted as a necessary condition for one being “a possible
cause” of the other. We will come back to the concept of causality in section 3.7. We want
to define then an estimator for this delay but, again, we have to face the problem that our
signals are single realisations of the corresponding non-stationary stochastic processes. To
make our estimator able to distinguish this expected value from random noise fluctuations,
it is important to define a sort of averaging procedure. Of course, we can’t rely on time
averages and the standard recipe provided by the Ergodic Theorem exploited in section 2.1.6.
However, for the particular form of (3.45), proportional to the frequency (inversely to the
scale), we can think of defining this estimator averaging the difference

θXY
n (1/ f+δ f )− θXY

n (1/ f ) ≈ −2π τ0 δ f (3.46)

over all the frequencies. Notice that δ f is not constant in general, as for example with the
choice in (3.35); to keep truck of this, we restore the discrete label k to the frequencies.

Putting together the previous ideas, we can define the instantaneous time delay statistic:

ΘXY
n :=

1
2π ∑

k

θXY
n (1/ fk+δ fk)− θXY

n (1/ fk)

δ fk
(3.47)

which, at each time n, is representative of the “instantaneous delay” between the signals. Its
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sign can tell us which one is leading the other, and the amplitude by which extent. For exam-
ple, in the previous case the first signal xn is leading the retarded copy yn by a time τ0; this
statistic is then identical (in expectation value) to −τ0 at all times, even if we will not be able
to resolve them far from 0 and τ0 for the Gaussian decorrelation factor in equation (3.44).55

The value of this statistic, together with its ±σ and ±2σ regions, is reported in the bot-
tom plot of figure 3.21. To avoid spurious contributions from regions we know in advance
from the modulus of WXY

n (1/ f ) to be compatible with uncorrelated white Gaussian noise
processes, equations (3.47) is evaluated only at those frequencies where the significance of
the null hypothesis is smaller than 5% for the wavelet cross-spectrum value. The contribu-
tions from the other regions should average to zero, with a certain variance, as expected for
two Gaussian noise precess with random phases. Notice also that with this choice, small
regions of averaged frequencies tend to have an higher variance than bigger regions, if the
latter possess the coherent structure described in equation (3.45). This aspect is visible in the
bottom plot of figure 3.21 furthest from the central time of the glitch.

Focussing to the centre of that figure, at about the central time of the glitch, we notice
a small interval where the previous instantaneous time delay statistic is different from zero
at least by two σ’s, and, in particular, it is positive. This suggests that the first signal, the
strain Hrec_hoft_20000Hz, is led by the Central Building magnetometer ENV_CEB_MAG_N. We
will come back to comment this specific application of the method described in this section
momentarily.

It is important to notice that the previous conclusion has been obtained independently
from that on the magnitude squared coherence of the two signals, exploiting all the informa-
tion contained in its complex value. Making use of both these information at the same time
gives a deeper insight into the relationships between two signals, and can be of great help
for the search of the causes of the non-stationary noise. This constitute a second advantage
with respect to previous methods based on wavelets or Q-transforms of one channel at a
time.

Tests on simulated glitches

In order to test some of the techniques described in the previous sections, including nor-
malisations, significance tests, and, most importantly, the new method provided by the in-
stantaneous time delay statistic, we proceeded to verify them on simulated glitches. Several
shapes have been tested, from sine Gaussians, which are represented by bivariate Gaussian
envelopes in the scalogram with the Morlet wavelet, to deltas and broader structures.56

As an example, a choice that resembles that in figure 3.20 is provided by the function:

g(t) = A · sign(t0 − t)e−|t−t0|/d (3.48)

55Notice here the reason behind defining the statistic with a negative sign if the first signal leads the other. This is
motivated by the fact that in noise studies we are most likely concerned with the opposite situation, that is to test
whether the first “target” channel, say the strain, is led by some other, auxiliary channel.

56Notice that for sine Gaussian glitches, which basically contain only a single frequency contribution, besides
those reconstructed by means of the wavelet transform, the previous technique of instantaneous time delay statistic
based on frequency averages is not applicable.
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Figure 3.23: Wavelet cross-spectrum for the glitch model (3.48), for an individual SNR
of 10 and a time delay τ0 = 1 ms. The normalisation is given by the expected
cross-spectrum for two uncorrelated white noise processes; the dashed white con-
tour represent the 5% significance region for this (null) hypothesis. The arrows
represent the phase angle of the complex cross-spectrum.

where A is the amplitude factor. The discontinuity provided by the “sign” function makes it
broadband, while the characteristic decay time d gives its duration. This is bandpassed, say
between 20 and 500 Hz, in order to avoid aliasing and low frequency effects, and superim-
posed to a white Gaussian noise with zero mean and variance σ2. In figure 3.23 we reported
the wavelet cross-spectrum of such a glitch with a retarded copy of it, superimposed to a dif-
ferent noise realisations; in this particular example we choose a “moderate” SNR A/σ2 = 10
and a very short time delay τ0 = 1 ms. Focussing on the the phase arrows about the centre
of the figure, is evident their “clockwise curly behaviour” with the frequency, characteristic
of a negative time delay, according to the interpretation given in the previous section.

In figure 3.24 we reported the value of the phase angle θXY
n (1/ f ), as a function of the fre-

quency, for various n (gray lines) within 10 ms about the centre time of the target glitch. The
blue line represents their median, with respect to n, while the red line is the theoretical value
for τ0 = 1 ms (the intercept of this line, corresponding to the random phase at f = 0, has
been fitted from the data). The correspondence between the median measured phase angle
and its theoretical value is remarkable below 250 Hz; after that, the coherence between the
two signals becomes negligible, as visible from figure 3.23. Moreover, from frequencies com-
parable to 1/τ0, equals to 1 kHz in our case, depending also on the spacing of the sampled
frequencies, the phases start to “spin” so fast it may become hard to accurately reconstruct
their differences (3.46). This in a certain sense limits our method to small delays between
signals, but this is not a real issue with the noise coupling we are likely to find in a GW
interferometric detector.

The corresponding instantaneous time delay statistic ΘXY
n has been computed from (3.47)

and shown in figure 3.25. Besides the two “wings” on the sides, compatible with a null value
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Figure 3.24: Wavelet cross-spectrum phase angle about the centre time of the glitch.
The light grey lines represent the values of the angle as a function of the frequency
in a 10 ms window around the time of the glitch. The blue line is their median
average, while the dashed red line is the theoretical curve corresponding to a 1 ms
delay. The constant phase (intercept at f = 0 Hz) of the previous curve has ben
fitted from the data.

of the statistic, in the centre region around the time of the glitch (zoomed inset plot), its value
is similar to τ0 = 1 ms with which the two glitches have been generated.

3.6.4 Discussion and applications

The methods described in this section aim at extending the notions of correlation and co-
herence analysis, as previously described in sections 2.3.3 and 3.5, to a time-frequency rep-
resentation of the signals, particularly suitable for the study of glitches. The idea to make
use of the wavelet transform to this purpose is not new in GW community, as thoroughly
exploited by the Omicron pipeline [LVC30], although this doesn’t implement any measure
of correlation between different signals. This is only partially overcome in UPV [326], which
also includes a measure of the significance of this on the base of its occurrence for different
glitch triggers, even if it can’t be consider an actual time-frequency representation, as it com-
prises only a single time interval (that covering the duration of the glitch) and a very small
number of frequency bands (typically 5÷ 9). A proper representation of such a kind, on the
base of which to compare the strain signals from different detectors, is that implemented in
cWB [21] for the unmodelled search of astrophysical “burst-like” signals. The method de-
scribed in section 3.6.2 is an application of similar ideas to the study of glitches in the signals
within a single detector.

Differently from the previous methods, the technique developed by us exploits the phase
of the complex wavelet cross-spectrum between two signals. This provides additional infor-
mation, independent on that of the magnitude of this spectrum. Hence, it can give us further
insight on the relations between two signals, and in particular on their relative delay. We will
come back to discuss about this in a moment.
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Figure 3.25: Instantaneous time delay statistic for the simulated glitches reported in
figure 3.23. The blue line corresponds to the value of this statistic around the time
of occurrence of the glitch in the main channel, while the blue region is its ±σ
confidence band. At the centre of the figure, it is visible a small region, due to the
correlation factor, where this statistic is compatible (within ∼ σ) with the actual
delay of 1 ms of the glitches in the two channels.

To achieve a proper reconstruction of the energy content of a signal, the Omicron and
Omega [323, 396] pipelines make use of multiple wavelets with different Q-factors (equivalent
to different choices of ω0 for the Morlet wavelet (3.27)) to tile the time-frequency space.57 We
didn’t implement a similar strategy in our algorithm, where the value of ω0 should be chosen
in advance on the base of the duration and the desired frequency resolution of the signals
we want to investigate. Refer to the interpretation of this parameter as discussed at the
beginning of section 3.6.1. Our decision is motivated by the application of the instantaneous
time delay method of equation (3.47), which is feasible only for a fixed choice of ω0. The
comparison of phase angles between time-frequency planes with different ω0 is not of trivial
interpretation, hence the extension to multiple Q-factors of the technique developed by us.

On the possibility of a novel wavelet based causality test

Coming back to the interpretation to give to this new statistic, this is meant to test, at each
time, whether one signal is leading the other. The frequency averaging makes it robust with
respect to the uncertainties we have with only one realisation of the processes, and allows to
define “confidence regions” based on its standard deviation. Moreover, its evaluation only
on those regions found significant for the wavelet cross-spectrum is an additional aid to get
rid of spurious effects due to noise. Tests on simulated glitches, even with moderate SNR
and small delays between the signals (usually hardly appreciable by eye), have shown its
ability to correctly identify their relation. The Gaussian decorrelation factor in (3.44) is a

57They do this in a slightly differently way, with results visually a little bit different. For different Q’s, Omicron
produces multiple time-frequency histograms, corresponding to the regions where each wavelet is localised, and
with values corresponding to the energy content in that wavelet component. Than, it stacks the various tiles of
different histograms with on top those with the highest SNR. Omega produces similar time-frequency planes, tiled
for different Q’s, and then it selects the most significant non-overlapping pixels, which can also be clustered, among
all planes using a simple exclusion algorithm.
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consequence of the locality of the wavelet representation, and makes the previous statistic
to assume the value of that delay in correspondence of the occurrence of the glitches in the
two channels. If these are close to each other, as in the example in figure 3.25, this becomes
actually a band for the statistic to be correctly measured as the time delay between the two.

Being the temporal delay a necessary condition for one signal to constitute the “cause”
of the other, it is tempting to interpret the previous instantaneous time delay, in fact, as an
hint for a causality relation. To be precise, if a signal xn is found to lead a second one yn, it is
natural to exclude the possibility that the latter has caused the former. Of course, there are
exceptions against considering this true in general. For example, there could be an intrinsic
delay between the actual cause and the time this shows up in a signal. This is the typical
case of missing explanatory signals, which should have witnessed the cause for first. This
case is not uncommon, and constitutes a limit for this kind of analysis. More details on the
concept and interpretations of causality will be provided momentarily in the next section.

The idea to use wavelets to infer causality is not new, although of very recent (& 2013)
development, mostly in the Econometrics context, and in many cases not mature enough nor
universally accepted. For example, in [395] the authors have proposed to infer the causality
relation between two signals observing the sign of the wavelet cross-correlation, defined anal-
ogously to the complex wavelet coherence the we introduced in (3.40), but with only the real
part of WXY

n (s) at the numerator, and therefore assuming value between −1 and +1. The
authors have then concluded that the variable were to be considered causal (anti-causal) if
the sign of the previous function was positive (negative) and its absolute value close to 1.
A similar idea was refined in [397, 398], where, very likely inspired by [213, Figure 5.4], the
authors introduced a multiplicative indicator function that takes the value one if the variables
were in phase (θXY

n (s) ∈ [0, π/2]∪ [−π/2, 0]) and the value zero if not. Both this pictures are
misleading (or wrong) if applied for example to the case in (3.46), where the phases change
sign and quadrant with the frequency f . The method described in [399, 400] is probably
one of the best founded and most widely used to-date, judging for example its significant
follow up. It basically consists in a spectral Granger-Geweke causality test [401, 402] (to
be introduced in the next section), where the local spectral estimations are made with the
wavelet power spectrum and cross-spectrum. Its application to the study of non-stationary
noise in GW detectors is probably not feasible, in the form it is presented. First of all, it
is computationally very demanding, requiring at each time-scale point to computation the
spectral factorisation of the spectral density matrix of the two signals [403] to compute their
cross-correlation and transfer function matrices. Moreover, the estimations of these spectra
are affected by the uncertainties inherent in having at our disposal only one realisation of
the processes; time-scale averaging is only a partial solution. The authors overcome this dif-
ficulty averaging their statistic on 5000 simulations of the same physical system. In our case,
it is unlikely to have this many realisations of the same identical glitch.

Analysis of “mystery glitches” and BNS range drops

The techniques described in this section and the WATERLOO analysis tool have been applied
to some specific noise studies in Virgo. In particular, during O3a it was reported of some oc-
currences of an unknown family of very loud glitches that caused drops in the BNS range of
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even 20 Mpc [LVC47]. The scalogram of one of them is reported in figure 3.26a where, anal-
ogously to 3.20, it is shown its wavelet power-spectrum and whitened time series. For con-
venience, the colour-map is logarithmic, to easily accommodate its high SNR. These glitches
were identified by Omicron and they were present, besides in the strain channel and in all
those related with it (like LSC_DARM and other photodiodes and actuators used for its recon-
struction), in many other auxiliary channels, although with quite diverse morphologies in
the time-frequency maps. A visual inspection of all of them was not very helpful, unless for
the expert commissioner able to recognise shapes and hidden relations within channels, not
evident from the scalograms alone.

UPV [326] helped a lot in discriminating between those channels that manifested glitches
in coincidence with the strain channel with high significance. In particular, it pointed to
some controls in the long suspension tower containing the beam splitter (Sc_BS) and other
mirrors.

By means of WATERLOO we obtained the detailed correlation of their time-frequency en-
ergy content [LVC45]. In figure 3.26b we have reported the scalogram of a control channel of
the z axis of the West End mirror (Sc_WE_MIR_Z_CORR). As visible from both the scalograms
in 3.26, the glitches in these two channels present a very similar time-frequency morphology.
To quantify this similarity, in figure 3.27 we reported their wavelet coherence (only for those
regions where the null hypothesis of white noise was less significant than 5%) and instan-
taneous time delay statistic. From the former we had the confirmation that their coherence
was indeed very close to 1 in a wide region of frequencies in correspondence of the glitch.
Most noticeably, the time delay statistic revealed a certain region, with significance grater
than 2σ, in correspondence of the two glitches where Hrec was led by Sc_WE_MIR_Z_CORR

with a delay of about 0.2 ms [LVC46]. This information was clearly not available with the
previous tools.

We must be careful about the interpretation to give to this result. Two aspect should be
taken into account. First of all, this data records correspond to a single realisation of the
corresponding stochastic processes. Hence, the value of the time delay statistic, as well as
that of the magnitude of the coherence, could be so just by chance. The averaging proce-
dures implemented in both of them help in reducing the effects of noise fluctuations, which
are however unavoidable. Second aspect is whether to interpret the observed delay as a
real causation relation. This is the most subtle part, as we will thoroughly elaborate in the
next section. What seems reasonable to conclude is just that the glitch in the mirror control
is unlikely to be caused by that in the strain channel, as it occurs before it. However, some
caution is also needed in similar statements. In general, from a single realisation it is never
safe enough to make conclusions about possible causality relations. This however provides
a deeper insight, with respect to the scalograms alone, to people doing noise studies on
multiple channel signals. For example, an expert commissioner can exploit this and judge
with his/her experience if the possibility of a causation is actually plausible or not. More-
over, in some circumstances, acting on the controls highlighted by this method, one can also
directly verify its claims. The latter approach is based on the concept of physical influence,
where the controlled manipulation of the cause changes the effects, as a sufficient condition
for claiming causation [32]. An example of this is provided by noise injections, as discussed
in section 2.3.2.
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Figure 3.27: Wavelet cross-spectrum between Virgo Hrec_hoft_20000Hz strain channel
and ENV_CEB_MAG_, that is, the environmental sensor corresponding to a magne-
tometer in the Virgo Central Building. The colour-map represent the amplitude
of the spectrum, while the small black arrows its phase. The dashed white line is
the 5% significance region for the hypothesis of two uncorrelated white Gaussian
processes. The bottom plot shows the instantaneous time delay statistic defined
in (3.47), together with its ±σ and ±2σ regions.

3.7 On the concept of causality

Except for the instantaneous time delay described in section 3.6.3, in our studies we have
mostly focus on the concepts of correlation, or its frequency domain analogue, the coherence,
and the previous wavelet generalisation, as ways to measure the similarity between two time
series. Only seldom we have tried to extrapolate this, wandering about the possibility that
a signal was indeed responsible of the observed variation of the other.58 Indeed, a more
profound insight could come if we are actually able to test whether one signal, representing a
certain subsystem or device, can be actually considered the cause of the variations of another
one, namely the strain. Unfortunately, the mathematical definition of the concept of causation
is not a simple task in itself, and only in the last fifty years this issue has been formalised in a

58Noise injections described in section 2.3.2 are, for many aspects, the only exception to this. In that case, the
operator injecting the known noise waveform is, by the definition, the cause, and we are mostly concerned with the
measurement of the effects.
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consistent way [30–32]. The common habit to associate the latter to the concept of correlation
leads to a logical fallacy, with notorious paradoxical consequences.

To the purpose of noise studies, we have faced this problem in two different ways, each
of them with a specific “operative definition” of causality. To the best of our knowledge, as of
October 2019, this is the first attempt in GW literature of a similar application of these tech-
niques, mostly developed in the context of Climatology [33] and Neuroscience [34–36]. We
shall present them, and the corresponding studies, anticipating that due to the complexity
of the subject and the mechanisms governing the functioning of a GW detector, with many
feedback controls and cross-talking parts, no significant new insight has been achieved so
far. An extensive testing of the proposed methods is currently in process in order to con-
vince us about the applicability and reliability of the predictions obtained by them. This
is currently done by means of the analysis of the hardware noise injections performed for
Detector Characterisation purposes in September 2019 [LVC48], and on specific noise issues
under control, aided by the experience of the commissioners in charge of these subsystems.

The following discussion has greatly benefited from the collaboration with the Virgo
group at the INFN section of Genova, and in particular of Dr. L. Rei.

3.7.1 Granger-Geweke causality

After the discussion in section 3.5.3, the most natural paradigm to attempt some inference
about a casual relation between two (or more) stochastic processes X1(t) and X2(t) is that
provided by Granger causality [401] and its frequency domain version due to Geweke [402].
This is probably also the most widely used approach in the literature, although it possesses
some significant limitations to its applicability to the studies regarding non-stationary noise
in GW detectors.

The measure of causality in the sense of Granger (therefore sometimes referred to as
“Granger-” or “G-causality”) relies on the ability of the driving, or causal, variable to predict
future values assumed by the effect, or driven, variable. This is verified in the context of linear
regression models (refer to section 3.5.3), assuming the two variables are model stationary, in
the sense described in section 2.1.3, and representable by Auto Regressive (AR) models.59

The inclusion in their respective models of past values of the other variable yields:

X1(t) =
p

∑
t′=1

A11(t′) X1(t− t′) +
p

∑
t′=1

A12(t′) X2(t− t′) + e1(t) (3.49a)

X2(t) =
p

∑
t′=1

A21(t′) X1(t− t′) +
p

∑
t′=1

A22(t′) X2(t− t′) + e2(t) (3.49b)

which can be readily extended to the case of n > 2 variables, as shown in [34]. The residuals
e1,2(t) are Gaussian distributed under the stationary model hypothesis (which is important
for the correct statistical interpretation of the test results). The model order p, that is, the
maximum number of lagged variables to included in the previous equations, is typically
determined by some information based criterion, such as the AIC [364] or the BIC [365] al-
ready encountered in the context of linear regression. Then, the G-causality relation between

59A sufficient condition for that is therefore that the variables are covariance-stationary, as explained in sec-
tion 2.1.2.
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the variables is inferred from the reduction in the variance of e1(t) (or e2(t)) due to the in-
clusion in the corresponding model of the variable X2 (X1, respectively). Similarly to what
discussed in the context of the regression, the test is formally made on the cross-coefficients
A12 (or A21) performing an F-test of the null hypothesis that A12(t) = 0 ∀t (analogously
for A21(t)). The “strength” of the corresponding G-causality interaction is then typically
measured by the logarithm of the corresponding F-test statistic [402]:

F2→1 := log

(
Var

[
e1|A12=0(t)

]
Var

[
e1|A12 6=0(t)

]) (3.50)

where e1|A12=0 are the residuals for the null hypothesis of autoregressive model for X1(t),
while e1|A12 6=0 accounts for the inclusion in the model (3.49a) of the contribution from X2.
This statistic is larger than zero if the variable X2 causes, in the Granger sense, X1. To asses
its significance, we can use the critical values for an F-variable with p and 2p degrees of
freedom, which should represent the distribution of the argument of the logarithm if the
two variables are stationary (e(t) Gaussian). Analogous definition holds for F1→2, and, in
general, with the previous definitions we can construct a “net” of conditional G-interactions
among a set of n signals [34].

Geweke formulation, limits and extensions

As noted by Geweke [402], and already discussed in section 2.1.2, two AR processes, and in
particular two stationary ones, admit a spectral representation. Indeed, taking the Fourier(-
Sieltjes) transform [210] of equation (3.49), and using the convenient matricial form [35]:(

A11( f ) A12( f )
A21( f ) A22( f )

)(
X1( f )
X2( f )

)
=

(
e1( f )
e2( f )

)
(3.51)

we can define the transfer matrix Hij as the inverse of the matrix of the coefficients Aij,(
X1( f )
X2( f )

)
:=

(
H11( f ) H12( f )
H21( f ) H22( f )

)(
e1( f )
e2( f )

)
.

Left multiplying the previous vector by its complex transpose, and averaging on the space
of its possible realisations (angle brackets “〈. . .〉”), we can define the PSD matrix:

Sij( f ) :=
〈

X∗i ( f ) Xj( f )
〉
=
〈

H∗ik( f )Σk` H`j( f )
〉
.

This definition is analogous to the one already introduced in equation (2.17) of the PSD of a
stochastic process as the Fourier(-Stieltjes) transform of its (auto-)correlation function (2.11).
Likewise, Σk` is the transform of the cross-correlation matrix of the residuals: 〈e∗i ( f ) ej( f )〉.
In the last term, the repeated indices summation convention, over the various processes,
is understood. The spectral G-causality statistic is then defined, for a generic number of
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signals, as:

Ij→i( f ) := − log

1−

(
Σjj −

Σ2
ij

Σii

)
|Hij( f )|2

Sii( f )

 . (3.52)

The advantage of this formulation, with respect to (3.50), is that now the Granger causality
test has become manifestly frequency dependent, as appropriate for the non-trivial spectral
structure of GW strain data. One of the causality tests [399, 400] that we have mentioned at
the end of section 3.6.3 relies indeed on the spectral formulation by Geweke, and it attempts
to extend it to a time-scale representation.

Unfortunately, the simplicity of this technique, either in the Granger or Geweke formu-
lation, comes with two major assumptions that limits its applicability to noise studies. First
of all, it relies on the hypothesis that the signals are model stationary, that is, their AR co-
efficients shouldn’t vary with time. Of course, this is not suitable for studying generic non-
stationarities, such as glitches. Some authors have tried to overcome this issue, in the case of
slow non-stationarities, considering the signals as locally or piecewise stationary [404, 405].
In our noise studies, we have followed this approach by choosing an appropriate model
order p.

Second (major) limitation comes from the form itself of the model, and the admissible
relations between the variables. Equation (3.49) accounts indeed only for linear interactions
between them. Non-linear contributions are usually included in this framework by means of
approximations to “locally linear” neighbours [36], or by means of data transformations [406,
407]. Related to what discussed in section 3.5.2, a more consistent approach to this issue is
provided by the concept of transfer entropy [408, 409], similar to that of mutual information
introduced in (3.11). The idea is that, if one process passes information to the other one, there
should exist some kind of interaction between the two, which can be indeed considered a
sort of (information based) causality relation. As it is written, equation (3.11) doesn’t take
into account of the flow of information. However, this can be easily inserted, exploiting the
same idea of Granger, into the Kullback-Leibler divergence between the conditional p.d.f.s
including or not the past values of the cause process (X2, in this case):

T2→1 :=
∫∫

pX1

(
x1(t)

∣∣x1(t− 1), . . . , x1(t− p); x2(t− 1), . . . , x2(t− p)
)

× log

(
pX1

(
x1(t)

∣∣x1(t− 1), . . . , x1(t− p); x2(t− 1), . . . , x2(t− p)
)

pX1

(
x1(t)

∣∣x1(t− 1), . . . , x1(t− p)
) )

dx1 dx2 (3.53)

Then, if the information transfer has a net value in one direction, say T2→1 > T1→2, we can
conclude that the process X2 concurs to the causes of X1. It has been shown that this method
is equivalent to the previous one by Granger if the two process satisfy the correspondent as-
sumptions, and in particular they can be described by (3.49), with Gaussian residuals [410].
While solving one limitation of the Granger method, this solution presents one even more
severe, requiring a long sequence of stationary data to obtain a reliable estimation of the
p.d.f.s involved; this is the same limitation already encountered in section 3.5.2 for the study
of non-stationarities by means of the mutual information. However, this information theo-
retic approach will be at the base of the other important causality inference method that we
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will describe in section 3.7.2.

Application to the study of interferometer fast unlocks

For the reasons explained before, the Granger causality test, and its extensions, has limited
applicability to generic non-stationary noise. However, we attempted to use it for a specific
noise issue, of high importance for Virgo during O3, that is represented by the so-called fast
unlocks [LVC49]. With this term we typically refer to “sudden” losses of the interferome-
ter locking, usually starting at the level of the Injection system, and in particular with the
lock-loss of the Inpute Mode Cleaner (IMC) cavity. In the instants immediately before these,
apparently no instability or drift is evident in the strain channel.

This issue has a very long story, and the very first record of it dates back to 2004, at the
very first operational phases of the Virgo detector. During O3 and the commissioning phase
that preceded it, this was particularly studied by the Injection and Detector Characterisation
groups. The occurrence of this kind of events was typically repeated in groups of variable
number every few weeks. Since the origin of them has never been understood, it is not
clear whether they are consequence of the same cause or not. In several occasions hardware
interventions, with the substitution of some components (slave laser pumping diode driver,
master laser, and video driver), and various systems tuning have been attempted (master
laser frequency and IMC locking) to fix this, but apparently these unlocks keep on returning
after a variable time.

As explained in section 2.4.4, associated to every lock-loss there is a time, usually rang-
ing between thirty minutes to one hour, before the interferometer con return back to its
working condition. This clearly impacts negatively GW searches, reducing the duty cycle of
the detector. It was therefore important to investigate them with the analysis tools at our
disposal. An important resource to study them is provided by the Lock-loss Monitor devel-
oped by D. Cohen, which collets the record of every unlock, together with the indication of
those compatible with “fast” ones [LVC50]. We made use of the corresponding gps times for
our investigations of this issue. As anticipated, the strain channel (or similarly LSC_DARM)
didn’t exhibit any unusual behaviour before the occurrences of these unlocks, and no cor-
relations with other channels were found with NonNA. We decide then to apply the Granger
test described in the previous section to the quasi stationary regime before the moment of
the unlocks.60 We firstly attempted to model the strain as an AR(p) process, then we added
the past values of some channels of the Injection and Pre-Stabilised Laser subsystems as of in
the model (3.49).61 By means of the BIC test we determined a model order typically p ∼ 103.

Unfortunately, the AR model alone was sufficient to correctly model the strain before
to times of the unlocks, and the inclusion of none of the other channels contributed to the
reduction of the prediction error, as expressed by the test statistic (3.50).

We tried then to investigate the relations among the other channels used in the model
for the strain: INJ_EOM_CORR, INJ_IMC_REFL_I_PRE and _POST, PSL_ML_AC, PSTAB_HF_CORR,

60For these tests we made use of the statsmodels Python library for the modelling of the signals as AR processes,
and for the corresponding grangercausalitytests class [411].

61To this purpose we acknowledge the strict collaboration with the experts of the Injection group, and in particu-
lar of Dr. G. Pillant, who helped the author to sort out among the many sensors and controls of this subsystem, and
in the interpretation of the results of our analyses.
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BsX_ML_PZT_CORR, and INJ_ML_PZT_CORR. These, differently from LSC_DARM, exhibited cer-
tain unusual behaviours before the time of the fast unlocks, which was interesting to un-
derstand better. However, the results on them were mostly null or “ambiguous”, with hints
for causality in both the directions, and therefore not interpretable in the linear framework
provided by the Granger test.62

The reason for that relies in the inapplicability of equation (3.49) to the highly dynamical,
and non-separable processes characterising these subsystems (in particular for the relation
between INJ_ML_PZT_CORR and PSL_ML_AC; refer to note 62). The method described in the
next section aims at overcoming this limitation.

3.7.2 Convergent Cross Mapping

The framework provided by Granger to infer causality relies on linear regression and the
separability of variables. This is evident from equation (3.49). From the information theoretic
perspective of equation (3.53), this means that the information content of one time series
must be separable from the universe information set in order to test if this can be considered
a cause (or not) in the model for the other variable. However, in GW detectors, as well as
in Nature, this assumptions are often too restrictive, as the example of the relation among
Injection channels described in the previous section has proven.

A possible solution to this limitation, which allows to model causal relations in systems
that are most likely governed by highly dynamical non-linear connections, has been pro-
posed in 2012 by G. Sugihara with the introduction of Convergent Cross-Mappings (CCMs) [33,
412]. This approach fundamentally differs from what we have discussed so far by modelling
time series by means of dynamical systems, instead of realisations of stochastic processes.
Here, a family of smooth evolution functions (either deterministic or not) describes the time
evolution of the system in a d-dimensional manifoldM, called the phase (or state) space [413].
In this framework, two time series are said to be causally linked if they are generated from
(the projections of) the same evolution functions.

The Takens’ reconstruction theorem

A region of particular importance in the system phase space is that occupied by the so called
attractor, and its basin of attraction, for many aspects resembling the general relativistic idea
of an event horizon, inside which the evolution of the system is doomed to be confined. If
this is the case, the fundamental result of the Takens’ reconstruction theorem [414] states that
we can approximately reconstruct the attractor from the values assumed by the time series
x(t) and its past story. The E-dimensional points

x(t) =
(

x(t), x(t− τ), x(t− 2τ), . . . , x
(
t− (E− 1)τ

))
constitute the embedding spaceMX for this reconstruction, also named shadow manifold by
Sugihara, which depends on two parameters: its dimension E and the time delay τ. The
former should equal the minimum sufficient number of independent variables on which the

62To be more specific, the Granger test pointed in favour of both a causality relation from the piezo correction on
the frequency of the master laser (INJ_ML_PZT_CORR) and the master laser AC power (PSL_ML_AC), and vice versa.
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attractor inM can be projected (at least two) [415], and can be estimated from the data using
the false nearest neighbours method [416–418].63 The time delay can instead be determined by
the average mutual information criterion [419, 420], and usually corresponds to the sampling
time of the time series. From the definition in (3.11) (in the case of discrete partitions):

I(τ) = ∑
i,j

pij(τ) log

(
pij(τ)

pi pj

)

where pi is the probability to find x(t) in the i-th partition of the observation set, and pij(τ)

is the joint probability that an observation falls into the i-th interval and the one after a time
τ into the j-th. If there exists a minimum of this function for a certain value of τ then this is
a good candidate for a reasonable time delay for the reconstruction of the shadow manifold
MX . We should stress however that, beyond the values suggested by the previous criteria,
the misspecification of E and/or τ affects the results of the CCM inference on causation, with
consequent unreliability of its predictions.

If a second variable Y is part of the same dynamical system, the same considerations as of
X apply, and the corresponding shadow manifoldMY, from the Takens’ theorem, is there-
fore diffeomorphic to that of X: a small region around y(t) will map onto a corresponding
one around x(t). The idea of the cross-mapping is then represented by the fact that if X has
a causal influence on the dynamics of Y, we can useMY to estimate future values of X:64

x̂(t;MY) =
E+1

∑
i=1

wix(ti) (3.54)

where the weights wi are estimated fromMY:

wi =
1

W
· exp

− ‖y(t)− y(ti)‖
min

k
‖y(t)− y(tk)‖

 , W :=
E+1

∑
i=1

wi (3.55)

with ‖ · ‖ the Euclidean norm in RE [415].
To test the predictions of this reconstruction, a library of L points y(t) should be consid-

ered, and the corresponding predictions x̂(t;MY) compared to the actual values x(t). If the
hypothesis of the Takens’ theorem are satisfied a convergence theorem exists for the Pear-
son correlation coefficient (3.10) between the actual values and their predictions: rxx̂. This
indeed should converge to 1 as the number of points L sampled fromMY becomes larger,
since this library will become a more accurate representation of the attractor, and the nearest
neighbour points will cluster closer to y(t).

The convergence of the correlation, hence of the representation, with L is clearly visible
in some subplots in figure 3.28, which we are going to comment momentarily.

63Loosely speaking, this criterion is what guarantees that the measure inside exponential in equation (3.55) re-
mains bounded, meaning that the points x(ti) and x(tj) keep on remaining inside the same neighbour for a suffi-
cient dimension E.

64Notice in this definition of causation a sort of “twist” with respect to what described in the previous section for
the Granger test and its extensions. Here, X(t) is said to be the cause of a second process Y(t), in the CCM sense, if
past values of the “effect” can help to predict future ones of the “cause”.
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Application to the study of the effects of squeezing

In order to verify the potentialities of the previous method, we have proceeded to study
the interactions of some processes that we knew in advance to be highly non-linear, and
for which we already had a good understanding about what relations to expect. This study
involved the effects of the injections of squeezed light, already mentioned in section 1.3.2, to
the Virgo DARM signal [163]. The list of the interesting channels, related to the squeezing
subsystem, which were worth to investigate has been provided by D. Bersanetti.65

The software infrastructure has been provided by the Python package skccm by N. Cor-
tale [421], based on scikit-learn [422], where the author have provided the porting of the
original pipeline proposed by Sugihara et al. [33], converted to Matlab by D. Mønster for val-
idation [423]. This includes also the methods for computing the dimension of the embedding
E and the delay τ, as described in the previous section.

In figure 3.28 we reported the results of the analysis in terms of the correlation rxx̂ be-
tween shadow manifold prediction x̂(t;MY) and actual value x(t), as a functions of the
library size L. We averaged each point over 1000 realisations in order to get rid of spurious
detector noise effects. After that, all the correlation curves seem converge to specific values,
as expected from the convergence theorem described in the previous section. The triangular
subplot structure of this figure should be read as follows. With the usual convention for
the two-dimensional Cartesian plane (x, y), the channels written on the top of each column
represent the X’s, and those on the right of each row the Y’s. Then, the blue line in the var-
ious subplots is rxx̂ as a function of the library size L. If this converges to 1, this means that
x̂(t;MY) models correctly x(t), that is Y can predict X, or that X is the cause of Y in the
CCM sense. Refer to comments in note 64. Conversely, the orange lines represent ryŷ, where
ŷ(t;MX) is defined analogously to (3.54) with x’s substituted to y’s; when converging to 1,
this means that X can predict (be caused by) Y. For example, in the first row the blue lines
represent the predictions of LSC_DARM by means of the channels written above; in orange the
predictions of the latter by means of the former.

For the interpretation of these results we referred to the discussion about simulated data
reported in [33, 415]. When only one of the two lines possesses high values of the correla-
tion, this indicates a clear direction of the dynamical effect, and hence which one of the two
channels is causing the other in the CCM sense. A similar statement can be made when one
of the two lines is markedly higher than the other, although not converging to 1. This can
be an effect of the noise, as commented in the previous references. When both of them are
high, this is a symptom of some “feedback” mechanism, or bidirectional causality; Sugihara
compares it to the “predator and pray” relation.66 In those cases where both the curves ex-
hibit moderate to low values of the correlation Sugihara interpret this as a complex model

65Private communication dated February 2019. For the purpose of this analysis the author also acknowledges
M. Vardaro and E. Capocasa for the precious advices about the role of the various channels and the interpretation
of the results.

66More prays can provide nutrition to the predators, but the increase of the latter causes the decimation of the
former. In turn, a reduction of the prays diminishes the number of predators. In those situations where the two
species reach a sort of equilibrium in their respective numbers, this can be described as a common dynamical
system characterised by an attractor, as defined at the beginning of this section [424]. This may also be thought as a
sound description of certain feedback mechanisms inside the operational principle and control of an interferometric
detector of GW.
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Figure 3.28: Example of Convergent Cross Maps with Advanced Virgo data related to
the squeezing and to some important longitudinal degrees of freedom (DARM and
MICH). The triangular structure should be read, in the usual directions of the Carte-
sian plane (x, y), as the correlation of the values of the channel on the columns (X)
with its prediction by means of that in the corresponding rows (Y): rxx̂, blue line.
The opposite relation, ryŷ is represented in orange. High values of the former can
be interpreted in the CCM sense as a causation relation from X to Y (the opposite
for the latter). Refer to the description in the main text for the various cases, or to
the test on simulated data reported in [33, 415].
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with an external forcing of non-coupled variables.67

As regards the interpretation of the data at our disposal, probably the clearest thing
to notice (and the easiest to interpret) is, in the first column, the longitudinal control of
the short-Michelson degree of freedom, V1:LSC_MICH, that is predictable/caused by almost
all the other channels (high values of ryŷ, the orange curve), while it has almost no influ-
ence on them, in particular on those related to the squeezing. Also, in the second row the
high values of rxx̂ (blue line) hint of a causation relation from the squeezing phase channel
(SQZ_B1_7MHz_phi0) to those corresponding to the mirrors (SQZ_MIRROR*). Other relations
are less evident and not obvious to interpret.

3.7.3 Some final thoughts about the application of causality studies to
GW detector’s data

The inference about causation is an advanced topic in time series analysis aimed at overcom-
ing the limitations of those methods based on correlation, or its frequency domain formu-
lation by means of coherence, or time-scale extension with wavelets. In this work we have
described three different approaches to it for the analysis of GW detector’s data, particularly
focussed on the study of non-stationary noise. Although all of these presented some limi-
tations, and none of the analysis described here can be trustworthy considered to provide
original insight in the complex structure of the processes taking place inside a detector, this
constitutes, to the best of our knowledge, the first documented attempt of such an inclusion,
and the potentiality of it should be pointed out.

Large part of the difficulties related to similar studies are rooted in the definition itself of
what we mean by causation. Indeed, all the methods that we described rely on a different
interpretation of it. Our original instantaneous time delay statistic (3.47) aims at verifying a
necessary condition for one process to cause the other, which is based on the common sense
belief in temporal precedence, where the causes are assumed to precede their effects. We have
studied it in the context of “impulsive” excesses of power (glitches), for which it represents
a natural exploitation of the phase information contained in the complex wavelet transform
(or of the cross-spectral density in the case of stationary signals, as described in section 2.3.3).
Tests on simulated data has shown its ability to correctly reproduce the injected time delay.
Further testing and possible improvements in the formulation of this statistic are currently
under study. In particular, it is ongoing the analysis of some of the noise injections performed
during O3 [LVC48] to test this technique in a controlled context. The optimisation of the
pipeline is also envisioned, in order to make it suitable for fast analyses to be included in the
DQRs.

The causality test by Granger, or its spectral version by Geweke and the related concept of
transfer entropy, is the most widely adopted in the literature. This is due to the simplicity of
its formulation in terms of linear prediction by means of a regressive model, or in terms of the
mutual entropy in equation (3.53), which generalises to the non-linear case. It is also highly
supported from the point of view of the software, with some standard Python packages
reviewed and released [411]. However, its application “out of the box” to generic noise

67This is the notable case studied by Sugihara et al. of the apparent correlation between sardine and anchovy in
the California Current, which was proven to be due to shared climate forcing instead of a direct interaction [33].
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studies, and in particular to non-stationary noise, has proven to be unsuccessful for the
violation of the assumptions it is based on. As discussed, its applicability is limited to the
case of stationary signals, or to those representable by AR processes, as described in 2.1.3.

The method provided by the CCMs is arguably the most complex and difficult to ac-
curately handle. Also its results can be of not easy interpretation, consisting in multiple
possible outcomes for the convergence of the correlations. Its formulation by G. Sugihara
is quite recent (2012), and its follow up and applications are in constant development but
not as mature as those of the Granger method. The most of its applications to-date have
taken place in the biological and climatological context [33, 424], and the interpretation of
the results took advantage of some common sense (as in the case of prays and predators) or
of independent knowledge in the fields. A similar approach can be quite difficult to repeat
for a GW detector, with many feedbacks and interacting parts in a non-linear way. Also, the
most of its predictions and the related interpretations have been discussed on simulated data
with very simplistic “toy models” only, as for example in [415]. These are presumably not
suitable in the ambit of GW detectors. Still, even in this case some contradictory results has
been observed, especially in the presence of noise and with strongly coupled processes, as
discussed in [425]. Form a practical point of view, the results of this method are sensitive to
variation of some of its parameters, namely the dimension of the embedding E and the time
delay τ, as discussed in the previous section. One should carefully verify the convergence of
the results with the parameter choices recommended by the false nearest neighbours method
and the average mutual information criterion. At a more profound level, the validity of the
Takens’ Theorem is not guaranteed for generic shapes of the attractor. In particular, this as-
pect can’t be directly observed and the assumptions on it can’t be verified (both a priori or
after the data has been recorded) with the consequence of the CCM method to return unreli-
able results. This aspect has been addressed in [425] with simulated data, exploring various
configurations of the parameter space for certain coupled processes.

The previous considerations have led us to be careful about the inference to draw with
the CCM method, and to present in this manuscript only an example of it in a context under
control and with a certain amount prior knowledge on the relations between the various
signals. Unfortunately, it was not possible yet to carry out the joint analysis of the “fast
unlocks” [LVC49], described in section 3.7.1, in collaboration with the Injection group, as
we did with the Granger method. Indeed, prior to this, a more profound knowledge on the
method, its robustness, weakness and applicability to detector’s data should be taken into
account. For the post O3 phase it is planned the analysis of the noise injections accomplished
in September 2019 [LVC48], where we will verify the predictions of this already knowing the
causes.
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4 Noise artefacts mitigation

All the strategies presented so far are based on the identification of particular noise fea-
tures, and then the investigation of what may have caused them. Consequent mitigation
strategies have been implemented intervening directly on the latter and checking back if
these changes have produced the sought after noise reduction. This is the typical approach
adopted during the detectors commissioning phases, such as that from mid 2017 to April
2019, when most of this Thesis work has been developed. During an observation run, these
mitigation operations should be postponed until the next weekly maintenance break or, if a
specific noise issue is particularly detrimental, the interferometer status flag discussed in sec-
tion 2.4.3 should be applied, intervening immediately on the noise issue. As a consequence,
the corresponding data are not used for GW searches. This impacts the interferometer duty
cycle and, in the long run, the number of detected events, as discussed in section 2.4.4.

Moreover, besides every effort, non-stationarities of various extents are naturally present
in all data stream. In section 2.1.6 we have discussed how to make, in the presence of “fast
non-stationarities” but a clear background noise, robust spectral estimations by means of
the mean-median averaged ASD. This is useful for the correct application of the “standard”
matched filter technique in GW searches. However, a more detrimental issue is given by the
fact that with the improved sensitivities of the Advanced Detectors, and the consequently
higher rate of detectable events, the possibility that some (fast) non-stationarity overlaps
with one of them is now relevant. This is particularly true for “long” BNS signals, and in-
deed this was the case of LIGO Livingston detector data for GW170817 [14], and reported in
figure 4.1. Gating is in general only a temporary solution since it produces a loss of poten-
tially valuable information.

To cope with that, new post-offline strategies are under development to perform the mit-
igation of noise artefacts directly on the recorded data. An example of these was the appli-
cation of the BayesWave algorithm to the removal of the glitch in LIGO Livingston data in
correspondence of GW170817 [198]. We will elaborate on this in the last section, with also a
comparison to the algorithm developed by us.

In this chapter, which constitutes a sort of “epilogue” about the noise investigation strate-
gies described so far, and an outlook towards new advanced methods, we will briefly present
a possible new “de-glitching” algorithm based on deep neural network (DNN), which we use
for signal reconstruction. This project was started in 2018 by S. Kulkarni and M. Cavaglià
from MS&T, which the author has started to collaborate with during his Thesis work. What
follows is based on the original work and preliminary results obtained by them, to which
goes the credit for the material hereafter proposed. New developments and tests are on-
going to improve this algorithm and check its reliability for the purposes of GW searches.
These will constitute the subject of publication in preparation by the LIGO MS&T group and
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Figure 4.1: GW170817 signal in LIGO Livingston detector, corresponding to a BNS co-
alescence overlapped with a DAC saturation glitch [14]. The top map reports its
scalogram, obtained with the Omega pipeline [323], where the glitch and the chirp
are clearly visible with high SNR (normalised energy). In the bottom plot the de-
tail of the (whitened) strain time series (orange) is shown in correspondence of the
glitch. It is also reported its gated version (blue) obtained by means of the inverse
Tukey window shown in grey. Figure adapted from [14] under license CC BY 4.0.

the author.

4.1 NNetFix: a Neural Network to Fix glitches on signals

The aim of the NNetFix (Neural Network to Fix glitches on signals) algorithm is to cope with
situations similar to that in figure 4.1, of a glitch overlapped with a GW signal. The idea is
to perform the reconstruction of the parts of the signal corrupted by the glitch exploiting a
Multi-layer Perceptron (MLP) artificial neural network structure [40]. The main targets have
been BBH signals, but tests are ongoing to verify its performances on all kind of modelled
searches. In the next sections, we will present the details of the method and some prelimi-
nary results on real and simulated data. These have already been presented at a conference
by S. Kulkarni [LVC18], and are part of the contents of an article in preparation [285].

4.1.1 The Multi-layer Perceptron and method description

An Artificial NN constitutes a generalisation of the idea behind linear regression described
in section 3.5.3, which allows for non-linear predictions. The most simple architecture of this
kind is given by the MLP. This consists of a certain number (usually two, besides the input
one) of layers of processing units (neurons), where the information is feed-forward propagated
from the input nodes, through the hidden layer(s), to the output neurons. Several model
order selection criteria exist for the optimal choice of the number of hidden layers [343].

https://creativecommons.org/licenses/by/4.0/
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Then, given d points of a certain time series xn, represented as a vector in the corresponding
d-dimensional embedding,

xn = (xn, . . . , xn−d+1)
T , (4.1)

the first (hidden) layer usually consists into a number of linear transforms of it, with weights
wij,

wT
j xn =

d−1

∑
i=0

wijxn−i, j = 1, . . . , p (4.2)

which are then operated on by a non-linear transformation:

hj = f

(
d

∑
i=1

wijxn−i

)
, j = 1, . . . , p. (4.3)

The function f has the role of activation function for the next layer. Traditionally, it used to be
a sigmoid function, similar to a “smooth step”, although it has now been shown that a more
convenient choice is provided by a rectifier (or ramp) function [426]:

f (x) = x+ = max(0, x) (4.4)

and the unit implementing this is called a relu (rectified linear unit). The output of the second
layer (in the case of just two of them, otherwise the last) gives the non-linear prediction,
which is just a linear combination of the hidden unit responses:

x̂n+T =
p

∑
j=1

vjhj. (4.5)

Then, given a data set of N embedded vectors xn and the corresponding future values
xn+T , the parameters of the model can be set as to minimise the prediction error (or loss
function), provided for example by the mean-squared error:

MSE :=
N

∑
n=1

(
xn+T − x̂n+T

)2. (4.6)

This process is referred to as the supervised training of the neural net [40]. Its implementation
is done by means of the method of back-propagation [427], which is based on the compu-
tation of the gradient of the previous quantity, and the corresponding descent towards the
minimum.

In the NNetFix algorithm, this idea has been used to reconstruct, after training, the evolu-
tion of the characteristic “chirp-like” sinusoidal pattern of a GW signal (1.47) in the presence
of a corrupted portion of it, for example by a glitch (as in figure 4.1). Indeed, given a certain
segment of strain data affected by this issue, we firstly proceeded to gate it, smoothly zeroing
out its values by means of an inverse Tukey window (or tapered cosine) [250], as in the bottom
plot in figure 4.1. Then, passed to the algorithm the chunk of data centred around the gated
portion as input, we expect the trained MLP to provide an accurate reconstruction of the
missing piece of data, as it would have been in the absence of the glitch. The number of
nodes in the output layer is therefore set equal to the size of the zeroed interval of the glitch.
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4.1.2 Training by means of simulated waveforms

We trained our NN with data generated superimposing to the Advanced LIGO reference
noise curve the BBH coalescence waveforms obtained by means of the LALSuite data anal-
ysis routine [428], with IMRPhenomD waveform models [190]. This is the most delicate part
of the whole process. Indeed, a general consideration about it is that predictions of any al-
gorithm are only as good as the dataset we trained it on [429].1 For this reason, in order to
achieve the desirable performances, we needed to ensure that this training dataset was both
dense, in terms of the granularity of the various parameters of the waveforms and the glitch
(or gating), and in diversity of the possible scenarios presented, including mass ranges, sky
position, SNR, etc. Of curse, some sort of trade-off needed to be applied, in order to make
the network training to converge within the given time and computing resources. On the
other hand, including data waveforms that have highly degenerate features had the risk of
over-training the network to produce a single kind of outcome all the time.

For these reasons, to optimise the training process, we made the following assumptions.
Given the particular scenario of a GW signal with a glitch superimposed on it, we assume
to know in advance the following properties: (i) an initial “rough” estimate of the binary
component masses, provided for example by a preliminary analysis made with the glitch
gated, (ii) the duration of the gating, and (iii) the time it occurs before merger. Then, we
could generate a training set adequate for this scenario simulating component masses in the
credible region around the previous preliminary estimate, and the other extrinsic parame-
ters (sky position, angle of inclination, coalescence phase, and polarisation angle) uniformly
distributed over their respective ranges. Moreover we uniformly simulated its SNR with
respect to the background noise it is superimposed, randomly generating it from the Ad-
vanced LIGO reference PSD curve. A further precaution was to produce multiple copies of
the previous waveforms, each of them superimposed to a different noise realisation, in or-
der to be sure that the algorithm was trained to predict the signal without learning the noise
properties at the same time. Moreover, a sanity check was made on real detector noise, by
an amount of 10% of the whole training set.

This dataset, comprising O(104 ÷ 105) samples, was then used to train the algorithm,
using the details about the glitch at points (ii-iii) to gate the corresponding data by means of
an inverse Tukey window with roll-down parameter α = 0.2.

The implementation of the code was done by means of the scikit-learn Python li-
brary [422]. The MLP architecture was constituted by one hidden layer of 200 neurons.
The mean-squared error (4.6) was used as a loss function, together with the rectifier acti-
vation function (4.4) and the stochastic gradient descent optimisation method for the back-
propagation. The dataset was split into a ratio of 60 : 30 : 10 to form the training, testing
and cross-validation datasets respectively. By means of the latter, we have obtained a cross-
validation accuracy of 95%.

1Under many aspects, we already encountered this issue in section 3.5.3 when we tried to extrapolate the regres-
sion predictions to new segments of data, while trained on previous, non-stationary ones.



4.1. NNetFix: a Neural Network to Fix glitches on signals 189

(a) (b)

Figure 4.2: Performances of the NNetFix reconstruction as expressed by the percentage
error in SNR recovery. In the left hand side plot, for a fixed glitch (or gate) duration
of 50 ms, the comparison of the performance of the reconstruction versus the gate
data is reported as a function of the time before merger of the glitch. On the right-
hand side, both the duration and the time before merger are made varying; the
different lines colours represent the reconstruction performances for various glitch
durations, as a function of the time before merger. Images courtesy of S. Kulkarni.

4.1.3 Results on injected and real BBH signals

We tested the algorithm on both injected BBH signals, generated using PyCBC software [17],
and those corresponding to actual events, available from the Gravitational Wave Open Sci-
ence Center (GWOSC) [202]. The reconstruction performances have been evaluated using as
a metric the (percentage) error in SNR recovery, defined as the difference between the SNR ob-
tained without gating (that is, in the absence of a glitch) and that of the reconstruction with
NNetFix, performing the gating, using the same “best matching” template of the original
one.

In figure 4.3 we simulated the reconstruction of the signal corresponding to GW150914 [8],
as measured by the LIGO Hanford detector, upon which we assumed to be superimposed
a glitch of duration 50 ms, occurring 15 ms before the time of the merger. The training for
this signal has been obtained simulating black holes with masses m1, m2 ∈ [15, 45] M�. The
scalogram in figure 4.3a represents the signal with the central part, corresponding to the hy-
pothetical glitch, gated, as visible from the dark blue band. In figure 4.3b its reconstruction
by means of the NNetFix algorithm is shown, which should be compared with the original
GW150914 signal reported in figure 4.3c. Their similarity appears remarkable.

The accuracy of the reconstruction of GW150914 is reported in figure 4.2, where we made
varying the two main parameters of the glitch (or gating): duration and time before merger.
In figure 4.2a the percentage error in SNR for a glitch of duration 50 ms (reported for conve-
nience as the horizontal black whiskers) at times before merger from 150 to 10 ms is shown
for the gated data (blue line) and for the reconstructed ones by means of NNetFix (red line).
Even in the very proximity of the merger, the error in the latter is just slightly above 20%,
while with gating is almost 50%. In 4.2b both of the parameters are made to vary; the three
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lines correspond to different values of the glitch duration, as functions of the time before
merger at which they occur.

4.2 Discussion and future developments

Although what reported in the previous section are just preliminary studies about this pos-
sible new technique, the method provided by NNetFix has effectively proven to be able to
perform the reconstruction of a GW signal in the presence of a glitch. One important point
should be noted here; this reconstruction does not provide “new” information about the pu-
tative GW signal, besides that present in the non-gated part of it. For this reason, it can just
be seen as a “sound way” to interpolate the data in the gap made with the gating. From the
point of view of the SNR, this has proven to constitute an advantage with respect to relying
on gated data. Another aspect we are investigating is the improvement it could provide
to the fast sky localisation of the source. Indeed, being able to run it in quasi-real time on
detectors data, the reconstruction it allows could provide a better sky localisation than that
obtained by gating the corrupted portion of the data.

For the reasons discussed at the beginning of this chapter, the problem of “deglitching”,
or in general “denoising” performed post-offline, is a very active field of research within the
LIGO and Virgo collaborations. At the time of writing (December 2019) there are at least two
other algorithms operating on this. One is the already mentioned BayesWave [195], success-
fully applied to the removal of the glitch in the LIGO Livingston data in correspondence of
GW170817 [198], represented in figure 4.1. This was done exploiting a fit of the data, that
is, glitch plus the GW signal, in terms of (real) Morlet wavelets (3.27). For the morphologies
of the two were very different, the former impulsive and broadband and the latter slower
and quasi-monochromatic for quite large portions of it, the wavelet reconstruction presented
very disjoint components for them. Moreover, the authors exploited the coherence of these
components between the two detectors, verifying that only the “signal part” of them was
in fact coherent. This sufficed to resolve the signal, disregarding the presence of the glitch.
In principle, in every other situation like that, with wavelet components clearly distinguish-
able between glitch and GW signal (therefore primarily for BNS signals), this method can be
considered reliable for deglitching.

Another very recent approach, strictly related to the one presented for NNetFix, is that de-
scribed in [284] by some members of the LIGO group of the University of Illinois at Urbana-
Champaign. In this recent publication, the authors have adopted a more complex network
architecture, particularly suited for the study of time series [40], constituted by a Recurrent
Neural Network (RNN) [430]. They have presented the results about its application to the
denoising problem, that is, the extraction of the GW signal from the noisy detector data.
This, in a certain sense, is most closely related to the matched filtering technique than to the
deglitching that we have presented. However, the authors are verifying this also for the case
of general non-stationary noise.



4.2. Discussion and future developments 191

(a) GW150914 gated.

(b) GW150914 reconstructed.

(c) GW150914 original.

Figure 4.3: Reconstruction of GW150914 signal in the LIGO Hanford detector by means
of NNetFix. The top scalogram report the gated data, as for a glitch of duration
50 ms, occurring 15 ms before the time of the merger. The central scalogram is
its reconstruction by means of NNetFix; this should be compared with the origi-
nal version of it, reported in the bottom scalogram. Images obtained by means of
GWpy [288], courtesy of S. Kulkarni.
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5 Conclusions

In this dissertation, we have presented the implementation of several data analysis tech-
niques for the study of noise in Advanced GW detectors, with particular attention to what
are the needs of the search pipelines for different kind of GW sources. The arguments have
been selected from various research fields, ranging from Digital Image Processing to Ma-
chine Learning, with the aim of providing state of the art methods for the study of specific
noise issues, and in particular non-stationary noise. Two of them, the BLRMS based station-
arity test and the instantaneous time delay statistic, constitute an original contribution by
the author. The former has been conceived in order to overcome the limitations present in
the most of the currently adopted tests devoted to the same goal. The latter wants to exploit
better the information contained in the wavelet representation of the signals, adding the new
concept of “causality” to their study.

This activity has been part of the work of the author within the Virgo collaboration for
the period 2017-2019, in fulfilment of the commitments as a Ph.D. student. The relevance of
this work has been motivated in particular in Chapter 2, and in section 1.4 in relation to the
search of GWs. As explained, in the collaboration framework of experiments like Advanced
LIGO and Advanced Virgo, the activity of Detector Characterisation has the role of bridging
the gap between the actual functioning of the detectors, and the data they produce, and
the consequent analysis of it, aimed at GW searches. In order to make reliable inference on
the latter, we must possess profound knowledge of the properties of the detectors and their
noises. In turn, improvements on the latter should be guided by the quest for knowledge about
new, and possibly not yet observed, sources of GWs. For these reasons, we have investigated
some new techniques able to tell the search pipelines when the data are valuable for being
analysed, and when not, as in the case of the BLRMS based stationarity test (from O3a part
of the Virgo DQR) and the Rayleigh test; sections 3.1.2 and B.1. At the same time, we have
developed some tools aimed at the characterisation of the noise, with the goal of mitigating
its effects, when possible, both intervening on the detectors and in post-offline phases.

We have chosen to organise the discussion about the author’s studies following, at least
in part, the logic of the process of investigation typically adopted by a noise hunter or a
Detchar shifter, especially in those circumstances when no prior hints or directions were avail-
able, or new paths for the understanding of known problems were sought for. In these situ-
ations, the starting point usually consists of the identification of the particular noise features
that could affect GW searches. This aspect has been described in particular in sections 3.1
and 3.3, for non-stationary and non-Gaussian noise, respectively. Then, the strategies to re-
late them to the other information provided by the auxiliary channels have been discussed
in sections 2.3.3 and 2.3.4, for the case of stationary noise, and from section 3.5 throughout
the rest of this dissertation, for the non-stationary one. In the exposition of the latter, we
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have presented the various strategies in order of complexity and connections to the previ-
ous ones. In particular, the last two methods, causality studies (sections 3.6.3 and 3.7) and
deglitching (section 4.1), are arguably the most complex ones. Their implementations and
predictions still require further checks and investigations. Nonetheless, we have decided
to include them in this dissertation as an outlook of future activities for both the author
and larger groups within the collaborations. In some circumstances, we have also presented
methods that have proven not to be particularly useful, or even suitable, for the specific
purposes they were originally thought for. We have chosen to include them in this disser-
tation for the relevance of the discussion about their limitations in relation to the particular
noise features we were investigating. Also, their inapplicability for a particular analysis is
a way of characterising the data involved, and, most importantly, the consequent discus-
sion is sometimes a starting point for developing new methods. For example, this was the
case of the PSR stationary test (section 3.1.1), which led the author to the development of
the BLRMS based method described in 3.1.2. Moreover, the failure in many circumstances
of the Granger-Geweke causality test (section 3.7.1) led us to investigate more advanced,
non-linear methods, such as that provided by CCM in section 3.7.2. Again, the same thing
happened for linear regression analysis, when adopted for predicting the values of a certain
signal; we realised that the non-linear structure provided by an MLP was best suited for it
(section 4.1).

With this said, the implementation of newer data analysis techniques, exploiting state of
the art strategies in computing and Machine Learning will hopefully make available, in the
not too distant future, several reliable algorithms and tools to get rid of the effects of non-
stationary noise from GW data. This is the best wish the author can make about the future
developments of the ideas presented in this Thesis, and the most desirable conclusion for it.

Lastly, but most importantly, what presented has been part of a collaborative work (as it
should be within a Collaboration). All of the ideas and the concept presented have benefited,
in some form, of the help, the suggestion and (often) the criticism of other members of it.
Whenever possible, especially in those cases where the contribution did come from a specific
person or conversation, we tried to acknowledge it in the text. Also, the authors of the
tools we have made use of, and our collaborators in specific projects, have promptly been
acknowledged in this dissertation.1

1With the sincere hope they will appreciate their mention.
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A Examples of noise studies with
Virgo data

In this appendix we present some further examples of noise studies where the tools de-
scribed in this manuscript, and in particular the methods developed by us, have found ap-
plication for the purposes of the characterisation of the noise of Advanced Virgo. We have
decided to collect them here, after the presentation of the various arguments in the main
text, in order not to “break” the theoretical links and the signal processing thread that have
guided the development and presentation of the various methods, in response to the general
needs of the various search pipelines and in relation to the characteristic detector noise fea-
tures. Moreover, in the most of the following examples we will made use of more than one
of the previous tools, and comment their connections and the complementary information
we can gather from their joint application.

Several technical aspects of the functioning of the detector will be touched in the fol-
lowing examples. It is far from the purposes of this manuscript, and the author, to provide
here the adequate contextualisation and description of them in order to fully understand
the various noise issues. Hence, we have decided to heavily rely here on the corresponding
references to various studies presented in the Virgo documenting system (TDS) and in the
logbook. These are mostly meant for internal use, and some of them only accessible with
LVC credentials. For this reason, these references has been included in the separate bibliog-
raphy at page 233, and the corresponding entries labelled with the “LVC#” tag.

A.1 Beam splitter control noise at 150 Hz

From the 12th of May 2019, during the O3 science run of Advanced Virgo, it was noticed
an increase of noise around the 150 Hz spectral line [LVC51]. It was Omicron to identify
this issue for first as a cluster of high rate glitches, with central frequency compatible with
this value and SNR > 10; some of them were enough intense to appear broadband in the
spectrum and cause consequent range drops.1 From the observation of the spectrogram it
was evident that they corresponded indeed to an increased energy in the “bump” region
around this line.

In figure A.1 we have reported the ASD of LSC_DARM in the low frequency region and
in the band around 150 Hz for three different times. At 6:00 and 9:00 AM there were bad

1This noise was also observed with our stationarity test BRiSTOL, as shown in the method presentation
in [LVC22]. However, for the reasons explained in section 3.1.2, this tool was usually applied with glitch removed,
hence the manifestations of this noise were clearly less evident than in Omicron, optimised for the opposite pur-
pose.
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Figure A.1: ASD of LSC_DARM in the low frequency of the spectrum (top plot) and
around the 150 Hz resonance for three different periods. Associated to the latter,
it was observed a new family of glitches starting from the 12th of May 2019. The
data at 6:00 and 9:00 AM were influenced by bad weather conditions, as visible in
the higher values of ASD in the lower end of the spectrum. Notice also an increase
of noise in the bump surrounding the 150 Hz line.

weather conditions, as manifest from the increased low frequency noise in the top plot. Dur-
ing the latter, there were ongoing adjustment operations to the detector, as we will describe
momentarily. At 20:00 PM the weather was much quieter and also the noise at low frequency
and around 150 Hz. Notice however that the ASD representation of the data is not meant
to highlight noise non-stationarities, like the aforementioned glitches, but only the average
noise power content.

As a consequence of this noise, a region of about 6 Hz needed to be excluded from the
searches for gravitational waves. Moreover, in correspondence of the times of occurrence of
the various glitches, it was necessary to apply vetos on the corresponding data, as discussed
in section 2.4.4.

On the 23rd of May, during some adjustment operations for the tuning of the interferom-
eter working point, it was noticed that these glitches seemed to disappear in correspondence
of a specific control status of the beam splitter (BS) [LVC52]. In particular, they were absent
when the adjustments were performed and the beam splitter (BS) set to “full bandwidth con-
trol” (with the corresponding status flag channel SAT_BS_AATX_FLAG equals 2). Instead, they
were back when the BS returned to “drift control” (given by two independent controls for
the low and high frequency movements of it, represented bySAT_BS_AAT*_FLAG equals 1).

A standard analysis of correlation, and in particular making use of the “full” version of
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Figure A.2: Correlation between BS control mode and noise at 150 Hz. The blue line
represents the value of the BLRMS of Hrec_hoft_16384Hz in the band [145, 155] Hz,
with line subtracted and glitch removed, as described in section 3.1.2. The black
lines represent the control flags of the BS for the x (continuous) and y (dashed)
directions.

the BLRMS written in equation (3.1), wasn’t able to confirm this relation or to give more in-
sight about it. This is due to the fact that in the region containing the 150 Hz line the energy
(hence the rms) is largely dominated by the line itself, being its ASD two orders of magnitude
greater than that of the surrounding bump where the glitches manifested [LVC53]. More-
over, in the presence of glitches the values of this BLRMS time series were rich of “spikes”,
corresponding to them, and hence not representative of the high/low level of noise in this
region. We proceeded than to repeat the analysis with our modified version of the BLRMS
in the band [145, 155] Hz, with spectral lines (in this case, the one at 150 Hz) and glitches
removed, as described in section 3.1.2. The corresponding plot is reported in the blue line in
figure A.2. The analysis with the NonNA correlation tool (described in section 3.5) correctly
identified what observed during the interferometer adjustment, with high values of the cor-
relation of the previous BLRMS with the control flags of the BS, represented by the black
lines in figure A.2: continuous for the x direction control and dashed for the y direction one
respectively. In particular, it was clear that when the BS was in full bandwidth control (flags
equal to 2) the 150 Hz region was less noisy, the opposite of when they are in drift control
(flag 1).

This analysis was presented at the following Virgo commissioning meeting [LVC9] and
convinced about the relation between the control mode of the BS and the increased noise
around 150 Hz. Overall, the net effect of this issue, accounting for both the increased noise
level and the larger amount of glitches causing range drops, has implied to the average BNS
range (1.65) a reduction of 2 Mpc when the BS was in drift control with respect to when it was
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in full bandwidth.2 Moreover, the structures around this line had already been the subject of
our analyses, as reported in section 2.3.3. In particular, they were found by MONET the result
of the non-linear coupling of the angular control noise with this particular harmonic of the
electric mains [LVC11]. Hence, the interpretation of this increased noise has the consequence
of an higher level of the previous coupling when the BS was in drift control with respect to
when it was in full bandwidth. This information helped the experts of the corresponding
subsystems to intervene in the following months and limit this coupling still maintaining the
drift control of the BS, more suitable for more stability and duty cycle of the interferometer
with respect to the full bandwidth control (although less glitchy).

A.2 “Flat noise” investigations

The so-called “flat noise” has constituted the main limitation to the Advanced Virgo sensitiv-
ity during O3. Even after the end of it, this issue has not received a convincing explanation
and, most importantly, been solved yet. This noise manifests itself as an unexplained, from
the point of view of the noise budget (refer to section 2.2), additional contribution in the
region of the “bucket”, between 80 and 300 Hz, with an ASD approximately flat, or propor-
tional to f 1/4, as it seems compatible from recent noise studies and fit [LVC54, LVC55]. Form
a finer grain perspective, it also presents (presumably) a cut-off at 400 Hz, and a “bump”
between 200 and 300 Hz [LVC56]. As this is the region of highest sensitivity of the detec-
tor for the search of GWs (refer to the discussion in section 1.3.3), the presence of this noise
has limited the SNR of such signals and reduced the BNS range of the detector. The latter
was estimated to be 5 Mpc (∼ 10% of the total) lower than the expected one from noise
budgets [LVC57].

A large number of studies and direct tests have been carried out during O3 and in the pre-
vious commissioning phase in order to acquire better insight about it. In particular, the best
of the current knowledge has been the result of the extensive investigation efforts of M. Wąs,
A. Allocca, A. Chiummo, and P. Ruggi, with the collaboration of all the commissioning team.
From the Detector Characterisation point of view, we have repeatedly investigated this is-
sue, with almost all the instruments described in the main text of this document. We report
here some of the results of our analysis, as presented in various logbook entries and at a
dedicated commissioning meeting on the subject [LVC26].

In figure A.3 we have reported the ASD of the Virgo strain channel during December
2018 (dark blue line), for a particular value of the DARM offset. Further comments about the
latter will follow momentarily. The various noise contributions are represented in differ-
ent colours, and most noticeably the fit ( f 1/4) of the residual unexplained noise, which we
attribute to this flat noise, is shown in purple. Clearly visible the gap in the bucket region
between the measured ASD (dark blue) and the expected noise budget expected for the ther-
mal noise and the shot noise (light blue) and the suspension f−4 noise (yellow).

Although several mechanisms can in principle contribute as an additional frequency in-
dependent noise to the strain ASD, we are tempted to think that this, in the present sense

2This information however doesn’t take into account the better stability and higher duty cycle achievable when
the BS is in the former control mode. This has imposed a trade-off between this and the presence of the glitches,
thoroughly discussed by the commissioning team during the successive months.
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Figure A.3: Effects of the flat noise on the ASD of the Advanced Virgo detector. The
blue curve represents the measured ASD of the strain channel during December
2018, when some tests on the DARM offset were performed. The yellow, green and
light blue line represent the noise budgets for the known sources of noise. In pur-
ple is shown the fit for the power low model f 1/4 of their residual with respect to
the observed noise level. This is attributed to the flat noise. The orange line is
the total fit of the observed noise, including the latter. This image has been taken
from [LVC54].

of the term, is coming form a single though unknown source. The first occurrence of it was
documented in October 2017, right after the end of the O2 science run, when the input power
was increased to 26 W [LVC58]. In the spirit of what discussed in section 3.7, we believe that
the increase of power is not the direct cause of this noise, since during O3 th intensity of the
latter has varied while maintaining the same 26 W of power at the interferometer input. In
particular, this noise was higher right after O2, when the input telescope was not tuned,
then how it has been during O3 [LVC55]. In January 2019, it seemed to have reached its
minimum as a consequence of the improved tuning of the alignment of the BS and of other
angular controls [LVC59]. From this the idea that one of the possible causes of the flat noise
was some scattered light; refer to its description in section 2.2 and 2.4.1. Conversely, it was
observed that changing the DARM offset, hence the power exiting the antisymmetric port of
the BS (refer to the description in section 1.3.1), this noise was increased approximately as the
square root of the power arriving at the detection bench photodiode(s) SDB2_B1_DC [LVC54].
The data reported in figure A.3 corresponds indeed to a particularly high value of this offset,
and a consequently high level of the flat noise. Another mechanism that we have recently
found to increase its value is by changing the alignment of the output mode cleaner (OMC),
either by means of tilting the detection bench SDB1 or by using pico-motors on th OMC steer-
ing [LVC60]. In particular, we have found that misaligning the OMC reduced the noise. This
seems to be a consequence of the fact that a good OMC alignment facilitates the transmis-
sion of higher order modes of the incoming beam to the detection photodiodes, which resonate
with the main mode carrier and cause an increased noise with a flat ASD shape.
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Figure A.4: Application of the BRiSTOL stationarity test to the study of the flat noise.
This time-frequency map represents the p-values for the Kolmogorov-Smirnov test
used to assess stationarity, as described in section 3.1.2. With respect to figure 3.5,
we have used different colours for the regions where the stationarity hypothesis
should be rejected with significance α = 1% (shades of red) and where not (green).
The blue shaded regions correspond to the times where the operations on the OMC
alignment have been executed.

After the these tests, we had the clue that the DARM offset and the OMC alignment were
related with the flat noise. The reason for this is still not clear, though. We have then pro-
ceed to analyse the times the previous operations have been carried out, in search for cor-
relations, increased number of glitches, or variations of their numbers, with the analysis
tools described in the main text. Unfortunately, it was only possible to exclude some cul-
prits (almost certainly the scattered light) without finding further hints about the causes
of it [LVC26]. Nonetheless, this example is of particular relevance as a complement to the
material described in this work since it reports the characteristic sequence of investigations
typical of a noise study.

First of all, besides the previously described increase of the noise level in the bucket, the
test of stationarity with BRiSTOL and the Rayleigh Gaussianity test described in sections 3.1.2
and 3.3 presented no variations in their results during these operations with respect to be-
fore and after them. For example, in figure A.4 we have reported the p-map produce by
BRiSTOL for testing stationarity. Differently from figure 3.5, we have used two different
colour to distinguish the time-frequency regions where the stationarity hypothesis should
be rejected with significance α = 1% (shades of red) and where not (green). Except for few
insulated bins, and mostly clustered around the 50, 150 and 300 Hz spectral lines, during
the operations of (mis)alignment of the OMC described before [LVC60], highlighted by the
blue shades, it is not evident any difference in the stationarity of the data in the region of
interest of the flat noise.3 This result supports the hypothesis that the flat noise is actually

3Notice that the marked non stationary regions at the beginning of the blue shades correspond to the times the
OMC was misaligned, hence the corresponding data was clearly not stationary. Also, during the first few minutes
this map appears of a uniform green colour. This is a consequence of the fact that the interferometer was not in
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Figure A.5: Application of the Rayleigh test to the investigation of the flat noise in cor-
respondence of the alignment operation on the OMC [LVC60]. The blue curve
corresponds to the OMC misaligned while the orange one is for it aligned. The
dashed black line represents the median of the Rayleigh test statistic (refer to the
corresponding discussion in 3.3) under the null hypothesis of Gaussian data. Qual-
itatively, no difference is visible between the two curves in the frequency region of
interest of the flat noise, where both of them are compatible with Gaussian noise
(except for the usual spectral lines at multiples of the electric mains frequency).

stationary. Hence, a coherence investigation (section 2.3.3) is preferred with respect to one
of its cross-correlations (section 3.5). We will come back to elaborate on this momentarily.

Moreover, the Rayleigh test described in equation (3.8), given by the ratio of the stan-
dard deviation of the signal DFT and its mean (Ry3), is shown in figure A.5. The blue curve
corresponds to a time interval where the OMC is misaligned while the orange one is for it
aligned. The dashed black line corresponds to the median of the previous test statistic (for
the corresponding number of averages M; refer to the discussion in 3.3) under the null hy-
pothesis of Gaussian data. What is evident from this figure is that, except in correspondence
of known spectral features, like the lines at multiples of the mains frequency, the data are
compatible with the hypothesis of Gaussianity.

Since these preliminary analyses support a stationary and Gaussian noise, some possible
sources of it are automatically excluded. One example is the scattered light, or at least a
dominant contribution from it. To further convince about it, one can observe the glitchgrams
of Omicron during the times of the previous analyses, and notice that in none of them there
was an increased amount of glitches. Also, from the detailed observation of the wavelet
transforms computed in these periods of data one can notice a substantial absence of any
hint for a dominant contribution due to the presence of glitches.

The investigation of a flat, stationary and Gaussian noise is quite difficult. However,
as a last attempt, we applied the “brute force” correlation analysis described in 3.5, and
in particular that of the coherence by means of Bruco [LVC8] (and our multiple channel

“low noise conditions” there, hence the calibrated strain not reconstructed, resulting in an “uniformly” absent data
stream.
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Figure A.6: ASD of Virgo LSC_DARM in the region corresponding to the 83 Hz wandering
line during November 2018. The purple line refers to the 10th of November, when
this line was centred at 83 Hz, while the blue one is of the 23rd of November,
when this line appears to have moved to 85 Hz. Image obtained by means of Virgo
dataDisplay [LVC13].

extension described in section 2.3.3). Unfortunately, none of these analysis has produced
valuable hints about where this noise excess may come from, as reported at the dedicated
commissioning meeting [LVC26].4 In fact, both of these analysis were likely to fail from the
beginning in finding anything interesting related to this noise. The correlation analysis used
to find time domain similarities is not very informative for a stationary signal, especially for
one with a flat spectrum and a delta as autocorrelation. For the same reason, the frequency
domain coherence is likewise not very effective when the spectrum of the signal under study
is flat, with no characteristic spectral features.

The discussion included in this section represents a summary of the state of the art of the
knowledge and (most of) the investigation performed until the end of O3 as regards this an-
noying noise source that has constituted arguably the most relevant limit for the Advanced
Virgo sensitivity during O3, and which will certainly be one of the main targets for the next
commissioning phase before O4.

A.3 The 83 Hz wandering line

Another thoroughly investigated, and still not fully understood, noise issue in the Advanced
Virgo data during O3, and the commissioning phase before it, was the “infamous” 83 Hz
wandering line. This has been firstly documented by the author in December 2019 with a
two-month long survey of it [LVC61], plus some possible references to it during the 10th
Virgo commissioning run (C10) in August 2018 and to its “stationary” behaviour back in
2017, before that Virgo joined O2 [LVC62].

4As regards Bruco this result was already evident from the daily reports automatically produced. Even finer
grin investigations, with different resolutions, and in the time interval of the previous tests, have revealed no hint
of coherence.
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This line, in its “normal”, stationary position appears as a spectral line of moderate in-
tensity, barely visible with respect to the surrounding noise floor, at 83 Hz, and with about
0.5÷ 1 Hz of width. In figure A.6 we reported the ASD of Virgo LSC_DARM, where it is visible
as a small “bump” centred at 83 Hz on the 10th of November 2018 (purple line). On the 14th
of November it disappeared and after 8 days (22nd) reappeared at 85 Hz, as visible from the
blue line in the previous figure, referred to the 23rd of November.5 Nothing very harmful
for the Virgo sensitivity yet. The appearance of a spectral line with similar frequencies was
already documented in 2017 to be associated with the activation of the stepping motors of
the suspended power recycling bench (SPRB) [LVC62].

From the 2nd of December its movement became more significant, involving variations
of about 1 Hz every ∼ 1000 seconds. A similar change was not suitable to be studied, by
means of NoEMi [273], optimised for the identification of stationary or very slowly moving
lines, and the automatic rejection of anything faster.

As a first thing to observe, this line is not present in the spectrograms of other commonly
studied auxiliary channels, which, witnessing the same noise issue, could have led our in-
vestigations in certain directions rather than others. Then we proceeded to its analysis with
the instruments described in this manuscript. For example, in [LVC35] it was studied by the
author its excursion from ∼ 85 to 90 Hz during the 5th of December. We proceeded with the
tracking of the line by means of the Line Tracker algorithm described in section 3.4, than
to its cross-correlation analysis with NonNA (section 3.5). A Pearson’s correlation coefficient
of 67%, and visually a remarkable similarity, was found with some accelerometers (ACC_) on
some filter levels of the long suspensions (Sc_) of the BS and the SR, and in general of the
environmental monitor (ENV_) in the central building.6

With a frequency evolution not easily recognisable, due to the long and frequent periods
of unlock, this line “jumped” to 98 Hz in the first days of January, and then it stabilized back
to 83 Hz on the 13th. Another jump on the 15th took this to 100 Hz in one day, and back
to 83 in other three days [LVC61, LVC63]. the spectrogram of the first part of this evolution
has already been presented in figure 3.10. It is remarkable how this time the frequency
evolution appeared smoother than before, and over longer time scales, especially during the
descent. As a consequence, the correlation analysis performed on its tracking didn’t identify
the same channels as before, and in general it favoured slow trends, as it was approximately
the behaviour of the line during the descent to 83 Hz. In particular, it was found correlated
with the temperature of various environmental monitors all around the detector.

Similar evolutions of this line, where, from a stationary behaviour at 83 Hz, it suddenly
starts to move, going up to 110 Hz and back, were repeatedly observed during 2019 [LVC16].
Two aspects are not understood about this. First of all, it is not clear what have triggered the
departure of the line from its usual position at 83 Hz, say, on the 15th of January (nor what
has made it to drift back there on the 20th). To investigate this we tried two approaches.

5It is not excluded the possibility that it didn’t actually disappeared, but it just get masked by the nearby 87.1 Hz
calibration line during its frequency evolution between the 14th and the 22nd. Due to missing data in correspon-
dence of periods of unlocks, and other noise features in the data, it was however impossible to track it to confirm
this claim.

6Apparently, it was not found anything directly related to the PR, as previously reported in [LVC62], but only
close to it.



204 Appendix A. Examples of noise studies with Virgo data

Figure A.7: Spectrogram representing a wandering line in the Virgo strain channel, plus
other noise features (glitches, lines at 87.1 and 100 Hz, and a bump at 106), together
with the tracking of the former (red dashed line). Refer to section 3.4 for the de-
scription of the algorithm used to obtain it.

Firstly, we inspected both the Virgo Process Monitoring page and the Virgo logbook in or-
der to check if some changes or interventions were done on the detector in that moment.
The only guess that we obtained was related to the refill of some cryotraps for the vacuum
system, both in the period of January described before and in others [LVC64]. By itself, this
is not a very clear indication, since in other occasions when there were this kind of inter-
ventions the line was absent (or not drifting). Also, it is not evident the link between the
cryotraps and the line. The second approach that we tried was to study the coherence bud-
get when this line was stationary at 83 Hz and right after it, when it had drifted away, as in
the example reported in figure 3.10 and in the study described in [LVC61]. We executed this
analysis with Bruco for several similar cases during 2019 but we didn’t find any differences
in coherence (or coherence at all at 83 Hz) in any of them. As a consequence, the cause that
make this line to drift away from 83 Hz is still unknown.

Second aspect that is not clear is weather, once the line has been “unlocked” from its rest
position at 83 Hz, it is moved always by the same driving mechanism or by different causes.
To make the investigation easier, one would prefer the former case, of course. However,
this line has shown in different occasions visibly different evolution patterns; sometimes it
was smoother and slower, as in figure 3.10, or in the past cases of thermally driven drifting
lines reported in figures 2.12 and 3.9, and in other occasions it was faster and more jagged.
If multiple driving causes are indeed the culprit of its evolution, its study by means of the
cross-correlation analysis becomes quite difficult since they may overlap or change all the
times.

In figure A.7 we reported a final example of this line and the corresponding tracking. We
have used the same masking procedure by means of the Hough transform as described in
section 3.4 but, differently from figure 3.10, we have preserved the corresponding regions
of the spectrogram (glitches, lines at 87.1 and 100 Hz, and part of the bump at 106), not
showing them masked. Notice that in the region of the bump at 106 Hz, which appears also

https://vpm.virgo.infn.it:40000/main.html
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non-stationary from the point of view of its amplitude, the Hough transform wasn’t able to
entirely mask it, and the consequent line tracking was presumably affected by it. During
its descent, the frequency evolution seems more jagged than in the case studied in [LVC61],
and not very similar to a drift due to thermal causes. This reinforces the previous point of
view that, although the “unlocking” of the line from 83 Hz may come from the same cause,
the mechanisms that make it drift may be multiple. The correlation analysis of this more
recent occurrence of the line, since September 2019, has been reported in [LVC16]. Different
correlated channels have been found all the time, which could be just a coincidence or a
manifestation of the previous hypothesis.

What described here represents the current understanding of this noise issue, obtained
in about one year of investigations by means of the line tracking and the correlation analysis
described in this manuscript. Moreover, almost all the tools and the strategies at disposal
of the Detector Characterisation and Commissioning groups were exploited. Some possible
causes of it are excluded. For example, there is no clear coupling between a thermometer
sensor and it, as it was the case in figure 2.12. Also some hints about what may cause it
to abandon its position at 83 Hz, namely the cryotrap refill or the activation of some step
motors, have been hypothesised. However, at this point it is reasonable to suspect that
the only way to gather further insight about it is through some direct searches, and the
placement of some sensors where currently are absent. One hint about where to do that is at
the PR-BS link, as many correlation analysis results have seemed to point to.
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B Some notable distributions

In this appendix we report some useful notions related to two distribution function we made
use of in the discussion of spectral estimations in section 2.1.6 and for the development of
the various forms of the Rayleigh test in section 3.3.

B.1 Rayleigh

The Rayleigh distribution is a continuous probability distribution for positive-valued ran-
dom variables. It is parametrised by a scale parameter σ, and it can be shown to describe
the distribution of the modulus of two independent and identically distributed, zero-mean
Gaussian variables: if X ∼ N(0, σ2) and Y ∼ N(0, σ2), R ≡

√
X2 + Y2 ∼ Ry(σ). It is essen-

tially the square root of a chi-squared distribution with two degrees of freedom; if σ = 1,
R2 ≡ Q ∼ χ2

2.
Its p.d.f., as derived in section 2.1.6, is:

p(r) =
r

σ2 e−
r2

2σ2 , for r > 0.

Its mean is: ∫ +∞

0
r p(r) dr =

√
π

2
σ ' 1.25σ

and rms: (∫ +∞

0
r2 p(r) dr

)1/2

=
√

2σ ' 1.41σ.

The percentiles of this distribution can be computed to be:

p.p.f .(p; σ) = σ
√
−2 log

(
1− p

100
)

and in particular the median:

p.p.f .(50%; σ) = σ
√

2 log 2 ' 1.18σ.

These are the quantities used to define the Rayleigh test described in section 3.3.
Given a sample of M realisations of a Rayleigh distributed random variable, ri, the esti-

mator:

σ̂2 =
1

2M

M

∑
i=1

r2
i

is the maximum likelihood estimate for the squared distribution parameter σ2, and is also
unbiased (the estimator

√
σ̂ is a biased estimator of σ, instead) [330].
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B.2 Gamma

The Gamma distribution is a two-parameter family of continuous probability distributions,
including the exponential distribution, and chi-squared distribution as special cases of it.

If Ri are a set of M independent and identically distributed Rayleigh random variables
of parameter σ, G = ∑M

i=1 R2
i has a Gamma distribution with shape parameter M and scale

parameter 2σ2: G ∼ Γ(M, 2σ2) [331]. For large M the Gamma distribution converges to the
normal distribution N(2Mσ2, 4Mσ2).

Its p.d.f., according to the previous parametrisation on the base of shape k and scale θ, is:

p(g) =
1

Γ(k)θk gk−1e−g/θ , for g, θ and k > 0

where Γ(k) is the Gamma function, equals to (k− 1)! for every positive integer k.
Its mean and standard deviation can be calculated as:∫ +∞

0
g p(g) dg = kθ

and: (∫ +∞

0
r2 p(r) dr− (kθ)2

)1/2

=
√

kθ.

The median does not have an easy closed form equation (and indeed we didn’t make use of
it for our definitions of the Rayleigh test statistics).

Similarly to what described for the Rayleigh distribution in appendix B.1, given M reali-
sations of the same Γ-distributed variable, gi, the estimator for the parameter θ (assuming to
know k) is:

θ̂ =
1

kM

M

∑
i=1

gi.
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[LVC56] M. Wąs. VIR-0803A-18: Flat noise investigations. 2018. URL: https://tds.virgo-gw.eu/ql/?c=13700.

[LVC57] A. Allocca et al. VIR-0054A-19: “Flat” noise investigation. 2019. URL: https://tds.virgo-gw.eu/ql/?c=
13877.
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